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Abstract

This thesis will describe the efforts to generate Finite Element simulations of methods

to improve the accuracy and reliability of backscatter coefficient methods (BSC). BSC

measurements are a promising diagnostic tool in tissue characterisation, but are limited

by corrections for attenuation and diffraction. To investigate this, simulation models

were developed and analysed to investigate the sources of variability in BSC estimation,

to make it a more clinically applicable tool for the investigation of tissue state. Compu-

tational models mimicking attenuation of ultrasound by soft tissue mimicking materials

were shown to accurately reproduce the frequency dependent attenuation coefficients

of the materials, providing a tool with which attenuation corrections can be generated

in silico. In addition, the development of mathematical and simulation methods were

shown to generate reliable and accurate simulations of BSC estimation. Results of the

subsequent analysis revealed how the diffraction correction affected the quality of BSC

estimates under different conditions. In addition, an algorithm was developed to seg-

ment backscattered echoes based on their spatial wave coherence. This algorithm was

shown to be capable of segmenting coherence outliers embedded in incoherent scattering

media, improving the resulting BSC estimate through omitting regions of a simulated

tissue mimicking material that did not align with the conditions required for accurate

evaluation of the BSC.
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Chapter 1

Introduction

In the field of oncology, quantitative imaging approaches attempt to both predict and

assess tumour responses to treatment. Backscatter coefficient (BSC) measurements

have proven sensitivity to microstructural changes in tissues, and present a non-invasive

alternative to biopsy in measuring the efficacy of treatments for patients. BSC mea-

surements however, are limited in their accuracy by the associated diffraction and at-

tenuation corrections[1], and even in highly controlled cases, have shown to be variable

in their accuracy between different transducers and methodologies[2]. This thesis will

explore the sources of variability found within BSC measurements, in an attempt to im-

prove their reliability, and make the BSC a more clinically useful imaging biomarker for

cancer response to therapy. To investigate sources of variability, a simulation based ap-

proach will be proposed, as this allows flexible variation in the acoustic properties of the

simulated media, reproducibility in results and the ability to compute gold standards

for quantities such as attenuation or backscatter coefficient based on the simulation

properties. The estimation of these quantities from the simulation can be compared to

this gold standard to investigate sources of error in the measurement. The aim of this

thesis will be to develop and validate a model of ultrasound propagation through tissue,

which can be used to simulate a BSC measurement and thereby investigate methods

to improve the experimental measurement of the BSC. Results chapter 3 will validate

a method by which ultrasound attenuation by soft tissue can be modelled. Results
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chapter 4 will validate a method to simulate scattering from a simulated soft tissue

like material. Chapters 5 and 6 will then simulate BSC estimation experiments on this

scattering model to investigate the sources of error in estimation of the BSC.

1.1 Motivation

The variability in tumours is a hallmark of cancer, in both initial presentation and

progression [3]. For this reason, accurate and reliable imaging is essential not only in

diagnosis, but also the assessment of response to therapy. The current clinical standard

(tumour shrinkage) assesses changes to tumour dimension as a measure of progression

or response, typically through CT or MRI imaging [4]. This approach is firstly limited

in a technical sense by the accuracy of measurement (how accurately one can measure

volume, particularly in the case of irregularly shaped tumours). The second limitation is

biological, due to the fact that tumour volume lags behind the biological and functional

changes within the tumour that accompany response to therapy [5][6]. It is for this

reason that reliable imaging biomarkers of treatment response are of interest in oncology,

as they could allow both the design of customised treatment plans for predicted response

based on the presented morphology, as well as more adaptive treatment plans based

on continuous assessment of changes to the tumour environment [7]. Adaptive therapy

approaches confer multiple benefits to the patient, due to the potential increase in

efficacy of the treatment from informed treatment selection, and the reduction in the

associated side effects of treatment [8]. In regards to the first point, mathematical

models have indicated that treatment resistant phenotypes arise in small numbers in

untreated tumours, reflecting a biological cost of resistance which reduces the energy

available for proliferation [8]. In the absence of treatment, the population of resistant

cells will continue to lag, whereas the introduction of a therapy to which one sub

population is resistant will naturally change this imbalance. Monitoring of treatment

response to identify the effect of treatment on the tumour structure and identify cell

death is therefore imperative to ensure not only that there is response to therapy,
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but also to ensure that - where treatment insensitivity presents itself - the treatment

plan can be altered to fully eradicate the disease. The secondary benefit concerns the

general well-being of the patient. Monitoring the effect of treatment can allow changes

to the treatment plan to minimise unnecessary exposure to chemotherapeutic agents or

radiation, providing both greater quality and reduced cost of care.

In order to realise adaptive therapy approaches, imaging biomarkers are required

that can be reliably related to the tumour structure - and the associated changes therein

- to allow the functional changes of the tumour such as cell death to be monitored

throughout the progression of the treatment course. Currently, imaging biomarkers

proposed for this purpose include – but are not limited to - diffusion weighted MRI

[9][10][11], dynamic contrast enhanced MRI [12][13], magnetic resonance spectroscopy

[14][15], positron emission tomography [16], ultrasound strain elastography [17][18],

ultrasound attenuation measurements [19][20] and ultrasound backscatter characteri-

sation [21][22][23][20]. Whilst these methodologies all have their benefits, the price,

portability, real-time imaging capability and non-ionising nature of ultrasound based

approaches make them an attractive option for imaging. Typically, ultrasound (US) is

considered qualitatively, where the scattering from tissue structures is used to provide a

non-invasive, non-ionising image of a patient or biological sample. The scattering from

interfaces between tissues or structures larger than the imaging wavelength generates

specular echoes that are used in qualitative investigation of patient tissues. Scatter-

ing from structures smaller, and separated by distances smaller than the wavelength

constitute speckle, which is often perceived as a noisy detriment to the quality of US

images, yet it is a type of US image texture, and relation of the image texture to the

tissue microstructure – and associated tissue condition – make it a candidate for assess-

ment of treatment response. In addition to texture analysis of B-mode images [24], the

quantification of echo strength in terms of the frequency dependence the ultrasound

backscatter coefficient (BSC) [25][26][27][28] can provide information about the sizes

of sub-resolution and sub-wavelength scattering structures. Together, B-mode texture
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and BSC spectral analysis form the basis of backscatter quantitative ultrasound (QUS),

whereby the ‘brightness’ of scattering images (B-mode) is supplemented by the quan-

tification of tissue properties through the analysis of the associated wave propagation

or scattering properties.

This thesis will investigate the factors associated with accurate and reliable mea-

surement of the scattering behaviour of soft tissues, in an attempt to improve upon

current analysis approaches. To do so, a simulation based approach will be used. This

approach will allow modelling of the physical phenomena associated with scattering,

allowing us to investigate the properties of wave propagation in soft tissue like materi-

als, improving upon BSC estimates and subsequently improving tissue characterisation

for the monitoring of cancer.

1.2 Quantitative Ultrasound Approaches and The-

ory

This section will briefly describe the theoretical framework for, and the subsequent ap-

plications of QUS approaches in the characterisation of tissue. Firstly a brief description

will be provided of the imaging metrics associated with large scale fluctuations in the

bulk wave propagation properties of tissue, before considering - in more depth - the

biomarkers associated with subwavelength fluctuations that generate scattering effects.

The first category of QUS approaches concerns the quantification of the acoustic prop-

erties of the tissue concerned with bulk wave propagation on a larger scale. In this

category we include the sound speed, stiffness and attenuation.

Sound speed measurements of biological tissues have shown promise in detection of

breast masses [29][30], where it has been proposed that the lesions are distinguishable

from surrounding breast tissue by their (higher) sound speed and attenuation values

[31]. Sound speed imaging has also found application in the liver, where it has been

used to differentiate healthy livers from those afflicted by a variety of liver diseases

29



[32][33][19][34]. Sound speed imaging is performed using both pulse echo [35] and

tomographical techniques [36].

Stiffness of cancerous tissues is a potentially useful biomarker for tumour imaging,

due to the relationship between the changes caused by the tumour development to

the extracellular matrix and the associated increase in bulk elastic modulus relative to

the surrounding tissue [37][38]. Stiffness measurements often overlap with sound speed

measurements when assumptions of linear wave propagation and absence of dispersion

are made, which leads to similar tumour models being investigated. Investigations into

tissue stiffness also consider breast masses [39][40][41] and liver tissue [42][43][44] for

the identification of disease.

Ultrasound attenuation measurements of normal and diseased tissue also revealed

differences in attenuation (as compared to healthy liver) due to non-alcoholic fatty liver

disease [45][46][47] and cancer [19], as well as breast masses [48][49].

We now consider the nature of backscattering from tissue. Scattering can be defined

as the change in direction, phase or amplitude (or all of the above) of a propagating wave

as a result of a spatial inhomogeneity in the acoustic impedance of the medium through

which the wave propagates. It is the inhomogeneity that causes ultrasonic waves to

be scattered from tissues back to an imaging device to generate B-mode images, or for

analysis to generate QUS estimates of the tissue property. The scatterers within human

tissue may be separated into two categories. The first is specular scatterers, formed of

acoustic inhomogeneities much larger than the imaging wavelength. Within biological

structures, this could be indicative of a tissue boundary, or a boundary within a tissue

that possesses differing properties due to disease or damage. Identification of these

regions form the primary visual cues in clinical, qualitative ultrasound, where tissue

boundaries delineating tissue boundaries are used for the identification of organs, or

specific tissue regions. The second category is diffuse scatterers, much smaller, and

separated by distances smaller than the wavelength of the insonification, which present

in B-mode images as a fine, granular ‘speckle’ pattern. Speckle texture is seen as an
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image-degrading artifact by some authors, who wish to remove it to improve visual

image quality [50][51]. Other authors treat speckle as a feature for use in tracking,

particular in echocardiography [52][53][54]. In the field of QUS the relationship between

the microstructure of materials and the resultant speckle texture is investigated to

analyse the state of a tissue, allowing disease progression or treatment response to be

assessed. This thesis is concerned with the latter, and hence we will treat speckle

textures as useful image features, and analyse their properties to determine the state

of the tissue from they are generated.

Soft-tissue scatterers are typically either modelled as discrete, weak, sub-wavelength,

scatterers [55][25][56][57] or as local acoustic impedance fluctuations in a tissue de-

scribed by an inhomogeneous continuum model [56][58][59]. A discussion of these two

models will be considered in section 1.3.3. The quantification of scattering for tissue

characterisation is separable into two modes of analysis. The first is the spectral quan-

tification of scattered power, which provides information on the sub-resolution scatterer

size and number density. The second is the analysis of the envelope amplitude statis-

tics of echoes, which provides information on the spatial distribution of sub-resolution

scatterers. The former constitutes a frequency domain analysis of backscattered power

and subsequent calculation of the BSC, where the spectrum of backscattered echoes

are normalised by the incident intensity and the properties of this normalised spectrum

analysed to reveal details pertaining to the tissue structure, which will form the primary

focus of this thesis.

1.2.1 The Backscatter Coefficient

The BSC is defined as measure of scattered intensity in the backward direction (toward

the source of the ultrasound) per unit volume per unit solid angle normalised to the

incident intensity [60]. It quantifies the strength of backscattered echoes and their

frequency dependence from a sample, from which microstructural properties such as

scatterer size, number density and individual scatterer acoustic impedance relative to
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surrounding media can be estimated. BSC approaches have been shown to be sensitive

to tissue and cell changes caused by therapy [61][62][63][64][65], presenting a promising

tool for treatment monitoring. Other successful applications of BSC methods include

the findings that BSC was a strong indicator of malignancy in ocular [66] and breast

tumours[67][68], detection of cancer in excised lymph nodes [22][69], determination of

radiotherapy response in breast tumours [70][71] and predictive modelling of response

to chemotherapy [72][73].

A typical experimental method by which one computes the BSC is outlined in figure

1.1. One first acquires the backscattered data from the sample to be investigated, before

performing the appropriate signal processing to gate and window the signal at the depth

of the region of interest within the sample. At this point, the signal is translated into

the Fourier domain by way of a Fourier transform to give a spectral representation of

the backscattering from the region. At this point, averaging is typically performed over

a spatial region of the insonified tissue to smooth out statistical fluctuations that occur

due to interference of scattered wavefront from scatterers separated by distances smaller

than the lateral imaging resolution. The average is then normalised by a calibration

spectrum acquired from a reference scatterer. This is typically performed using the

same device (and settings) to correct for the frequency dependent electro-acoustic and

acousto-electric transducer responses. This spectrum is then diffraction corrected to

account for geometrical effects typical to the combined geometry of the source and

receive apertures, the relative geometry of the sample and reference scatterers, and

focusing effects. The aim of this is to eliminate the dependence of the source and

receive aperture sizes on the measurement of the backscattered power. The diffraction

correction considers the geometrical extents of the aperture, the sampled gate length,

and the distance to the sample to consider wave spreading effects on emit and received

intensity. The final step is to perform an attenuation correction, whereby the signal

loss due to absorption and scattering in the path between emission and reception are

corrected for. Since diffraction effects, tissue absorption and tissue scattering are all
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frequency dependent effects, they have a direct impact on the BSC (which is expressed in

the frequency domain), and hence the quality of these corrections is directly relatable

to the quality of the BSC estimate. These two corrections are vitally important in

computation of the BSC, and this thesis will explore both in greater depth to investigate

sources of error within BSC measurements.

Acquire Rf-

signal from 

sample

Gate and 

window Rf-

signal

Average 

spectra

Normalise by 

calibration 

spectrum.

Diffraction 

Correction

Attenuation 

Correction

Backscatter 

Coefficient 

estimate

Figure 1.1: BSC flow diagram outlining the required steps in order to compute a BSC

estimate. ‘Rf’ refers to the radio-frequency output signal output by the imaging device.

1.2.1.1 Diffraction corrections

The diffraction correction is an attempt to codify the emit and receive characteristics of

the source used in the investigation. As mentioned, the typical manner of quantifying

such a correction is through the use of a well defined scatterer, such as a planar reflec-

tor or reference phantom (illustrated in figure 1.2), which is substituted for the sample.

These two methods are the most common, although recent efforts have been made to

propose an in situ, spherical reference scatterer [74]. The planar reflector method as-

sumes that the reflector is much larger than the beamwidth, and therefore approximates

to an infinite surface, from which wave energy is scattered back to the source (scaled by

the reflection coefficient of the plane). This method is commonly derived for use with

single element sources [28][26][25][75][56][76][49][77], but examples with array systems

also exist [78]. The reference phantom method takes a well characterised phantom (in

sound speed, attenuation coefficient and BSC) and uses the backscattered spectrum as
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the reference. This method is typically used with array systems [79]. The advantage

of the reference phantom method is that there is no need for a geometrical correction

to the normalisation spectrum to account for the diffraction, as the assumed geometry

of the scatterers in the phantom and sample are hypothesised to be similar. This is in

contrast to the planar reflector method, where the geometry of the reflector is different

to the scatterers. The disadvantage of the reference phantom method is that the quality

of the BSC estimate is limited by the accuracy to which the BSC of the reference phan-

tom can be determined (which is determined either through model based calculation

based on the average properties of the phantom or through measurement by another

technique such as a planar reflector substitution method), and relies on the sound speed

and attenuation of the sample to be similar to that of the reference [80][81].

The disadvantages of the planar reflector method are the sensitivity to reflector

positioning and angle, and there is still question within the literature as to the most

ideal positioning in the case of an unfocused source. This issue was discussed by Chen

et al. [75], and is covered further in chapter 5

(a) (b)

Figure 1.2: Illustration of the planar reflector (figure 1.2a) and reference phantom

substitution (figure 1.2b) methods. The source (pictured in grey), insonifies (red) the

chosen reference scatterer and measures the backscattered spectrum, for normalisation

of the backscattered spectrum acquired from the unknown sample.
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1.2.1.2 Attenuation Correction

Whilst attenuation of ultrasound by a tissue is itself a biomarker of tissue state [45][46][47],

it is also an important step in computation of the BSC. The attenuation correction at-

tempts to reduce the impact of intervening, attenuative tissue layers (see figure 1.3) on

the measurement of backscattered power from a region of interest (ROI). Soft tissues

typically attenuate ultrasound (primarily through absorption mechanisms) with a lin-

ear frequency dependency, hence they will impact on the quality of spectral approaches

to measure backscatter. To compute the attenuation of a signal between the surface

and the ROI within the tissue some investigators estimate the tissue attenaution of thin

layers iteratively down to the surface of the ROI, before summing over these values [25],

whilst others assign attenuation coefficient values to distinct tissues based on measured

values from separate experiments [82], whilst more recent methods have attempted si-

multaneously estimate attenuation and backscattering coefficient values using a linear

least squares method [80].
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tissue layers 
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Figure 1.3: Illustration of the problem of attenuation. Attenuating tissue layers between

the US device and the region of interest (ROI) alter both the propagating intensity, and

the frequency characteristics of the beam, leading to frequency dependent underesti-

mates in the BSC if not corrected for.
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1.2.1.3 Methods for estimation of the BSC

One of the first attempts to encode the spectral scattering characteristics of materials

was performed by Holaseck et al. [83], who attempted to record the frequency content

of echoes, displaying the images for a set of bandwidths to highlight the potential for

US based investigation into tissues based on the relative scattering contributions at

different frequencies. This work was then developed by later authors into the BSC as

it recognised today, where the spectral scattering behaviour is quantified to investigate

scatterer properties.

The first method to estimate the BSC was performed using a planar reflector substi-

tution method was published by Sigelmann and Reid [26], whose expression estimates

the backscattered power from randomly positioned scatterers insonified by a single-

element planar transducer. They assumed a fully developed speckle pattern (through

the assumption that the scattered phase was uniformly distributed through all the

phase angles). Later, Bamber et al. [28] independently used this same methodology to

estimate the back scatter cross section from a cylindrical tissue sample. The equation

used for this estimation was

µs(ω) =
Si(ω)

Sp(ω)

4αR2
p

Ωe−4αr (eαcτ − e−αcτ )
. (1.1)

Here, µS corresponds to the BSC, Si to the backscattered spectrum from the unknown

sample at angular frequency ω, Sp to the equivalent spectrum for the planar reflector

(which has amplitude reflection coefficient Rp), α is the attenuation coefficient of the

sample, r is the cylinder radius, c is the sound speed in the cylinder, Ω is the solid angle

subtended by the transducer face at the centre of the cylinder and τ is the duration

of the temporal gate. This equation approximates the directivity at the depth of the

sample and planar reflector to a rectangular function, which is supposed to cancel when

the ratio of the reflected powers is calculated for the sample and reference reflector.

A later work published by Nicholas et al. [76] also used the substitution method to
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derive the BSC giving another expression, developing on the work of Sigelmann ad Reid

and Bamber et al. to incorporate the directivity of the source in their expression. The

beam directivity was measured through the measuring the receive spectra from echoes

acquired by scanning a small steel ball across the beam width placed in the acoustic

field at a specific wavelength (λ0). Their final expression takes the form:

µs(ω) =
Si(ω)

Sp(ω)

2ηR2
px

2

β2A

(

λ0

λ

)2
2α

e−2αx1 (1− e−αcτ )
. (1.2)

The additional components included in this expression are the transmission coefficient

of the interface of the water and tissue (β), the area of the transducer face A, the

wavelength of interest (λ) and the depth of the ROI within the cylinder (x1).

Continuing this work, D’Astous and Foster [49][84], were the first to consider the

estimation of BSC values using focused sources. Through assumption of a uniform

angular differential scattering coefficient throughout the solid angle subtended by the

transducer, they included the effect of transducer geometry through incorporation of

the half angle of the transducer subtended at the focus to give the expression

µs(ω) =
Si(ω)

Sp(ω)

R2
p

2π(1− cos(Ω))

2α

e−2αx1 − e−2αx2

, (1.3)

where the anterior and posterior depths of the temporal gate are x1 and x2 respectively.

An additional method was also developed by Ueda and Ozawa [77][57], who used a

boundary integral wave approach under the first order Born approximation and assumed

a Gaussian beam profile at the focal plane to give an expression for a weakly focused

source:

µs(ω) =
Si(ω)

Sp(ω)

e−4αdR2
pk

2a2

8πd (1 + (ka2/4w0)2)
. (1.4)

Here k refers to the wavenumber of the ultrasound. The additional terms described
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here include the distance to the centre of the temporal gate (w0), the spatial extent of

the gate (d), and the radius of the source (a).

Insana et al. [56][85] used a volumetric wave integral wave equation (also under the

first order Born approximation) and incorporated the effect of windowing the receive

data into their expression to yield:

µs(ω) =
Si(ω)

Sp(ω)

1.45w2
0R

2
p

4A0d
e−4α(w0+d/2). (1.5)

Within this expression, an inconsistency was discovered (by a factor of 16 in the def-

inition of the reflection coefficient of the planar reflector) by Lavarello [2], hence the

above expression should be amended through multiplication by a factor of 16.

Concluding the process of BSC estimation using single element sources, a mirror

image approach, accompanied by a more detailed description of the transmitter directiv-

ity pattern (in reference [75]) was used by Chen et al. [79] to develop another equation

for estimating the BSC, notable in that it permits the use of the planar reflector at a

different distance than that to the region of interest, deriving the equation

µs(ω) =
Si(ω)

Sp(ω)

2.17R2
pw

2
0

A0d
|e−iGp(J0(Gp) + iJ1(Gp))− 1|e−4α(w−w0). (1.6)

Here, Jm corresponds to the mth order Bessel function and Gp the focusing gain of the

source, defined as Gp = ka2/2w0.

The planar reflector method was also extended to incorporate the use of array

transducers by Insana et al. [78] who considered the beam directivity function of a

variety of aperture designs, providing a general expression:

µs(ω) =
Si(ω)

Sp(ω)

2

3dBH(0, 0)

(

λw2
0Rp

2A

)2

e4[α−α0]d, (1.7)

for which the directivity function (BH) is specific to the array type.
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Finally, the reference phantom method (RPM) developed by Yao et al. [86] used

a well characterised reference phantom (of known attenuation coefficient, sound speed

and BSC) to generate the normalisation spectrum. The backscattered energy from

a particular depth used to correct the source diffraction effects. The measurement

equation took the form

µS(ω) =
Si(ω)

Sp(ω)
µR(ω). (1.8)

Where µR is the BSC of the reference phantom. The advantage of this approach is that

no explicit knowledge of the transducer beam pattern or transmit receive properties

of the instrument are required. The disadvantage (as discussed previously) is that the

quality of the sample BSC is related directly to the quality of the estimation of µR. A

summary of the mentioned equations and methods for BSC estimation are outlined in

table 1.1.
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Table 1.1: Table listing the authors and their respective equations for computing es-

timates of the BSC using a variety of sources. For simplicity, only the diffraction

term (excluding the power ratio and attenuation correction) of the equation has been

included.

Author(s)
Diffraction term of

equation
Source type

Beam shape
assumptions

Sigelmann and
Reid[26]

Bamber[28]

4Rp

Ω
Single element,

planar
Uniform directivity
within beam diameter.

Nicholas[76] 2ηR2
p

β2A

(

λ0

λ

)2 Single element,
planar

Directivity pattern
computed from

steel ball.

D’Astous
and Foster[49]

R2
p

2π(1−cos(θT )) Single element,
focused

Narrow,
beam at focus

Ueda and
Ozawa[77]

Rpk2a2

8πd(1+(ka2/4w0)2)
Single element,
weakly focused

or planar

Gaussian beam
at the

focal plane

Insana et al.
1.45R2

p

A0d Single element,
weakly focused

Beam narrower
than scattering volume
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Chen et al.[79]

2.17R2
pw

2

0

A0d
×

|e−iGp(J0(Gp)+
iJ1(Gp))− 1|

Single element,
weakly focused

or planar

Directivity function
computed

numerically[75]

Insana et al.[78]
2

3dBH(0,0)

(

λw2

0
Rp

2A

)2

Array transducer
Specific to array

design

Yao et al.[86] µR(ω) Array transducer None

1.2.2 Factors limiting clinical application of the BSC

Comparisons between the methods listed above have been reported in the literature,

both explicitly, using the same equipment and samples [2] and through interlaboratory

comparisons, where different authors used the method typical to their lab [87][88][89].

A notable first was conducted by Madsen et al. [88] who performed an interlabora-

tory investigation into BSC estimates. Laboratories returned BSC estimates based on

their own experimental and analysis methodologies based on tissue-mimicking samples.

Methodologies included both the reference phantom and planar-reflector substitution

methods. BSC estimates differed by as much as an order of magnitude. More recently,

Wear et al. [90] repeated the experiment across 8 laboratories in much the same way,

finding multiple orders of magnitude difference between the laboratories. Anderson

et al. [89] performed a two-laboratory study using glass beads as the scatterers and

compared BSC estimates to Faran [91] scattering theory revealing agreement to scatter-

ing theory within 14% and much greater interlab agreement than previously observed.

Additional studies with tissue mimicking and agar-glass bead phantoms [92][93] and

in vivo studies [94] also improved on previous results, indicating increased reliability

between estimates, and promise for clinical applicability. These studies typically either

analyse phantom based, or small in vivo samples, which - while useful - are simpler

cases than the end goal of clinical BSC estimation. For this reason, ongoing research
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is still required to bring BSC practices into the clinical sphere. Studies performing

analysis of the same sample using different methods of BSC estimation and different

single element transducers has been performed, which highlights some of the

1.3 A simulation based approach to BSC estimation

To investigate the factors associated with the quality of BSC estimation, a simulation

based approach is proposed. The advantages of simulation based approaches are two-

fold. Firstly, they allow the generation of idealised samples whereby individual factors

(such as the effect of attenuation, diffraction or scatterer strength and structure) can

be investigated in isolation with a known ground truth. Secondly, they allow highly

repeatable tests to be performed, with the ability to measure wave propagation prop-

erties in a manner not possible in a physical experiment (for example, measuring wave

propagation within a sample). Limitations to the approach are their idealised nature.

Tissues are complex, and we are limited by both our ability to measure their acous-

tic properties and organisation, as well as our ability to model the wave propagation

physics. Naturally, assumptions are required, specific to both the simulation type and

the simulated tissue. Nonetheless, a simulation based approach is proposed, based on

the use of the Finite Element method, a powerful tool for full-wave simulation, the

details of which are expanded upon below.

1.3.1 US simulation concepts and examples

With the advent of computer based simulations, initial interest in the field of QUS

pertained to the simulation of B-mode images to investigate more deeply the nature

of scattering from soft tissues. The simulations were combined with theoretical analy-

sis to mitigate the uncertainties associated with the particular imaging device on the

measurements acquired from the tissue [95]. One of the early examples of this was the

simulations constructed by Bamber et al. [95] who employed a convolutional approach
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to combine the characteristics of the simulated transducer (the impulse response, or

point spread function) with the scattering properties of the simulated tissue structure.

Through application of the Born approximation, this allows a fictitious tissue to be

conceptualised as a collection of point scatterers, whose scattering characteristics com-

bined with the imaging characteristics of the system will generate the resulting image.

This approach was expanded and developed upon, in a number of works simulating – in

particular – the nature of B-mode speckle for both the investigation into the masking

of small lesions [84] and the investigation of speckle texture as a function of scatterer

number density [96]. Field II [97][98], is an example of such a simulation approach is still

widely used within QUS to this day [99][100][101] that also uses the impulse response

method to compute the backscattering from a collection of discrete, sub wavelength

scattering bodies. Field II calculates the convolution using a semi-analytical approach

to generate Rf-data corresponding to the expected scattering response. The limitation

to such an approach is that the computation of impulse responses does not allow for

certain mechanisms. The concept of structure within materials is unavailable using a

simulation platform such as Field II, due to the fact that the explicit wave propagation

is not computed for the full path length from the simulated device to the scattering body

and back. This means that regions of acoustical property changes (such as stiffness or

sound speed) are not tractable. For this reason, tissue boundaries, or large specular

scatterers are not available to be simulated as well as they may be for temporal based

methods. It is for this reason that attempts to compute a BSC estimate for a cloud

of discrete scatterers using Field II relied on a point scatter to compute the diffraction

correction required for the absolute measurement to be made [99]. So too are other

mechanisms, such as multiple scattering (due to the application of the Born approxi-

mation in the convolutional approach) or frequency dependent attenuation unavailable

to a convolutional approach.

An alternative to the use of impulse response functions is the use of full-wave

approaches. These methods employ discretisation of the simulation domain, computing
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the solutions to the appropriate wave equation at each discretisation point within the

grid. Placing a source of acoustic energy within the simulation domain, the solving

of such equations with evolving time will then allow simulation of a wave propagating

through a domain, based on the initial disturbance. The exact methods by which this

is achieved varies between methodologies, but for simplicity we will consider the finite

difference, finite element and psuedospectral approaches.

The propagation of an acoustic wave through a non-dispersive medium is governed

by the inhomogeneous wave equation, which we may represent as

1

c20

∂2Pi(r̄, t)

∂t2
−∇2Pi(r̄, t) =

2∆c(r̄)

c30

∂2Pi(r̄, t)

∂t2
− 1

ρ0
∇[∆ρ(r̄)] · ∇Pi(r̄, t). (1.9)

If we consider a simulation domain in which a pressure inhomogeneity is present (due

to the simulation of a source of ultrasonic energy), then the computation of the solution

to this equation at each discretised point within the domain can be represented through

the approximation of the time and spatial operators by finite differences. In a given

domain governed by variable q, we may express the differential of our wavefunction as

a forward finite difference in the form:

∇qf(q) ≃
f(q + δq)− f(q)

δq
. (1.10)

Other differences, such as the backward or central difference methods are also possible,

which mimic the approach described herein, albeit using the ‘backward’ data point

f(q − δq) in the backward case, and both the ‘forward’ and ‘backward’ data point in

the central case. Similarly, second order differential operators can be represented using

the form:

∇2
qf(q) ≃

f(q + 2δq)− 2f(q + δq) + f(q)

(δq)2
. (1.11)

This constitutes a differential approach to solution of the wave equation.
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Given the natural oscillatory nature of solutions to the wave equation, the use of a

Fourier series instead of a Taylor series is logical. This forms the basis of a “spectral”

method, whereby an approximation of the function at the grid points is found using

a finite sum of sinusoidal basis functions. The wave field is decomposed into terms of

varying wavenumber: superposing plane waves to generate the field. This reduces the

density of grid points required down to the Nyquist limit of the shortest wavelength

required in modelling, easing computational demand. In addition, spectral truncation

error scales on the order of N−N [102], which represents a faster convergence in ac-

curacy than that exhibited by the FD approach. An example of a package utilising

a spectral methodology is that of K-wave, based a k-space pseudo-spectral method

[102]. This method contains an explicit solution factor within the temporal derivative

that permits accurate solutions with a time step larger than would be achieved with a

standard difference method, whilst the spatial grid separation is reduced using Fourier

basis functions. The Fourier basis is well suited to calculation of spatial derivatives by

transforming to and from Fourier space, allowing use of Fast Fourier transform routines

in runtime calculations.

The finite element approach to the solution of such problems differs from this com-

putation mathematically through the approximation of the solution over the domain

by a family of functions with piecewise definitions between each element[103]. The

piecewise functions link the nodes within the finite element mesh, with the piecewise

functions defined by the material property of the element that shaped by these nodes.

Finite element schemes can be divided into two camps, the explicit and implicit. The

implicit variety attempts to solve time independent problems, where the model is in

static equilibrium and we wish to solve the system of partial differential equations

(PDEs) to investigate the distribution of a certain quantity over a certain domain. An

example of a use for such analysis would be used for assessing the strain applied to a

section of an object placed under a stress. Explicit methods attempt to describe the
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temporal evolution of a quantity, through solving iteratively for the evolution of a field

that locally is described by the PDEs of the physical system. An example of this could

be the propagation of a pressure disturbance in a material as a result of an applied im-

pulse to the system. Within this thesis, we are considering the propagation of acoustic

waves, so we will concern ourselves with the explicit finite element methods, and the

appropriate examples it attempts to simulate. We may summarise the finite element

method within the following steps:

1. Discretisation: the process by which the simulation domain is restructured into a

collection of elements.

2. Property assignment: The application of the material properties to the discretised

elements determines the associated effect of application of a certain impulse. For

example, the assignment of an element’s density or wave speed will dictate the

resulting pressure distribution that passes through it as a result of an incident

pressure disturbance.

3. Assembly: Connecting the elements through the domain completes the formation

of the finite element model in its stationary state.

4. Initial loading: Application of known initial conditions constitutes the formation

of the problem to be solved. The initial pressure disturbance in the case of a

wave simulation propagates through the model based on the material properties

defined earlier.

5. Solution: iterated calculation of the evolving disturbance then models the evolu-

tion of the system based on the initial conditions.

6. Analysis: The recorded values of the measured quantity can then be extracted

from the simulation results to present the answer to the question posed by the

simulation.
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The formulation of the specific FE approach used within Pogo has been described by

Huthwaite[104], and FE more broadly in other works[103][105]. Here, a short overview

will be presented based on reference [104]. In the case of acoustic wave propagation,

the governing matrix equation for the system may be expressed as:

MÜ + CU̇ +KU = F, (1.12)

where the matrices M , C and K correspond to the mass, damping and stiffness values

of the elements within the model. F constitutes a vector of forces applied at each degree

of freedom within the model. The vector U corresponds to the value for each degree

of freedom within the model (stress and strain or pressure, depending on whether an

acoustic or elastic simulation are considered), with U̇ and Ü corresponding to the first

and derivatives of the degree of freedom with respect to time. Pogo utilises a finite

difference scheme to step through the temporal evolution of an acoustic propagation

problem, which on consultation with equations (1.3.1) and (1.3.1), yields the explicit

relation:

M
U(t+ δt)− 2U(t) + U(t− δt)

δt2
+ C

U(t+ δt)− U(t− δt)

2δt
+KU(t) = F. (1.13)

Rearranging for the next time step gives

U(t+δt) =

(

M
1

δt2
+ C

1

2δt

)−1 [

F +

(

C
1

2δt
−M

1

δt2

)

U(t− δt) +

(

M
2

δt2
−K

)

U(t)

]

,

(1.14)

which is then computed for a specified degree of freedom for the given time step.
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1.3.2 Selection of Simulation Package

In comparing the relative methods, the finite element method appears to be the most

promising for the task of simulation of ultrasound images, particularly with respect to

simulating scatterers below the resolution limit due to the adaptive meshing capabilities.

This will become pertinent when assessing the ultrasound backscatter characteristics of

the tissue under simulation, due to the size of the details the model will need to include.

Simulating with a grid of uniform, high density could prove a severe challenge for a FD

or pseudo-spectral method, and an analytical methodology such as that employed by

Field II appears inappropriate due to the requirements on attenuation and diffraction

corrections. We reject frequency domain solutions due to the size of the matrices

required to be inverted in performing such routines, instead opting for a time domain

solution of the propagation. The free meshing ability of a finite element could prove

useful in adapting the mesh around structures within the tissue, and the freedom to alter

the physical parameters of individual or small groups of elements could prove useful

in quantitative ultrasound investigation of the tissue under consideration. Finally, the

novelty of this approach in utilising a FE approach to model soft tissue is seen as a

benefit, as the literature offers limited examples in this area.

1.3.3 Modelling soft tissue wave propagation and scattering

It is important to consider the nature of the scatterers present within soft tissues that

generate the observed scattering behaviour. This section will discuss the proposed

theoretical models to describe them.

Wave propagation in soft biological tissues is assumed to be governed by the mass

density and compressibility (which dictate the wave speed) and the relaxation losses

(which determine the absorption characteristics) [106]. Sub-wavelength spatial fluctu-

ations in the compressibility generate monopole scattering bodies, and density fluctu-

ations generate dipole scattering bodies [107] that generate diffuse scattering, leading

to the formation of image speckle. Fluctuations in tissue density have been shown to
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be smaller than the variations in compressibility [108][109][58] (although research into

quantification of the relative contributions to scattering are ongoing [110]), leading to

the discarding of the angular variation in amplitude of scattering from individual scat-

terers forming the scattering medium, and the assumption that diffuse scattering is

typically considered as being due to a modulation in the compressibility in preference

to density. Even in some cases where this assumption is not made literally (through

the direct comparison of the relative magnitude of the fluctuations), the expression

of scattering strength via the impedance, and assumption of angular independence

in scattering constitutes a weak assumption that compressibility is the source of the

impedance mismatch of the scatterer relative to the rest of the tissue medium [25]. An

often used additional assumption is that of tissue as being weak scattering [57][58][25],

which allows the application of the Born approximation. This results in the description

of the scattered field as being a summation over a set of radiators, equal in radiat-

ing amplitude to that of the unperturbed field. This assumption relies on the number

density, and individual scattering amplitude of the population of scatterers to be low.

The mathematical benefit of applying the Born approximation in such a way is to

limit the scattering mechanisms to consider only singular scattering events, and to not

consider perturbation to the propagating wave field due to scattering events. Addi-

tional assumptions in the formulation of scattering theories incorporate the concept

of stationary behaviour, or weak stationary behaviour. This simply assumes that the

scattering sites within tissues are either completely stationary, or their movement can

be attributed to a movement of the sample (i.e. the scattering sites do not move within

the reference frame of the sample).

As mentioned previously, an inhomogeneous tissue medium is modelled in one of

two ways [107]. The first is the inhomogeneous continuum model, whereby the tissue is

modelled as a continuously varying (in acoustic property) medium, with fluctuations in

the acoustic impedance generating the scattering. To describe such a model, we require

the definition of correlation functions that relate the acoustic properties at different
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points in the medium over characteristic length scales. These length scales dictate the

size of the scattering body being approximated, and the degree of fluctuation relative

to the rest of the medium dictating the scattering strength. Examples of this include

gaussian and exponential models of medium fluctuation [56][58][59][111].

The second model describes the tissue as a homogeneous background medium, pop-

ulated by finite sized inhomogeneities that generate the associated scattering behaviour.

These scatterers are typically modelled as spheres [57][25][56][111], although attempts

to model tissue scattering as being due to cylindrical vessels [55] have been proposed.

It is worth noting the crossover in cited literature between these two schools of thought,

with many authors comparing both discrete and continuous models on their acquired

data. We may also note that, from Chivers’ mathematical review of the inhomogeneous

continuum and discrete models of tissue [107], and from results within the above cited

works that inhomogeneous continuum and discrete models produce similar results in

predicted scattered intensity, and that they appear to differ in their descriptions of

relative contributions of coherent and incoherent components of scattering [107].

1.4 Thesis structure and aims

The aims of this thesis are to generate simulation models within which the factors

affecting the accuracy of BSC estimates can be evaluated. These factors are attenuation,

diffraction correction and scattering wave coherence. The first factor will be investigated

through construction of a simulation model within which the attenuation of ultrasound

by soft tissue like materials can be modelled. The production of such a model would

allow investigation into the effect of attenuation on the accuracy of BSC estimates

by providing a framework within which ultrasound attenuation can be applied to a

scattering simulation, and the effect on the resulting BSC estimate evaluated. To

investigate diffraction effects, scattering models will be developed, and the effect of

different source designs (with the associated diffraction correction) on the estimation of

the BSC will be evaluated. Finally, the spatial coherence of backscattered wave energy
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will be analysed, to determine how the spatial wave coherency of backscattered echoes

affects the estimation of BSC values.

This thesis will be structured as follows. Firstly, a broad methodology chapter will

describe some of the terms and methods used to generate the FE models, as well as

some of the methodology used in analysing their output. The aim of this chapter is to

give the reader a broad overview of the methods and some of the terminology that will

be common to the respective chapters. The specific details of the models that form the

basis of each result will be further discussed within the respective results chapter.

Chapter 3 will be concerned with attenuation of ultrasonic energy. Simulations

of ultrasound attenuation by soft tissue like materials using the finite element method

will be presented. The results will include arbitrary and human-like models to test the

suitability of the Finite Element method to simulate attenuation, and by extension,

produce attenuation corrections for the measurement of the BSC. This chapter will aim

to develop a simulation based approach to the computation of attenuation corrections

for BSC estimation methods.

Chapter 4 will describe the development of mathematical methods for 2D BSC

estimation, and of a simulation tool that mimics a BSC measurement experiment using

the planar reflector substitution method. The first section of this chapter will include

the derivation of equations to calculate the BSC from 2D simulation models (based on

the backscattered spectra and the normalisation spectrum) and an equation quantifying

the expected BSC value measured from a collection of circular scatterers lying on a 2D

plane. The second section of this chapter will detail the development of the approach

for simulating a BSC experiment using the FE method. This will include design of

the scattering medium, the reference reflector, and the requisite analysis required to

compute the BSC estimate, which is then compared to the aforementioned mathematics

for validation. This chapter will form the proof of concept for the simulation approach,

which will be used in later chapters to investigate the physics of BSC estimation to assess

sources of error and unreliability. The aim of this chapter is to develop a simulation
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based approach for the investigation of diffuse scattering from a soft tissue like material.

This will facilitate investigation into the factors that affect the quality of BSC estimates.

Chapter 5 will explore how the approach developed in chapter 4 was used to test the

accuracy of the planar reflector substitution method. The investigation was primarily

concerned with assessing the accuracy of the approach as a function of the position of

the planar reflector within the beam axis for a variety of different simulated apertures.

This chapter explores the concept of the diffraction correction, and assesses how the

nature of the diffraction correction affects the accuracy of BSC estimates, providing

insight into best practice for measuring the BSC using the planar reflector method.

The aim of this chapter is to formalise the approach of the planar reflector method in

BSC estimation, to advise best practice in the use of unfocused sources in computing

the BSC.

Chapter 6 will explore the effect of spatial wave coherence of backscattered waves

on the quality of BSC estimation from a diffuse scattering medium. The aim of this work

was to investigate the effect of highly incoherent and highly coherent backscattered wave

contributions from tissue like models to assess their effects on BSC estimation accuracy.

Within this chapter models were constructed with varying degrees of coherence, and the

coherence analysed with respect to the BSC. This chapter details the development of

a coherence segmentation algorithm which attempts to filter backscattered data based

on coherence characteristics in order to improve the accuracy of BSC estimates. The

aim of this chapter is to investigate the effect of coherence and tissue structure on the

quality of BSC estimates, to allow improvements in BSC estimates through coherence

segmentation.

These findings will be collated and discussed in chapter 7, in which the results will

be discussed, and ideas for future work presented. Overarching conclusions will then

be presented in chapter 8.
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Chapter 2

Methodology

This chapter will outline briefly the analysis and Finite Element (FE) methods terms

and approaches used. This is to provide a basis for understanding the terminology and

methods used later in this thesis. Terms and convepts are expressed in general terms,

with the precise details and variations explored in future chapters. The structure of

this chapter is as follows: section 2.1 will explore the design of the FE models, and the

associated concepts, section 2.2 will outline the approach taken for the analysis of the

results of the simulations.

2.1 FE Methods

This section will detail the general methods and parameters used to generate the FE

models that form the basis of this thesis. All FE simulations were performed using

the FE package Pogo, developed at Imperial College [104]. The Pogo models were

constructed using a combination of generic and Pogo specific Matlab [112] functions,

and all analysis was performed using Matlab. After constructing the FE Models, the

time domain computations were calculated on a GeForce GTX 1080 Ti graphics card.

The models presented in chapter 3 varied in size, with the lowest frequency model

occupying 0.511MB of memory, requiring 18 s to complete the simulation and the

largest occupying 5.94GB of memory, requiring 245 s to complete the simulation.
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The models presented in chapters 4, 5 and 6 occupied 2.32GB of memory, and

required 152 s to complete the simulation.

2.1.1 Mesh Parameters

For the entirety of this thesis, structured meshes were used. This constitutes a discreti-

sation of the simulation domain into a regular array of elements of characteristic length

δx. For wave propagation simulation, the level of domain discretisation (also referred

to as the mesh fineness), is required to be at least one tenth of a wavelength to maintain

numerical stability in the simulation. For the time domain element of the simulation,

the maximum time step (δt) is described by the courant value (C), a numerical expres-

sion of the Courant-Friedrichs-Lewy condition for the solution of partial differential

equations. Broadly, this condition requires that the information propagation through

the mesh cannot progress more than one mesh length in one mesh timestep. In the

case of wave propagation problems, the wave speed (c) dictates the rate of the transfer

of information, and the courant value must ensure that the product of the wave speed

and time step does not exceed the mesh discretisation length. This may be expressed

by the inequality

C =
cδt

δx
< 1. (2.1)

Throughout this thesis, the mesh discretisation will be expressed as a function of the

wavelength of the centre frequency of the excitation. For a model containing elements

that possess a wave speed c, an excitation of centre frequency f0 will lead to the prop-

agation of a wave of wavelength λ0. The mesh discretisation will be expressed as a

function of this wavelength (i.e. δx = λ0/20 would be expressed as 20 elements per

wavelength). Whilst no simulations will be mono-chromatic, the linearity of the FE

routine will allow us to consider only the frequency component of interest. The time

step will be expressed through the courant value.
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2.1.2 Element selection

The elements used within this thesis were either triangular or square acoustic elements.

These elements possess one degree of freedom (pressure) and were arranged in a regular

grid of points for both ease of mesh manipulation, simplicity, and to minimise spurious

numerical reflections that can occur with unstructured meshes where the element size

is allowed to vary. The models are constructed through selecting the size of domain

required and the characteristic length, and a grid is formed of the element positions. The

elements possess one spatial property (their size) and three acoustic properties (sound

speed, mass density and attenuation parameter). Acoustic elements were selected as

this thesis will focus on the longitudinal wave propagation and scattering properties of

tissue, and will not discuss the shear properties.

2.1.3 Principle of scattering within meshes

Two types of scattering body are considered within this thesis. The first of which is a

2D equivalent of a planar reflector (or line reflector). To simulate line reflectors (which

are used to compute normalisation spectra for BSC measurements), the edge of the FE

mesh was used. The nodes lying on the edge of the FE model possess a pressure degree

of freedom, and since they are not connected only to nodes within the model and each

other, they form a sound soft acoustic boundary, which reflects incident pressure waves

without phase change or energy loss. In chapters 2, 3 and 4, an infinite line reflector

was modelled using the boundary edge, which reflects energy back to the source of

the pressure disturbance. To simulate microstructural soft tissue scatterers, elements

within the mesh were designated as scatterers, and their acoustic properties were altered

relative to the rest of the model to generate an acoustic impedance between the selected

element and the background medium. A study into this approach is included in Chapter

2. In chapters 2 and 3, random scatterer distributions are generated through randomly

selecting the positions of the scatterers for each simulation, generating statistically

independent scattering distributions for each simulation. In chapter 4, the position of
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the scatterers is set, then laterally translated (relative to the beam axis), to mimic

lateral scanning of a source across a sample.

2.1.4 Absorbing regions

To simulate small regions of a large (or infinite domain), it is useful to design absorbing

regions adjacent to the edge of the simulation domain. This prevents reflections from

the edges of the model (when not desired) and simulates wave propagation within an

infinite 2D plane. The absorbing boundaries used within Pogo employ the stiffness

reduction method [113], whereby damping is increased gradually while reducing the

stiffness of elements adjacent to the model boundary. The damping employed in Pogo

is mass proportional, which introduces a real exponential decay into the solution of the

inhomogeneous acoustic wave equation (for more details, see Chapter 1). The material

damping attenuates the incident pressure waves and the accompanying reduction in

stiffness reduces numerical reflections caused by the addition of an imaginary part to

the wavenumber of the propagating wave.

2.1.5 Dimensionality Considerations

This thesis considers simulations relating to the nature of ultrasonic backscattering

from soft tissue like materials. For this reason, we require subwavelength scatterers,

which in return requires a finely discretised mesh. For this reason, large simulation

domains (spatially) will generate models requiring substantial memory and processing

requirements, which are time intensive to run, due to both hardware limitations, and

the number of calculations required to compute wave propagation over a large distance

on a finely discretised mesh. For these reasons, the FE models presented here are in

2D. It has been shown that simulating wave propagation and scattering problems in

2D is an efficient strategy for investigating complex problems [114], as they can capture

all the wave propagation and scattering mechanisms with reduced processing power

and shorter runtimes. The conclusions of such experiments are qualitative, and would

56



require conceptually ‘scaling up’ a dimension to generate quantitative 3D answers, but

the results of 2D experiments can be useful in their ability to investigate and thereby

influence 3D practices.

2.1.6 Source and Receiver Design

To generate the plane wave sources as described in results chapter 3, nodes covering

the full width of the model were simultaneously excited by the same signal such that

they all coherently emitted a pressure wave of the same frequency, of the same number

of cycles. Since the nodes on the edge of the model radiate only into a half plane, to

generate a uniform plane wave across the width of the model, the amplitude of the

excitation applied to these nodes was half that of the others.

Excitation Signals

1 2 3 …

…

𝑁(𝑁 − 2) (𝑁 − 1)
𝐴2 𝐴𝐴 𝐴 𝐴 𝐴2

Figure 2.1: Illustration of amplitude variation approach used for generating infinite

plane waves from line source. Nodes 1 and N correspond to nodes on the edge of the

model, for which the amplitude of excitation was set to half (A/2) that for the other

nodes (A).

To generate focused sources as used in chapters 4, 5 and 6, a line of nodes (the

number of which depends on the width of the source designed) was selected perpendic-

ular to the desired beam axis, on which the excitation signal was applied. A time delay

profile was applied to the signals from each node to simulate a (spatially) curved source

of pressure waves, mimicking the field emitted by a single element, focused transducer

(figure 2.2), or a linear array with a focusing delay applied across the array elements.

In all cases, the radius of curvature was set to be 5 cm. In receive mode, the backscat-

tered pressure was recorded at each of the source nodes and time delayed with the same
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profile. This method was selected in preference to placing the nodes in a physical arc

as it permitted the use of a regular grid.

Source Nodes

Excitation Signals

Figure 2.2: Illustration of time delayed signal approach for generating focusing from

line source.

Where an unfocused source was used (as in chapter 5), a finite number of nodes

was selected. The same excitation (without any time delay) was applied to each nodes

to simulate an unfocused, single element source, or a linear array with no delay profile

in emit or receive modes. For all the sources used within this thesis, a sinusoidal 3-

cycle, Hanning windowed pulse was used as the excitation applied to the nodes, with

an excitation amplitude of 100Pa used in all cases besides the edge nodes of the plane

wave sources described previously. It should be noted that since Pogo is a linear FEM

solver [115], the absolute amplitude of the pressure waves used is not relevant to the

simulations presented within this thesis.

2.2 Analysis Methodology

This section will briefly detail the three analysis routines performed on the results of

the FE simulations. These include computation of the BSC, the amplitude envelope

and the coherence

2.2.1 BSC Calculations

To compute the BSC from the simulations, the backscattered data from the simulation

is beamformed according to the receive profile of the simulated receiver and summed to
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generate a receive RF-line. The scattered line is then gated onto a depth of interest and

windowed, with the spectrum computed from the Fourier transform of the windowed

signal. For BSC estimates we require many spectra to be averaged, to smooth out

statistical fluctuations that occur due to scattering, so the mean of the acquired spectra

is computed to generate the final BSC estimate. Variations on this approach are found

in chapters 4, 5 and 6, within which further details on the approach are included.

2.2.2 Amplitude envelope Calculations

B-mode images are formed of pixel values of brightness corresponding to the unsigned

scattering amplitude of scattering from a region. To construct B-mode images from the

FE simulations, the matrix of received signals across the simulated receiver is beam-

formed according to the receive delay profile (mimicking reception at a single element

receiver), and summed to generate a single RF (radio freqeuncy) line. From this line,

the amplitude envelope is then found by computing the absolute value of the Hilbert

transform of the RF line (as shown in figure 2.3). In chapter 4, the Rayleigh statistics

of this amplitude envelope are computed and compared to scattering theory. In chapter

6, he value of the envelope is used as a pixel value within the B-mode images. The

axial position of a given pixel is calculated using the time of flight to a given depth and

the lateral positions were computed based on the relative position of the centre of the

source to the centre of the simulated mesh.
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Figure 2.3: Illustration of a beamformed received scattering line (black), and the asso-

ciated envelope (red) used to provide pixel values for the b-mode images and statistical

analysis.

2.2.3 Coherence Calculation

In chapter 4, the spatial coherence function as a function of lag (R(m)) across the

wavefront of the echoes received from a scatterer are computed using the equation

R(m) =
1

N −m

N−m
∑

i=1

∑n2

n=n1
si(n)si+m(n)

√

∑n2

n=n1
s2i (n)

∑n2

n=n1
s2i+m(n)

. (2.2)

Where sj corresponds to the received pressure signal at receiver j, m corresponds to

the spatial lag between receivers, and n corresponds to the index of a samples within

the received signals within the analysis kernel defined by n2 and n1. Parameterisations

of this function are then computed to investigate the coherence characteristics of the

simulations in chapters 5 and 6.
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Chapter 3

An investigation into attenuation

correction using the Finite Element

Method

A previous iteration of the work presented in the following chapter is published in

conference proceedings for the 2021 IEEE International Ultrasonics Symposium [116].
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3.1 Introduction

This chapter will explore attenuation of ultrasound by soft tissue like materials. The aim

of this investigation will be to develop a simulation based tool capable of calculating the

attenuation losses of an ultrasound wave passing through a section of tissue mimicking

the properties of an in vivo sample. To do so, a Finite Element (FE) approach will be

developed to construct models, through which the absorption of propagating ultrasound

waves will be measured. The approach of this chapter will be to simulate an attenuation

measurement experiment on a sample of known attenuation coefficient and thickness,

and to compare the values calculated from the simulation to the input parameters.

The measure of success of the approach will then be through comparison of the values

derived from the results of the simulation to the input parameters. This study will

develop confidence and provide proof of concept for the FE approach. If successful, the

possible applications of this tool could be: to compute attenuation corrections in silico

(in cases where an experimental attenuation correction would be difficult to acquire), to

test the accuracy of attenuation coefficient estimation algorithms (by providing ground

truth values of attenuation against which to compare the output from the algorithm)

or as a first step in development of an FE model containing both attenuating regions

and scattering regions, to develop a tool by which BSC estimation algorithms could be

investigated.

Knowledge of the attenuation coefficient of human soft tissue may be used as a

tool for the diagnosis of disease such as cancer, either directly where the attenuation

coefficient of the tissue plays the role of a diagnostic metric, or indirectly where the

path length attenuation is used for calculation of the backscatter coefficient (BSC). In

the former, quantification of the value, and relative spatial variation of the attenuation

coefficient may be used as a biomarker for tissue state. For example, attenuation

coefficient has been used as a metric for the quantification of hepatic steatosis [117] and

fat content [118][45][46][47] in liver. Attenuation coefficient can also be an indication

of tissue state for pathologies such as breast cancer [119][48][49].
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In the latter, ultrasound attenuation measurements are required to acquire accu-

rate estimates of quantitative ultrasound (QUS) biomarkers such as the BSC. Since

the BSC is a measure of backscattered power, the energy loss in the path between the

source and depth of interest is required to make depth-independent measurements of

the BSC. Since the BSC is typically expressed as a function of frequency, the pres-

ence of frequency dependent attenuation will affect the quality of measurement not

only in measuring the absolute value of the BSC but also any parameterisation based

on the frequency dependence. Ultrasound attenuation is a result of both absorption

and scattering mechanisms. The first of these converts the incident wave energy into

heat, whilst the second redirects beam energy away from the current acoustic path.

The energy loss associated with the absorption is more substantial than scattering in

soft tissues [120][121], with absorption being attributed to 80% of ultrasonic attenu-

ation by soft tissues [122]. The dominance of absorption mechanisms highlights the

need for attenuation corrections when assessing tissue scattering behaviour (since the

energy loss in the propagating wave pulse due to absorption is significant relative to

the total backscattered power). It also partially explains the relatively low power to

noise ratio associated with the measurement of ultrasonic backscattering (as opposed

to transmission measurements). The absorption of ultrasound by soft tissue like ma-

terials typically varies with a linear dependence on the frequency [123]. Specific tissue

attenuation coefficient values are typically expressed in the form of a power law, with

frequency exponents ranging from around 0.8 to 1.5 [124]. The microstructural expla-

nation for the absorption is typically explained using relaxation processes, distributed

over a range of frequencies [123], but the exact mechanisms by which this occurs are

not well understood.

Ultrasound attenuation of slab-like samples are typically measured through use of

transmission substitution techniques, particularly for weakly attenuating materials. To

perform such a measurement two transducers are positioned facing each other, aligned

by their beam axes and one is treated as a source, and the other a receiver. The
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difference in the received spectra with and without the sample present are then used to

compute the attenuation coefficient of the sample as a function of frequency. Similarly

to the BSC, corrections for factors such as the electro-mechanical emission and reception

properties of the device used, material boundary reflections and the diffraction field of

the source and receiver can bias the estimates of attenuation measurements.

Where attenuation measurements are computed for intact samples (i.e. they have

not been prepared in a slab), algorithmic approaches compute the attenuation from

different scattering depths within the sample. Three principal algorithms for the com-

putation of attenuation coefficient are the spectral difference, spectral log difference

and spectral shift methods. The spectral difference method compares the power of

frequency components at different depths to estimate the local attenuation coefficient

[86]. The spectral log difference method computes the slope of the fitted line of the

log ratio of the power spectra from the shallowest and deepest sections of the region

of interest, as a function of depth [125]. The spectral shift method models the receive

spectra as Gaussian in shape, and computes the shift in centre frequency of the receive

spectra as a function of depth to obtain the attenuation coefficient [120]. Comparisons

between the spectral-shift and log-spectral difference methods have been performed in

simulation by Kuc [126], who observed that the results of application of both algorithms

to a simulated data set produced distributions of attenuation coefficient estimates that

were statistically indistinguishable for longer windows. For shorter window sizes, the

frequency shift estimates were observed to exhibit more accuracy. They recommend

the log-spectral difference since it does not require the assumption of a Gaussian pulse,

which allows it to be employed in cases where non-linear propagation is present [126].

The accuracy and precision of the algorithms were also shown to be strongly depen-

dent on the size and homogeneity of the ROI [127]. A limitation of the spectral shift

technique is that it does not correct for diffraction effects, owing to the need for cor-

rections to be developed. In an attempt to generate diffraction free (i.e. plane wave)

estimates of attenuation, axial beam translation has also been proposed [128], whereby
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the translation of the source and receiver is used to maintain a fixed distance between

the transducer aperture and the depth of interest within the sample. Such an approach

requires a water stand-off to provide a coupling medium within which the transducer

can be translated, which is challenging to implement in a clinical setting [129].

Due to the difficulty in computing the attenuation corrections using through trans-

mission methods or the axial beam translation method in a clinical scenario, one solu-

tion to allow the calculation of the BSC in a clinic would be to compute attenuation

corrections using a simulation based approach. If patient specific FE models could be

generated using the patient geometry and estimates of their tissue acoustic properties,

total attenuation (and diffraction values) could be computed using the FE method, and

subsequently provide correction spectra for the estimation of system independent BSC

values. In addition, development of simulation models that mimic the attenuation of

ultrasound by soft tissue like materials generates a controlled environment within which

algorithms and methods for attenuation coefficient and BSC estimation can be inves-

tigated, which would allow investigation into the effects that can improve or diminish

the quality of BSC estimates.

To investigate this, this chapter will consider the simulation of attenuation by soft

tissue using the FE method. Presented are idealised models of tissue sections insonified

using infinite plane waves, firstly with materials of arbitrary properties, and then a

simplified tissue model containing layers of skin, fat, and muscle. Comparison of the

attenuation coefficient measurements to the input simulation values for the acoustic

properties and attenuating region lengths will then be used to test the accuracy of the

simulation. If successful, it is hoped that these results will present a case for the use of

patient specific finite element models to compute attenuation corrections, which could

subsequently allow accurate BSC measurements to be made in vivo. In addition, this

would also provide proof of concept for a simulation tool within which the effects of

different attenuation correction algorithms on a BSC estimate could be tested. Since

attenuation correction constitutes significantly to the accuracy of BSC estimation [1],
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a simulation based approach could provide an environment within which to test the

effect of different attenuation correction methods on BSC estimates under different -

highly controlled - conditions.
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3.2 Methods

This section will describe the design of the FE models used to simulate the attenuation

of ultrasound by soft tissue, and the subsequent analysis. Firstly, a description of the FE

methodology will presented, followed by a description of the model parameters used in

the simulations. The method by which the results were extracted from the simulations

will be outlined, followed by the theoretical models against which the results were

compared.

3.2.1 The Multi-Band Finite Element Method

Due to the lack of understanding into the microstructural mechanism by which ultra-

sound absorption occurs, it is more feasible to utilise empirical bulk measurements of

attenuation coefficients in the formulation of an attenuation simulation. The reason

for this is three-fold: the structures and/or structural interfaces that generate ultra-

sonic absorption are not known, their associated relaxation times are not known, and

the simulation of a material possessing multiple relaxation parameters as a function

of frequency is challenging computationally. For these reasons, we will consider bulk

attenuation measurements of soft tissues, considering average attenuation over length

scales greater than the wavelength, as opposed to considering the relaxation parameters

on the sub-wavelength scale due to the tissue microstructure. In addition, the simula-

tion of frequency dependent attenuation within the FE method is simplified by dividing

the frequency range into a set of narrow frequency bands, over which the attenuation

coefficient is presumed to be constant. Explicit simulation of the frequency dependence

on a broadband scale complicates the FE formulation, to no added benefit, as we will

wish to analyse the attenuation characteristics at distinct frequencies regardless. Based

on these arguments, the multi-band finite element (MBFE) approach is proposed [130].

The MBFE approach models frequency independent attenuation over multiple narrow-

band solutions, which can then be combined to generate a broadband solution with the

desired frequency dependence of attenuation (or dispersion). This approach has been
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successfully used to model attenuation and dispersion in high-density polyethylene pipe

(HDPE) [130]. This chapter will present a novel use of the method in simulating the

frequency dependence of attenuation in human soft-tissue.

To implement the MBFE method, multiple simulations are performed, each of

which use a different centre frequency of transmitted ultrasound, covering the range

of frequencies over which the attenuation modelling is required. For each simulation,

the attenuation parameters of the material(s) are set according to the attenuation

coefficient value at the centre frequency of the simulation, and the narrowband results

are combined at the end to generate the broadband solution. A flowchart outlining the

process is shown in figure 3.1.

Set Model 

Geometry

Set model 

acoustic 

parameters

Set 

attenuation 

parameters

Perform wave 

propagation 

simulation

Calculate 

narrowband 

solution

Combine 

narrowband 

results

Change 

frequency

Figure 3.1: Flowchart explaining the design of the MBFE models.

As discussed in chapter 2, the finite element simulation solves for the displacement

matrix of the nodes within the domain (U) based on the mass, stiffness and damping

matrices (K, M and CD respectively) based on the differential equation:

F = KU+CDU̇+MÜ. (3.1)

The time (t) dependent harmonic solution to one dimensional (x) form of equation

(3.1) is U(x, t) = ei(kx−ωt), where k is the wavenumber and ω is the angular frequency.

Through the use of mass proportional damping, we may express the damping matrix

as
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CD = γM, (3.2)

where γ is a constant of dimension [time]−1. Substituting equation (3.2) and the har-

monic solution allows the rewriting of equation with a complex density term:

ρ → ρ
(

1 + i
γ

ω

)

, (3.3)

which in turn produces a complex wavenumber, that we may express as:

k′ ∝

√

ρ(1 + iγ
ω
)

E
, (3.4)

where E is the material stiffness. In the weak damping limit (γ ≪ ω), ℜ(k) ≫ ℑ(k)

and

ℜ(k′) ∝
√

ρ

E
(3.5)

and

ℑ(k′) ∝ iℜ(k′)
γ

2ω
(3.6)

by Taylor expansion. Reapplying the assumption of weak damping to apply a linear,

real dispersion relation, substitution of equations (3.5) and (3.6) into the harmonic

solution produces

u(x, t) = ei(kx−ωt)e−
γ
2c

x, (3.7)

where the original harmonic solution is attenuated by an exponentially decaying ampli-

tude envelope proportional to a damping parameter (γ) and the wave speed (c). From

dimensional arguments we can consider γ as the rate of amplitude decay with respect
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to time, which combined with the wave speed generates a rate of amplitude decay with

respect to distance. This form of the equation illustrates clearly how errors in the wave

propagation velocity result in errors in the resulting attenuation.

In a strongly damped case (γ ∼ ω) the damping introduces a non-negligible con-

tribution to the real part of the stiffness matrix, introducing wave velocity errors in

homogeneous model sections, and changes to scattering behaviour at the boundary

of model inhomogeneities. To prevent these undesired scattering events (to generate

absorbing regions), stiffness reduction methods [131] can be employed, but it will be

shown that the level of damping required for simulation of human soft tissue should not

require such measures. These methods are however employed in the boundary regions

to minimise reflections back into the model. For a more complete description of mass

proportional damping and stiffness reduction methods, consider the referenced work by

Pettit et al. [131].

3.2.2 Effect of mesh refinement and Courant value on attenu-

ation estimates

To ensure convergence of the numerical solution, an initial test was performed to assess

the effect of mesh refinement and Courant value on the attenuation generated within the

simulation. Sound speed errors are known to be exacerbated by small Courant values

and coarse meshes [132], both of which will result in overestimation of the attenuation

coefficient when compared to the input value of the material simulated. Therefore, we

expect to observe a convergence of the results onto the theoretical value with increasing

mesh refinement and Courant value. To test this hypothesis, a simple two-phase model

(pictured in figure 3.2) was constructed with properties detailed in table 3.1. The mesh

refinement for this model was varied from 10 to 100 elements per wavelength in an

increment of 1, with a Courant value of 0.5 for the investigation into discretisation,

and the Courant value was varied from 0.01 to 0.5 in increments of 0.01 for the time

step investigation. The maximum value of the Courant value for stable numerical wave
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propagation is 1. Values over 0.5 were not considered such that the results maintained

a high level of temporal resolution, even for coarse mesh refinement values.

Attenuating 
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Absorbing

Region

Absorbing

Region

Source 

Nodes

Receive 

Nodes
6 cm

Coupling 

Medium
Coupling 

Medium

10 cm

2 cm

Figure 3.2: Schematic of model 1: Through transmission model simulation model. The

source and receive nodes mimic ultrasonic transducers emitting and receiving a plane

wave that passes through the attenuating section of the model. Figure not to scale.

Table 3.1: Acoustic properties of the materials used in test model.

Properties
Material ρ c α

(kg m−3) (ms−1) (Npm−1)

Coupling Medium 1000 1500 0
Attenuating material 1000 1500 5

This model imitates a through transmission attenuation experiment, whereby the wave

passing through the sample was compared to a reference signal which propagates

through the same distance of un-attenuating coupling medium. Within the context

of the FE simulations, this constitutes a model partially populated by elements with

zero attenuation to form the background coupling medium and other elements with

non-zero attenuation to mimic soft tissue. A three cycle Hann tone burst centred on 1

MHz was applied to source nodes covering the full width of the domain. This generates

a plane wave that passes through the attenuating region(s), thus negating the need to
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account for the diffraction field of the source. Based on the width of the attenuat-

ing region (2 cm) and the attenuation constant (5Npm−1), the expected attenuation

is 0.1Np. The attenuation value was arbitrarily selected, but is of comparable decay

rate to the attenuation of a 1MHz source of ultrasound energy passing through hu-

man subcutaneous fat. The convergence of the result was shown to be for around 50

elements per wavelength and a Courant value of 0.5, which was used for all subsequent

simulations. The nature of the convergence is shown in figure 3.5.

3.2.3 Acoustic impedance matched models

Two models were developed to test the ability of the MBFE method to simulate ultra-

sound absorption with attenuating sections that are matched by acoustic impedance

(possessing the same sound speed and mass density) to the coupling medium. The first

applied a linear frequency dependence of attenuation to a 2 cm region within the centre

of the model (as per figure 3.2), with the properties outlined in table 3.2. Simulations

were performed using centre frequencies of excitation of 0.5MHz to 10MHz with an

increment of 0.5MHz. For each simulation, the mesh was constructed using a refine-

ment of 50 elements per wavelength. In all cases, a 3 cycle Hann windowed excitation

was applied to the source nodes. The lowest frequency models occupied 0.511MB of

memory, requiring 18 s to simulate the wave propagating across the full length of the

model. The highest frequency models occupied 5.94GB of memory, requiring 245 s to

complete the simulation.
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Table 3.2: The material properties used in the acoustic impedance matched model 1.

The attenuation properties were modelled in a power law of the form α = α0f
b, where

f is the frequency in MHz.

Properties

Material ρ c α0 b

(kg m−3) (ms−1) (Npm−1MHz−b)

Coupling Medium 1000 1500 0 0

Attenuating Material 1 1000 1500 5 1

The second model was comprised of two adjacent 1 cm attenuating regions with

attenuation coefficients of frequency dependency 1.2 and 1.5 respectively. This is out-

lined in figure 3.3 and in table 3.3. The same centre frequencies and mesh refinements

were used with these models.

Table 3.3: The attenuating properties of the materials used in the acoustic impedance

matched model 2.

Properties

Material ρ c α0 b

(kg m−3) (ms−1) (Npm−1MHz−b)

Coupling Medium 1000 1500 0 0

Attenuating Material 1 1000 1500 2 1.2

Attenuating Material 2 1000 1500 1 1.5
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Figure 3.3: Schematic of model 2: Three phase through-transmission model simulation.

The frequency dependence of attenuation within the regions at the center of the model

were differed to test the flexibility of the model to multiple materials. Figure not to

scale.

3.2.4 Human model

To extend the complexity of the simulations, a third model was designed that incor-

porated variations in sound speed and density within the model. The FE model was

constructed using published data on skin, muscle and fat thickness, sound speed, den-

sity and bulk attenuation to simulate the propagation of ultrasound through layers in

soft tissue (as shown in figure 3.4). The data for the skin and fat thicknesses were taken

from references [133] and [134] respectively, with the properties of density, sound speed

and attenuation coefficient taken from the database of The Foundation for Research on

Information Technologies in Society (ITIS) [135]. The receiver nodes were placed inside

the muscle layer to compute the transmitted energy through the skin and fat layers.

The distance labeled as path length (d) through the coupling medium (as shown in

table 3.4) corresponds to the distance from the source nodes and the coupling medium-

skin interface. The same distance in the muscle corresponds to the distance between the

receive nodes and the fat-muscle interface. For the skin and fat entries, d corresponds
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to the thickness of the layer.

Table 3.4: The acoustic propagation properties of the materials used in the hu-

man model. References for the original source of the property values are: human

skin mass density[124][136], sound speed[124][137][138] and attenuation constant[124],

fat mass density[136][124], sound speed[137][124] and attenuation constant[136] and

muscle density[124][136], sound speed[124][137][138][139][140] and attenuation con-

stant[138][124][140].

Properties
Material ρ c α0 b d

(kg m−3) (ms−1) (m−1) (m)

Coupling Medium 1000 1500 0 0 3e-2
Human Skin 1109 1624.0 21.158 1.000 1e-3
Human Subcutaneous Fat 911 1440.2 4.3578 1.086 2e-2
Human Muscle 1090 1558.4 7.1088 1.089 5e-3

Skin Muscle
Absorbing

Region

Source 

Nodes

Receive 

Nodes

10 cm

6 cm

Fat 
Coupling

Medium

Figure 3.4: Schematic of model 3: Four phase model containing published properties

and dimensions for human skin (yellow), fat (green) and muscle (blue), with a coupling

medium (white). Figure not to scale.
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3.2.5 Analysis Methodology

The propagating wave passing through the attenuating material was recorded at the

receive nodes in all cases, and summed across the receive nodes to give a single time

trace. The signal was then gated based on the expected arrival time calculated from

the distance between the source and receive nodes and the model wave speed(s), with

a gate length equal to that of the initial excitation applied to the source, and centred

on the expected arrival time at the receive nodes. A Hanning window was then applied

to the gated data and the result Fourier transformed to give a receive power spectrum.

For each attenuating model, a conjugate model was developed without any attenuating

elements present to provide a reference power spectrum. The same method of analysis

was applied to this reference spectrum. To compute the total attenuation, the spectral

log-difference method was employed, where the attenuation value in N p is given by the

natural logarithm of the ratio of the spectra from the attenuating and non-attenuating

simulations. Defining the attenuated receive power spectrum as Sa(f) and the unat-

tenuated reference power spectrum as Sr(f), we hypothesise that the two are linked by

the equation

Sa(f) = Sr(f)
N
∏

i

e−α(f)ixi , (3.8)

where αi and xi represent the attenuation coefficient and thickness of the ‘i’th layer of

‘N’ attenuating layers respectively. By computing the natural logarithm of the ratio of

Sa and Sr, and expressing the attenuation coefficient with a power law (α(f) = α0f
b)

the resulting line will take the form:

−log

(

Sa(ω)

Sr(ω)

)

=
N
∑

i

α0,if
bixi. (3.9)

For models 1 and 2, N = 1 andN = 2 respectively. Polynomial fitting of the log spectral

difference generates estimates for α0,i and bi respectively, where xi was treated as a

known variable. This equation was used to compute the theoretical total attenuation
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for models 1 and 2.

In model 3, the introduction of impedance mismatches between materials means

that the reflection coefficients were also required to compute the energy less due to

boundary reflections. To do so, the acoustic impedance of material ‘i’ (Zi) was calcu-

lated using the sound speed (vi) and mass density (ρi) using equation Zi = viρi. From

this the power transmission coefficient at the boundary between material i and j were

computed using the formula

Ti,j = 1−
(

Zj − Zi

Zi + Zj

)2

. (3.10)

The inclusion of reflection as a loss mechanism requires equation 3.8 to be altered to

Sa(f) = Sr(f)
N
∏

i

e−α(f)xi

N−1
∏

i

Ti,i+1, (3.11)

and equation 3.9 to

−log

(

Sa(ω)

Sr(ω)

)

=
N
∑

i

α0,if
bixi −

N−1
∑

i

log(Ti,i+1). (3.12)

Now treating the reflection coefficients and layer thicknesses as known values, a poly-

nomial fit allows estimates of the values of α0,i and bi to be made. This equation was

used to compute the theoretical attenuation coefficients for model 3.

All polynomial fitting was performed using the Matlab curve fitting toolbox, where

custom equations were designed using the known values, leaving the values of α0,i and

bi as parameters against which the fitting was performed. The uncertainty in the

extracted fit parameters is characterised through the 95% confidence interval within

the curve fitting toolbox, the full width of which is reported here as a measure of the

uncertainty in the calculated values for α0,i and bi. The fitting employed a non-linear

least squares approach, with the solver set to compute a maximum of 106 function

evaluations and 106 max iterations.
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3.3 Results

The results of the investigation into the relationship between the mesh refinement and

the total attenuation is shown in figure 3.5a. Between 10 and 40 elements per wave-

length, there was a general overestimation of the attenuation, which can be attributed

to the sound speed errors caused by the sub-optimal spatial discretisation. The con-

vergence onto the theoretical value is monotonic for the cases of 10 to 23 elements per

wavelength, implying that the mesh refinement is the dominating factor in the overesti-

mation of the attenuation in this range. Closer agreement to the theoretical value was

observed for mesh refinement values of around 50 elements per wavelength. Beyond

50 elements per wavelength, under and overestimates were observed in the estimated

attenuation, implying that a form of numerical noise is now contributing to deviations.

The fluctuations between over and underestimates were observed to increase as the

mesh was discretised more finely, with a slight bias towards overestimation. Due to the

increased number of calculations required in the simulation of a wave propagation over

a fixed distance using an increasingly finer grid, we can hypothesise that the numeri-

cal error is proportional to the number of time step calculations per simulation. The

best tradeoff between the underestimation due to sound speed errors and the random

variation appeared to be at around 50 elements per wavelength, which was used in the

subsequent simulations.

From figure 3.5b, smaller deviations from the expected value were observed than

from the investigation into mesh refinement. From the general trend of the relation-

ship, it can be concluded that the larger Courant values provided the most accurate

reproduction of the expected total attenuation. From these observations, the mesh re-

finement and courant values were subsequently set to be 50 (λ−1) and 0.5 respectively.

The commonality between the mesh refinement and the courant value is the effect on

the number of calculations required. Increasing the number of elements per wavelength,

or reducing the courant value has the effect of increasing the number of calculations to

compute the propagation of a wave between a fixed physical distance. The increase in
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error with increasing mesh refinement or decreasing courant value, suggests that this

methodology could be prone to numerical errors, which become more pronounced in

their effect as the number of computations is increased.
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Figure 3.5: Measured attenuation as a function of mesh fineness (3.5a) and courant

value (3.5b). Mesh refinement indicates the number of mesh elements per (centre)

wavelength.

The results for model 1 are shown in figure 3.6, with the extracted fit parameters

shown in table 3.5. The theoretical attenuation (αT ) was computed using the right

hand side of equation (3.9) to give:

αT (f) = xα0 f, (3.13)

where x = 0.02m is the thickness of the attenuating region. A high level of agreement

was observed between the theoretical and measured attenuation, reproducing both the

linear frequency dependence and the absolute values within the fitting uncertainties

(as shown in table 3.5). The percentage error was computed based on the percentage

difference between the theoretical and measured attenuation values. A positive error

corresponds to the FE method overestimating the attenuation and a negative error to

an underestimation. The lowest accuracy was observed at the higher frequency end

of the spectrum. This correlates with the mesh refinement observations, the greater
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number of time steps results in a greater deviation in attenuation from the desired

characteristics. Since the approach appears to be biased towards overestimates of at-

tenuation, it logically follows that the higher frequencies, for which the number of time

steps is greatest, would be most likely to generate overestimates of attenuation.
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Figure 3.6: Comparison of attenuation estimated from simulations to expected (the-

oretical) value for model 1. Figure 3.6a shows the results, with the percentage error

shown in figure 3.6b

Table 3.5: Results for model 1. Input values are the mesh properties used for the

construction of the properties, and the fit values are the result of the parameterisation

of the best fit line. Uncertainties (±) correspond to the 95% confidence width as

reported by the fitting tool. The SSE is the sum of squared errors between the fit line

and the data.

Parameter Input Value Fit Value

α0 (Npm
−1MHz−1) 5 5± 0.002

b 1.00 1.00± 0.02

SSE (Np2) N/A 6× 10−7

The results of model 2 are shown in figure 3.7 and table 3.6. The theoretical attenuation

(αT ) was computed using the right hand side of equation (3.9) to give:
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αT (f) = x
(

α0,1f
1.2 + α0,2f

1.5
)

, (3.14)

where x = 0.01m is the thickness of the attenuating regions. As in model 1, the higher

percentage errors were observed for the higher frequencies, with a stronger correlation

between frequency (and therefore damping) and the percentage error than observed

with model 1.
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Figure 3.7: Comparison of attenuation estimated from simulation to expected (theo-

retical) value for model 2.

Table 3.6: Results for model 2. α0,i and and bi are the attenuation constant and

frequency exponent of the ‘i’th attenuating layer respectively.

Parameter Input Value Fit Value

α0,1 (Npm
−1MHz−1) 2 2.0115± 1× 10−4

α0,2 (Npm
−1MHz−1) 1 0.9996± 1× 10−3

b1 1.2 1.198± 0.003

b2 1.5 1.501± 0.025

SSE (Np2) N/A 7× 10−7

The results of model 3 are shown in figure 3.8 and table 3.7. The theoretical attenuation

(αT ) was computed using the right hand side of equation (3.12) to give:
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αT (f) = αskin
0 f bskindskin+αfat

0 f bskindskin+αmuscle
0 f bmuscledmuscle−

2
∑

i

log(Ti,i+1), (3.15)

where the three elements of T correspond to the transmission coefficients of the coupling

medium-skin, skin-fat, and the fat-muscle interfaces. Conversely, the errors for this

model were seen to be greatest for the lower frequencies, with a general reduction in

error magnitude with increasing frequency. The error at 0.5MHz corresponds to a

propagation wavelength in skin of ∼ 3.2mm, so the error could be attributed to phase

cancellation between the main pulse and a reverberation within the skin layer. The

amplitude of this reverberation would be small relative to the main pulse, due to both

attenuation in the skin layer and the weak reflection coefficients between the skin-

muscle and skin-water interfaces. As such, it would be expected to be generate a weak

effect, but could be significant in comparison to the numerical errors present. Evidence

towards this hypothesis are the significant reduction in error with increasing frequency.

As the frequency is increased, the wavelength of propagation within the skin will reduce

and the reverberation echo will no longer interfere with the main pulse. Considering

table 3.7, it was observed that the fitting approach was able to reproduce the input

parameters within the 95% confidence intervals for all the attenuation constants and

frequency dependencies.
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Figure 3.8: Comparison of attenuation measured by simulation to expected (theoretical)

value for model 3. Pictured are the measured attenuation 3.8a and the percentage error

3.8b.

Table 3.7: Results for model 3

Parameter Input Value Fit Value

αskin
0 (Npm−1MHz−1) 21.158 21.156± 2× 10−3

αfat
0 (Npm−1MHz−1) 4.3578 4.3576± 1× 10−4

αmuscle
0 (Npm−1MHz−1) 7.1088 7.1087± 1× 10−4

bskin 1.000 1.000± 0.002

bfat 1.086 1.085± 0.003

bmuscle 1.0890 1.080± 0.010

SSE (Np2) N/A 5× 10−5
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3.4 Discussion

The multi-band finite element method was shown to be able to accurately reproduce

the frequency dependence of attenuation for models of arbitrary material combinations

(models 1 and 2) and also for a model based on real human soft tissue properties. These

examples show that the method can effectively model the bulk properties on a narrow-

band scale, which can then be recombined to compute the broadband attenuation.

The mesh refinement investigation model indicate that the attenuation estimates

are best performed using a mesh discretisation with at least 20 elements per the centre

wavelength of the simulation. The acoustic properties of a biological sample are diffi-

cult to compute on such a small scale length, which will naturally place a limit on the

accuracy of the input parameters to the simulation. The observed optimal accuracy

of the attenuation estimate at 50 elements per wavelength is an important, positive

result, as it permits the possibility that sub-wavelength scatterers could be included

into these models without the requirement for local mesh refinement. This consider-

ation implies that models with greater complexity, containing both bulk attenuation

and scattering from sub-wavelength scattering bodies (such as those that would con-

tribute to speckle production) could be constructed using the MBFE approach. This

optimal result deviates from the results obtained by Egerton et al. [130], who used

20 elements per wavelength, but direct comparison of accuracy is unavailable, as the

authors were both simulating a different material type, and reported the attenuation

through computation of the pulse width (by incorporation of attenuative and dispersive

mechanisms), rather than computation of the attenuation value as has been described

in this chapter. Dispersion effects are quoted as being negligible for soft tissues over the

clinical range of ultrasound frequencies, so were not considered [124]. Other examples

within the literature include the work of Brandner et al. [141], who developed a time

domain finite element approach using a fractional derivative approach to computation

of attenuation in breast tissue. The approach requires a more involved FE mathemat-

ical formulation than the use of mass proportional damping presented here. This may
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explain their use of 2 elements per wavelength in the mesh design, as the increased

complexity of the governing equations will incur greater computational cost than the

approach of adapting the mass matrix to generate the attenuative behaviour. Whilst

it is not possible to qualitatively apply the observations made here to other simulation

packages, wave speed errors are associated with sparser grids [132], and as such, it is

possible that this approach may result in systematic overestimation of the attenuation

if the same effect of wave speed propagation is observed.

At the high mesh discretisation value, the increase in attenuation error observed

has been hypothesised to be a cumulative increase in error with the number of time steps

required in the simulation model. If this hypothesis is correct, then we would expect

models with greater spatial dimensions to report greater attenuation errors as the wave

is required to propagate over a greater distance (which for a fixed mesh refinement

constitutes a greater number of elements). In a real, physical experiment, the signal

to noise ratio will be reduced for regions of interest separated from the source (and by

extension the receiver) where the path length in the attenuating material is increased,

we will observe increased measurement errors for deeper lying regions of interest. Thus,

we expect to see reductions in accuracy of the attenuation correction and BSC for these

regions. However, the errors presented in this simulation approach are appreciably

smaller than those observed in comparisons of attenuation measurement algorithms[127]

(where variances of 25% were observed), which suggests that implementation of this

approach would not be a limiting factor in the study of attenuation corrections or

investigations.

Comparing models 1 and 2, we first note that the attenuation values are approx-

imately equal for the two simulations, with the power law generating slightly higher

attenuation at higher frequencies for model 2 compared to model 1. The uncertainties

in fit parameters and SSE were larger for model 2 compared to model 1. The increase

in uncertainties could be attributed to the increased dimensionality of the fitting pro-

cedure (4 fitted parameters instead of 2), which would result in a greater probability of
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finding local minima, and/or a broadening of the global minimum region in the fitting

procedure. The greater SSE value is apparent when we compare figures 3.6b and 3.7b.

In figure 3.6b, there appears to be a correlation between frequency (and attenuation

value) and percentage error. This correlation is stronger in figure 3.7b. The increase in

frequency (and accompanying number of elements in the model) will result in a greater

number of time steps, which has been hypothesised to contribute to an overestimation

in attenuation as compared to the input value. Both figures 3.6b and 3.7b suggest

that increasing the damping parameter in the model results in an increase in observed

percentage error.

Considering the results of model 3, greater errors uncertainties were reported by

the fitting approach. This could be attributed to the increased dimensionality of the

fitting (using the same arguments as already presented). The increased SSE could be

attributed to both the increase in parameter uncertainty, as well as the introduction

of impedance mismatches into the model. The results indicate that the model was

accurately able to reproduce the attenuation reflection characteristics across the full

frequency range, suggesting that this methodology could be used for the simulation of

attenuation corrections for models where large scale (on the order of multiple wave-

lengths) sound speed and density variations are present. This model features the soft

tissue material with the greatest expected attenuation of ultrasound (skin [124]), so

the reduced accuracy as compared to models 1 and 2 could be as a result of this, but

the observation of accuracy is encouraging, as this model has accurately considered the

limiting high attenuation case.

3.4.1 Limitations

The notable limitations to the application of the investigations presented here are the

dimensionality of the simulations and the modelling of the source. The simulations

presented here are 2D, neglecting the elevational propagation dimension to facilitate

more lightweight simulations of wave propagation to be constructed. To present a
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fully compelling case for the use of the tool with models mimicking real samples would

naturally require the introduction of this third dimension. Nonetheless, the approach

presented here does contain all the same physical mechanisms as would be used in a 3D

model, and as such, should be scalable by dimension. The second limitation is in the

source modelling. The approach of generating infinite plane waves neglects the need

for diffraction correction of the results, which simplifies the consideration, but does not

allow us to consider the attenuation combined with diffractive effects. Infinite plane

sources are not realistic, and as such implementation of finite aperture widths and/or

emit and receive focusing would be required to make the results more realistic.

Additionally, no attempts were made to incorporate effects of non-linear wave prop-

agation into the simulation. Non-linear effects can result in generation of harmonics and

excess deposition of energy in tissue [142], and hence are relevant to the attenuation of

a finite amplitude wave. These effects were neither computed by the FE package (since

Pogo is a linear FE solver), nor were the effects modelled through specific alteration

of the linear solutions in the MBFE method. Non-linear effects were not considered

as an effect of interest, and hence the FE tool was not developed to include these (as

that would represent a substantial task). No consideration was given to altering the

linear solutions to include non-linearity as the results would be specific to the incident

pressure disturbance, and would not substantially improve the scope of these results.

Limitations of implementing this approach to generate attenuation corrections for

real physical samples are the dependence on the approach to the availability of published

tissue properties. Knowledge of the ultrasound propagation properties of a sample are

important across all QUS modalities, since the wave propagation within the sample

needs to be computed to infer the diffraction field within the source (as an example,

consider the investigation into the sensitivity of the reference phantom method for

diffraction correction on sound speed differences between the phantom and sample

[143]). If this approach were to be used to generate attenuation corrections for real

samples, it would require accurate knowledge of the bulk attenuation properties of
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the sample in order to compute the appropriate attenuation correction for a specific

emit/receive aperture.

In future work, it is hoped that these models can be increased in complexity and

dimensionality, reflecting the inhomogeneity of real human tissue, to allow simulations

of ultrasound propagation through patient specific models. Through this it is intended

that patient specific attenuation corrections can be made to assist clinicians in using

ultrasound for cancer progression tracking, by providing the corrections necessary to

apply quantitative ultrasound approaches to tissue samples in vivo where performing

a physical experiment to compute the correction is not possible.
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3.5 Conclusion

This chapter has presented simulations of acoustic attenuation of plane wave signals in

a plane wave model using the MBFE method to generate a broadband solution with sets

of narrowband results. These results have presented accurate reproduction of the input

parameters in all cases, suggesting that the approach could be used to simulate the

attenuation of ultrasonic waves for use in the development of attenuation coefficient

estimation algorithms or for generating attenuation corrections for estimation of the

BSC of a tissue sample. The convergence of the attenuation behaviour with respect to

mesh dicretisation was observed to have two facets. Sound speed underestimates caused

by mesh refinement effects for simulations using < 20 elements per wavelength were

observed that generated a monotonic overestimate of attenuation that was shown to

decrease as the mesh was refined up to ∼ 20 elements per wavelength. Continued mesh

discretisation beyond this condition did not result in improvement, instead resulting

in noisy behaviour which was observed to increase in magnitude as the number of

elements exceeded 50 elements per wavelength. The convergence testing implied that

mesh refinements of around 50 elements per wavelength results in the optimal trade-off

between these effects in the simulation of attenuation effects using this approach.

With regards to the time step, a smaller variation in the measured attenuation

was observed as the time step was varied when compared to the variation due to mesh

discretisation. The optimal time step for accurate attenuation calculation was observed

where a Courant value of 0.5 was applied.

Simulations of linear and power law frequency dependent attenuation experiments

were constructed in acoustically impedance matched models, reproducing the expected

attenuation to a high degree of accuracy through fitting of the measured attenuation,

with errors < 0.2% observed over a frequency range of 0.5MHz to 10MHz. The error

in the estimated attenuation was found to be correlated to the strength of damping.

Simulations of a human-like model comprised of layers of soft tissue materials were pre-

sented, with the estimated attenuation values over the same frequency range measured
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as below 0.8%. A greater error was observed for the lowest frequency value (0.5M Hz)

which was hypothesised to be due to thin layer effects within the skin. High levels of

agreement were observed using this model, with the non-linear fitting reproducing the

input parameters within the 95% confidence width for all of the attenuation parame-

ters.
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Chapter 4

An investigation into BSC

estimation using focused sources

The contents of this chapter have been submitted in manuscript form to Ultrasonic

Imaging for consideration of publication.
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4.1 Introduction

An obstacle to translating BSC estimation techniques into a clinical scenario is the

problem of reproducibility between different methods or transducers. Many studies

have been performed to investigate this. A notable first was conducted by Madsen et al.

[88] who performed an interlaboratory investigation into BSC estimates. Laboratories

returned BSC estimates based on their own experimental and analysis methodologies,

and their own transducers based on distributed tissue-mimicking samples. Methodolo-

gies included both the reference phantom and planar-reflector substitution methods.

BSC estimates differed by as much as an order of magnitude. More recently, Wear et

al. [90] repeated the experiment across 8 laboratories in much the same way, finding

multiple orders of magnitude difference between the laboratories. Anderson et al. [89]

performed a two-laboratory study using glass beads as the scatterers and compared

BSC estimates to Faran [91] scattering theory revealing agreement to scattering theory

within 14% and much greater interlab agreement than previously observed. Additional

studies with tissue mimicking and agar-glass bead phantoms [92][93] and in vivo studies

[94] also improved on previous results, indicating increased reliability between estimates,

and promise for clinical applicability. Similar studies have been performed considering

more specific aspects of the BSC estimation process, including intermethod and inter-

device [2][144] investigations. Based on the cited work it is clearly a long standing, and

ongoing interest of the scientific community to investigate the conditions under which

reproduceable and accurate BSC values can be obtained, to make the BSC a more clin-

ically useful measure of tissue microstructure by determining the best conditions and

methodology for BSC estimation.

This chapter will present a computational tool with which to perform this type of

investigation, the advantages of which are threefold. Firstly, simulations offer flexibility

in experimental design. One is not limited by the transducers available or the ability to

accurately construct phantoms with specific properties. Secondly, simulations offer the

opportunity to “switch off” certain physical effects such as attenuation, thereby isolating

92



different factors, and the knowledge that the desired parameters (sound speed, mass

density, number density of scatterers, reflection coefficient of scatterers) can be input

precisely, giving a trustworthy and error free ground truth for the BSC (unlike a physical

experiment where the ground truth BSC must be estimated from the estimated scatterer

properties and number density). Simulation based approaches have been used within

the field of QUS for investigations into B-mode image texture [96][95][145], to investigate

analysis parameters in investigation of US images [146] , and direct simulations of

backscatter via both tissues [99] and red blood cells [147][148][149], as well as examples

using the finite element method in the field of non-destructive evaluation [150][114][151].

Within the literature, tissue backscatter simulation has been performed by Shieh et al.

[99], using Field II [98][152], a US image simulation tool based on impulse response of

point scatterers. Whilst these results were promising, the limitation of this approach is

that it does not capture all the physical mechanisms of scattering. Computation of the

impulse response for point scatterers negates the possibility of multiple scattering and

does not easily permit the construction of structure within the models. For this reason,

Shieh et al. were unable to construct a reference plane reflector, and used a point

scatterer to construct a spherical reference scatterer for the normalisation spectrum

[99], which is an uncommon method within the BSC literature. Additionally, Field II

[98][152] does not permit modelling of frequency dependence of attenuation, nor regional

variation in sound speed or mass density, preventing it from being able to simulate

tissue layers. By contrast, these factors are implementable in a FE framework. Due

to the memory and time penalties associated with performing a 3D simulation, the FE

models presented here are in 2D. It has been shown that simulating wave propagation

and scattering problems in 2D is an efficient strategy for investigating complex problems

[114], as they can capture all the wave propagation and scattering mechanisms with

reduced processing power and shorter runtimes. The conclusions of such experiments

are qualitative, and would require conceptually ‘scaling up’ a dimension to generate

quantitative 3D answers, but the results of 2D experiments can be useful in their ability
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to investigate and thereby influence 3D practices [114]. The simulations presented here

model scattering from an idealised tissue-like region normalised by the spectrum from a

reference reflector. The BSC estimate for the simulated collection of scattering bodies

was then compared to a theoretical model. Since theoretical backscattering models

are typically derived in 3D, this work will also present new derivations of backscatter

equations into 2D. These will be used to both validate the 2D simulations and provide

mathematical tools which other 2D simulations can be analysed by, facilitating greater

throughput of simulations (due to the reduced runtime of lower dimensional simulations)

and hence broader investigation into tissue backscattering. The reduction of model size

is particularly useful in the simulation of a BSC experiment, where multiple beam lines

are required to average over the statistical fluctuations in backscattered wave energy due

to interference [1] (hence we require many simulations), and fine mesh discretisation

is required to simulate tissue scattering contributions (leading to memory intensive

simulations).

This chapter is structured as follows, section 4.2.1 will outline the mathematical

framework for the construction of a 2D BSC measurement experiment, including both

the theoretical computation of the BSC for an ensemble of identical scatterers based on

their number density and individual scattering coefficient and the measurement equa-

tion that will generate a BSC estimate from the backscattered spectra from a sample

and a reference reflector. The design of the scatterers in the FE model will be dis-

cussed in section 4.2.2.1, followed by the construction and testing of the BSC models

in sections 4.2.2.5 and 4.2.2.6. To test the BSC models, two variables were altered:

the backscattering properties of the simulated sample, and the focusing strength of the

simulated source. The calculated BSC estimates were then compared to the theoreti-

cally derived BSC estimate for the simulation (which was calculated analytically), and

additionally the amplitude envelope statistics were assessed to compare its behaviour to

scattering theory [96][153][154] to provide further assurance of the validity of the model

behaviour. This work provides proof of concept for this FE simulation approach, with
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the future aim of using it to improve the reproducibility, accuracy and understanding

of the factors affecting BSC measurement.
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4.2 Methods

4.2.1 Derivations

This section is comprised of rederivations of fundamental BSC equations based on the

approach of Ueda et al. [27][155], a novel effort to rederive the referenced works in a

reduced dimensionality, to allow lightweight simulations to be constructed with similar

underlying concepts. The two referenced works derive a mathematical framework for

determining the BSC using the planar reflector substitution method for a material

populated with weak sub-wavelength scattering bodies. Their mathematical approach

was selected because - under appropriate assumptions - it was shown to reduce to results

derived by other authors, unifying the different expressions [27].

4.2.1.1 Notation Convention

In all cases, primed coordinates correspond to those associated with the sound source

and unprimed co-ordinates within the scattering area. For example the vector r̄′ is on

the source aperture, whilst r̄ is within the scattering area. So too, the integral over l′

is over the source aperture, and A is over the scattering area.

4.2.1.2 Density and Sound Speed Scattering Formulations

To begin, we define a pressure wave incident on an inhomogeneous medium with back-

ground density ρ0 and sound speed c0 with local density and sound speed fluctuations

of ∆ρ(r̄) and ∆c(r̄) respectively. Its wavefunction (Pi(r̄, t)) will be a solution of the

inhomogeneous wave equation[27].

1

c20

∂2Pi(r̄, t)

∂t2
−∇2Pi(r̄, t) =

2∆c(r̄)

c30

∂2Pi(r̄, t)

∂t2
− 1

ρ0
∇[∆ρ(r̄)] · ∇Pi(r̄, t). (4.1)

We first take the Born approximation[156], assuming that all scattered pressure waves

(Ps(r̄, t)) from the inhomogeneities received at the transducer (with co-ordinates de-
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noted r̄′) will be equivalent to sources defined by wavefunction Q(r̄, t). These wave-

fronts will diverge spatially according to distance and wavenumber (k) as 1/
√

k|r̄ − r̄′|,

with a constant Γ related to the full-space Green’s function. This gives:

Ps(r̄
′, t) = Γ

∫

A

dA
Q
(

r̄, t− |r̄−r̄′|
c0

)

√

k|r̄ − r̄′|
(4.2)

We can express the time-dependent incident field as the inverse Fourier transform of

its frequency representation, and substitute the relation between the velocity potential

(Φ) and pressure Pi(r̄, ω) = −ρ0
∂Φ(ω,r̄)

∂t
, giving

Pi(r̄, t) = F
−1 [Pi(r̄, ω)] = −F

−1

[

ρ0
∂

∂t
Φ(ω, r̄)

]

. (4.3)

Separating the velocity potential into the frequency dependent velocity amplitude of

the source and the velocity potential of the system (Φ(ω) = U(ω)Φ̂(ω)) and assuming

Φ(ω) is time harmonic we may then write

Pi(r̄, t) =
1

2π

∫ ∞

−∞
dω (iω)ρ0U(ω)Φ̂(ω, r̄)eiωt. (4.4)

Now setting Q(r̄, t) equal to the right hand side of equation (4.1), we first consider the

case where the scatterer at r̄ is a sound speed fluctuation, i.e. ∆ρ = 0, ∆c ̸= 0. On

substitution of (4.4) into equation (4.1), we then find

Q(r̄, t) =
2∆c(r̄)ρ0
2πc30

∫ ∞

−∞
dω (iω)3Φ̂(ω, r̄)U(ω)eiωt. (4.5)

Substituting this into equation (4.2) gives

Ps(r̄
′, t) =

∫

A

dA

(

Γ
√

k|r̄ − r̄′|
2∆c(r̄)ρ0

c30

1

2π

∫ ∞

−∞
dω (iω)3Φ̂(ω, r̄)U(ω)e

iω(t− |r̄− ¯r′|
c0

)

)

.

(4.6)

The A-line received by the aperture (treating it as a single element) es(t) will be the

integration of the scattered wave over the receive aperture:
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es(t) =

∫

l′
dl′ Ps(r̄

′, t), (4.7)

which, on substitution into equation (4.6) gives

es(t) =

∫

l′
dl′
∫

A

dA

∫ ∞

−∞
dω

(

Γ

2π
√

k|r̄ − r̄′|
2∆c(r̄)ρ0

c30
(iω)3Φ̂(ω, r̄)U(ω)e

iω(t− |r̄− ¯r′|
c0

)

)

.

(4.8)

Defining the velocity potential as

Φ̂(ω, r̄) =

∫

l′
dl′ g2D(r, k), (4.9)

where

g2D(r, k) = − i

4
H

(2)
0 (kr) (4.10)

and H
(2)
0 (kr) is the zero order Hankel function of the second kind. First assuming that

we are in the spatial far field of the infinite line source we may take the asymptotic

limit of the right hand side of (4.10) to produce

g2D(r, k) lim
kr>>1

=
−i

4

√

2

πkr
e−i(kr−π/4). (4.11)

In this limit (with substitution in our co-ordinate system), the velocity potential be-

comes

Φ̂(ω, r̄) =
−i

4

√

2

π

∫

l′
dl′

e−i(k|r̄−r̄′|−π/4)

√

k|r̄ − r̄′|
. (4.12)

Comparing equations (4.12) and (4.2) we can see that the constant Γ = −ieiπ/4

4

√

2
π
.

Combining the source and receive characteristics into a single variable (T (ω) = U(ω)G(ω))

and noting that the integral over l′ in equation (4.8) will resemble equation (4.12) we

may write an equation describing the frequency response of the medium as received at
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the source:

Es(ω) = G(ω)F [es(t)] = −G(ω)

∫

A

dA
2∆c(r̄)

c30
ρ0ω

3Φ̂2(ω, r̄). (4.13)

Substituting in the reflection coefficient as a function of position (R(r̄) = ∆c(r̄)
2c0

), the

acoustic impedance (Z0 = c0ρ0) and a linear dispersion relation (ω = c0k), we arrive at

the equation describing the scattered field due to a distribution of velocity fluctuations.

Es(ω) = −4iT (ω)Z0k

∫

A

dA R(r̄)[kΦ̂(ω, r̄)]2. (4.14)

Now considering a density fluctuation, the source function can be expressed as

Q(r̄, t) = − 1

ρ0
∇[∆ρ(r̄)] · ∇ 1

2π

∫ ∞

−∞
dω (iω)ρ0(U(ω)Φ̂(ω))eiωt. (4.15)

Which on substitution into equation (4.2) gives

Ps(r̄
′, t) =

∫

A

dA
Γ

√

k|r̄ − r̄′|
1

ρ0
∇[∆ρ(r̄)]·∇

[

1

2π

∫ ∞

−∞
dω (iω)ρ0(U(ω)Φ̂(ω))e

i
(

ωt− |r̄−r̄′|
c0

)

]

.

(4.16)

Once again, the receive echo will be the integral over the transducer (as in equation

(4.7)). The integral over the transducer again introduces a factor of Φ̂(ω, r̄). Notating

this echo as ep(t) gives:

ep(t) = − 1

2π

∫

A

dA

∫ ∞

−∞
dω Φ̂(ω))∇

[

∆

ρ0
ρ(r̄)

]

· ∇
[

(iω)ρ0(U(ω)Φ̂(ω))eiωt
]

. (4.17)

Now assuming that the medium is a combination of discrete blocks, we may write

∇
[

∆ρ

ρ0

]

=
∆ρj
ρ0

N̂jδ(r̄ − r̄j), (4.18)

where N̂j is the vector normal to the scattering block, and r̄j is its position. If we
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arrange these blocks parallel to the beam axis, to form a line reflector, the integral over

the area of the scattering domain A reduces to a line integral over line reflector (since

we disregard any later reflections) with surface normal N̂ . If we define this surface

normal as ĵ equation (4.16) becomes

Ep(ω) = G(ω)F ep(t) = iωρ0T (ω)

∫ ∞

−∞
dx [R(r̄)Φ̂(ω, r̄)

∂

∂y
Φ̂(ω, r̄)], (4.19)

where we have expressed the scattered amplitude spectrum from a line reflector in

terms of its reflection coefficient, the medium properties and the velocity potential

characteristics of the source. Equations (4.14) and (4.19) will later be used to derive

the mathematical formulation for the substitution method, from which the backscatter

coefficient will be extracted.

4.2.1.3 Incoherent Scattered Signal Derivation

Considering first a monopole source of sound waves at position r̄ measured at r̄′, the

measured intensity (in the asymptotic limit k|r̄ − r̄′|) will be

I(r̄) =
|PAS|2
(2ρ0c0)

, (4.20)

where the asymptotic amplitude will be given by

PAS = B

√

2

πk|r̄ − r̄′| , (4.21)

where B is the amplitude of the scattered wave. The power received at a distance of

radius |r̄ − r̄′| will be given by:

W =
2|B|2
kc0ρ0

. (4.22)
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Considering now the incident field on position r̄, we first write this as the time derivative

of the vector potential of the source Φ′

I(r̄) =
|ρ0 ∂

∂t
Φ′|2

2ρ0c0
(4.23)

and assuming Φ′ is time harmonic:

I(r̄) =
|iωρ0Φ′|2
2ρ0c0

, (4.24)

the power scattered by the elemental area on which this intensity is incident will be

W = 2πIµBS∆s (4.25)

where µBS is the BSC of the scattering element. To conserve energy, equation (4.22)

must equal (4.25), which allows us to compute B for a given backscatter coefficient and

velocity potential.

|B|2 = kπρ20ω
2|Φ′|2µBS∆s

2
(4.26)

The echo amplitude received at the transducer from the scatterer at r̄ will be given by

Es(ω, r̄) = T (ω)B

∫

l′
dl′

eik|r̄−r̄′|
√

k|r̄ − r̄′|
(4.27)

Substituting our definition of Φ̂ from equation (4.12):

Es(ω, r̄) = −ieiπ/44

√

π

2
T (ω)BΦ̂(ω, r̄). (4.28)

The incoherent scattered power spectrum will then be given by the echo spectrum from

each scatterer squared, integrated over the whole sample under interrogation (A):

Si(ω) =

∫

A

dA |Es(ω, r̄)|2 = 8π|T (ω)|2
∫

A

dA |BΦ̂|2. (4.29)
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Assuming weak and singular scattering only, we assume that |Φ̂| is unchanged in the

axial direction over the gate length d we consider. This produces a factor of d and

reduces the double integral to a single, lateral integral. In addition, we substitute

equation (4.26), whilst assuming the magnitude of the velocity potentials Φ′ and Φ̂ are

equivalent:

Si(ω) = 4π2ω2ρ20µBS|T (ω)|2kd
∫ infty

−∞
dy|Φ̂|4. (4.30)

Now applying the ansatz

Φ̂(k, x, y) = AΦe
−ik(y+ x2

2y0
)
f(k, x) (4.31)

where f(k, x) is the directivity of the source, given by

f(k, x) = e
− x2

σ2

B , (4.32)

equation (4.30) becomes

Si(ω) = 4π2ω2ρ20µBS|T (ω)|2kd
∫ ∞

−∞
dx |AΦ|4e

− 4x2

σ2

B . (4.33)

The identity

∫ ∞

−∞
dqe−(χ2q2+iτq) =

√
π

χ
e
− τ2

4χ2 (4.34)

simplifies (4.33) into

Si(ω) = 2π2ω2ρ20µBS|T (ω)A2
Φ|2kdσB

√
π (4.35)

which describes the backscattered power spectrum received from an ensemble of small,

weak, monopole scatterers as a function of the BSC and the source properties.
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4.2.1.4 Plane Reflector Signal Derivation

Starting from equation (4.19), we substitute the ansatz from (4.31), and notice that

only the phase changes in the ĵ direction, hence the derivative will simply extract a

factor of ik. Defining

AE = ωρ0T (ω) (4.36)

for simplicity, we find

E(ω) = ikAERpA
2
Φe

−2iky

√

π
2
σ2

B
+ ik

y0

. (4.37)

Taking the magnitude squared of this expression will give

Sp(ω) = k2|AEA
2
Φ|2R2

p

π
√

(

2
σ2

B

)2

+ ( k
y0
)2

(4.38)

Substituting equation (4.36) for AE, the resulting equation for the plane reflector signal

will be

Sp(ω) =
ky0ω

2ρ20|T (ω)A2
Φ|2Rpπ

√

(1 + ( 2y0
kσ2

B
)2)

(4.39)

4.2.1.5 The Measurement Equation

Taking the ratio of (4.35) and (4.39) and rearranging for µBS gives

µBS =
Si(ω)

Sp(ω)

1

2π
√
π

y0Rp/(dσB)
√

(1 + ( 2y0
kσ2

B
)2)

. (4.40)

If we make the substitution σB =
√
8y0/ka, the resulting equation is

µBS =
Si(ω)

Sp(ω)

1

2π
√
8π

Rpka/d
√

(1 + (ka
2

4y0
)2)

, (4.41)
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which can be seen as the typical form of an experimental substitution method backscat-

ter experiment, where the backscattered signal Si(ω) is compared to a reference signal

Sp(ω), with a factor concerned with the geometry of the problem. Si(ω) and Sp(ω)

refer to two finite element simulations, one with a diffuse scattering medium present,

and one with a planar reflector present. These are compared using (4.41) to compute

an estimate for the BSC.

4.2.1.6 Theoretical Backscatter Coefficient

Starting with equation (4.14), we once again apply the ansatz in equation (4.31) and

square the magnitude to find the receive power spectrum:

S(ω) = 16Z2
0k

2|U(ω)|2
∫ ∫

dA1dA2 R(r̄1)R(r̄2)× [k2Φ(ω, r̄1)Φ
∗(ω, r̄1)]

2, (4.42)

where the bar indicates the average. Using a weak scattering assumption, and hence

that the incident field is unchanged significantly by the scattering medium, the be-

haviour of the integrand is dominated by the spatial variation in the reflection coeffi-

cient. If |r1 − r2| << σ (where σ is the correlation length of the amplitude reflection

coefficient of the medium) then

R(r̄1)R(r̄2) = R2(r̄), (4.43)

and if |r̄1 − r̄2| >> σ then

R(r̄1)R(r̄2) = [R(r̄)]2. (4.44)

Combining these limiting cases gives

R(r̄1)R(r̄2) = R2
sκ(r̄1 − r̄2) +R2

m, (4.45)
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and the following relations may be found:

R2
s = R2(r̄)−R(r̄)

2
(4.46)

Rm = R0κv (4.47)

Rm(r̄) = R(r̄) (4.48)

where Rs and Rm are the standard deviation and mean of R(r̄) respectively and

κ(r̄1 − r̄2) is the autocorrelation function of the amplitude reflection coefficient of the

material. For an ensemble of discrete scattering bodies with amplitude reflection coef-

ficient relative to background of R0, area concentration κA and number density n, the

following statements also hold:

R2
s = R2

0(κA − κ2
A) (4.49)

Rm = R0κA (4.50)

κA = nσ2 (4.51)

Applying this to equation (4.42) gives a coherent component Sc, (a reflection due to the

mean behaviour of the medium) and an incoherent component Si (due to the ensemble

of individual scattering bodies within the medium), with the total scattering S(ω) being

the sum of these contributions. We can define them as

Sc(ω) = 16Z2
0k

2|U(ω)|2
∣

∣

∣

∣

∫

A

dA Rmk
2Φ(ω, r̄1)Φ

∗(ω, r̄1)

∣

∣

∣

∣

2

(4.52)

and
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Si(ω) = 16Z2
0k

2|U(ω)|2
∫ ∫

dA1dA2 Rsκ(r̄1 − r̄2)× [k2Φ(ω, r̄1)Φ
∗(ω, r̄1)]

2. (4.53)

Focusing on the incoherent component, we rewrite as

Si(ω) = 16Z2
0 |U(ω)|2k6R2

sA
4
Φg(ω) (4.54)

where g(ω) is the frequency response of the medium based on the spatial variation of the

amplitude reflection coefficient. To solve g(ω) we first define a new set of co-ordinates:

s1 = x1 − x2, s2 = x1 + x2

u1 = y1 − y2, u2 = y1 + y2

(4.55)

Defining g(ω) as

g(ω) =
d

4

∫ ∞

−∞

∫ ∞

−∞
ds1du1 κ(s1, u1)h(s1)e

i2ku1 (4.56)

and

h(s1) = 4

∫ ∞

−∞
ds2 f

(

k,
s1 + s2

2
, y0

)

f ∗
(

k,
s1 − s2

2
, y0

)

(4.57)

we now assume that the correlation coefficient of the medium varies much more rapidly

than the velocity potential (i.e. all the scattering bodies see the same field), which

corresponds to h(s1) only being evaluated at s1 = 0:

Si(ω) = 16Z2
0 |U(ω)|2k6R2

sd

∫ ∞

−∞

∫ ∞

−∞
ds1du1

(

κ(s1, u1)

[
∫ ∞

−∞
ds2 |A4

Φf(k, s2, y0)|4
]

ei2ku1

)

.

(4.58)

This further simplifies on substitution of |A4
Φf(k)

4| for |Φ|4 (using equation (4.31))
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Si(ω) = 16Z2
0 |U(ω)|2k6R2

sd

∫ ∞

−∞
ds2 |Φ|4

∫ ∞

−∞
ds1du1 κ(s1, u1)e

i2ku1 . (4.59)

Comparing equations (4.30) and (4.59) gives an expression for a theoretical BSC value

(µT
BS) based only on the properties of the medium.

µT
BS(ω) =

4k3R2
s

π2

∫ ∞

−∞
ds1du1 κ(s1, u1)e

−i2ku1 . (4.60)

Defining a new co-ordinate system

s1 = γσxcos(θ) (4.61)

u1 = γσxsin(θ) (4.62)

ds1du1 = γσxσwdγdθ (4.63)

converts (4.60) into

µT
BS(ω) =

4k3R2
sσ

2

π2

∫ ∞

−∞
dγ γκ(γ)

∫ π

−π

dθ e−2ikγσwsin(θ). (4.64)

Applying the identity

Jn(γ) =
1

2π

∫ π

−π

dχ e−i(γsin(χsin(χ)−ηχ)) (4.65)

results in

µT
BS(ω) =

8k3R2
sσ

2

π

∫ ∞

−∞
dγ γκ(γ)J0(2kγσw). (4.66)

To find the backscatter coefficient for a collection of circular scattering bodies we take

the intersection area of two circles of radius equal to the correlation length of the
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reflection coefficient of the material (σ) based on the dimensionless spatial lag γ = r
σ
.

The normalised intersection area of two circles is given by

κ(γ) =











1
π

(

2cos−1(γ
2
)− γ

2

√

4− γ2
)

: 0 < γ ≤ 2

0 : 0 > γ > 2
(4.67)

The backscatter coefficient will hence be

µT
BS(ω) =

16k3R2
sσ

2

π

∫ 2

0

dγ γJ0(2kγσ)
(

2cos−1
(γ

2

)

− γ

2

√

4− γ2
)

. (4.68)

which is evaluated numerically for comparison with BSC estimates evaluated using the

FEM described in the next section.

4.2.2 Finite Element Methods

The following section describes the design of the FE models used to simulate a BSC

estimation experiment. Firstly, the design of the individual scatterers will be explained,

followed by the design of the BSC models and the analysis methodology. The ultimate

test of the approach was to compare a simulated BSC estimate to a theoretically derived

value from the mesh properties. To achieve this, simulations were performed and the

BSC coefficient estimate computed using equation (4.41). The accuracy of the approach

was then assessed through comparison of the BSC estimate to that computed from

equation (4.68). This was then repeated whilst altering simulation parameters to test

the accuracy of the methodology in differing conditions. The two parameters altered

were the BSC of the simulated scattering region and the focusing strength of the source

used to insonify the scattering region. The former was altered through changing the

number density of scatterers. This was varied to test the accuracy of the tool to

simulate different tissue types, from one sparsely populated by scatterers and possessing

a low BSC value, up to a condition where there are sufficient scatterers to generate a

fully developed speckle pattern and a greater BSC value. The second parameter was
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controlled by changing the source aperture width whilst maintaining the same focal

depth. This was altered to test the accuracy of the tool to generate accurate BSC

estimates with a range of sources.

4.2.2.1 Scatterer Design Models

Initial experimentation was performed to design weak, monopole scatterers matching

those described in section 4.2.1.6. To do so, the properties of the FE mesh were locally

varied and the resulting scattering distribution compared to Faran scattering theory

[91]. The simulation parameters are listed in table 4.1. Weak, monopole scattering was

achieved by applying a small sound speed fluctuation to element(s) within the mesh

relative to the rest of the domain (whilst maintaining a homogeneous mass density

throughout the whole domain). The mesh was set to be highly discretised spatially

to model small scatterers and the Courant value set for high temporal resolution to

prioritise accuracy over run-time. Three configurations were tested: square scattering

bodies formed of single elements, square scattering bodies formed of four elements, and

a heptagonal scattering body formed of 7 tessellated triangular elements (see figure 4.1).

Square elements were tested as they generate a simple, regular grid of points which is

simple to mesh. This was compared to a triangular meshed case, which more closely

maps the perimeter of the - assumed - circular scatterer shape. Mesh refinement of

the square case was performed to assess whether the representation of the scatterers

by a greater number of elements (4 as opposed to 1) improved the accuracy of the

scattering distribution. Scatterer area was kept constant between the configurations to

allow direct comparison of the scattering distributions.

To measure the scattering distributions of the different configurations, a point

source of acoustic pressure waves was used to insonify the target element(s) and the

resulting field recorded by receiver nodes placed at points around the scatterer forming

a circle of radius 15mm (5λ0). This simulation was then repeated without the scatterer

present, and the time domain difference between the pressure fields with and without
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Table 4.1: Properties for the simulations described.

Property Value

Background medium sound speed (c0) 1500ms−1

Scattering body sound speed (cS) 1497ms−1

Background medium density (ρ0) 1000kgm−3

Scattering body density (ρS) 1000kgm−3

Courant value 0.1
Centre frequency of excitation (f0) 0.5MHz

Centre Wavelength (λ0) 3mm
Mesh refinement: square single (dx) dx = λ0/50 = 60µm
Mesh refinement: square four (dx) dx = λ0/100 = 30µm

Mesh refinement: triangle seven (dx) dx = λ0/50×
√

2
3
√
3
≃ 37µm

the scatterer were taken to compute the scattered pressure field. The scattered pressure

at each scattering angle was then Fourier transformed, and the absolute scattered wave

amplitude calculated at the centre frequency of the initial excitation (f0), scaled by the

2D free space Green’s function (equation (4.10)) and compared to the analytical model

as derived by Faran[91]. The root mean square error (RMSE) between the analytical

and simulation backscattering amplitudes (at the centre frequency of insonification)

was used as the quality metric. This quality metric informed the choice of scatterer to

use in the BSC simulation models.

4.2.2.2 Backscatter Coefficient Estimation Models

To simulate a planar reflector substitution method BSC measurement, two simulation

types were required. The first is the scattering medium (the BSC of which is to be mea-

sured) and the second the planar reflector (used to compute the calibration spectrum).

Measurement of the backscattered energy from the scattering medium ((Si(ω)) and the

planar reflector (Sp(ω)) can then be used to compute the BSC using equation (4.41).

Examples of these two simulation geometries are pictured in figure 4.2. For these simu-

lations, the scattering medium was constructed by randomly selecting elements within

a region of the model to be designated as ‘scattering elements’. These elements were

assigned material properties with a lower sound speed relative to the background, as
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Figure 4.1: The three simulated single scattering models, with the background medium

unshaded, and the elements with velocity fluctuation relative to background coloured

in red. Black lines represent element boundaries. Figure 4.1a is the single element

square case, figure 4.1b the four element square case and figure 4.1c is the triangular

case. The mesh discretisation (dx) was varied between cases to maintain a constant

scatterer area.

detailed in table 4.1. To prevent unwanted reflections, absorbing regions were placed

adjacent to all model boundaries in the incoherent scattering model (as shown in figure

4.2). In the planar reflector model, absorbing regions were placed adjacent to all model

boundaries besides that acting as the planar reflector. The absorbing boundaries at-

tenuate wave energy by gradually increasing damping from the edge of the boundary

toward the model edge, attenuating the wave energy whilst minimising the impedance

mismatch between adjacent element layers. This simulates an infinite space in which

only the scatterers placed in the model contribute to the measured backscattered energy.

4.2.2.3 Source Design

As described in chapter 2, focused sources were simulated through selecting a line of

nodes was perpendicular to the beam axis, and applying a beam delay profile was

applied to the signals from each node to simulate a curved source of pressure waves,

simulating the radiated field from a single element, focused transducer (figure 2.2)

or an array with a time delay profile placed on the elements. In receive mode, the

backscattered pressure was recorded at each of the same nodes, time delayed with the
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(a) (b)

Figure 4.2: Examples of the random scatterer (4.2a) and planar reflector (4.2b) simu-

lation models. In both, the source is positioned such that the scatterer(s) of interest

are positioned at the focal depth (5cm). In 4.2a, the source is positioned with the focal

depth 5mm inside the region populated with scatterers so a symmetrical gate centred at

the focus captured echoes scattered anterior and posterior to the focal depth. In 4.2b,

the source was positioned with the model boundary at the focal depth. Absorbing

regions were used to prevent unwanted reflections from model edges.

same profile used in emission and summed to generate an A-line, simulating reception

across the face of a curved element (or array with a receive delay profile). In the case of

the random scatterer simulation, the position of the source nodes along the beam axis

was selected to ensure the focal depth was inside the region populated with scatterers,

by a distance greater than half the spatial length of the emitted pulse. With a centre

wavelength of 3mm (as per table 4.1), the pulse length is 9mm. In the case of the

calibration spectrum, the axial position of the nodes was selected such that the focus

was coincident with the depth of the planar reflector. In all cases described, the focal

depth was 5cm.

The beam width of this source was also calculated to determine the number of

scatterers contained within the resolution cell of the simulated sources. To measure

this, a model was designed with ‘field’ nodes placed in the model at regular intervals to

compute the incident intensity at the centre frequency for different points in the field of
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view of the source. The grid of field nodes was designed with the same lateral spacing

as the nodes that make up the source/receiver (dx = λ0/50) and an axial spacing of

λ0/10. This is visualised in figure 4.3. To calculate the beam width, the data collected

at nodes displaced laterally from the beam axis was analysed at the centre frequency

of the excitation and the central lobe was fitted to a Gaussian beam profile, with the

Gaussian width used as the measure of the beam width. The axial resolution was

defined as one half the length of the imaging pulse. The imaging pulse was a 3 cycle

tone burst, with a centre frequency of 3mm, giving an axial resolution of 4.5mm.

6 854, ,,,,,, n321

dx

dx

7

Figure 4.3: Configuration of source nodes (red) and field nodes (blue) used to measure

the beam width of the simulated sources.

.

4.2.2.4 Simulation Averaging

Due to interference between scattered wavefronts, different realisations of scatterer po-

sitions will result in different backscattered power values. The theoretical BSC as

described by equation (4.68) calculates a BSC value dependent on the ensemble prop-

erties (the individual scatterer strengths and scatterer number density) but the value is
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independent of scatterer configuration. Therefore, to compare our theoretical value to

the simulation results, it is necessary to average over statistically independent realisa-

tions of random scatterer positions with the same ensemble properties in order reduce

the variation due to interference effects. To make statistically independent incoherent

scattering models, multiple realisations of the random scatterer model were generated,

each time with the scatterer positions selected through use of a random number gen-

erator, but the number density kept constant to maintain the ensemble properties.

Convergence of the backscattered signal for the models was observed after around 103

ensemble realisations, so this value was used as the number of realisations in all cases.

4.2.2.5 Experimental Design: Backscatter Coefficient Estimation as a Func-

tion of Number Density of Scatterers

To quantify the accuracy of the tool over a range of BSC values, 4 sets of 103 scat-

tering ensembles distinguishable by the number density of scattering bodies present

were generated. These ensembles contained the same scattering bodies as described

in section 4.2.2.1, hence the number density alteration constitutes a difference in the

BSC between the sets of ensembles. The number density values were varied by altering

the number of elements within the sample region with an impedance mismatch relative

the background medium. The ratio of scattering to non-scattering elements was varied

from 1 : 102.5 to 1 : 104 in a geometric progression with a multiplicative increment

of 100.5. For the apertures selected to interrogate these samples, this corresponds to

around 13 scatterers per resolution cell in the highest number density case, and 0.4

per resolution cell in the lowest case. These values cover a range selected to include

a fully developed speckle case (high number density) down to a condition where there

are individually resolvable point scatterers (low number density). To test the accuracy

of the approach, the BSC estimates from simulation were compared to the theoretical

value as calculated from equation (4.68) and a linear regression was performed on the

logarithm of the number density vs. the logarithm of the backscatter coefficient. This

114



approach was used to account for the effect of an exponentially increasing indepen-

dent variable and ensure that the regression coefficients were not dictated by the data

values corresponding to higher number densities. The regression coefficients were also

compared to the theoretical value found from equation (4.68).

4.2.2.6 Experimental Design: Backscatter Coefficient Estimation as a Func-

tion of Aperture Width

To quantify the accuracy of the approach for different simulated sources, BSC mea-

surement simulations were performed on the same set of 103 ensembles with differing

f-numbers. The f-number of the source was altered by changing the aperture width

whilst maintaining the same focal depth. The diameter was varied from 2.6cm to

4.0cm in increments of 0.2cm, with a focal depth of 5cm.

4.2.2.7 BSC Estimation

The A-lines formed from backscattered waves from the scattering model were exported

to Matlab, where they were time gated to capture waves scattered from locations ante-

rior and posterior to the emit/receive focal depth, with a temporal gate equal in length

to the emitted pulse (3-cycles) and centred on the time step corresponding to the time

of flight from the focal depth to the centre node of the receive aperture (including

the time delay). This gated section was then zero padded for frequency analysis and

Fourier transformed. The complex power spectra from the 103 independent ensemble

positions were then averaged and the absolute value used as the value Si(ω) in equation

(4.41). The received A-line from the planar reflector was also zero padded and Fourier

transformed to give Sp(ω) in equation (4.41). Using these two values, and the geo-

metric properties of the aperture and gate length, an estimate of the BSC could then

be produced, and compared to the theoretical value from equation (4.68), which was

calculable using the number density of the scatterers and their individual reflectivity.
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4.2.2.8 Quantification of Uncertainty in BSC estimate

To quantify the uncertainty in BSC estimation, an uncertainty value was defined by the

standard deviation of the BSC estimates from all ensembles within a test case (be it for

a single number density of scattering bodies or for a single aperture size) divided by the

square root of the number of ensembles within that case. This metric was selected to

scale the standard deviation expected from a set of Rayleigh-like scattering ensembles

(which is of the same order as the BSC estimate) by the increased confidence in the

mean BSC estimated from a large number of statistically independent ensembles with

the same bulk properties.

4.2.2.9 Experimental Design: Envelope Amplitude Statistics

The variation in amplitude envelope of the backscattered signal was also compared to

scattering theory to further test whether the model was behaving in a manner com-

mensurate with a tissue like material. Using the A-lines generated from the models

described previously, the mean and standard deviation of the amplitude envelope of the

backscattered signal from each simulation (each of which corresponds to an independent

scatterer position distribution) was computed. The probability distribution function of

the collated envelope amplitudes is related to the number density of scatterers relative

to the resolution cell size of the imaging device, and for more than 10 scatterers per

resolution cell we expect to see a fully developed speckle with a Rayleigh distributed set

of amplitude envelope values. In this case, the ratio of the mean and standard deviation

of the probability distribution function will equal 1.913 [96][153][154]. Within the field

of Rayleigh modelled speckle, this ratio is referred to as the signal to noise ratio (SNR),

which should not be confused with the SNR as is commonly considered in pure signal

processing discussions. To test whether this behaviour was observed, the SNR of the

amplitude envelope was computed for the simulation models detailed in section 4.2.2.6.
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4.3 Results

4.3.1 Single Scatterer Models

Figure 4.4 shows the polar scattering amplitude (SA) profiles of the single scattering

bodies described in section 4.2.2.1. The relative error of the distributions as compared

to the Faran scattering model[91] are shown in table 4.2. The SA and phase errors were

defined as the RMS residual between the appropriate quantities for the (analytical)

cylindrical model and the FE generated data between the scattering angles π/4 ≥ Υ ≥

7π/4. In the case of the SA error, this error was also calculated as a percentage of the

mean SA (scaled SA error). The scaled SA error was less than 2.4% for all scatterer

models. The phase error was less than 0.08 rad for all the scatterer models. Based on

these results, it was determined that the single element square case was the best option

to pursue, as this element shape was shown to outperform the triangular approach, and

the improvement (of 0.0377%) in the accuracy of the scattering amplitude accuracy

with the increased mesh refinement (four element square case) was considered little

compensation for the increased simulation run time incurred. The lower accuracy with

respect to the phase in the square case relative to the triangular was considered less of

a concern than the scattering amplitude, as a sparse ensemble of randomly distributed

scatters is expected to randomly alter the phase due to their relative incoherence.

This combined with the necessity to average over many random scatterer positions to

account for the statistical fluctuation in backscattered power due to interference meant

that phase accuracy was of less importance than SA accuracy.
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Figure 4.4: Polar scattering amplitude diagrams profiles for the single scatterer models.

Pictured are the single element square case (a), the four element square case (b) and

the six element triangular case (c). The blue lines are formed of data points with

angular position corresponding to the position of nodes within the ring of receivers

and radial position equal to the receive scattering amplitude at the centre frequency

by nodes at each point on the radius of receivers. The orange line corresponds the

theoretical scattering distribution for an infinite cylinder with the same properties and

cross-sectional area as the meshed scatterers, immersed in a background medium with

the same properties as the non-scattering elements in the FE model, computed for all

points on the circle of nodes used in the FE mesh. SA values are presented without

normalisation, but the value of the SA has been omitted for visual purposes.

Table 4.2: Error values associated with the single element scattering models. Error

refers to the RMS residual between the simulation estimate and theoretical value for

the amplitude and phase quantities over the angle subtended by Υ.

Scattering body SA error (Pa) scaled SA error (%) Phase Error (rad)

single element square 4.0635× 10−8 1.8159 0.0574
four element square 3.9793× 10−8 1.7782 0.0773
six element square 5.2718× 10−8 2.3561 0.0245

4.3.2 Beam Width Measurements

The beam width measurements of the simulated sources produced the values in table
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Aperture width (cm) Beam width (mm)

2.6 4.2

2.8 3.9

3.0 3.5

3.2 3.4

3.4 3.2

3.6 3.0

3.8 2.9

4.0 2.7

Table 4.3: Beam width measurements

For the number density values considered with the sources, this produced a number of

scatterers per resolution cell

4.3.3 BSC Estimation

Pictured in figures 4.5 and 4.6 are the pressure distributions throughout the FE models

for the two simulation types. The source and receive aperture is pictured as a white

bar, with the edges of the absorbing regions pictured as red lines. In figure 4.5 we can

see the point at which the initial excitation is incident upon the region populated with

scatterers from the scattered waves propagating back toward the source. We can also

see the initial excitation propagating toward the edges of the model (highlighting the

need for absorbing regions on the edge of the model), and some energy content within

the absorbing regions. The values within the images have been compressed and allow

the viewer to see both the initial excitation as well as the weaker backscattered signal.

In figure 4.6 the excitation is propagating toward the top edge of the model, at which

point it will be reflected back to the source to provide the correction spectrum. Videos

of both the scattering of the field by the random medium and the reflection from the

model edge are available in the supplementary content.
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Figure 4.5: Images of the wave propagation within the incoherent scattering model.

Colour values correspond to the unsigned pressure amplitude at a position within the

model. To allow visualisation of the incident beam and the (weakly) scattered waves,

the pressure values were compressed to allow the visualisation of a greater range of

propagating wave amplitude values within the model. Figure 4.5a is a view of the full

model. Figure 4.5b is a zoomed in view of the scattered wave propagating away from

the scatterers (not pictured).
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Figure 4.6: Images of the wave propagation within the line reflector scattering model.

As previously, figure 4.6a is a view of the full model. Figure 4.6b is a zoomed in view of

the source wave propagating toward the edge of the model mimicking a line reflector.

Figure 4.7 shows the variation of the BSC estimate with number density of scat-

terers as measured using a 4 cm diameter aperture. The full error bar width is equal

to twice the standard error of the mean for all BSC estimates. The results of the linear

120



regression are detailed in table 4.4.
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Figure 4.7: BSC data for a 4 cm aperture. Variation in BSC estimate and theoretical

BSC as a function of number density of scattering bodies (4.7a). Percentage error in

BSC error relative to theoretical value as a function of number density of scattering

bodies (4.7b). Error bars are the standard error on the mean as described in section

4.2.2.8 scaled by theoretical BSC value at each number density value in 4.7b.

Table 4.4: Linear fit parameters for the relationship between the logarithm of the

number density and the logarithm of the BSC calculated from theory (Theory) and

estimated from FE simulation (Simulation). Included are the 95% confidence intervals

for the fit parameters.

Parameter Theory Simulation

slope 1 1.076± 0.07
intercept −10.15 −10.28± 0.09

The results of the BSC estimation with varying aperture sizes are pictured in figure

4.8.
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Figure 4.8: BSC estimation values (Simulation) plotted for a range of aperture sizes,

with the accompanying theoretical value (Theory) calculate from the ensemble bulk

properties. The BSC value is shown on the left y-axis and percentage error (relative to

the theoretical value) on the right y-axis.

4.3.4 Envelope Amplitude Statistics

The results of the SNR estimation as a function of aperture size are pictured in figure

4.9.
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Figure 4.9: Variation in the SNR of the backscattered amplitude envelope evaluated

over a set of 103 scattering models plotted as a function of varying aperture size. Error

bars correspond to the standard deviation of the SNR estimate across all the models.

Also plotted is the theoretical signal to noise ratio for a fully developed speckle pattern.
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4.4 Discussion

4.4.1 BSC as a function of number density of scatterers

From figure 4.7 we can see that the simulation tool agrees well with the theoretical

BSC as defined in equation (4.68). The smallest error was found to be 3.33% for

the highest number density case, and the discrepancy was seen to be greater at the

lower number density cases, with the lowest number density case having an error of

−22.61%. To explain this reduced accuracy at lower number density values, we consider

one of the assumptions involved in formulating equation (4.35): that the scatterers are

incoherent relative to each other (i.e. not formed in a regular grid or plane(s)). In

order to achieve such a condition we require multiple scattered wavefronts from within

the scattering area (since a single, sub-wavelength, monopole scatterer will scatter a

coherent wavefront at all length scales). With lower number densities this is less the

case, the fewer wavefronts will not interfere to the same extent, and the backscattered

profile will more closely resemble that which one would achieve with a point scatterer.

The measurement of the BSC in these cases will be more sensitive to the scatterer

positions within the ROI (since there is less backscattered power, individual scattering

events represent a greater percentage of the backscattered energy). For a large number

of scatterers, any off axis scattering (for which the receive beamformed receive pressure

will be less than that for on-axis scatterers) can constructively or destructively interfere

with scatterers on the opposite side of the beam axis depending on relative phase, but

the contribution will be less than the on-axis scatterers. When scattering occurs from

a sparse numbers of scatterers, there is less likely to be a conjugate wavefront on the

opposite side of the beam axis, and hence the received wavefront for a given data point

is more likely to be a scattered wave from an individual scatterer. Unless said scatterer

is on the beam axis at the focal depth, the scattered wavefront will possess different

curvature to the aperture, and therefore will result in a lower measured backscattered

power. This could then result in an underestimate of the BSC, biasing the estimates
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to be smaller than the theoretical value. The results of the linear regression as shown

in table 4.4 show that the tool was able to reproduce the theoretical values with only

limited accuracy, with the gradient and y-offset falling outside the 95% confidence

interval, due to the underestimate of the BSC at the lower number density cases.

4.4.2 BSC as a function of aperture width

Considering now the aperture size as the independent variable, we can see that the

simulations performed with a high degree of accuracy, with all simulated apertures

producing results accurate to within 6.35% of the theoretical value. This compares

favourably with literature results of other FE BSC simulations who found discrepancies

of up to 10% [150] in BSC estimates for grain scattering simulations, and also to tissue

mimicking BSC simulations where they observed discrepancies of around 6% [157] in

BSC magnitude.

4.4.3 Amplitude Envelope Statistics

From figure 4.9 we can see that for all simulated apertures, the measured amplitude

envelope was found to be within one standard deviation away from the theoretical,

Rayleigh indicative SNR of 1.913. This is to be expected, as the number of scattering

bodies per resolution cell for these simulated cases exceed the condition required (10)

for a Rayleigh distributed amplitude envelope[1][96]. A parallel numerical test was run

to assess the convergence of the SNR of a set of Rayleigh distributed variables, which

exhibited around a 1% error on the SNR value after 103 generated values, indicating

that the deviation in this data set can not be explained simply by convergence of the

average, however the values are still all within a standard deviation of the expected

value, indicating relative conformance to the scattering theory. Comparison to results

found in literature showed that other simulations of the amplitude envelope [96] did not

fully converge onto the theoretical value, with a slight underestimate for the highest

number density case, which exceeded the number density condition for fully developed
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speckle. This suggests that we cannot expect full convergence of the average onto the

theoretical value even for high number densities. No adequate explanation could be

found for the apparent systematic variation in the SNR with aperture width. The

decrease in width (whilst maintaining a constant focal depth) will naturally increase

the beam width at the focus, which should include more scatterers in the resolution

cell, but given that our number density value is set to exceed the minimum for fully

developed speckle, the reason for the apparent decrease in SNR with increasing aperture

width is not understood.

4.4.4 Limitations

Whilst the approach of simulating a BSC measurement in reduced dimensionality has

its benefits in reducing the required computational memory and time, it naturally

precludes inclusion of the factors associated with the discarded dimension. Whilst it is

possible to reformulate 3D scattering behaviour in 2D, we are not able to include certain

effects, notably the effect of elevational beam and shape, and out of plane scattering.

However, these 2D models do reduce the computational cost and run-time that would

be required for an equivalent 3D investigation. For this reason we should view results

from 2D simulations as both a groundwork for future investigation in 3D, as well as an

opportunity to investigate similar scattering models in 2D without the aforementioned

model size issues.

In the use of simulation to date, factors such as regional sound speed or density

variation, or frequency dependent attenuation have not been included. Whilst this

creates a simulation domain unlikely to be found in a real tissue or phantom, it is worth

noting that the inclusion of both these factors are easily applicable within models of

this type [116]. The reason for not including such factors in this work was to generate

a test cases with known results to prove the utility of the tool.
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4.5 Conclusion

This chapter has presented reformulations of BSC equations in reduced dimensionality,

which will be of interest to those wishing to also simulate BSC style experiments with-

out the time and computational memory penalties associated with a 3D simulation.

Simulations of a plane reflector substitution style experiment are shown to be able to

estimate the value of the BSC for digital phantoms using an FE framework in 2D. The

results indicate that the tool is capable of simulating the physical scenario to a high

degree of accuracy, with discrepancies of ∼ 3% in the best case, and ∼ 24% in the worst

case, where the latter can be explained through considering the deviation of the simu-

lated model from the theoretical assumptions used to generate the theoretical BSC. The

tool is accurate across a large range of number density values, as indicated in figure 4.7

and to changes in the focusing strength of the simulated aperture, as shown in figure

4.8. In addition, the statistical nature of the backscattered signal was shown to behave

in a manner commensurate with theoretical descriptions of ultrasound speckle, with

the tool able to reproduce speckle-like statistical distributions that compare favourably

with theoretical descriptions. SNR values of ≃ 1.913 were found in cases where one

expects to observe a Rayleigh-like distribution of scattering amplitudes.
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Chapter 5

An investigation into the effect of

planar reflector positioning on the

accuracy of BSC estimates using

unfocused sources
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5.1 Introduction

This chapter will make use of the model developed in chapter 4 to investigate the

sources of variation in BSC estimates between two different methodologies are used.

Unlike chapter 5, these methods will make use of unfocused sources, but the scattering

models corresponding to the highest number density case presented in the previous

chapter will be reused within this investigation. The factor that is to be investigated

within this chapter relates to the quality of the diffraction correction applied during

the BSC estimation process, and how this varies depending on the positioning of the

reference scatterer. This study will attempt to perform a simulation based comparison

between two methodologies for backscatter normalisation and diffraction, to investigate

the quality of the BSC estimates they produce. This comparison will be made through

construction of FE models, the results of which be analysed using two methodologies,

with their accuracy compared to a theoretical description of the scattering as in chapter

4. The two methodologies, first adopted by Sigeleman and Reid [26] and Chen et al. [79]

respectively, use a planar reflector to characterise the diffraction field of an ultrasound

device in order to compute diffraction free estimates of the BSC for a sample of tissue.

These methodologies differ in their positioning of the planar reflector, with Sigelman

and Reid opting to place the planar reflector at the same depth as the tissue sample,

whilst Chen et al. propose a new formulation whereby the planar reflector and sample

do not necessarily need to be placed at the same depth. This approach has since been

used by other authors [158][159], who placed the planar reflector at half the depth of

the sample to perform their corrections. This leads to an ongoing uncertainty as to

the ideal configuration of planar reflector position and sample relative to an unfocused

source. The accuracies of these two diffraction correction approaches will be compared

through a simulation approach to determine which provides the most accurate estimate

of the BSC. The placement of the planar reflector at the same depth as the sample

will be referred to as method 1, and the placement of the planar reflector at half this

distance will be referred to as method 2. The use of a simulation based approach allows
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a high degree of control over experimental conditions, making it a powerful tool for

investigating the nature of diffraction, and its effect on the quality of BSC estimates.

The diffraction field of the source of ultrasonic waves contributes substantially to

the distribution of wave energy in the emitted field for a given transmit frequency

and position in the acoustic field, and hence can have a great impact on material

property estimates generated using ultrasound (for example sound speed, attenuation

or backscatter coefficient) [60]. Therefore, to generate material property estimates that

are measurement system independent, one must correct the collected data as a function

of spatial position and frequency [1]. The diffraction field of a source is a consequence of

the finite source of the ultrasound device in use, and results in a spatio-spectral variation

in the field emitted (and by reciprocity), the detection of scattered wave energy from a

point in the field of view of the same device operating in receive mode.

This chapter will explore the particular case of the diffraction correction within a

planar reflector substitution method experiment through which the sources of variability

that can occur in BSC estimation methodologies will be investigated.

To explore the concept of diffraction we first consider the theoretical case of an infi-

nite plane source and (identical) receiver of ultrasound waves with a time, frequency and

amplitude independent linear acousto-mechanical transfer characteristic in both emit

and receive modes. Plainly, we consider a device whereby case where the relationship

between an excitation signal and the emitted pressure amplitude and the relationship

between a received pressure amplitude and recorded signal is linear, and time, ampli-

tude and frequency independent. For this theoretical, infinite device, the diffraction

correction would be unity for all frequencies and positions in the field of view, since

there is no bias in the emission or reception of wave energy based on spatial position

or frequency characteristics: the field is diffraction free. At the other extreme, for an

infinitesimal point source with the same emit and receive characteristics, the diffraction

correction will now be a function of the radial distance in transmit and receive propaga-

tion directions between the position of interest and point source/receiver to account for
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geometrical spreading of the wavefronts emitted from a given position. A finite sized

unfocused source possesses a more complex diffraction field, as we now must consider

the relationship between the wavelength of interest, the source size, and the point in

the field of view. This interaction between length scales will manifest itself in the form

of near and far field effects, with the diffraction field of the source being a function of

both transmit frequency and position of interest. The introduction of focusing of the

source/receiver results in further changes, introducing an increase in both the incident

intensity and the receive sensitivity at the focal point of the source/receiver, and a

reduction in both incident intensity and receive sensitivity for other points in the field.

Finally, when we consider the presence of array systems, with electronic focusing, trans-

mit and receive aperture apodisation and variable focal length, all of which will alter

the diffraction field further, we begin to see the large number of variables one needs to

consider when assessing the backscattered wave energy from an unknown sample due

to both the incident intensity at a point in the sample, and the receiver sensitivity to

a source at this point. The quality of the correction of these (frequency dependent)

effects directly impacts the quality of the final BSC estimate, and has been cited as a

large source of variability between measurements [2].

To compute the diffraction field for a given source and obtain measurement sys-

tem independent estimates of the BSC, we can simultaneously correct for the source

directivity pattern and the electromechanical characteristics of the device in emit and

receive mode by placing a reference scatterer at a given position in the field of view

of the source and spectrally quantifying the received echo for a given excitation. This

will provide a normalisation spectrum that can be used to correct the backscattered

spectrum from the sample under interrogation for device and diffraction based effects.

The backscattered spectrum acquired from the reference scatterer will be a frequency

dependent description of the diffraction field for that particular position and scatterer.

This spectrum constitutes a quantification of the diffraction field specifically for the

scatterer geometry used for the reference, since it is a manifestation of the relative ge-
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ometries of the beam and the scatterer at the sampled frequencies. To universalise this

to other scatterer geometries, such as the scatterers present in a section of tissue, the

relative properties of the beam directivity and the scattering geometry are then required

to compute a diffraction free estimate of the backscattering properties. If an identical

device, with identical device settings are used for both the insonification of the unknown

sample and the reference scatterer, the division of the backscattered spectrum received

from the sample by the backscattered spectrum received from the reference scatterer

(whilst mathematically accounting for the diffraction effects of the relative scatterer

geometries) will result in the calculation of a normalised spectrum that will be more

system independent than the backscattered spectrum from the sample. Whether the

measurement will be entirely system independent is a point of contention, as the ac-

curacy of the theoretical description of the beam directivity and source geometry (the

diffraction term of a BSC equation such as equation (5.9) or equation (4.40)) will even-

tually be a factor in the accuracy of the BSC estimation. This has been shown to be

a source of inconsistency in a number of inter-method and inter-device comparisons

of BSC estimation variability [2][88][144][88][90]. This chapter will use FE simulation

methods to explore how the description and experimental categorisation of a planar

reflector impacts the quality of BSC estimates using a similar methodology as was

presented in chapter 4, but using unfocused sources.

The planar reflector was the first reference scatterer used for the purpose of backscat-

tered spectrum normalisation, by Sigelman and Reid [26], and was later used by many

other authors to generate their own methods for BSC estimation [28][79][76][27][49][56].

The advantage of the planar reflector is its simple geometry. Provided its lateral extent

is much greater than the beam width, we may approximate it as an infinite plane of

uniform reflection coefficient at an angle normal to the beam axis. This produces a

theoretical description of its scattering behaviour (as described in chapter 4 ) that is

an integration of the source velocity potential over the full lateral dimension. This

completeness of the mathematical formulation justifies the description of the reflector
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as being “well categorised”. This simplicity would be lost if there were spatial variation

in either the geometry or the acoustic properties of the reference scatterer. To perform

a planar reflector substitution normalisation experimentally, the echo power spectrum

from the planar reflector is computed for use a normalisation. An illustration of the

method is pictured in figure 5.1

R

(a)

R’

(b)

Figure 5.1: Illustration of the planar reflector reflector substitution method. The source

(pictured in grey), insonifies (red) the sample (purple) and computes the backscattered

spectrum. The sample is then substituted for the planar reflector (blue), and the same

excitation is applied to the source, with the backscattered echoes analysed to calculate

the normalisation spectrum. In the Sigelman and Reid method, the same distance is

maintained for the distance between the sample ROI and planar reflector (i.e. R = R′).

In the Chen method, the planar reflector is placed at half the distance to the sample

(R′ = R/2).

This will be specific to the device (and the associated settings) used and the depth

of the planar reflector and will be used to normalise the backscattered spectrum from

the sample under investigation for the depth and frequency dependent effects. The

spectrum encodes information about the emit and receive characteristics of the device

at the point of reception and the emit-receive characteristics of the source for a given

position within the field of view. Both effects are frequency dependent. The use of a

well characterised reference scatterer (as opposed one with high complexity, in terms of

both the geometry and spatial variation in acoustic properties) permits formulation of

expressions to describe its behaviour, and ultimately allows comparisons to be drawn
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between the backscattered power from the sample and the reference reflector that are

independent of the device. This normalisation hence makes the measurement more

objective.

Whilst the use of the planar reflector is common for substitution experiments using

single element sources, there is an unresolved question into the most ideal positioning

of the reflector when imaging a diffuse, incoherent scattering medium to determine

the BSC. The initial formulations placed both the incoherent scattering medium and

the reference reflector at the focal plane of a focused source or in the far field of an

unfocused source [56][27][28][76][27][49], but the formulation used by Chen et al. [79]

generalised this, permitted placing the planar reflector at a different depth to that of

the sample through use of a mirror argument. No universally agreed upon advice is

found for the most accurate place for the position of the planar reflector (beyond simply

‘in the far field’ in the case of the former method), and hence there is an unanswered

question within the literature comparing the relative merits of the two approaches, and

the position of the sample in the field of the unfocused source. The expressions derived

by Ozawa et al. [27] are appropriate only for expressions where the planar reflector

and the region of interest within the sample are at the same depth, whereas Chen et

al. [79] propose that the near field is the most convenient position. From this point

onward, the method placing the planar reflector and the sample at the same depth will

be referred to as method 1, and a secondary method, whereby a mirror argument is

applied to allow the placement of the planar reflector at half the distance to the sample

will be referred to as method 2.

This chapter will investigate the use of the planar reflector, and how its positioning

within the diffraction field of the source affects BSC estimation accuracy. To do so,

the relative accuracies of methods 1 and 2 will be compared in estimating the BSC

from a diffuse scattering medium. This will be conducted as in chapter 4 through

simulation using similar methods and mathematical descriptions of the system with

comparison to the previously derived theoretical value for the BSC based on discrete
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scatterer properties and their number density. These simulations will be used to assess

the relative accuracy of each method, to determine the more accurate in determining the

BSC for a simulated diffuse scattering medium populated by sub-wavelength scatterers.
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5.2 Methods

This section will describe the testing strategy by which method 1 and method 2 for

assessing the BSC are compared. To do so, two aperture widths will be considered,

which for each, the sample will be positioned at three different points within the field.

These simulations will represent the placement of the sample for which we want to

compute the BSC at three different points within the diffraction field of the simulated

source. For each of these six cases, two accompanying planar reflector spectra will be

computed through simulation, one at the same depth as the sample for analysis by

method 1, and one at half this distance for analysis by method 2. The estimated BSC

for all 12 cases (2 apertures, 3 depths and 2 methods) can then be compared to the

theoretical value for the simulated scattering medium to assess which method, aperture

and position combination generates the most accurate estimate of the BSC.

5.2.1 FE Methodology

To test the relative accuracy of methods 1 and 2, simulation models were constructed of

two types. The first simulates the scattering of ultrasonic waves by a random scattering

medium and the second simulates the scattering by a planar reflector. The construction

of each have been described in chapter 4. The focus of this chapter is on the relationship

between the position of the planar reflector and the corresponding accuracy of the BSC

estimates produced for different depths of sample. Within this work, we consider only a

single number density case (as opposed to the multiple number density cases considered

previously). The number density was selected to give a ratio of 1 : 102.5. This value

was selected as it produced the most accurate BSC estimates in chapter 4, so it was

assumed that this scatterer number density produced scattering behaviour that was

most similar to the derived theoretical model, and therefore provided the most ideal

case in which to investigate the effect of the source on the quality of the BSC estimate.

As in chapter 4, single element square scattering bodies were used, as they provided the

best tradeoff between backscattering amplitude accuracy and simulation runtime. In
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this chapter, two reference spectra calculations were made for each simulated aperture

for each sample depth: one with the planar reflector placed at the same depth as the

sample, and another with the planar reflector placed at half this distance (pictured in

figure 5.2). As in chapter 4, the planar reflector is simulated by the edge of the model,

which reflects all the incident wave energy back to the source. These two simulation

cases were constructed by moving the source relative to the model edge. To compute a

BSC estimate with the planar reflector not at the same depth as the sample, additional

mathematical descriptions were developed. The simulation parameters are outlined in

table 5.1.

Table 5.1: Properties for the simulations described.

Property Value

Background medium sound speed (c0) 1500ms−1

Scattering body sound speed (cS) 1497ms−1

Background medium density (ρ0) 1000 kgm−3

Scattering body density (ρS) 1000 kgm−3

Courant value 0.1
Centre frequency of excitation (f0) 0.5MHz

Pulse length 3/f0 = 6× 10−6 s
Centre Wavelength (λ0) 3mm
Mesh refinement (dx) dx = λ0/50 = 60µm

For this investigation, unfocused sources were considered. Two aperture sizes were

used, of widths 2.4 cm and 2.0 cm respectively. These aperture sizes were selected be-

cause – for the centre wavelength used for these simulations – their last axial maxima

are in the vicinity of 5 cm, the focal depth of the simulated sources previously discussed.

An advantage of this similarity is convenience: that it maintains a similar depth of inter-

est in the focused and unfocused cases permitting a greater similarity in the models. If

we were to generate apertures of the same size as the focused cases previously discussed

(but without focusing) we would require both the construction of much larger models

to accommodate the fact that the last axial maxima would be greatly in excess of 5 cm.

This would produce simulations more expensive in time and memory and also result in

the comparison between apertures with more notably different beam profiles (in terms
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of the characteristic length scales). In addition, such apertures would have much larger

beamwidths than the focused cases we have already considered, which would increase

the number of scatterers contained within the beamwidth, and potentially take us away

from the incoherent scattering cases we have been considering thus far.

(a) (b)

Figure 5.2: Examples of the random scatterer (5.2a) and planar reflector (5.2b) simula-

tion models. In 5.2a. The random scattering simulations were constructed as described

in chapter 2 and in chapter 4, with the element positions randomised for each simu-

lation to generate an incoherent scattering medium. Absorbing regions were used to

prevent unwanted reflections from model edges. In this chapter, the source was moved

relative to the region populated by scatterers to investigate the effect of this distance

on the accuracy of the BSC estimate that was produced.

5.2.2 Beam measurement methods and planar reflector signal

calculations

For these unfocused sources, the beam feature of interest is the last axial maximum

(LAM). To determine the position of this, field plots were constructed using the same

methodology as described in section 4.2.2.3. This methodology was used to both to

find the position of the LAM and to assess the beam widths of the field at different

depths. To construct these plots for the apertures, models were developed with ‘field’

nodes placed in the model at regular intervals to compute the incident intensity at
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the centre frequency for different points in the field of view of the source. The grid of

field nodes was designed with the same lateral spacing as the nodes that make up the

source/receiver (dx = λ0/50) and an axial spacing of λ0/10. This is visualised in figure

5.3.

6 854, ,,,,,, n321

dx

dx

7

Figure 5.3: Configuration of source nodes (red) and field nodes (blue) used to measure

the behaviour of the simulated apertures.

To compute the LAM for the sources, an axial beam profile was generated. This is

comprised of the receive data from the previously described model using the field nodes

that form a line emanating at a perpendicular angle from the centre of the aperture.

The maximum of the axial beam plot was then used to find the depth of the LAM.

To assess the beam width, the data collected at nodes displaced laterally from the

beam axis was analysed and compared to the theoretically assumed Gaussian beam

profile. In addition, the coherence of the backscattered signals corresponding to the 6

planar reflector positions were also calculated to investigate potential phase cancellation

at the aperture. To do so, the coherence function of the signals at nodes separated

by a wavelength (the centre wavelength of the simulation) was calculated using the

normalised correlation formula:
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R(m) =
1

N −m

N−m
∑

i=1

∑n2

n=n1
si(n)si+m(n)

√

∑n2

n=n1
s2i (n)

∑n2

n=n1
s2i+m(n)

. (5.1)

This expression is used to calculate the spatial coherence of echoes [101][160] as a

function of the spatial lag (m) between pressure waves (si) recorded by a receiver

(i) for samples (n) within the analysis kernel defined from sample n1 to n2. This

expression is typically used for array systems, where Si represents the receive data at

a transducer element. Here, we will treat nodes separated by a wavelength (laterally)

across the aperture as elements, the signals received at which will be used to calculate

the coherence. The sample kernel (n1 to n2) used in this calculation for the planar

reflector echoes was positioned with its centre at the centre of the receive pulse, with a

length of twice the emitted pulse. This mode and method of analysis is covered more

extensively in chapter 6.

5.2.3 Mathematical Methods

To compute the BSC under the condition that the planar reflector is not at the same

depth as the sample, we need to re-derive the previously derived measurement equation.

The case under consideration is that for which the sample is in the far field of an

unfocused source, and the planar reflector is at half this distance. Presuming that this

places the planar reflector in the near field, we must now reconsider the assertion that

the velocity potential at this depth can be expressed as

Φ̂(ω, r̄) = AΦ(y0)e
−ik(y+ x2

2y0
)
e−(x/σB(y0))2 . (5.2)

This hypothesis is predicated on assuming that the emitted beam possesses a Gaussian

directivity function at the position of the planar reflector, the distance to the planar

reflector is greater than the width of the source and that the derivative of the time

independent pressure field with respect to the axial dimension is dominated by the

phase change. Within the near field, these assumptions do not hold true (the most
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notable being that the beam shape is not Gaussian) hence the use of this definition by

Ueda and Ozawa for a focused transducer at the focal plane or an unfocused source

in the far field. To maintain the use of this beam description, we must therefore

reconsider our derivation of the backscattered power from the planar reflector. Using

a mirror argument (as per Chen et al. [79]), we may state that the receive echo from

a perfect planar reflector at a depth y = y′ will be equivalent to that received by

an identical receiver at a depth y = 2y′. Using this argument we may rephrase the

description of the beam at the planar reflector and instead use the description at twice

the distance, avoiding the need to describe the beam in the near field and the associated

mathematical difficulties. To derive the equation for the signal received at a generic

distance 2y′, we begin with the definition of the emitted pressure (P ) as described as a

function of local mass density (ρ0) and velocity potential (Φ):

P (r̄, t0) = −ρ0∂tΦ(ω, t, r̄), (5.3)

Defining the velocity profile (U(ω)), velocity potential field pattern (Φ̂(ω, r̄)) and time

dependencies (τ(t)) as separate variables, we can express the simulated aperture’s ve-

locity potential as

Φ(ω, t, r̄) = U(ω)Φ̂(ω, r̄)τ(t), (5.4)

where the expression Φ̂(ω, r̄) is a function of the position and wavenumber character-

istics of the space (and not the emit receive characteristics of the source). Given that

we assume the distance y0 places us in the far field of our source, we may now use

the Gaussian directivity assumption and can express Φ̂(ω, r̄) as per equation (5.2). We

additionally assume that the time dependency of the Φ is harmonic (τ(t) = eiωt), giving

a resultant pressure distribution of

P (x, y, y0, t) = −iωρ0U(ω)Aφ(y0)e
−ik(y+x2/2y0)e−(x/σB(y0))2eiωt. (5.5)
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The mirror argument is predicated on the concept that the received echo is an image

of that which would occur on the opposite axial side of the planar reflector, hence we

theoretically consider that an identical receive aperture is placed at the depth y0, with

no intervening reflector. The receive echo at the single element plane receiver placed

at a depth y0 from the described source will be given by the integral of the pressure

distribution in equation (5.5) over the surface of the receiver, scaled by the frequency

response characteristics of the receive aperture G(ω):

e(ω) = G(ω)U(ω)

∫ a

−a

dx (P (r̄, t)) =
−iωρ0AΦ(y0)G(ω)U(ω)

√
π

√

ik
2y0

+ 1
σB(y0)2

. (5.6)

Combining the real aperture’s emit characteristics and the ‘image’ receiver’s receive

characteristics into a single variable (T (ω) = U(ω)G(ω)) and squaring receive echo

produces the receive spectrum:

Q(ω, y0) = |e(ω)|2 = ω2ρ20|T (ω)AΦ(y0)|2π
√

1 +
(

2y0
kσB(y0)2

)2

(

2y0
k

)

. (5.7)

Comparing this to the equation describing the backscattered power spectrum from an

ensemble of discrete, sub-wavelength scatterers, imaged using a gate centred at a depth

(y0):

Si(ω) = 2π2ω2ρ20µBS|T (ω)AΦ(y0)
2|2kdσB(y0)

√
π, (5.8)

we may derive a measurement equation for the BSC based on our simulated planar re-

flector reference (Q(ω, y0)) power spectrum and backscattered sample (Si(ω, y0)) power

spectrum:

µBS(ω) =
Si(ω, y0)

Qp(ω, y0)

y0
π
√
π|AΦ(y0)|2dk2σB(y0)

1
√

1 +
(

2y0
kσB(y0)2

)2
. (5.9)

AΦ can be computed numerically by computing the velocity potential for the on-axis
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point of the field at y0, and this equation will give us a BSC estimate for method 2.

As for method 1, we will continue to use measurement equation (4.40) as derived in

chapter 4 for use in the case where the planar reflector depth is equal to the depth of

the ROI:

µBS(ω) =
Si(ω)

Sp(ω)

1

2π
√
π

y0Rp/(dσB)
√

(1 + ( 2y0
kσ2

B
)2)

. (5.10)

The BSC estimation produced by these equations can be compared to the previously de-

scribed value as computed from the theoretical BSC equation ((4.68) derived in chapter

4:

µBS(ω) =
16k3R2

sσ
2

π

∫ 2

0

dγγJ0(2kγσ)
(

2cos−1
(γ

2

)

− γ

2

√

4− γ2
)

. (5.11)

5.2.4 Computing AΦ

To compute AΦ, we consider the definition of the velocity potential field pattern (as in

equation (5.4)) for a point in the far field of the source:

Φ̂(ω, r̄) =
−i

4

√

2

π

∫

l′
dl′

ei(k|r̄−r̄′|−π/4)

√

k|r̄ − r̄′|
. (5.12)

This constitutes the integration of the wavefronts received from the set of identical,

point, cylindrical sources placed on the line l′ that defines the emit aperture. To

compute Aφ, we need only consider the on-axis point at the depth of interest relative

to the aperture (r̄ = (0, y0)), and hence the integral can be expressed as:

Φ̂(ω, r̄) =
−i

4

√

2

π

∫ a

−a

dx′ e
i(k|

√
y2
0
+x′2|−π/4)

√

k
√

y20 + x′2
, (5.13)

where x′ represents the lateral position of a point source located on the line of the

aperture. This expression can be evaluated through numerical integration.
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5.2.5 Testing Strategy

To investigate the relative merits of the two approaches, simulations were performed

to mimic the acquisition of a backscatter measurement from a set of 1000 scatterer

distributions. Each scatterer distribution simulation took 152 s to complete, requiring

2.32 GB of memory on a GeForce GTX 1080 Ti graphics card. These scatterer distribu-

tions were the same for both aperture widths, and also the same as the highest number

density case simulated in the results of chapter 4. Three relative axial positions of

scattering region and source were considered, to assess how this distance affected BSC

estimation accuracy. The depths were selected by analysis of the field plots generated

using the model described in figure 5.3. The three depths were as follows: the last axial

maximum (YLAM) of the simulated source, a distance in the far field of the source (Y∞)

and an arbitrary point between YLAM and Y∞, which will be labelled YA.

The distance values selected for these three positions for each aperture were selected

in an attempt to locate regions of the evolving field that were comparable between the

two apertures. The LAM of each aperture was calculated from the beam profile, and the

other two values were selected arbitrarily for both apertures, with the aim of capturing

the source behaviour posterior to the LAM (YA) and deeper into the far field (Y∞). The

values of YA and Y∞ were different for the two apertures simulated to reflect that the

beam width and wave coherence varies at different distances depending on the size of

the aperture.

Simulations with the random scattering media present were performed with the

source at a distance (YLAM , YA or Y∞) from a depth within the region populated by

scatterers. The depth within this region was selected such that a sample gate of equal

temporal length to the initial excitation could generate an ROI fully contained within

the portion of the model populated by scattering bodies.

144



5.3 Results

5.3.1 Beam Plotting

To illustrate the shape of the emitted fields from the two simulated apertures, the model

described by figure 5.3 was used to construct field plots, shown in figure 5.4 using the

properties listed in table 5.2.

Table 5.2: Simulation properties for the FE model used to measure the beam properties.

Property Value

Background medium sound speed (c0) 1500ms−1

Background medium density (ρ0) 1000 kgm−3

Courant value 0.1
Centre frequency of excitation (f0) 0.5MHz

Pulse length 3/f0 = 6× 10−6 s
Centre Wavelength (λ0) 3mm
Mesh refinement (dx) dx = λ0/50 = 60µm

(a) (b)

Figure 5.4: Example field plots from the 2cm (5.4a) and 2.4cm 5.4b) unfocused aper-

tures constructed using the node configuration depicted in figure 5.3. Amplitude values

(at the centre frequency of the simulation) are normalised by the global maximum. Red

horizontal lines correspond to the axial positions of YLAM (dot-dash), YA (dash) and

Y∞ (solid).

From these results, the distances from the sources to YLAM was determined, and the

values of YA and Y∞ were selected. These are indicated on the figure and in table
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5.3. For comparison, the equivalent LAM for a circular aperture of diameter equal to

the width of the simulated sources at the same frequency would be 3.3 cm and 4.8 cm

respectively.

Table 5.3: Distances of interest for the simulated apertures

Distance (m)
Aperture Width (m) YLAM YA Y∞

0.020 4.56× 10−2 6.0× 10−2 8.00× 10−2

0.024 6.63× 10−2 8.00× 10−2 1.00× 10−1
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5.3.2 Beam Width measurements

From the results highlighted in figure 5.4, beam width measurements were performed

for both aperture widths at the three depths of interest. This was done by squaring

the recorded amplitude field and fitting the lateral intensity distribution to a Gaussian

function and computing the Gaussian RMS width (σB in equation (5.5)). The results

of this investigation are shown in table 5.4. The corresponding number of scattering

elements contained per resolution cell (SpRC) is included in table 5.5.

Table 5.4: Results of beam width fitting for both aperture widths at the depths of

interest.

Beam width (m)
Aperture Width (m) YLAM YA Y∞

2.0× 10−2 5.37× 10−3 6.92× 10−3 9.48× 10−3

2.4× 10−2 6.43× 10−3 7.58× 10−3 9.74× 10−3

Table 5.5: Calculation of number of scatterers per resolution cell based on the

beamwidth (table 5.4) and pulse properties (table 5.1)

SpRC
Aperture Width (m) YLAM YA Y∞

2.0× 10−2 21.2 27.4 37.5
2.4× 10−2 25.4 30.0 38.5

5.3.3 Planar Reflector Receive Signals

Figure 5.5 contains time trace plots of the normalised (to the maximum absolute ampli-

tude) receive pressure signals for the 2.0 cm aperture for the 6 different planar reflector

positions. Two features are of particular interest within these figures: the coherence of

the wave and the lateral spread of beam energy. The former will dictate the phase can-

cellation losses at the planar receiver, and the latter will dictate the beam divergence.

Phase cancellation losses and beam divergence losses are not computed for within the

derivations of the BSC as presented, and hence, if they are present, they would con-

stitute an unaccounted for reduction in the measured reference power spectrum from
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the planar reflector. This constitutes the reference power spectrum underestimating

of the value as described by the derived coupling equations between the source and

planar reflector (equations (4.39) and (5.7)), which could then result in overestimates

of the BSC. Indications of potential phase cancellation within the time traces would be

wavefront curvature, indications of beam divergence would be a lack of lateral contain-

ment of the beam energy. We would anticipate that beam divergence would constitute

a greater underestimation of the reference power spectrum since all divergence beyond

the lateral width of the receiver would constitute entirely ‘lost’ energy, whereas phase

cancellation effects would only result in a partial loss of receive energy, particularly

given that the coupling of an unfocused source with a planar reflector should behave in

a highly planar (and therefore coherent) manner.

From figs. 5.5a to 5.5f we can see the development of the receive wavefront as

the distance between the source and the planar reflector is changed. With the planar

reflector at half the distance to the last axial maximum (figure 5.5b) we observe potential

for phase cancellation due to edge effects (seen posterior to the main arriving wave close

to the lateral extrema of the aperture) owing to the fact the image of the receiver is

on the edge of the near field of the source. However, the phase appears to be highly

uniform within the main pulse , so we anticipate that the coherence of this wave would

be close to unity across all lags.

As the distance increases (going from figure 5.5b to 5.5d), the potential for edge

effects reduces, the wavefront curvature increases (which will result in greater phase

cancellation, and an underestimation in the acoustic power) and the beam energy ap-

pears to be more laterally confined within the pulse. As we move the planar reflector

from YA/2 to Y∞/2 (going from figure 5.5d to 5.5f), the beam width increases, and

the beam energy becomes more diffusely spread across the aperture (which will result

in a reduced value in receive power due to beam divergence). The level of wavefront

curvature visually appears to remain constant between figures 5.5d and 5.5f.

As the planar reflector is moved to the LAM (figure 5.5a), the wavefront becomes
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(b) YLAM/2
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(c) YA
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(f) Y∞/2

Figure 5.5: Images of the receive signals at the 2 cm aperture for the 6 distances used

for BSC estimation, with column 1 and 2 representing the signals used for methods 1

and 2 respectively. The figures for planar reflector depths YLAM , YA and Y∞ are 5.5a,

5.5c and 5.5e respectively. The figures for planar reflector depths YLAM/2, YA/2 and

Y∞/2 are 5.5b, 5.5d and 5.5f respectively. In all cases the y-axis is zeroed on the time

sample at which the centre of the pulse is emitted before converting to a distance value

through multiplication by the sound speed.
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highly coherent, with the wavefront curvature decreasing from figure 5.5f and the lateral

spread of beam energy also becoming more uniform. As the planar reflector is moved

to YA (figure 5.5c), the beam energy continues to broaden, and the wavefront curvature

returns. At Y∞, the beam energy can be seen to broaden even further, but the wavefront

curvature also appears to reduce as the planar reflector is moved further into the far

field.

To quantify the shape of these wavefronts relative to the shape of the receive

aperture (to give an indication of any potential phase cancellation) we can compute the

coherence of these receive signals using equation (5.1), which we can plot for the three

depth pairs in figure 5.5 as a function of spatial distance (lag) between receivers, where

the minimum lag is set to be the centre wavelength (see table 5.1) of the transmitted

pulse. These results are included in figure 5.6.
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Figure 5.6: Coherence function calculations for the 6 receive signals pictured in figs. 5.5a

to 5.5f. The legend label corresponds to the depth of planar reflector that generates

the backscattered data. In all cases, the blue line corresponds to the receive signal that

will be used for ‘method 1’, and the orange line corresponds to the receive signal that

will be used for ‘method 2’.

As predicted from time traces in figures 5.5a and 5.5b, the visual absence of notable

wave curvature presents itself as highly coherent measurements in figure 5.6a, where the

coherence is close to unity across all the spatial lags for both planar reflector positions.

The observation of increased curvature as the planar reflector is moved from YLAM/2

(figure 5.5b) to YG/2 (figure 5.5d) to Y∞/2 (figure 5.5f) is apparent when we compare

the method 2 coherence functions in figures figs. 5.6a to 5.6c, where the coherence

function decreases, particularly for lags of 6-8, which correspond to comparisons of

receive echoes separated by around half the width of the aperture. The observations of

high wavefront coherence where the planar reflector is placed at YLAM or at Y∞ (figures
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5.5a and 5.5e respectively) are also reproduced in figures 5.6a and 5.6c respectively,

where the coherence value is close to unity across the width of the aperture. The

appearance of slight wavefront curvature with the planar reflector placed at YG (figure

5.5c) is also seen in figure 5.6b, which is seen to be the least coherent of the method 1

planar reflector measurements.

Comparing the results with the 2 cm aperture to those with the 2.4 cm aperture,

we can compute the same coherence functions for the 6 planar reflector positions (illus-

trated in figure 5.7).
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Figure 5.7: Coherence functions for the 2.4 cm aperture, using the same notation con-

vention as in figure 5.6.

Notable in this case are the lower coherence values across all the positions, most

notably the depths YLAM/2, YA/2 and Y∞/2, which all correspond to planar reflectors

placed in the near field of the source, anterior to the LAM. To illustrate this point more
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clearly, the average value of the coherence functions pictured in figures 5.6 and 5.7

was calculated. This provides a single measure of the coherence at each of the planar

reflector depths, for both apertures, which are recorded in table 5.6.

Table 5.6: Coherence measurements for the estimation of phase curvature, to assess

sources of potential phase cancellation on reception of the planar reflector echoes. The

summation of the coherence function (Rm) was performed over spatial lags covering the

extent of the aperture width. For the 2.0 cm aperture, N = 12, for the 2.4 cm aperture

N = 16

∑N
m=1 R(m)/N

Aperture size

(cm)
YLAM/2 YA/2 Y∞/2 YLAM YA Y∞

2.0 0.97 0.55 0.77 0.95 0.88 0.94

2.4 0.26 0.36 0.55 0.76 0.84 0.91

5.3.4 Diffraction correction functions

Based on the derived diffraction corrections and beam width measurements, we can

compute the value of the diffraction correction for methods 1 and 2 to investigate their

respective behaviours. Expressing equations (5.9) and (5.10) in the form

µBS(ω) =
Si(ω)

Sp(ω)
Di(ω, y, σB), (5.14)

where Di(ω, y, σB) is the diffraction correction for method i. Interpolation of the beam

width values over the axial distance was used to generate diffraction correction functions

over the range YLAM ≤ y ≤ Y∞.
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Figure 5.8: Diffraction correction functions for methods 1 (D1) and 2 ( D2) for the 2 cm

aperture based on linear interpolation (σT ) of the beamwidth of the simulated source

(σB) for sample distances corresponding to YLAM , YA and Y∞. The linear interpolation

approach clearly underestimates the beam width at YLAM (0.045m), but is only used

for illustrative purposes to visualise the potential value of the diffraction correction

between the depths of interest.

Table 5.7

D(ω, y, σB)

Method 1 (×103) Method 2

Aperture size

(cm)
YLAM YA Y∞ YLAM YA Y∞

2.0 1.0447 1.2134 1.4416 414.17 526.65 718.89

2.4 1.2590 1.3840 1.6228 498.59 582.44 738.17
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5.3.5 BSC estimates

The results of the incoherent scattering simulations were used to compute the backscat-

tered sample power spectrum Si(ω) and the planar reflector power spectrum for methods

1 (Sp(ω)) and 2 (Qp(ω)), and the BSC estimation performed using equations (5.10) and

(5.9) respectively. The results of this analysis for both aperture widths at the three

sample depths are shown in figure 5.9.
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Figure 5.9: BSC estimation results for sample positions YLAM (5.9a), YA (5.9b) and Y∞

(5.9c) respectively. BSC estimations are plotted for methods one (µ1) and two (µ2) with

the accompanying theoretical value (µT ) computed using equation (4.68). Percentage

error in BSC estimates is measured relative to µT , with error bars corresponding to the

standard error on the mean.
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From figure 5.9a, we see that method 1 substantially underestimates the BSC when

the sample is placed at the last axial maximum for both aperture sizes (68.18% and

60.65% respectively). A significant improvement (errors of 8.10% and 10.59%) was

found through use of method 2 at this depth. Both methodologies tended to under-

estimate the BSC at this sample position for both aperture sizes. Placing the sample

at the depth YG produces figure 5.9b in which the percentage error in the estimates

reduced from figure 5.9a for method 1 (-30.34% and -49.67%), but increased for method

2 (53.25% and 35.27%). With the sample at Y∞, the error using method 1 was reduced

from the YA data set for the 2cm aperture (to -10.87%) but increased for the 2.4cm

aperture (to -40.19%). Using method 2, the results continued to decrease in accuracy,

producing large overestimates in the BSC for both apertures (106.34% and 84.36%).

Averaging the absolute percentage error across the two apertures produces the

results shown in figure 5.10.
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Figure 5.10: Average (absolute) error across both aperture sizes for the three depths of

interest for method 1 (µ1) and method 2 (µ2).

Grouping these by aperture instead of sample depth produces figure 5.11. Method

1 is shown to be most accurate for the 2.0cm aperture when the sample is furthest

into the far field (Y∞ = 8 cm), and the most accurate for the 2.4 cm aperture for the

arbitrary far field depth posterior to the last axial maximum (YA = 8 cm). In the case

of method 2, the error was shown to increase the further the sample was placed in the
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far field, with the smallest errors observed when the sample was placed at the last axial

maximum of the source. A tabular representation of all the results as described by their

percentage error is shown in table 5.8.
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Figure 5.11: BSC estimation accuracy as a function of the sample depth for both

methods for apertures measuring 2 cm (5.11a) and 2.4 cm (5.11b). A normalised plot

of the on-axis amplitude (Pax) is included to give spatial reference to the field position.

This line is set such that the first data point is aligned to the 0% error line, and the

LAM value is normalised to the 50% error line within the figure. Error bars correspond

to the standard error on the mean.
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Table 5.8: Percentage error values for BSC estimates produced by a given aperture and

method. The sign convention is such that a minus percentage corresponds to a BSC

underestimate (as compared to the theoretical value) and a positive percentage corre-

sponds to an overestimate. The absolute value of the error was used in the averaging to

prevent an overestimate/underestimate combination giving the impression of accuracy

in a case of symmetrical variability about 0% error.

Percentage Error (%)

Method 1 Method 2

Aperture size

(cm)
YLAM YA Y∞ YLAM YA Y∞

2.0 -68.18 -30.34 -10.87 -8.10 53.25 106.34

2.4 -60.65 -49.67 -40.19 -10.59 35.27 84.36

Average absolute error 65.10 40.01 28.49 9.35 44.26 95.35
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5.4 Discussion

We will now consider the relative accuracies of the two BSC estimation methods for

the different planar reflector positions. The two beam characteristics discussed within

the results section: wavefront curvature and beam divergence will be used to explain

this. Two general points regarding this can be made to aid in this discussion. Firstly,

these factors will cause underestimates in both the planar reflector power spectrum and

the sample power spectrum, since they correspond to lost energy. The effect of under-

estimating the planar reflector power spectrum will be to increase the BSC estimate.

The effect of underestimating the sample power spectrum will be to reduce the BSC

estimate. Secondly, it would be expected that the beam divergence will have more of

an effect on method 2 than method 1. This is due to the fact that in method 1, the

wavefront curvature and lateral confinement of the beam energy is common between

the pulse incident on the sample and reference reflector. Based on these observations,

we will now discuss the BSC estimation accuracy, firstly by method, followed by a

comparison of the two methods.

5.4.1 Method 1

Considering first method 1 and the 2.0 cm aperture, it is noted that the BSC value is

underestimated in all cases. The largest underestimate (−68.18%) is found with the

planar reflector and sample placed at the last axial maximum, with the underestima-

tion reducing as the planar reflector and sample is moved to YA (−30%) and to Y∞

(−10.87%) into the far field. From figures 5.5 and 5.6, we may note that the three

receive echoes are similar in wavefront curvature, so losses due to phase cancellation

for the reference power spectra should be minimal, and vary slowly as the reference

reflector distance is increased, since all receive echoes appear to be highly planar. From

figure 5.8 and table 5.4, we see that the beamwidth increases by a factor of ∼ 29%

from YLAM to YA and then 37% from YA to Y∞. This beamwidth increase should

increase the divergence losses, as less of the beam energy is laterally contained within
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the width of the aperture, leading to an underestimate of the reference power spectrum,

particularly given the increase in distance to the reflector.

Considering now the diffraction correction terms (see figure 5.8 and table 5.7) the

analysis reveals that the correction term is shown to increase by a factor of ∼ 20%

between the three successive depths, indicating that the geometrical considerations

are attempting to correct the normalised spectrum (Si(ω)/Sp(ω)), but do not solely

account for the difference in percentage error in estimate. To fully explain the observed

behaviour, it is therefore hypothesised that the differing factor between the three depths

is that of the phase cancellation losses in the sample power spectrum. By the van

Cittert-Zernike theorem, we can state that with the sample centred at a depth of

YLAM , the phase cancellation losses at the receiver will be at their greatest of the three

cases (since this is the smallest distance between the incoherent scattering medium

and the receiver). As the distance from the sample and the receiver is increased,

these phase cancellations will be reduced, and the scattered wavefront will become

more planar. This effect will then reduce with increasing distance until the receiver is

effectively sampling a point on a cylindrically (or spherically in 3D) spreading wave.

Whilst this hypothesis appears to provide a mechanism by which the reduction in

underestimation is observed for the 2.0 cm aperture, it does not adequately explain the

results for method 1 using the 2.4 cm aperture. In this set, underestimation is also

observed at all three sample depths, which, whilst it does appear to improve as the

sample is moved into the far field, still produces significant (∼ 40%) underestimates in

the BSC. A notable difference in this data set as compared to the 2.0 cm data set is

that the coherence appears to be lower (see 5.7 and table 5.6). Based on the previous

statements and observations, we would expect that the reduction in coherence in the

planar reflector echoes would result in an underestimation of the planar reflector power

spectrum, which would result in greater BSC estimates, but despite this, underestimates

were still observed. Since it is assumed that the incoherent scattering medium scrambles

the phase of the incident pulse, it is not assumed that this reduction in coherence of
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the incident wave should have a notable effect on the phase cancellation at the receiver

for the echoes received from the sample.

5.4.2 Method 2

Considering now the results using method 2, we notice that a more consistent behaviour

is to be found when the different source sizes are used. For both, the smallest error

(−8.10% and −10.59% for the 2.0 cm and 2.4 cm sources respectively) were observed

where the sample was placed at YLAM and the planar reflector was placed at YLAM/2,

with both aperture sizes underestimating the value of the BSC when compared to

the theoretical value. Increasing the sample distance and planar reflector distance

resulted in increases in BSC estimate, with errors of 53.25% and 35.27% observed at

YA and errors of 106.34% and 84.36% observed at Y∞ for the 2.0 cm and 2.4 cm sources

respectively. Using method 2, we note the factor of 2 difference in distance from the

source to the planar reflector and source to sample. The effect of this will be to minimise

beam divergence losses when measuring the planar reflector power spectrum. This will

result in more accurate estimation of this factor, but will remove an element of self-

correction in beam divergence effects, as the angle subtended by the receiver at the

planar reflector depth is now larger than that at the sample depth. This effect will

manifest itself more as the distance to the sample is increased, as the difference in

depth between the planar reflector and the sample will also increase. This is a possible

explanation for the decreasing accuracy (and increased overestimation) of the BSC as

the sample distance increases. The point at which this effect is minimised would be with

the sample placed at YLAM , at which the error is minimised. As mentioned, the beam

divergence effects are expected to dominate the effect of phase cancellation that are

stronger when the incoherent scattering medium is closer to the receiving aperture. For

method 1, it was hypothesised that more accurate estimates of the sample scattered

power spectrum were acquired through moving the sample further into the far field,

which led to a reduction in BSC overestimate. This factor will also be present in
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the data presented for method 2 (since the same sample spectra are used for both

calculations), but in this case, the increase in the accuracy of estimation of the sample

scattered power spectrum will be combined with increasing underestimation of the

reference power spectrum, which could explain the distinct increase in BSC estimation.

5.4.3 General Discussion

Firstly, to present an overview of the behaviour of the two models, the analysis presented

here appears to suggest that the use of method 1 is limited by phase cancellation effects.

This reduces the measured value of the sample power spectrum, particularly when the

sample is placed at the LAM, and produces underestimates of the BSC. When the

sample and planar reflector are moved beyond the LAM, the phase cancellation effects

will reduce, which is matched by observations of reduced underestimation in the BSC.

The observation that the accuracy increases with the source to sample distance is an

indication that it is phase cancellation limited. The method performs relatively poorly,

producing consistently large underestimates of the BSC as compared to the results

of chapter 4 which could be an implication that the beam divergence effects that are

also manifest lead to a poor methodology for BSC estimation using unfocused sources.

Method 2 behaves in much the opposite way, and appears to be limited by the beam

divergence factors associated with the reference reflector power spectrum. The evidence

for this is that it tends to produce the most accurate BSC estimations at the point at

which beam divergence effects will be minimised, and appears to overestimate the BSC

at the point at which the beam divergence effects will be maximised. As previously

stated, the phase cancellation for the sample power spectrum will be greatest with

the sample placed at the LAM, and as such, the results appear to indicate that these

two effects happen to cancel for these aperture sizes as presented here. Whilst this

may appear coincidental, the results produced from method 2 at the LAM are notable

in that they are the most constant across all of the depths and methods considered,

indicating the potential for a physical significance in this approach.
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Considering the average behaviour of the methods and aperture widths in figure

5.10, we can see that the best performing method and distance combination is the use

of method 2, with the sample placed at the last axial maximum of the source, as this

produced the lowest absolute percentage error, and the least variable BSC estimate.

From a practical standpoint, implementation of this approach has the benefit that the

incident intensity on the region of interest is maximised by placing the sample at this

point, maximising the signal to noise ratio. The disadvantage is that determining the

position of the last axial maximum would require an extra (minor) experimental step.

Further experimental benefits of method 2 over method 1 are that the requirements for

greater source to sample distance will result in a greater loss of signal due to attenuation,

and the increase in beam width will reduce spatial resolution. Going deeper into the

far field negates some of the phase cancellation effects (as indicated by figure 5.6), but

the accompanying increase in the beamwidth reduces lateral resolution, which is of

detriment to the resulting BSC image generated. In addition, this increases the total

path attenuation and - from the results presented here - potential issues could be found

in assessing the incoherent backscattered spectrum from a diffuse scattering medium.

5.4.4 Limitations

The limitations of this study are as follows. Firstly, (as in chapter 4) these simula-

tions investigate scattering behaviour in reduced dimensionality. As such, the effects

of elevational beam width on the scattering behaviour at the point of incidence on

the discrete scattering bodies or the planar reflector are not representative of same

situation one would encounter with a real transducer and scattering medium. The con-

clusions drawn from these simulations must be contextualised into three dimensions for

application onto real world examples, particularly given that the beam divergence and

phase cancellation arguments presented here will be altered by the inclusion of a third

dimension. Whilst the general physical principles will remain the same, certain obser-

vations - particularly those pertaining to the mutual annulment of phase cancellation
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and beam divergence effects behave with a different dependence on radial distance in

three dimensions as opposed to two, which may alter the final results. Secondly, whilst

the use of the same set of scattering media for all the investigations presents benefits

in reproducibility, the disadvantage of this in investigating the physics of scattering is

that the changing beamwidth (see table 5.4) results in differing numbers of scatterers

per resolution cell as the sample is moved (see table 5.5). As a result, the relative prop-

erties of the beam and the scattering medium are changing as the sample is moved,

which could have an effect on the ability of the simulated source to compute accurate

BSC estimates under the assumptions detailed in the derivation of the measurement

equation(s). This limitation could also be rephrased to suggest that the use of only one

simulated scattering medium (despite it being comprised of many independent ensem-

bles) is a limitation to the applicability of the results, and that simulating a range of

scattering media with differing properties would be more insightful. A third limitation

is the discrete nature of the results with respect to the positions of sample and reflector

investigated. Ideally, further investigation would be performed that would investigate

a greater number of sample and reflector distances, to further probe the relationship

between the wave field as it evolves with distance from the source. In this investigation

only three sample distances were considered, due to the time taken to complete a full

compliment of simulations. This factor limits the breadth of knowledge that can be

interpreted from the results. Fourthly, only two sources were considered, which limits

the power of the conclusions that can be drawn from the results. For example, it is

hypothesised from the results presented that the beam divergence and phase cancel-

lation cancel one another when using method 2 with the sample placed at the LAM.

This result is constant across the two simulated sources, but more source sizes would be

need to be investigated in order to have confidence that this result is universal enough

to be applied elsewhere.
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5.5 Conclusion

To conclude, this chapter has explored the construction of mathematical and finite

element models to describe and model the coupling between a planar reflector and

an unfocused source. The investigation has focused on the nature of the diffraction

correction, and the effects of the accuracy of this correction on producing estimates of

the BSC.

The findings of this investigation were as follows: the most accurate method for

BSC estimation using a planar reflector and unfocused source was shown to be using

the method developed by Chen et al. (method 2), whereby the sample is placed at the

LAM, and the planar reflector is placed at half the distance to the LAM. Based on the

analysis presented here, this depth of sample and planar reflector was hypothesised to

minimise the beam divergence effects that the method is sensitive to. The investigation

revealed that the Sigelman and Reid method (method 1) of BSC estimation was shown

to be more accurate when the sample and planar reflector were placed further into the

far field of the source. The explanation drawn from this result was that this approach

was more sensitive to phase cancellation effects across the aperture when the sample is

placed closer to the LAM.

Whilst the results presented here are limited in their specificity to both the sim-

ulated aperture sizes, the dimensionality and the design of the scattering sample, it

is hoped that this work does provide a framework on which similar experiments could

be conducted into the investigation into the nature of diffraction corrections for BSC

estimation. If this were to be performed in the correct dimensionality and with a range

of aperture sizes and sample depths, it could provide valuable information in terms of

both informing future practices in performing accurate measurements of the BSC and

also provide the required information to investigate previously reported tissue proper-

ties to ascertain the reasons for differing tissue characterisation measurement results

observed by authors who use different methods for BSC estimation.
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Chapter 6

An investigation into the effect of

coherence on the accuracy of BSC

estimation
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6.1 Introduction

This chapter will evaluate methods to improve upon BSC estimates, and investigate

factors that degrade their quality through investigation into the effects of scattered wave

coherence on BSC estimates. Chapter 5 investigated the potential effects of coherence

in the reference reflector echo, and elucidated on the potential for phase cancellation

of echoes causing an underestimation in the backscattered power. As a continuation of

this work, this chapter will investigate how coherence impacts upon BSC estimates from

the sample and present a method by which they can be improved through coherence

based segmentation.

Soft tissue is modelled as an incoherent, speckle producing medium, and it is

assumed that it is populated by randomly distributed scattering bodies much smaller

than the wavelength of an ultrasound imaging pulse [55][57][161][25]. The description of

the medium as incoherent refers to the assumption that the phasors from each scattering

event within the scattering volume are randomly distributed throughout the range

of potential phase angles. Their random positioning results in a lack of correlation

between the phases of the waves scattered from inside the scattering volume, which

ultimately leads to interference effects when the scattered waves are incident on the

receive aperture. To reduce the impact of interference effects on backscatter coefficient

(BSC) estimates, BSC values are averaged over multiple scan lines, to produce BSC

estimates over regions of tissue. The reduction in spatial resolution by increasing the

voxel size is compensated for by the fact that the resulting data blocks are partially

denoised from the interference effects. This chapter will investigate how coherence

properties of tissue backscatter can be used to predict the interference effects, and

whether the measured coherence of backscatter data could be used to select the optimal

tissue regions for averaging to generate increased accuracy in BSC estimates. This

investigation will be comprised of three parts. Firstly, the properties of the coherence

of an incoherent scattering medium will be investigated. Secondly, the coherence will be

investigated as an imaging metric for soft tissue target segmentation. Finally, coherence
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properties will be used to design a segmentation algorithm for BSC data.

The assumption that soft tissue can be modelled as an incoherent scattering medium

is implicit in the derivation of the BSC estimation equation, both in published literature

[27][25][1] and the derivation presented in chapter 4. It is for this reason that the BSC

equations estimate the backscattered power from a tissue using a formulation based

on the describing the average properties of the medium, since the actual backscattered

power measured from sections of incoherent medium will be dependent on the par-

ticular scatterer configuration in the scattering volume. Since the BSC equations are

formulated on the assumptions of incoherence, deviations from this assumed behaviour

within a tissue would be expected to generate unpredicted variance in the estimated

BSC value. As a simple result highlighting how the coherence impacts the estima-

tion of backscattered power, consider a situation where the coherence of backscatter

is predicated solely on the geometrical shape of the scatterer. To observe how the

the geometry of the scattering media changes the estimated backscattered power, we

can consider the planar reflector substitution method as described in chapter 4. If we

compare the presented equations describing the backscattered power expected from the

incoherent scattering medium (Si):

Si(ω) = 2π2ω2ρ20µBS|T (ω)A2
Φ|2kdσB

√
π, (6.1)

and the planar reflector (Sp):

Sp(ω) =
ky0ω

2ρ20|T (ω)A2
Φ|2Rpπ

√

(1 + ( 2y0
kσ2

B
)2)

, (6.2)

we can see how the the difference in the scatterer geometry results in a different func-

tional form in the two equations (see chapter 4 for an explanation of the derivation and

terms). In the case of the planar reflector, its planar geometry gives rise to coherence in

reflection: exemplifying how the geometry affects the functional form of the estimation

of the backscattered power. This result directly relates to the BSC estimate equation,
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which is formed by dividing equation (6.1) by (6.2) and rearranging for µBS. Since

the BSC estimate is dependent on the relative geometries of the reference scatterer

and the sample, we can therefore state that the accuracy by which the reference scat-

terer and sample scatterer distributions are described will have a direct impact on the

accuracy of the result. It is for this reason that the reference scatterer is selected to

either possess a simple geometry (such as a planar reflector) so that it can be described

with simplicity, or it is designed to possess a scatterer distribution similar to that of

the sample (such as a reference phantom) so that the geometrical considerations are

presumed to cancel when the ratio of the respective power spectra is computed. This

chapter will investigate how BSC estimates are affected when the sample scattering

medium deviates from the assumptions in the derivation of the estimation equation. In

particular, it will focus on how the violation of the incoherent scattering assumption af-

fects BSC estimates. The spatial coherence of a field produced by an incoherent source

(such as a diffuse scattering medium) is described by the van Cittert-Zernike theorem.

This theorem describes the spatial evolution of the coherence properties of a wave field

propagating from an incoherent source [162][163] as a function of the source geometry

and the distance from the source to the point at which the coherence is measured. A

key result of the theorem predicts that the wave field of an incoherent source becomes

more coherent as the distance from the source increases. Application of this theorem

to backscatter imaging by Mallart and Fink [163] and Bamber et al. [164][165] showed

that the spatial dependence of the spatial coherence of an incoherently scattered wave

field should be proportional to the autocorrelation of the transmit aperture function.

For a 1-D array, the aperture function is rectangular, for which the autocorrelation is

a triangular function, so a measure of the coherence in the far field of an idealised in-

coherent scattering medium should be triangular in shape. This result was also shown

to be independent of the source focal length and source f-number [163]. An illustration

of the vCZ theorem in practice appears earlier in this thesis, in figure 4.5a, where an

image is presented of the scattered wavefronts emanating from the simulated incoher-
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ent scattering medium. This figure is reproduced in figure 6.1, where one can observe

the increase in spatial coherence of the scattered field from an incoherent scattering

medium as the wave propagates from the source of the scattering. In relation to the

vCZ theorem, this constitutes analysing the wave field at a greater distance from the

incoherent source.

1

2

Figure 6.1: Illustration of the evolution of the coherence behaviour of the wave field

scattered by an incoherent, diffuse scattering medium. The phase scrambling effect

of the randomly positioned scatterers allows us to treat the scattering medium as an

incoherent source, and thus apply the vCZ theorem. In the zoomed part of the figure,

we can see the low spatial coherence close to the source of the scattering (1), and

the increase in spatial coherence as the scattered wave propagates into the far field.

Note that this wave field is produced by a focused source, so the curved wavefront will

appear planar only after the receiver delay profile is applied. For the details of this

result, consult figure 4.5a.

To quantify the coherence of the wavefront, Mallart and Fink [163] and Bamber

et al. [165] computed the coherence function, a normalised cross-correlation of the

echo received at separate points along the aperture. Expressing the echo recorded by a

receiver i as si, and the spatial lag between two receivers as m, the coherence function

of a wavefront received across a set of N receivers can be calculated using the equation:
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R(m) =
1

N −m

N−m
∑

i=1

∑n2

n=n1
si(n)si+m(n)

√

∑n2

n=n1
s2i (n)

∑n2

n=n1
s2i+m(n)

, (6.3)

where n1 → n2 represents the axial analysis kernel over which the coherence is calcu-

lated. This expression has been applied in the analysis backscatter imaging character-

istics by a number of authors [163][164][165][101]. An illustration of the apperance of

such a function for four different scatterer sites is shown in figure 6.2. The coherence

characteristics of an incoherent scattering medium measured by a 1D aperture (red)

is pictured as perfectly triangular. A coherence function is also plotted for a planar

reflector imaged at the focal depth of the source (which we assume to be close to unity

irrespective of the spatial lag, since the reflector is a coherent scatterer). Additionally

we consider two media that are not perfect representations of incoherent media. This

first is a highly incoherent medium whereby measured coherence is lower than the in-

coherent case. This may be caused by strong off-axis scattering, or may simply be a

result of a section of the random scattering medium being arranged in a highly inco-

herent manner. The second is labelled as the ‘relatively incoherent medium’, a name

which is proposed to suggest that the echoes may possess greater coherence than the

incoherent medium due to either weakened off-axis scattering, or through the presence

of structure within the scattering medium, either by design, or by chance. To apply a

phasor description to these models, we would say that scattererd wave phasors from the

planar reflector are aligned at one phase angle (corresponding to coherent reflection).

The phasors from the incoherent medium would be uniformly distributed through the

potential phase angles. The relatively incoherent medium is a combination of the first

two, in that the medium produces scattered phasors with a partially random distribu-

tion, but with a bias toward certain phase angles. The highly incoherent medium can

be considered to be a combination of pairs of anti-aligned phasors (producing nega-

tive coherence), combined with some random distribution of phasors. These cancel to

produce low (close to zero) coherence.

An illustration of the potential structural scattering configurations that would
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Figure 6.2: Example coherence functions for 4 cases. For each of the lines, the coherence

function would be calculated for each spatial lag (m). Identically, the coherence function

will be unity for m = 0. Credit to Lediju et al. for the original image on which this is

based [101].

cause noticeable changes to the coherence of the scattered wavefronts are pictured in

figure 6.3. In figure 6.3a, two scatterer types are pictured. The relative strength of

scatterer type 1 (on the beam axis) compared to scatterer type 2 (off the beam axis)

will cause an increase or decrease in the coherence of the echoes produced by this section

of the sample. In the second example (figure 6.3b), the presence of structure in the

positioning of the scatterers could result in non-random phase cancellation due to the

periodicity of the scattering sites, producing Bragg diffraction effects. In this case, the

backscattered power from the structured region will be dependent on the relative length

scales of the scatterer spacing and the wavelength.
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Figure 6.3: Illustration of causes of increases and decreases in the coherence within

a diffuse scattering medium through local variation in the scatterer distribution. In

figure 6.3a, pictured are two scattering populations (type 1, black and type 2, red) in a

uniform background medium. The influence of the off-axis scatterers (red) will either

increase or diminish the measured coherence for the given sample-transducer position

when compared to the case where the red and black scatterers are indistinguishable. If

scatterer type 2 has a greater impedance mismatch relative to the background medium

than type 1, the increase in off axis backscatter will reduce the measured coherence. If

scatterer type 2 has a smaller impedance mismatch relative to the background medium

than type 1, the reduction in off axis backscatter will increase the measured coherence.

In figure 6.3b, the correlation of the structured scatterer positions will result in a mea-

sure of coherence greater than the surrounding randomly regions, due to the coherent

nature of scattering from a region possessing periodicity. The structured scatterers are

colour coded for delineation, and need not possess different acoustic properties to cause

a change in coherence in the backscatter.

We would expect to observe spatial fluctuations in the measured coherence even

from a medium populated by identical random scatterers. In a random configuration,

some configurations of scatterer position will present with greater or lower scattering

coherence than others. We would expect the average coherence function to resemble

the triangular function pictured in figure 6.2. The random fluctuation in backscatter

coherence is partially manifest in the interference effects that generate noise in BSC
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estimates, although the relationship between wave coherence and backscattered power

is not monotonic. Regions which backscatter more strongly would be expected to

be coherent, as constructive interference across the receive aperture will increase the

measure of the backscattered power. By contrast, high measures of coherence will not

necessarily equate to high measures of backscattered power. As a hypothetical example,

if a scattering volume contained a configuration of scatterers that happened to cancel

from the off-axis directions but constructively interfere on-axis, this could result in a

received wave packet from the centre of the resolution cell that is both highly coherent

and low in power.

In the work of Verhoeven et al. [166], it is stated that the speckle statistics become

independent of the number density of the scatterers once the fully developed speckle case

is reached (10 scatterer per imaging resolution cell volume). From this autocorrelation

argument, one can hypothesise that the coherence behaviour of the speckle also becomes

uncorrelated from the exact number density once the condition for fully developed

speckle is reached. If this is the case, then one fully developed speckle producing

medium should have the same statistical coherence properties as another fully developed

speckle producing medium, provided the same emit and receive apertures were used in

subsequent investigations. Therefore, one fully developed speckle producing medium

could be used to generate a ‘universal’ speckle reference data set which can be used

to investigate another unseen speckle producing medium using the same ultrasound

device. Investigation of the reference phantom’s coherence properties could then be

used as a segmentation blueprint for other samples. Due to the amplitude normalised

nature of the coherence function, test samples would not need to be populated by the

same strength scatterers as the reference phantom, provided that their strength did

not invoke substantial multiple scattering, as this would violate the weak scattering

assumption made in the derivation of the BSC. Due to the autocorrelation argument

presented above, the test sample would also not be required to possess the same number

density as the reference speckle producing material. Based on these two arguments,
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coherence based segmentation could represent a highly flexible analysis tool with which

to segment backscattered data for BSC calculation.

This chapter will investigate the use of coherence metrics for the analysis of backscat-

ter data to improve BSC estimates. To do so, coherence of backscatter will be measured

to assess how well a simulated tissue section matches the assumptions of incoherence

made in the BSC derivation. To perform this investigation, the simulation methods

outlined in chapters 4 and 5 will be developed to incorporate spatial variation in both

coherence and BSC. Through simulation of a set of backscatter experiments and the

analysis of the coherence and BSC characteristics, a segmentation approach will be

presented to improve BSC estimates by coherence segmentation of tissue regions.
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6.2 Methods

To investigate the effect of coherence on the quality of BSC estimates, models simulating

incoherent scattering media, and models simulating an incoherent medium interspersed

with local variations in coherence were developed. The former were constructed through

random positioning of the scatterers (as per chapter 4 and 5). The latter contained tar-

get regions deliberately designed to violate the assumptions of the BSC estimation

equation. Coherence was then used to identify the properties of the model to assess the

impact of coherence on the backscattered power. Analysis methodology was designed to

calculate the contrast of the targets, to assess coherence as a metric for direct segmen-

tation of the target regions. The relationship between the coherence and backscattered

power was then investigated to determine sources of variability in both the random,

incoherent media and in the regions populated by coherence targets.

The assumed hypothesis is that the regions not matching the incoherence assump-

tions made in the derivation of the BSC estimation equation lead to increased variability

in backscattered power and errors in the final BSC estimate. Whilst variability due to

interference is inherent for backscattering analysis, it is hypothesised that identification

of these regions using coherence will allow segmentation of the non-conformant regions

to produce a more accurate BSC estimate.

6.2.1 FE Model Parameters and Methods

This subsection will discuss the construction of the FE models simulating the incoher-

ent media, and the models containing the coherence targets. The background medium

(within which the scatterers were distributed) properties, the centre frequency of exci-

tation, the mesh refinement value and the Courant value used for the investigation in

chapters 4 and 5 were reused here to maintain some of the conditions under which the

results are generated within the different chapters. The properties are listed in in table

6.1.
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Table 6.1: Properties for the mesh construction, time step and background medium.

Property Value

Background medium sound speed (c0) 1500ms−1

Background medium density (ρ0) 1000 kg m−3

Courant value 0.1
Centre frequency of excitation (f0) 0.5MHz

Centre Wavelength (λ0) 3mm
Mesh refinement: square single (dx) dx = λ0/50 = 60µm

6.2.1.1 Source Design

For this chapter, a 4 cm line aperture focused at a depth of 5 cm was used in all cases.

The method by which this source was designed is described in chapter 2, and BSC

estimates produced using this source are detailed in chapter 4. The reason for the se-

lection of this aperture were twofold. Firstly, the simulations using this aperture size as

described in chapter 4 were shown to possess the highest agreement with the theoret-

ically calculated value of the BSC in the simulated cases of a fully developed speckle,

implying that the diffraction correction for this combination of scattering medium and

source was accurate, and that the BSC estimates could be relied upon. Secondly, select-

ing the widest source of those already considered allows us to investigate the coherence

properties over the greatest length scale (simply due to the greater lateral extent of the

aperture). This allows greater freedom in parameterisation of the coherence function.

The beam width of this aperture was assessed using the methodology described in sec-

tions 4.2.2.3 and 5.2.2. The value computed for the Gaussian RMS beam width for the

4 cm source was found to be 2.7mm.

6.2.1.2 Lateral Scanning

To assess spatial variation in the coherence in the axis normal to the beam, the FE

models listed within this chapter were designed to simulate the lateral scanning of

a source across a region populated by scatterers. Between consecutive simulations,

the position of scatterers was translated laterally by 10 element widths (λ0/5) relative
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to the source, simulating the movement of the source relative to the scatterers. The

positions of the scatterers were generated before simulation, within a Boolean matrix.

The matrix contained columns dictating lateral position and rows corresponding to axial

position within the mesh, with a value of 1 corresponding to a scatterer position, and

0 corresponding to background medium. Sections of the matrix were then applied to

the mesh to dictate the positions of scatterers. Each successive simulation partitioned

a different part of the scatterer position matrix and applied the Boolean value to the

mesh elements to mimic the scatterers being moved relative to the source.

Simulation 1 Simulation 𝑚
Source

Scatterers
Translation

Direction (𝑥’, 𝑦′) (𝑥′ − mΔ𝑥, 𝑦′)
Figure 6.4: The lateral scanning method shifts the scatterer positions by ∆x after each

simulation, which simulates the scanning of the source over an area of a sample. The

diagram depicts a population of scatterers which are displaced in the lateral dimension

by m∆x between the first and ‘m’th simulation. Two scatterer populations are pictured

in different colours, to aid visualisation of the movement.

Unlike the models described in chapters 4 and 5 - where the scatterer positions were

randomised for each simulation - the scatterer positions are now correlated between

simulations. This allows us to construct images of the simulated models and analyse

the lateral variation in the backscattered wave properties such as BSC, backscattered

amplitude and coherence. To ensure that the simulation included a significant enough

number of scattering ensemble positions to present a reasonable estimates of the BSC,
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and so that the coherence targets could be spaced out laterally through the model, 600

scan lines were simulated using the lateral scanning approach.

6.2.2 Scattering Model Design

To investigate the relation between coherence and BSC estimate accuracy, models were

designed with a background speckle that matched the criteria for an incoherent scat-

tering medium. This was achieved using the methods presented in chapter 4, where

weak, monopole scattering elements were generated in random positions throughout

the model. The manner in which this speckle pattern was confirmed to be accurately

matching the description made in the BSC will be discussed later. As outlined in

chapter 4, the monopole scattering behaviour was achieved through applying sound

speed fluctuations to the scattering elements, whilst keeping the mass density constant

throughout the model. The sound speed used for the background scatterers is labelled

in tables 6.2 and 6.3 as ‘speckle’. Spatial variation in expected backscattered power

was then introduced by replacing regions of the incoherent scattering medium with

scatterers of different properties to the background speckle. These target regions were

designed to introduce BSC outliers into the models. An average of the backscattered

power over the whole of these models (both the background speckle and the target re-

gions) would therefore change the BSC estimate that would have been made if only the

incoherent scattering medium regions were used in the BSC estimation process. The

ability to identify these regions based on their coherence characteristics could then be

used to assess the performance of coherence as a segmentation metric.

Hypoechoic and hyperechoic target regions were designed to produce regions with

lower and higher expected backscattered power than the power as measured from the

background speckle. This was performed to assess the ability of coherence metric to

identify regions that could generate BSC under or overestimates. In addition, a re-

gion populated by identical, randomly positioned scatterers identical to those in the

background speckle regions of the model was also included.
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Transducer 

Imaging 

Pulse 

Background Scatterers

Target Region

Speckle Region

Figure 6.5: Schematic outlining the design of the test models. The background scatter-

ers generate the background speckle, the speckle region is included as a region expected

to generated backscattered power values that match the incoherency assumption in the

derivation of the BSC. The target regions are designed not to match this assumption,

and are the targets which we aim to identify using coherence analysis. The incoherent

scattering models were populated solely with ‘background’ scatterers, with no target

regions included.

In addition to the models with imposed BSC variation, incoherent scattering mod-

els were also produced with identical, randomly positioned scatterers. Four models of

this type were produced, which differed in the number density of the scatterers popu-

lating the model. Analysis of the coherence behaviour of these models was performed

to assess whether coherence based analysis could improve the BSC estimates of mod-

els that statistically match the presumed incoherence conditions, but may have local

random fluctuations in coherence, and also to estimate the number density values at

which the medium ceases to act like an incoherent scattering medium and violates the

assumptions in the derivation of the BSC estimation equation.
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6.2.2.1 Hypoechoic Models

To generate the hypoechoic targets, regions of the model were populated by weaker

scatterers than the background speckle. The hypoechoic targets took two forms. The

first were circles of radius 4mm, centred at the focal depth of the source, and separated

laterally across the simulated sample by 4 cm. The second type were rectangles of

length 1.2 cm, centred at the focal depth and separated laterally by 4 cm. The reason

for the size selections will be apparent when the predicted coherence characteristics of

the targets are described.

Since these regions contained weaker scatterers than the background speckle, the

estimated power from the regions would be expected to be lower than the background.

Their inclusion in any spatial averaging of BSC estimates could therefore generate an

underestimate in their vicinity. If the whole model were to be averaged - under the

assumption of homogeneity - then the result would be an underestimation of the BSC.

We also expect an effect on the local spatial coherence. When two different scatterer

populations, distinguishable by their scattering strength) are contained within distinct

regions that are straddled by the beamwidth, the result on the backscattered wave is

a reduction in the measured coherence that would have been observed if the scatterers

were all identical. This is due to the fact that the scattered wavefront received at the

aperture will contain an imbalanced contribution of off-axis scattering from one side of

the beam axis. Off-axis scattering will - on average - cancel where the scatterers are

identical on either side of the beam axis, but the increase in scattering strength from one

side will generate an imbalance. Since the wavefronts received from off-axis scatterers

will not match the aperture shape, they will cause a reduction in measured coherence.

This effect is expected to be at its most powerful when the target region boundary lies

on the beam axis. Once the beam width is scanned past the boundary, one scattering

population will begin to occupy a greater area within the resolution cell, and the effect

will continue to diminish as the area within the beamwidth becomes more dominated

by one scatterer type. This process is known as coherence recovery[101]. The circular
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targets (measuring 8mm in diameter) are similar in size to the full RMS width of the

beam produced by our simulated source (5.4mm) at this depth. Therefore we would

expect only a little, or no coherence recovery as the targets are laterally scanned, and

they should appear as low coherence circular regions in a coherence image. By contrast,

the rectangular targets are bigger (measuring 12mm in width) than the beam width,

so we would expect to observe coherence recovery in the centre, once the beam width

is fully contained within the target region.

The circular targets were designed to be of comparable size to the beamwidth in

an attempt to generate targets that did not exhibit coherence recovery, and therefore

present a simpler structure to analyse using the coherence. The rectangular targets

were - by contrast - designed to test the sensitivity of the coherence based analysis to

larger regions and assess how the coherence recovery might impact the quality of the

coherence analysis.

Schematics of the circular and rectangular targets are shown in figures 6.6 and 6.7.

The properties of the background speckle scatterers, and the scatterers populating the

three circular targets (labelled ‘One’,‘Two’ and ‘Three’) are listed in table 6.2.

Table 6.2: Model Category One Circular Target properties. Sound speed corresponds

to the sound speed of the elements designated as scatterers that are located within

the circular target regions. Reflection coefficient corresponds to the linear reflection

coefficient of the individual scatterers relative to the background, the sound speed of

which was 1500ms−1.

Target Sound Speed (ms−1) Reflection Coefficient

Speckle 1497.0 1.0× 10−3

One 1499.7 1.0× 10−4

Two 1499.5 1.8× 10−4

Three 1499.1 3.2× 10−4
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Figure 6.6: Hypoechoic circular Target Design. The black dots correspond to the

background, speckle producing elements. The red dots correspond to the - weaker -

scatterers located within the circular region, the boundary of which is indicated by

the dashed line. These target regions were located such that the centre of the circular

region was located at the focal depth of the source.
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Figure 6.7: Hypoechoic rectangular Target Design. The design of the rectangular target

was the same as was used for the circular hypoechoic target, with the only change being

the shape delineated by the regions of weak scatterers. The centre of the rectangle was

designed to be at the focal depth of the source.

6.2.2.2 Hyperechoic Model

Inverting the previous approach, small circular hyperechoic regions were generated to

simulate regions of higher expected backscattered power than the background speckle.

Their inclusion in any spatial averaging of BSC estimates could therefore generate an
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overestimate in their vicinity. If the whole model were to be averaged - under the

assumption of homogeneity - then the result would be an overestimation of the BSC.

We expect these regions to exhibit greater coherence than the background speckle

when the beam is centred on the hyperechoic region due to the fact the on-axis scattering

(from the hypoechoic region) will be from stronger scatterers than the off-axis scattering

(from the background speckle region). As such, off-axis scattering – which decreases

coherence - will contribute less to the reduction of coherence than would be the case

if there were only one type of scatterer within the beamwidth. This will result in

greater coherence values when the hypoechoic region is situated on the beam axis. This

concept is tractable to the work of Li and Li [167], who used coherence analysis to

suppress off-axis scattering for the improvement of image quality.
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Figure 6.8: Hyperechoic circular Target Design. The design here was as for the circular

hypoechoic target, with the only change being that the scatterers populating the circular

region possessed a greater impedance mismatch relative to the background medium.
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Table 6.3: Hyperechoic model properties. As before, the sound speed and reflection

coefficients correspond to the scatterer properties found within the target region.

Target Sound Speed Reflection Coefficient

Speckle 1497.0 1.0× 10−3

One 1496.2 1.3× 10−3

Two 1494.0 2.0× 10−3

Three 1490.5 3.2× 10−3

6.2.2.3 Speckle Models

To generate speckle producing, incoherent scattering media, random elements were se-

lected within the scattering region of the model. The properties of these scatterers

were the same as the background speckle producing scatterers described in the other

models. The elements selected within the scattering region were designated as scat-

tering elements, and their acoustic properties were altered relative to the background

elements to generate an acoustic impedance. The number of elements selected within

the region dictated the number density of the scattering bodies. The number density

values selected are included in table 6.4. The resolution cell size is computed from the

Gaussian RMS beam width and the pulse length as per section 6.2.1.1.

Table 6.4: Incoherent scattering model properties. The scatterers used in each model

were identical, with the only distinguishing feature between models being the number

density of scatterers. The theoretical BSC was computed using the individual scatterer

properties and their number density using equation (4.68).

Number density
Theoretical BSC (cm−1rad−1)

Model per unit area (cm−2) per Resolution cell

One 278 41 1.958× 10−6

Two 87.8 13 6.23× 10−7

Three 27.8 4.1 1.958× 10−7
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Table 6.5: Model design Descriptions and hypotheses for the BSC and coherence char-

acteristics. Model categories one and two feature an incoherent media forming a back-

ground speckle, within which the targets are placed. The scatterers populating the

targets are described relative to those forming the background speckle.

Model

Category

BSC

Characteristics

Coherence

Characteristics

Hypoechoic BSC estimates within the hy-

opechoic scattering targets will

be lower than the surrounding

speckle.

The spatial variation in backscat-

tering amplitude will reduce the

measurement of the coherence

when the beam straddles the tar-

get boundary. Coherence recovery

will be expected for the rectangu-

lar target but not for the circular

model.

Hyperechoic BSC estimates within the hy-

perechoic scattering targets will

be higher than the surrounding

speckle.

Coherence reduction will be ex-

pected on the target boundary.

Coherence will be greater than

the surrounding speckle when

the beamwidth is fully contained

within the target. No coherence

recovery expected.

Speckle The backscatter behaviour will

fluctuate spatially based on inter-

ference between scattered wave-

fronts.

On average, we expect the co-

herence function to be triangu-

lar in the cases of fully developed

speckle.
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6.2.3 Analysis Methodology

This subsection will explain the design of the algorithms used to examine the results

of the FE simulations. The results of these algorithms constitute the final measured

values of BSC, coherence, and RF envelope amplitude.

6.2.3.1 Computing the Correlation Function

To compute the spatial coherence of backscattered waves, the normalised correlation

between signals received at different points on the face of the receiver (as reported in

sections6.1) was used. The equation is reproduced here:

R(m) =
1

N −m

N−m
∑

i=1

∑n2

n=n1
si(n)si+m(n)

√

∑n2

n=n1
s2i (n)

∑n2

n=n1
s2i+m(n)

, (6.4)

where sj corresponds to the signal measured by the j’th receive element across the

aperture, n2−n1 defines the analysis kernel, and N is the maximum lag, corresponding

to comparison of elements on the extremes of the receive aperture. Whilst this com-

putation is normally performed through comparison between the transducer elements

of an array, this simulated case models the emitting and receiving apertures as lines of

point sources and receivers, each separated by an element width. The result of this is

that there is a finer spatial sampling of the backscattered waves than would be observed

with an array transducer. We are hence able to compute the correlation function for a

range of length scales from the point source separation (the mesh discretisation length)

up to the full width of the aperture. If this approach were to be taken for an aperture of

width w, the correlation function would be evaluated for a range of lags corresponding

to length scales (let us refer to them as spatial lags) ranging from λ0/50 up to 4 cm

(the width of the source) in increments of λ0/50. The two issues with this approach

are redundancy and time. To address the first point, we expect the coherence of the

backscattered waves to vary slowly on length scales much smaller than the wavelength,

so we do not require such a fine discretisation of spatial lags. Considering now the
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time required to perform the analysis, the number of calculations per lag value and the

number of lags we consider are proportional to the number of calculations required,

and therefore the time taken for computation of the correlation function. If the spatial

separation of the minimum lag distance is reduced, the number of calculations increases

exponentially. For this reason, increasing the minimum spatial lag and discretisation of

the spatial lag values results in a reduction in the time taken to compute the correlation

function for each set of results. It is therefore, advantageous to downsample the matrix

of receive signals in the lateral dimension (across the receive aperture). To ensure that

the downsampling did not affect the computation of the correlation function, a test

case was composed where the correlation function was computed under three different

sampling approaches.

1. Full sampling: The minimum spatial lag is the length of an element. The

wavefront similarity is compared on a sub-wavelength (λ0/50) scale across the

aperture using all the receiver nodes following application of the receive time-

delay profile to the echo data.

2. Transducer element sampling: A sub-aperture grouped delay-and-sum oper-

ation is performed on the receiver to simulate reception at finite width receivers

(receiver width and kerf were set at λ/4) formed into an array. This approach

performs a spatial averaging of the backscattered wave over a small range, and

compares these averages across the aperture. Data received from nodes within

the ‘kerf’ region is discarded.

3. Under sampling: Following application of the time delay receive profile, the

receive aperture is undersampled, considering only individual nodes separated by

λ0/2. Data received by other nodes is discarded.

To perform the comparison, simulations were performed with an incoherent scattering

medium was constructed using the same scatterer properties and number density as

was selected for the background speckle producing regions of the models in category
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1 and 2. The scattering medium was insonified as described in the previous section,

and the backscattered wavefronts received at the source. The coherence function was

then calculated using the three sampling methods described above and the results

compared over 100 simulations corresponding to different sections of the simulated

speckle producing model.

6.2.3.2 Parameterisation of the Correlation Function

On completion of the FE simulation of the wave scattering from each model, the cor-

relation function can be computed for a given receive depth using equation (6.4). In

all the cases described here, the correlation kernel length ((n1 to n2) in equation (6.4))

was set to be one period of the centre frequency of the simulation. Using the minimum

spatial lag of λ0/2 and the aperture of with 4 cm, this results in a correlation function

comprised of 26 values (or lags). To parameterise this function, we can adopt the ap-

proach developed by Lediju et al. [101], and compute the summation of the correlation

function over a given number of lags to generate a single metric of coherence for a given

spatial position within the model. The number of lags summed over as a percentage

of the receive aperture width is described as the Q value within the work of Lediju

et al., who consider only the shorter lags to develop their ‘short lag coherence’ (SLC)

imaging metric. Within this work we will consider the Q value as a parameter by which

we assess the performance of coherence as a basis for BSC segmentation, considering

larger lag values as well as the short lag values. For this reason, the summation over

the correlation coefficient will be referred to as the summed correlation value (SCV), to

generalise the parameterisation to the use of higher spatial lag values. The coherence

calculation was performed over a range of sample depths, from 1.0 cm anterior to the

focal depth up to 0.5 cm posterior to the focal depth, separated by an axial increment

of λ0/50, equal to the element width dx. The lateral separation of the simulations was

10 dx as described in section 6.2.1.2.
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6.2.3.3 BSC and Amplitude Envelope Calculations

In addition to computation of the coherence properties, the BSC for each individual

scan line was also computed using equation (6.5) as derived in section 4.2.1.5:

µBS(ω) =
Si(ω)

Sp(ω)

1

2π
√
8π

ka/d
√

(1 + (ka
2

4y0
)2)

. (6.5)

where Si corresponds to the backscattered power spectrum from an individual scatterer

configuration, Sp to the planar reflector normalisation power spectrum for a 4cm aper-

ture coupled to a line reflector placed at the focal depth y0, a as the half width of the

source aperture, d as the spatial gate length, ω as the angular frequency and k is the

wavenumber. The normalisation power spectrum Sp was the same as was determined

for the results in chapter 4. The analysis kernel for BSC estimation was set to be 6

periods of the centre frequency of the pulse: equal to twice the length of the excitation

signal. This is the same approach as used in chapters 4 and 5. The theoretical BSC

was calculated for each model based on the background speckle properties using the

equation derived in section 4.2.1.6. This equation is reproduced here:

µT
BS(ω) =

16k3R2
sσ

2

π

∫ 2

0

dγγJ0(2kγσ)
(

2cos−1
(γ

2

)

− γ

2

√

4− γ2
)

. (6.6)

µT
BS is the theoretical BSC value, Rs is the standard deviation of the reflection coefficient

of the scattering medium, σ is the scatterer size and k is the wavenumber.

The amplitude envelopes of the backscattered signals were also computed from the

generated simulations by calculating the absolute value of the Hilbert transform of the

delay-and-sum beamformed receive data. In all cases, the full receive aperture width

was used to compute the receive envelope.

6.2.3.4 Target contrast measurements

To assess the contrast of the target regions as assessed by the different imaging modal-

ities, we can calculate the contrast of the targets using the mean pixel value within
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target regions and compare this to speckle regions. We can express this as:

C = 20 log10

(

pt
ps

)

. (6.7)

Where pt corresponds to the mean pixel value in a target region, and ps the mean value

of the speckle region. For all the models, a speckle region was selected that was laterally

separated from the targets to compute the speckle mean.

6.2.3.5 The Effect of Noise on Coherence

Since the coherence measures the correlation between two signals, the presence of ran-

dom noise will affect the coherence value. Unlike physical experiments, the FE simula-

tions presented here do not contain the random electrical noise that one would expect

from a real transducer and sample. The presence of random noise will typically decrease

the coherence of a signal that itself is not random, due to the introduction of additional,

random phase shifts that are unique to each signal. This will reduce the similarity of

the two receive signals under comparison, reducing the value of the cross-correlation,

and hence the measured coherence. Whilst random noise (as opposed to deterministic

speckle noise) typically reduces image quality and complicates segmentation, we would

expect the coherence reduction effect to be more pronounced for lower amplitude signals

than higher, provided we have a fixed absolute power of noise added to the noiseless

signals. As a result, one would expect the contrast of targets which are hypoechogenic

to increase relative to the speckle background.

By the inverse argument, for models with hyperechogenic targets (of size on the

order of the beamwidth), the addition of noise will result in a smaller coherence re-

duction for backscattered data from the hyperechogenic regions than the surrounding

speckle, which would result in a greater increase in the hyperechogenic target coherence

contrast, and a greater reduction in coherence when the target boundary is on the beam

axis.

To investigate how noise impacts coherence measurements, noise was added to
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the receive data corresponding to each of the simulation results. This generated three

version of the simulation results, the original, noiseless data set, and two other version

with −10 dB and −20 dB zero mean, white Gaussian noise added to the receive data

matrix across all receive nodes and sample depths. The noise power was calculated

relative to the mean backscattered node power from the speckle region of each model.

6.2.3.6 Coherence Segmentation Algorithm

To perform the coherence segmentation, an understanding is required of the coherence

characteristics of a desirable incoherent scattering medium. To do so, a ‘ground truth’

speckle pattern was computed. This was achieved through simulating the scattering

from a incoherent scattering medium over many lateral positions. The properties of this

model were the same as the incoherent scattering medium labelled ‘One’ in the table

6.4. This model was selected as it represents a model that we would expect to produce a

fully developed speckle. From the description of speckle as developed by Bamber [165],

Mallart and Fink [163] and Verhoeven [166], we state that the backscattering coherence

properties of a fully developed speckle pattern should depend on the autocorrelation

function of the emit aperture and not on the specific number density of scatterers. For

this reason, the selection of a fully developed speckle producing medium as a reference

provides the most useful ground truth for application onto other data sets.

In the same manner that many multiple scan lines are required to reduce the de-

pendence of the BSC average on interference effects, representing a convergence of the

final estimate onto the value predicted by the number density and individual scattering

strength. It was hypothesised that once a sufficient number of scatterer configurations

were averaged over, the average BSC value would then converge onto the expected av-

erage, and the coherence characteristics would be indicative of the full range of possible

backscattered coherence values. Within chapters 4 and 5, 1000 simulations of inde-

pendent scattering ensembles were generated to produce the BSC estimates quoted.

In this investigation, 2000 were generated using the lateral scanning method described
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in section 6.2.1.2. The reason for the increased number of simulations was two-fold.

Firstly, the lateral scanning approach reduces the statistical independence between the

scattering areas in consecutive simulations (due to spatial proximity) when compared

to randomly generating the scatterer positions for each simulation. For this reason, an

increased number was hypothesised as being needed to ensure that enough statistically

independent scan lines were included in the average of the coherence and BSC values. It

should be noted that this number is dictated solely by observation of the convergence

behaviour of these simulations, and is not a generalisable result, although published

results of simulations of this type have employed a similar number of scatterer position

configurations in their investigations [99]. On completion of the 2000 simulations, the

analysis of the backscattered waves was performed.

Firstly, the BSC, amplitude envelope and coherence function were computed for

each simulation, with the coherence value computed by summing the values of the

coherence function up to Q% of the aperture for each simulation. Coherence values

were computed for a range of depths posterior and anterior to the focal depth, and a

mean value was computed for the range of depths, weighted by a Hanning window to

place a greater dependence of the average on the coherence values acquired at the focal

depth.

On computation of the BSC and coherence value for the ground truth speckle

across all the simulation lines, the data set was then segmented using upper and lower

thresholds for coherence to establish the contribution of scan lines with different coher-

ence values to the final estimate of the BSC. The upper and lower thresholds were varied

between the maximum and minimum lag available for the given Q-value, in increments

of 0.1, with the data set segmented by coherence value based on these parameters.

Following the segmentation, the remaining data was used to compute a BSC estimate

for each pair of threshold values. Repeating this for all the combinations of the upper

and lower threshold generated a matrix of BSC estimates for the ground truth speckle

data for each coherence threshold pair.
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The coherence threshold pairs that minimised the error in the BSC (as compared

to the theoretical value based on the statistical estimation of the BSC from the number

density and scatterer strengths) were then computed. These values were arranged to

form an error minimising line (EML). Since stronger segmentation results in greater

losses of data, the points on the EML were categorised by the percentage of data

segmented out they represented. The line was only sampled at 9 points corresponding

to integer multiples of 10% segmentation strength. Thus, the ‘i’th threshold pair stored

in the line corresponds to ‘i x 10%’ segmentation. A number of EMLs were generated

under a variety of conditions, using different powers of added noise, a different number

of axial kernels over which the coherence function was evaluated, and a set of Q-values.

The threshold value pairs were then used to segment the data sets produced from

the FE models described in section 6.2.2. The unsegmented scan lines were then used

to compute a BSC average for the whole model, and this was compared to a theoretical

value computed from the properties of the background speckle. Application of the

coherence segmentation threshold to the incoherent scattering models was hypothesised

to remove the coherence outliers that are observed when we analyse the backscatter from

a randomly distributed set of identical scatterers. For the hyperechoic and hypoechoic

models, it was hypothesised that coherence segmentation would segment both the target

regions and coherence outliers in the speckle regions. For all model types, it was

hypothesised that discarding regions defined as coherence outliers would improve the

final BSC estimate.

To summarise, the analysis methodology for the ground truth speckle pattern was

as follows:

1. Ground truth speckle model generated through randomly distributing weak scat-

terers throughout a section of the simulation domain.

2. FE simulations performed to calculate the backscatter characteristic of the ground

truth speckle model.
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3. Previous step iterated using the lateral scanning method to capture different

sections of the ground truth speckle model.

4. Coherence function calculated for simulation results using equation (6.4). Coher-

ence function parameterised through summation over Q% of the possible lags.

5. BSC computed for all simulations using equation (6.5)).

6. Full data set segmented based on upper/lower threshold pairs of coherence, and

BSC computed for remaining data

7. Error minimising line (EML) computed in coherence space.

8. Point on EML applied to unseen data set to segment based on coherence.
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These steps are also illustrated in figure 6.9.
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Figure 6.9: Illustration of the calculation and construction of the EML. First, the

ground truth speckle model is constructed (1), which backscatter simulations are per-

formed on (2), laterally scanned over a range of the model (3). The backscattered

data is then analysed to calculate the coherence (4) and bakcscatter properties (5).

Segmenting the data based on the coherence properties (6) and assessing the resulting

BSC estimates produced post segmentation allows construction of an EML that gen-

erates the best BSC estimates for the ground truth speckle model (7). This line can

then be applied to an unseen sample to segment the the data based on its coherence

properties.
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6.2.3.7 Coherence Algorithm Testing Parameters

As mentioned, a number of test parameters were used to investigate how the segmen-

tation approach varied with parameter selection. These parameters were as follows:

• Segmentation strength : The EMLs were sampled at points corresponding to

different percentages of segmentation, this approach was taken to assess the effect

on the final estimate of the BSC when more or less data was segmented out of

the model.

• Number of axial kernels : The number of kernels used axially to compute the

coherence characteristics was varied to take values of 1, 10, 20, 25 and 50. The

axial separation of these kernels is described in section 6.2.3.2. The central axial

kernel was at the focal depth in all cases. Including kernels anterior and posterior

to the focal depth was used in an attempt to reduce the potential variability in

coherence value with depth.

• Q-Value : The Q-value was varied to assess how the inclusion of higher spatial

lags affected the quantification of speckle texture. EML lines were only reliably

generated when larger Q-values were used, so only values of 50% and 100% were

considered.

• Noise : As mentioned in section 6.2.3.5, random noise plays a part in the mea-

surement of coherence. To test this, three conditions were considered, a noiseless

case, a case with −20dB noise added to the simulation results, and a case with

−10dB noise added to the simulation results. BSC values were computed be-

fore the addition of noise, to prevent the noise confounding the estimate of the

backscattered power and isolate the effect on the coherence.
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6.3 Results

The results presented here will comprised of two main parts, the first computing the

image contrast of the targets using b-mode and coherence based metrics. The second

section will analyse the result of the coherence based segmentation on the final BSC

estimate.

6.3.1 Results of aperture sampling investigation

A comparison between the computed coherence function at the focus of the source for

the three methodologies is shown in figure 6.10. Whilst the single ensemble behaviour

was seen to be different between the different methodologies, the average behaviour over

100 iterations was shown to converge, giving an approximately equal mean and standard

deviation at all spatial lags. For this reason, the undersampling (method 3) approach

was selected: to undersample the aperture and select only the nodes corresponding to

integer multiples of λ0/4 from the first node of the aperture. We can also note that

the three results all converge onto the prediction of the VCZ theorem as interpreted by

Mallart and Fink [163] and Bamber [165]: that the coherence function for a rectangular

aperture in the far field of an incoherent scattering medium should be a linear function

decreasing from 1 at 0 lag down to 0 at the maximum available lag the aperture is able

to measure.
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Figure 6.10: Comparison of the effect of aperture sampling on the coherence function

for a single (6.10a) and 100 (6.10b) simulations.
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6.3.2 Target Segmentation

6.3.2.1 Example Coherence Images

Considering first hypoechoic circular target 1 (the most hypoechoic), figure 6.11 contains

coherence images across three Q-values. A minimum Q-value of 35% was selected as it

was the minimum Q-value that provided enough information within the speckle regions

for the coherence based segmentation to compute EMLs for all the simulated models.

From the images we can see the dark region corresponding to the incoherence generated

by the hypoechoic region. The measured coherence value inside the hypoechoic region

appears to be close in value to the speckle coherence nulls, but is distinguishable by the

fact that the target is more homogeneously incoherent than the speckle region.
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Figure 6.11: Example coherence images for circular hypoechoic target 1 (circled in red)

over a range of Q values. Pixel values correspond to measured coherence by a kernel

(of length equal to one period at the centre frequency of the simulation) centred on the

pixel position.

The hypoechoic rectangular target results are shown in figure 6.12. Figure 6.12a

appears to show a large coherence null throughout the target region, with higher coher-

ence value consistently observed in the surrounding speckle. Over the lags considered

in this image, the coherence appears to be maintained on the model boundary, and

only decreases when the beam moves past the boundary into the target. Increasing

the Q-value to 65% of the aperture width, the coherence on the model boundary ap-

pears decrease, with texture starting to appear in the surrounding background speckle.

Further increase of the Q-value to 96% increases the speckle texture further, with no
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obvious improvement in target delineation.
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Figure 6.12: Example coherence images for a rectangular hypoechoic target (red) over

a range of Q values. Pixel values correspond to measured coherence by a kernel (of

length equal to one period at the centre frequency of the simulation) centred on the

pixel position.

Figure 6.13, contains the coherence measurements of the third hyperechoic target.

Here the target is not as clearly visible as the hypoechoic targets, with the strongest

imaging characteristic appearing to be the regions of high coherence measured on the

periphery of the target at the focal depth. The target appears to be slightly more

coherent than the background, if only in the absence of the same coherence nulls as

observed in the background speckle. This observation matches with the hypothesis pre-

sented earlier, that the high amplitude on axis scattering could generate high coherence

values when a hyperechoic target is placed amidst a weaker, speckle producing region,

but of note is the fact that the high coherence is not maintained as consistently across

the diameter of the target as the hypoechoic targets. This suggests that the coherence

recovery is quicker in the case of on-axis high scattering than on-axis weak scattering.

With respect to the effect of the Q-value, no value delineates the target with notable

accuracy, with the most appreciable difference between the images being the increase

in background speckle texture.
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Figure 6.13: Example coherence images for the third hyperechoic target (circled in red)

over a range of Q values. Pixel values correspond to measured coherence by a kernel

(of length equal to one period at the centre frequency of the simulation) centred on the

pixel position.

To investigate the effect of Q-value on the speckle regions texture, included are

results taken from the ground truth speckle data set in figure 6.14. At the lower Q-

values, the speckle texture is minimal, with regions of high coherence interspersed with

smaller regions of low coherence. The coherence values are mainly concentrated at

the higher lags, indicating that the backscattered echoes are very similar on the short

length scales considered. Increasing the Q-value, to incorporate higher spatial lags

reveals more texture in the images, with the incoherent regions between the coherent

patches increasing in size. The greater Q-values incorporated could be seen as analogous

to increasing the f-number of the receive aperture.
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Figure 6.14: Coherence image texture for a randomly positioned scattering model over

a range of Q values%. The colour bar corresponds to the coherence value calculated

through summation over Q% of the aperture.
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6.3.2.2 Example B-mode images

The B-mode images in figure 6.15 illustrate the backscattering amplitude of the waves

from the three targets. We can see the dark and bright regions that correspond to the

hypoechoic and hyperechoic targets. It can be noted that there is more visible speckle

texture produced from within the hyperechoic target than the hypoechoic – which

appears relatively constant within the target boundary, but no further observations

can be drawn from this.
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Figure 6.15: Example b-mode images of the hypoechoic circular (6.15a), hypoechoic

rectangular(6.15b) and hyperechoic (6.15c) circular target.

6.3.2.3 Hypoechoic Circle Model: Contrast Measurements

Figure 6.16 illustrates the contrast measurements of the hypoechoic circular target using

coherence and backscattered amplitude envelope (which will be referred to as B-mode

contrast) measurements. For all the target regions, a greater imaging contrast (more

negative) was calculated using the B-mode value as opposed to the coherence value.

Of the three coherence Q-values considered, the greater Q-values appeared to result in

greater imaging contrast. The effect of noise addition was seen to reduce the imaging

contrast (less negative) for the B-mode analysis, but for target 1, was seen to increase the

imaging contrast of the coherence imaging for the three Q-values. The observation that

only the contrast of target 1 was reliably improved with increased power of added noise

did not match the predictions, as it was expected that increased noise should increase

the imaging contrast of these targets provided they were hypoechogenic (darker on the
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B-mode image) relative to the speckle background.
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Figure 6.16: Illustration of the imaging contrast of the three hypoechoic circular targets

in the noiseless (6.16a), -20dB (6.16b) and -10dB (6.16c) noise cases, using coherence

image and B-mode image pixel data.

In figure 6.17, the same data set for the hypoechoic circular targets is shown as a

function of Q-value for the three noise conditions. Increasing the Q-value was seen to

improve the imaging contrast for targets 2 and 3 monotonically, whilst a local minima

was observed for target 1 at a Q-value of around 50%. The effect of the addition of

noise on the contrast measurement of target 1 is apparent in this figure, and the lack

of effect of noise addition on the measured contrast of the other targets also becomes

clearer.
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Figure 6.17: Illustration of the effect of Q-value on the coherence contrast for the three

hypoechoic circular targets for the noiseless (6.17a), -20dB (6.17b) and -10dB (6.17c)

cases.

Table 6.6 contains the mean and standard deviation of the pixel values within the three

targets for the two imaging modalities across the three noise conditions with a Q-value of

96%. This value was selected as it provided the greatest coherence contrast. Firstly, the

effect of the target region scattering strength on the coherence within the target regions

can be noted: the mean and the standard deviation of the coherence value is lowest

within the scattering target that was most hypoechogenic (target 1), and higher for the

less hypoechogenic targets (2 and 3). This can be observed by scanning down the table

from target 1 to target 3 in any column: the coherence value in the region increases,
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and the standard deviation also increases. The speckle regions recorded higher mean

and standard deviation in measured coherence than the targets, confirming that low

coherence targets (relative to the speckle background) had been constructed. Scanning

across the table to assess the effect of noise, it was observed that increasing the power

of added noise reduces both the mean and standard deviation of the coherence in the

region. With the respect to the B-mode measurements, it was observed that the most

hypoechogenic targets produced both the lowest mean backscattered amplitude (as

expected), and the smallest standard deviation in this value. The addition of noise

increased the measured amplitude envelope, and increased the standard deviation of

the pixel value.

Table 6.6: Mean and standard deviation of the pixel values in the target and speckle

regions for the hypoechoic circular model. Coherence values (C) were computed through

summation over the coherence function using Q = 96%, and are unitless The standard

deviation is calculated for the pixels within the target region. The B-mode pixel values

(BM) have units of Pa. T. i corresponds to the ‘i’th target within the model.

Noiseless -20dB -10dB

C BM (Pa) C BM (Pa) C BM (Pa)

T. 1 3.98± 6.57 222± 137 3.70± 6.28 224± 138 2.93± 5.27 248± 146

T. 2 4.85± 7.34 420± 364 4.70± 7.10 421± 364 3.89± 5.82 437± 366

T. 3 8.52± 8.20 530± 385 8.29± 8.05 533± 385 7.24± 7.44 545± 384

Speckle 10.83± 8.31 859± 475 10.38± 8.09 860± 475 8.60± 7.31 866± 478

6.3.2.4 Hypoechoic Rectangular Model: Contrast Measurements

Figures 6.18 and 6.19 illustrate the variation in imaging contrast for the three hypoe-

choic rectangular targets for the 3 noise conditions over a range of Q-values. Here, the

contrast of the coherence based imaging was noticeably poorer (less negative) than the

B-mode contrast, and also worse than for the hypoechoic circular targets, indicating

that the approach is more effective in segmenting targets that are closer in lateral size
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to the beamwidth. In the noiseless case, target 3 - which was populated by scatterers

of the most similar properties to the background speckle - was segmented particularly

poorly. This target was virtually unresolvable from the background speckle by coher-

ence by any Q-value. As with the hypoechoic circular case, the addition of noise was

seen to increase the contrast of the targets.
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Figure 6.18: Illustration of the imaging contrast of the three hypoechoic rectangular

targets in the noiseless (6.18a), -20dB (6.18b) and -10dB (6.18c) noise cases, using

coherence image and B-mode image pixel data.

Figure 6.19 illustrates the contrast behaviour for the rectangular targets over a finer

range of Q-values. Within this data set, a lack of contrast across all the Q-values was

observed for target 3 in the noiseless case. With the addition of noise, negative contrast
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was observed. Targets 1 and 2 produced results more similar to the results in figure

6.17, and both possessed a local minima in imaging contrast at a Q-value of 50%. In

both these cases, the contrast was also seen to slightly improve in the −20 dB noise

case, and more noticeably improve in the −10 dB noise case.
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Figure 6.19: Illustrations of the effect of Q-value on imaging contrast for the three

hypoechoic circular targets for the noiseless (6.19a), -20dB (6.19b) and -10dB (6.19c)

cases.

Table 6.7 details the mean and standard deviation of the pixel regions used to compute

the contrast measurements for the hypoechoic rectangular model. The same observa-

tions regarding the effect of the scattering strength of the target relative to the speckle

background can be made here. In this test example, the background speckle possessed
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a slightly lower average coherence value as compared to the hypoechoic circular model,

which may partially explain the reduction in observed coherence contrast in the model.

Table 6.7: Mean and standard deviation of the pixel values in the target and speckle

regions for the hypoechoic rectangular model.

Noiseless -20dB -10dB

C BM (Pa) C BM (Pa) C BM (Pa)

T. 1 5.50± 6.96 220± 204 4.53± 6.25 223± 207 2.47± 3.8 255± 210

T. 2 6.61± 7.71 335± 331 5.65± 6.80 337± 331 3.00± 4.11 361± 330

T. 3 8.66± 7.15 364± 189 7.05± 6.08 367± 191 3.21± 4.12 378± 201

Speckle 9.12± 8.37 727± 430 8.38± 7.93 771± 445 5.72± 6.00 781± 445

6.3.3 Hyperechoic Circular Model: Contrast Measurements

Figure 6.20 illustrates the imaging contrast measured from the hyperechoic targets for

the three targets across the three noise conditions. The first target (the least hypere-

choic) does not register a positive imaging contrast for any of the coherence or B-mode

imaging analysis routines. This indicates that despite the region being populated by

stronger scatterers than the background speckle, the variation in pixel value (coherence

or brightness value) due to interference effects (speckle) from the random position of

scatterers within the region dominated the effects associated with the absolute strength

of the scatterers. When the scattering strength in the region was increased (targets 2

and 3), the imaging contrast of all the metrics was seen to increase (more positive).

The B-mode image contrast increased most noticeably, suggesting that the absolute

backscattering amplitude is more effective at identifying hyperechoic targets than the

coherence values. The coherence metrics reported a positive contrast in imaging target

2, indicating that the increased strength (as compared to target 1) of on-axis scattering

relative to the speckle background was significant enough to affect the coherence con-

trast of the speckle and target regions. Target 3 reported the highest imaging contrast
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within the B-mode analysis, increasing significantly relative to target 2. The coherence

metrics however did not increases universally, only increasing in the noiseless case, and

decreasing in the two cases where noise was added to the results. The relationship

between the noise and the coherence imaging contrast was more complex than observed

with the hypoechoic target regions. The imaging contrast of target 1 registered a slight

increase (more positive) in contrast with increased power of noise. This is most no-

ticeable for the −10 dB noise case, for which the coherence contrast was greater than

the B-mode contrast. However, the effect of increased noise was seen to decrease the

imaging contrast for targets 2 and 3.
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Figure 6.20: Illustration of the imaging contrast of the three hyperechoic rectangular

targets in the noiseless (6.20a), -20dB (6.20b) and -10dB (6.20c) noise cases, using

coherence image and B-mode image pixel data.

Considering now the finer discretised Q-value results, it was observed that effect of

increasing the Q-value resulted in a reduction (less positive) in the imaging contrast

for target 1, whilst it appeared to increase (more positive) the imaging contrast for

the other targets. As noticed previously, the effect of noise addition had the greatest

impact on the contrast estimation of target 3, which was shown to reduce in imaging

contrast as the power of the added noise was increased.
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Figure 6.21: Figures showing the range in contrast detectability for the three hypere-

choic circular targets for the noiseless (6.21a), -20dB (6.21b) and -10dB (6.21c) cases.

Table 6.8 contains the pixel values for the measurement of the contrast for the hyere-

choic model. Analysis of the Target 1 coherence behaviour across the noise conditions

confirms the observations of above: the coherence values registered within the target

are not statistically distant enough from those of the background speckle to result in

effective delineation, producing low (close to 0) contrast. In all cases, the increase

in target scattering strength was shown to increase the coherence value for the pixels

within the target region. This matched the design of the model, whereby increased on

axis scattering was hypothesised to generate high coherence outliers. The results of

this study suggest that these high coherence values are challenging to separate from
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background speckle. The addition of random noise (with constant power) across the

image was hypothesised to reduce the coherence of the speckle background more than

the target regions, and therefore result in an increase in the coherence contrast of the

hyperechoic regions. There were no observed results that consistently supported this

hypothesis.

Table 6.8: Mean and standard deviation of the pixel values in the target and speckle

regions for the hyperechoic circular model.

Noiseless -20dB

Region C BM (Pa) C BM (Pa)

T. 1 9.7± 7.89 732± 380 9.48± 7.76 733± 377

T. 2 14.56± 8.34 1709± 935 13.90± 8.21 1.709± 935

T. 3 16.42± 6.92 3127± 1311 11.71± 6.08 3127± 1311

Speckle 11.00± 8.20 835± 448 10.54± 7.96 836± 448

-10dB

C BM (Pa)

T. 1 8.09± 6.90 740± 382

T. 2 9.87± 6.58 1712± 936

T. 3 5.71± 5.56 3127± 1313

Speckle 8.29± 6.97 842± 451

6.3.4 Coherence Segmentation for BSC estimation

Within this section, details related to the behaviour of the ground truth speckle model

are first presented, with an illustration of one of the EMLs. Following on from this, the

results from the hypoechoic, hyperechoic and speckle models will be presented. Due

to the high number of parameters considered within this investigation, the effect of

the segmentation was presented in the results section for a set of results with a fixed
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Q-value of 100%, and with 50 axial kernels used to compute the average coherence for

each lateral scanning position. The error bars presented were calculated through aver-

aging 15 adjacent simulation lines to mimic the construction of BSC estimation kernels

across the simulation model. The standard error across the kernels was then calculated

and quoted as the uncertainty of the individual segmentation results. In addition to

the coherence segmentation, a manual segmentation of the coherence targets for the

hypoechoic and hyperechoic models was performed to investigate the contribution of

the designed coherence outliers on the average BSC value over the whole model. In

the case of the circular targets, this resulted in the manual segmentation of 7% of the

lateral area of the model. In the case of the rectangular targets, this resulted in the

manual segmentation of 10% of the lateral area of the model.

6.3.4.1 Ground Truth Speckle Model

Results taken from the ground truth speckle model were used to plot the spatial coher-

ence value (SCV) for each simulation using a Q-value of 100% against the estimated

backscatter coefficient. This result is plotted for the three noise cases in figure 6.22,

as well as histograms to illustrate the distribution of measured coherence values. The

results indicate how the addition of noise alters the spread of coherence values. The

theoretical coherence value is computed through the summation of the triangular co-

herence function from a lag of 1 up to the maximum for this aperture size and Q-value

(26). From the histograms, we can see that the noiseless model has an average coher-

ence value closest to the theoretical coherence. As the power of added noise is increased,

the coherence values reduce and the average moves further away from the theoretical

value.
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Figure 6.22: BSC estimate plotted against spatial coherence value (SCV) for the noise-

less (6.22a), −20dB (6.22c) and −10dB (6.22e) cases, with the theoretical BSC value

for the whole model (µT
BS). Histogram plots for the coherence data sets are plotted in

figures 6.22b, 6.22d and 6.22f, with the theoretical and mean SCV value.
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From the results presented in figure 6.22, the correlation coefficient between the

coherence and BSC value was computed, and recorded in table 6.9. The correlation be-

tween the coherence and the BSC value for the speckle data set appears to be maximised

under the conditions of −20 dB noise. Since the segmentation algorithm is attempt-

ing to relate the coherence to the BSC, this result would suggest that segmentation

of pure speckle regions would be most optimal under this noise condition. For non-

speckle regions, due to the relationship between coherence contrast and noise, other

noise conditions may result in better segmentation of the data, and better estimates

of the BSC. For example in sections 6.3.2.3 and 6.3.2.4, increased noise was shown to

result in improved hypoechogenic target contrast. Combining the coherence probability

distributions for the three noise conditions produces figure 6.23. The noiseless prob-

ability distribution function is seen to be highly right skewed, which becomes more

normally distributed as the power of added noise is increased. The reduction in the

right skew can be explained by the reduction in the coherence of the echoes due to

the added (incoherent noise). This effect will be most prominent for the echoes corre-

sponding to a low backscattered amplitude but a high coherence value (the data points

occupying the bottom left quadrants of figures 6.22a, 6.22c and 6.22e). For the data

points recorded as possessing a negative coherence value, the addition of incoherent

noise has the opposite effect to the positive coherence data points, and will increase

their coherence value towards zero.
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Figure 6.23: Coherence probability distribution functions for the three noise conditions.

Table 6.9: Correlation coefficient calculation for the ground truth speckle data set under

the three noise conditions.

Model Correlation Coefficient

Noiseless 0.4965

−20 dB 0.5088

−10 dB 0.4329

The results of the backscatter analysis of the ground truth speckle model are in-

cluded in table 6.10. The BSC estimate and the theoretical value were calculated using

the methods outlined in section 6.2.3.3. The uncertainty in the BSC estimate was

calculated from the standard error on the mean from the estimate, as in chapters 4

and 5. The difference between the BSC estimate and the theoretical value constitutes

a 1.4565% underestimate in the BSC as compared to the theoretically derived value.

This underestimate is equal to 51.245% of the standard error on the mean.
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Table 6.10: Calculation of the BSC properties of the ground truth speckle model

Quantity µBS (m−1rad−1)

Ground Truth BSC estimate (1.9290± 0.0564)× 10−8

Theoretical BSC 1.9575× 10−8

From the ground truth speckle pattern, an EML example is shown in figure 6.24.

This example was taken for a Q-value of 100%, which gives a potential range of -26 to

+26 from the summation of coherence function.
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Figure 6.24: EML example pictured as a black line, representing segmentation values

minimising the error in BSC estimation of the ground truth speckle model as compared

to the theoretical value. The coloured lines represent segmentation contours indicating

the amount of data segmented for a given upper and lower segmentation thresholds. Any

point for which the lower threshold exceeds the upper threshold results in segmentation

of all the data, so the line y = x is included as a visual reference.

The ground truth speckle probability distribution function for the BSC estimates of

individual simulation lines is shown in figure 6.25. The left skew of this distribution is

indicative of the fact that the incoherent scattering medium is prone to produce values

of backscattered power that are relatively small, due to loss in estimated backscattered

power from interference effects.

218



0 2 4 6 8 10 12 14 16

BS
 (m-1rad-1) 10-8

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

P
ro

b
a
b
ili

ty

BSC Estimates

Global BSC estimate

Figure 6.25: Probability distribution function for the ground truth speckle pattern.

The BSC is computed for each line, individually using equation (6.5), and the global

BSC estimate is computed using the same equation, after averaging the complex power

spectra computed from the receive data from each simulation.

6.3.4.2 Hypoechoic Circular and Rectangular Models : Segmentation Re-

sults

Figure 6.26 illustrates the effect of the coherence segmentation algorithm for the hy-

poechoic circular model for the three noise conditions. In the noise-free case (figure

6.26a), a reduction in the error was observed for all segmentation strengths below 70%.

For a segmentation percentage above 70%, the estimates were observed to diverge, and

the error increased relative to the unsegmented result. In the −20 dB case, the seg-

mentation was also shown to improve the BSC estimation for segmentation percentages

below 30%. Increasing the segmentation percentage above 30% was shown to increase

the error relative to the unsegmented result. For the −10 dB noise case, the results

were observed to be more similar to the noise-free case: the segmentation was shown

to increase the accuracy of the final BSC estimates for segmentation percentages up

to 70% segmentation. Manual segmentation of this data set to remove backscattered

data for which the beam axis intersected with the coherence target produced a BSC

estimate of 1.99 × 10−8 m−1rad−1, which corresponds to an overestimate in the BSC
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by 1.83%. This indicates that the hypoechoic regions reduced the global BSC estimate

(across the whole model) by 6%.
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Figure 6.26: Segmentation results for the Hypoechoic circular model. Figures corre-

spond to the noiseless (6.26a), -20dB (6.26b) and -10dB (6.26c) cases. The theoretical

BSC value (µTH
BS ) is computed from the background speckle properties.

The result of the application of the segmentation approach to the rectangular

hypoechoic model is shown in figure 6.27. The noiseless case (figure 6.27a) did not show

any improvement in BSC estimate for the calculated segmentation percentages, with

the results all shown to exhibit an error of around 25%. Segmentation of the −20 dB

case revealed improvement in the BSC estimate for all segmentation percentages, with

the error being reduced to around 15% between segmentation percentages of 10% and
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60%, and reducing further with increased segmentation percentage. In the −10 dB

noise case, the error reduced significantly for percentages of 10% to 40%, after which

the BSC estimate was seen to continue to increase, producing overestimates of the BSC

greater in error than the unsegmented data set for segmentation percentages greater

than 70%. The manual segmentation of this data set produced a BSC estimate of

1.74 × 10−8 m−1rad−1, which corresponds to a 10.3% underestimate in the BSC as

calculated from the background speckle properties. This indicates that the hypoechoic

regions reduced the global BSC estimate (across the whole model), by 13.3%
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Figure 6.27: Segmentation results for the Hypoechoic rectangular model. Figures corre-

spond to the noiseless (6.27a), -20dB (6.27b) and -10dB (6.27c) cases. The background

speckle was once again used to compute the theoretical BSC value (µTH
BS ), which is the

same as in figure 6.26.

To illustrates the effect of the segmentation, images were constructed illustrating

the points within the model that were segmented for target 1 (the least echogenic) of

the hypoechoic circle (figure 6.28a) and hypoechoic rectangular (figure 6.28b) models.

These images were created using the results of the algorithm at 10% segmentation

strength. They contained the original coherence image, overlaid with the boundary

of the coherence target and dark blocks indicating regions segmented by the coherence

algorithm. In figure 6.28a, incoherent regions in the centre of the hypoechoic circle were
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segmented, as well as a region of high coherence at a lateral position of −0.5 cm and

an incoherent speckle region at −0.8 cm. In figure 6.28b, the segmentation algorithm

segmented only four simulation lines within the rectangular region (two at a lateral

position of around 0.2 cm, and two at around −0.6 cm). A region of high coherence was

also segmented at a position of −0.8 cm.
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Figure 6.28: Coherence plots for target 1 of the hypoechoic circular (6.28a) and rect-

angular (6.28b) simulation models. The target boundaries are outlined in red, with the

segmented regions of the model indicated by the dark blocks. The blocks are equal to

the coherence pixel width, and measure 50 pixels axially, to reflect the dimensions of

the number of kernels used in computation for the segmentation.
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6.3.4.3 Hyperechoic Model : Segmentation Results

Figure 6.29 illustrates the segmentation results for the hyperechoic model. In the noise-

less case, no significant improvement is observed for any segmentation percentage, with

a slight reduction in the overestimation observed at segmentation percentages of 50%-

70%. The −20 dB case was not observed to produce any improvement on this be-

haviour. The −10 dB case did show improvement, with a 10% reduction in the BSC

estimation error observed for segmentation percentages between 40% and 80%. Man-

ual segmentation of the hypoechoic scattering regions produced a BSC estimate of

1.97 × 10−8 m−1rad−1, which represents an overestimate in the BSC of 0.50%. This

indicates that the hypoechoic regions increased the global BSC estimate by 20.9%.
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Figure 6.29: Segmentation results for the Hyperechoic circular model. Figures corre-

spond to the noiseless (6.29a), -20dB (6.29b) and -10dB (6.29c) cases. The theoretical

BSC value (muTH
BS ) as calculated from the background speckle properties was the same

as for figures 6.26 and 6.27.

As in figure 6.28, an image was constructed to illustrate the effect of the segmen-
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tation algorithm for the hyperechoic model. Once again, a segmentation strength of

10% was used to construct the image. The effect of the segmentation in the vicinity of

target 3 (the most echogenic) of the hyperechoic model is shown in figure 6.30. Higher

coherence values are expected from the hyperechoic targets, which is reflected in these

results, where two regions of higher coherence are segmented from the centre and lateral

edge of the target (at 0 cm and −0.4 cm respectively). In addition, an incoherent region

positioned at −0.7 cm was also segmented.
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Figure 6.30: Coherence plot for target 3 of the hyperechoic circular simulation model.

6.3.4.4 Speckle Model Results

The final set of results present the analysis of the pure speckle producing regions, in

absence of coherence targets. The first case, pictured in figure 6.31, corresponds to

a speckle producing region with the same scatterer properties and number density as

the ground truth speckle pattern. This result produced highly variable results between

the different noise conditions. In the noiseless case, there is a little change in the

BSC estimate below a segmentation amount of 40%, at which point the segmentation

algorithm produced increased overestimates of the BSC. In the −20 dB noise case,

a consistent decrease in the estimate is observed across all segmentation percentages

besides 90%. The effect of the segmentation was to reduce the overestimation in the

BSC provided by the raw data, which, between segmentation percentages of 10% and

50%, produced BSC estimates within one standard error of the theoretical value. For
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segmentation percentages greater than 60%, the segmentation approach was seen to

increase the absolute error on the final BSC estimate. In the −10 dB case, the coherence

segmentation resulted in an initial improvement in BSC estimate between segmentation

percentages of 10% and 20%. For segmentation percentages greater than this, the

absolute error appeared to increase relative to the unsegmented case.
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Figure 6.31: Segmentation results for speckle model 1. Figures correspond to the

noiseless (6.31a), -20dB (6.31b) and -10dB (6.31c) cases.

Figure 6.32 (speckle data set 2) corresponds to a speckle data set we expect to

produce a fully developed speckle (14 scatterers per resolution cell), but with a lower

number density than the previously discussed case. The unsegmented value for this

data set was found to be within a standard error on the theoretical value, presenting

a greater challenge to produce an improvement with the segmentation approach. In

the noiseless case, little change was observed through the segmentation process being

applied, with a stable absolute error observed for segmentation percentages below 70%,

maintaining the relatively small error observed in the absence of segmentation, with
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divergence in the estimated BSC for higher segmentation values. In the −20 dB and

−10 dB cases, application of the segmentation algorithm produced relatively consis-

tent decreases in the estimated BSC value for all segmentation percentages, with some

oscillation observed at the very high segmentation values.
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Figure 6.32: Segmentation results for speckle model 2. Figures correspond to the

noiseless (6.32a), -20dB (6.32b) and -10dB (6.32c) cases.

Speckle test model 3 was the lowest number density case of the three speckle

models, representing an underdeveloped speckle pattern. This data set produced a

BSC estimate that underestimated the theoretical value in the unsegmented case. In

the noiseless simulation model (figure 6.33a), the segmentation approach was not seen to

change the resulting BSC estimate for segmentation percentages between 10% and 40%.

A slight improvement was observed when the segmentation percentage was increased

above 50%, with small error observed at segmentation percentages of 60% and 70%.

Increasing the segmentation percentage beyond 70% was seen to decrease the quality

of the BSC estimation. In the −20 dB (figure 6.33b) and −10 dB (figure 6.33c) noise
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cases, the application of the coherence segmentation was seen to decrease the quality

of the BSC estimate in almost all cases.
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Figure 6.33: Segmentation results for speckle model 3. Figures correspond to the

noiseless (6.33a), -20dB (6.33b) and -10dB (6.33c) cases.
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6.4 Discussion

6.4.1 Contrast Measurements

From the analysis of the segmentation of coherence inhomogeneities, the following ob-

servations were made.

Firstly, it was observed that the low coherence targets (the hypoechogenic circle

and rectangle targets) possessed greater coherence contrast than the high coherence tar-

gets (the hyperechogenic circle targets) relative to the speckle background. Of the low

coherence targets simulated, the coherence based approach appeared to be more adept

at segmenting the smaller circular targets (that were closer in size to the beamwidth)

than the larger, rectangular targets, although it was noted that the background speckle

in the hypoechogenic rectangle model was on average less coherent, which will have

reduced the contrast measurement. In future work, the use of the same speckle back-

ground to compare different coherence targets would provide greater assurance in the

results of such a contrast investigation. The Q-values corresponding to the highest

contrast for these models was found at 100% in the case of the circular models, and at

either 50% or 100% in the rectangular models, depending on the target. The increased

ability of the higher Q-values to identify the targets implies that the backscatter of the

speckle and the target were similar on the length scale of a few lags, and that higher

spatial lags are required to identify targets of this size (on the order of the beamwidth).

Secondly, it was found that the addition of noise improved the coherence contrast

in the low coherence models, which was hypothesised to be due to the effect of in-

creasing the incoherence in low backscatter areas (the targets) more substantially than

the higher backscatter areas (the background speckle). This result suggests both that

the qualitative results of coherence based evaluation of tissue should be categorised by

the noise condition. This could present a limitation to coherence based segmentation

for BSC estimation, as it introduces another factor (the noise level) that is required

to be normalised for in comparing quantitative results. The promising result of this
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observation is that it suggests that noise could be added to backscattered data for the

delineation of low coherence regions of tissue, which could aid the segmentation of two

hypothetical regions differentiated solely by their coherence characteristic.

Thirdly, the high coherence targets were shown to possess a lower coherence con-

trast relative to the speckle background. This result suggests that an increase in off-axis

scattering contributions (as per the incoherent models) results in a greater reduction in

measured coherence than reduction in off-axis scattering results in coherence increase.

This result is limitation of the coherence based segmentation presented, as it implies

that the approach is more sensitive to regions of low coherence than high coherence.

The counter-argument to this point is that the only tested conditions involved increased

coherence through the design of strong off-axis scatterers, and that the methodology

may be as adept at identifying high coherence regions not formed of highly echogenic

scatterers. Such a region could represent a high backscattering strength purely due to

the structure of the associated scatterers.

Fourthly, it was observed that the backscattered amplitude provided a greater mea-

sure of contrast between the background speckle and target regions where the target and

background speckle pixels were manually selected. This result may have been expected,

since the coherence targets were generated through altering the strength of scattering.

This represents a limitation of the design of this study. Future work should consider

the construction of scattering regions that generate high levels of coherence through

structure as opposed to the scattering strength of the individual scatters. Structures

such as these may prove as echogenic as surrounding speckle in a B-mode image, but

differ in coherence characteristics.

6.4.2 Coherence Segmentation of Low Coherence Targets

From the segmentation of the hypoechoic models based on their coherence properties,

the coherence based segmentation was seen to increase the accuracy of BSC estimates

most effectively where low percentage segmentation was implemented. Application of
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the segmentation algorithm to implement a 10% reduction in the number of averaged

simulation lines was shown to reduce the error in BSC estimation measured in the hy-

poechoic circular and rectangular models under all three noise conditions, and reduce

the error for the rectangular model in the cases where noise was added to the simu-

lation. The reason for the greater accuracy of segmented BSC estimates at the lower

segmentation percentage can be hypothesised to be due to the size and backscattering

properties of the coherence targets. In the hypoechoic circular and rectangular models,

the coherence targets accounted for 7% and 10% of the model area respectively, and

- through manual segmentation of the targets - accounted for most of the discrepancy

between the theoretical BSC and the unsegmented BSC estimate. This implies that

the simulated background speckle was in high agreement with the theoretical model of

the incoherent BSC, or else the error contribution from the background speckle regions

would have been greater. This resulted in the accuracy of the segmentation process

being dictated by the efficacy with which the coherence targets were segmented. This

observation is an indication of why the post-segmentation estimates of the BSC from

the hypoechoic rectangular models were found to be poorer than the circular mod-

els: the unsegmented results represented a greater underestimate of the BSC due to the

greater spatial extent of the coherence targets (as indicated by the quoted error from the

manual segmentation and unsegmented BSC estimate) and the targets themselves had

reduced contrast relative to the speckle background (as shown from the evaluation of

the rectangular target contrast). The aim of the segmentation algorithm was to present

a tool to segment regions based on their coherence, irrespective of whether the region

was speckle or coherence target in its design, and the outcome bias towards segmenta-

tion of the target regions (due to their high inhomogeneity in BSC), is a limitation of

this study. Future work should consider attempts to model tissues based on measured

tissue structures to assess whether the models here represent realistic inhomogenieties.
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6.4.3 Coherence Segmentation of High Coherence Targets

Considering now the hyperechoic circular model, it was observed that the coherence

segmentation either maintained, or slightly improved the quality of the final BSC es-

timate across all the considered noise cases. As identified with the previous models,

the main constituent of the error was the coherence target, from which it may be ob-

served that, once again, the theoretical value of the BSC as computed was accurate

to the simulation model. In addition, if we assume that the segmentation algorithm

was sub-optimal in segmenting the high coherence regions (an assumption based on the

low contrast measurements), then it would be logical that the maintenance of the BSC

esimtates observed for this model corresponds to a segmentation of the background

speckle based on the ground truth speckle characteristics that did not substantially

change the BSC. The relatively small changes in the BSC estimation error (even at

high segmentation percentages) would suggest in that case that the background speckle

was - to an extent - tracing the path of the EML, maintaining the same contribution

to the global BSC estimate whilst being segmented. If this were to be true, it would

suggest that the background speckle was behaving with the same coherence-BSC char-

acteristics as the ground truth speckle. This would imply that the ground truth speckle

model characteristics could be applied to other, speckle based models.

6.4.4 Coherence Segmentation of Speckle Models

6.4.4.1 Speckle Model 1

We first consider speckle model 1. This model was comprised of scatterers with the same

properties and number density (41 scatterers per resolution cell) as the ground truth

speckle model and produced an unsegmented BSC estimate that was an overestimate

of the theoretically predicted value by 5%. Unlike the coherence target models, this

overestimate must be attributed to interference effects generated by the random posi-

tioning of the scattering elements. The aim of the coherence segmentation algorithm

in this case is to segment the naturally occurring coherence fluctuations to improve the
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final BSC estimate.

Turning our attention to the noiseless simulation, it was observed that the un-

segmented overestimate in BSC was not noticeably changed by the application of the

coherence segmentation. The BSC estimation error remained constant up to a segmen-

tation percentage of 50%, at which point the error absolute value of the error was seen

to diverge. Using the arguments presented earlier, we can hypothesise that the relative

stability at low segmentation percentages corresponds to the scattering model moving

along the EML as developed from the ground truth speckle model. The divergence in

the estimate for higher values can then be attributed to the variability associated to

the relationship between the coherence and BSC. Divergence at higher segmentation

percentages in the models with coherence targets could have been attributed to the

segmentation of regions within the target that represented large BSC outliers, but in

the case of the speckle models, we assume the model is statistically homogeneous. In

this cases, it is hypothesised that the relatively fewer data points make the final BSC

estimate more sensitive to individual outliers in BSC that occur naturally. Since the

relationship between coherence and BSC is not monotonic (as seen in figure 6.22), in-

dividual outliers with median coherence but extreme (relative to the distribution of

values) measures of BSC can be hypothesised to have a larger effect on the eventual

BSC estimate. This is most apparent when we consider the probability distribution

of the ground truth speckle pattern in figure 6.25. The right skew of the distribution

indicates that the majority of the BSC values from the simulation lines are low in value,

with few large estimates. As the segmentation reaches higher percentages, the addition

of one of these higher values will have a greater effect on the overall BSC estimate.

Considering now the −20 dB case, the segmentation algorith was seen to improve the

BSC estimation accuracy consistently up to segmentation percentages of around 50%.

Further segmentation resulted in divergence of the BSC estimate. The −10 dB case also

improved the absolute BSC estimate error for a segmentation of 10%, but the results

diminished in quality with further segmentation.
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Considering the three noise cases together, it is not immediately apparent why the

10% segmentation resulted in improvements for the noisy cases but not for the noiseless

case, but a potential hypothesis may be presented. Firstly, it is noted that the EML that

dictates the segmentation thresholds is based on a larger data set than the test cases. In

addition, the threshold values divined from the EML are computed on a mean basis, i.e.

how the effect of the segmentation affects the mean BSC produced. Thirdly, we note

that the BSC probability distribution is highly left skewed. To explain the observation

that the application of the coherence segmentation algorithm to these data sets in the

presence of noises causes reduction in BSC estimate, it is therefore hypothesised that

the BSC estimate produced from the ground truth speckle pattern is less sensitive to

high BSC data points than the test data sets. This hypothesis is predicated on the

fact that the EML that dictates the segmentation parameters is a reflection of the

mean BSC estimate from the ground truth data set. As we have noted, the left skewed

nature of the probability distribution means that the segmentation of one high BSC data

point will have less of an effect on the BSC estimate than the equivalent segmentation

applied to a smaller data set. In the noiseless case, segmentation of high coherence

data points is performed on a slower basis for a given segmentation percentage, due

to the right skew of the coherence probability distribution function (figure 6.23), but

for the noisier cases, the upper threshold of coherence segmentation will be lower for a

given segmentation percentage, and the effect of segmenting high BSC data points will

be more pronounced. If this effect were manifest in this data set, it would represent a

limitation of the segmentation approach, as identical sized data sets would be required

for the ground truth data set and the test sample. This would be in contradiction to

the design of the approach, whereby a large test data set is used to cover a wide range

of potential backscattered coherence values. The obvious limitation to this presented

hypothesis is that a similar effect is not observed in the aforementioned models where

coherence outliers are included in the simulation domain.
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6.4.4.2 Speckle Model 2

Whilst speckle model 1 could be considered as a sub population of the speckle producing

medium from which the ground truth data set and the EMLs were computed, speckle

model 2 represents the first application of the segmentation approach on an incoherent

scattering medium possessing different statistical properties. Both speckle models 1 and

2 were expected to produce fully developed speckle characteristics. For this reason, the

testing of speckle model 2 using the coherence characteristics the ground truth speckle

model constitutes a test of the theory that fully developed speckle patterns should ex-

hibit coherence characteristics dependent on the emitted beam auto-correlation function

and the receive aperture characteristics.

The results of this investigation possessed similar characteristics to those observed

for speckle model 1. In the noiseless case, the absolute error was shown to be maintained

up to around 50% segmentation, at which point the result was observed to diverge.

This divergence was attributed to the same mechanisms as were outlined to describe

the divergence of the speckle model 1 results. When noise was added to the simulated

data, the result was observed to reduce the efficacy of the segmentation appraoch. In

the −20 dB case, the estimation accuracy in the BSC was observed to reduce for all

segmentation percentatges, particularly after 20% segmentation. In the−10 dB case the

reduction in accuracy was even more apparent, with the estimation accuracy decreasing

with increased segmentation percentage. As with speckle model 1, the discrepancy in

the accuracy between the noiseless and noisy cases is not understood.

6.4.4.3 Speckle Model 3

Speckle model 3 represented an underdeveloped speckle case, with fewer than 10 scat-

terers per resolution cell. The backscattered coherence characteristics were therefore

not expected to match those of the fully developed speckle cases presented in speckle

models 1 and 2. With fewer scatterers contained within the resolution cell, the echoes

were expected to be more coherent in nature, which one would expect to result in a
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different response to the application of the segmentation algorithm. Despite this, the

behaviour of this model was notably similar to the previously discussed. In the noiseless

case, the segmentation algorithm maintained a constant estimate in BSC, before seg-

mentation percentages above 50% caused divergence in results (once again attributed

to the relationship linking coherence and BSC value). In the −20 dB and −10 dB cases,

the results resembled that of speckle model 2, whereby increased segmentation resulted

in increasing underestimates of the BSC.

6.4.5 Future Work

Future work that could improve the contrast as measured by the coherence character-

istics would be to employ a more regional based approach to the segmentation. Within

the coherence images of the simulated models, the coherence targets were visible, and

yet the ability of the algorithm to segment them effectively (as shown by figures 6.28a

6.28b and 6.28b) appeared low. The design of the algorithm was such as to allow the

segmentation of both speckle regions of high/low coherence as well as the target regions,

but in the simulated models, the high dependence of the accuracy of the final result on

target segmentation indicates that prioritising segmentation of the target regions would

have produced more accurate outcomes. To this end, an approach that attempted to

connect regions of high or low coherence found in proximity to one another may have

improved the final result. In future work, the adaptation of the algorithm to connect lo-

cal coherence features that could be indicative of structure might provide better target

segmentation, improving the final BSC estimate.

As an extension of this, the segmentation algorithm could be redesigned to - instead

of axially averaging coherence values to generate one average per simulation line - to

perform the segmentation to generate confidence values for pixels within the coherence

image based on their coherence value. The combined confidence of the pixels within an

axial line could then be used to produce a weighted average of the values to generate the

BSC estimate. This approach would result in discarding of data, and would generate
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a regional map of values displaying confidence in the BSC estimate acquired from the

region.

As previously mentioned, future investigation into the applicability of this approach

should be concerned with ensuring that the modelled coherence or BSC outliers are

representative of those that would be found in soft tissue. Since the motivation for

developing this approach is to improve BSC estimates for tissue characterisation, it is

imperative that the algorithm be tested against structures that be expected to occur

in the proposed sample to be analysed.

To increase confidence in the utility of this approach, it should also be compared

against other segmentation approaches. In this work, the coherence contrast of the

targets was compared to the B-mode image contrast through the averaging of the pixel

values within target regions. To provide a measure of the utility of this approach, the

effect of segmentation by other such metrics should be performed, in order to establish

confidence that the coherence is a viable metric for the segmentation of the BSC data.

Whilst maintaining within the sphere of simulation based investigation, it would

be useful to repeat the described experiments with different emit and receive apertures,

to assess how the f-number of the simulated source (in both emit and receive mode)

affects the results.

To apply this approach to real samples and transducers, a primary investigation

should be conducted to test the viability of the segmentation algorithm to a test sample

such as a phantom. The EMLs generated for the data sets presented within this chapter

will be specific to the emit and receive aperture of the simulated source, and - to an

unknown degree - the ground truth speckle data set, so application of this concept

will require significant investigation to assess its feasibility in a non-simulation based

experiment.

Lastly, given the large number of parameters considered within this investigation,

including - but not limited to - the Q-value, the number of axial kernels used in averag-

ing, the noise condition and the segmentation strength, it would present an interesting
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challenge to assess using a multi-variate approach. Robust PCA has been proposed for

the analysis of coherence imaging over short lags[168], and the high dimensionality of

the parameter space suggests that such an approach could provide greater insight into

the observed variability of the results.
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6.5 Conclusion

To conclude, this chapter has presented simulation models with spatially imposed vari-

ation in coherence and BSC value, which was then used to test the feasibility of BSC

data segmentation based on echo coherence.

To investigate this, tests were performed to investigate the coherence contrast

of simulated targets. This was performed through the simulation of a backscatter

experiment of a sample containing a speckle producing background region and regions

with altered coherence and BSC contrast. The contrast of these regions was measured

using coherence and B-mode image brightness metrics. The three contrast regions were

as follows: a circular, low coherence and backscatter region of similar size to the beam

width; a rectangular low coherence and backscatter region larger than the beam width;

a circular high coherence and backscatter region of size similar to the beamwidth. The

investigation revealed that the coherence was most adept at segmenting the circular,

low coherence target of size similar to the beam width. The measured contrast was

observed to increase in the presence of noise, and with the number of spatial lags used

to calculate the coherence value for a given position. Reduced contrast was observed in

the segmentation of the larger, rectangular incoherent target, indicating that the spatial

extent of the coherence target had a detrimental effect on the ability of the coherence

metric to segment this region. Once again, target contrast was improved through the

addition of white, Gaussian noise, and through the incorporation of higher spatial lags

in the coherence evaluation. The contrast was poorest for the high coherence target,

where the target exhibited little contrast in the coherence image. For this case, the

addition of noise or higher spatial lags did not result in an improvement in the results.

Following this investigation, an algorithm was described by which the model would

be segmented based on the coherence characteristics of a ground truth data set that was

designed to be representative of an ideal speckle pattern for BSC estimation. Through

calculation of segmentation thresholds that minimised the error between the BSC esti-

mate of the ground truth data set and a theoretically determined BSC value, an error
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minimising set of coherence segmentation parameters were developed for application on

unseen data sets.

The segmentation parameters from the ground truth data set were then applied to

results acquired from backscatter simulations of a set of models. Three of the models

contained background speckle producing regions and coherence outliers which repre-

sented targets for segmentation. Three more models were produced of speckle producing

media, to test the ability of the model to segment the echoes produced from an incoher-

ent scattering media and improve the associated BSC estimate produced. These three

models were distinguishable by their number density, which was hypothesised to alter

their coherence characteristics, thereby testing the ability of the algorithm to improve

the BSC estimate for an unseen speckle region.

Implementation of the segmentation algorithm on the six data sets produced a mix

of results. BSC estimates calculated from models containing low coherence targets were

mainly shown to be improved through the application of the segmentation routine in

cases where the segmentation percentage was set to segment around 10% of the input

data. This result was observed for all bar one of the simulated cases. The results of the

application of the segmentation algorithm was noted to be most effective in conditions

where noise was included in the simulated data, for which consistent improvement was

observed in all cases using the 10% segmentation. The BSC estimates calculated from

models containing high coherence targets was shown to perform more poorly, with

higher levels of segmentation required to register improvements in the BSC estimates.

Unlike the low coherence models, the addition of noise did not appear to improve

the quality of the BSC estimates. The results of the speckle models were the least

promising of the three, with the application of the segmentation approach appearing

to either maintain the current BSC estimate in the noise free simulations, or result in

immediate reduction in BSC estimate in the simulations with added noise.

Future work within this field should seek to analyse further the relationship between

the BSC and coherence to refine the algorithm for segmentation of speckle patterns,
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and to simulate coherence structures based on soft-tissue like structures for application

in the improvement of BSC estimates for tissue characterisation. Additionally, the

considerations for different source apertures should be considered in both emit and

receive modes. Finally a suggestion of multivariate analysis is proposed, to deal with

the high dimensionality of the parameter space considered.
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Chapter 7

Discussion

Chapter 3 contains results simulating the attenuation of a plane wave ultrasound pulse

by layers of attenuating material. In one simulation case, impedance-matched models

were used to investigate the effect of attenuation in the absence of boundary reflections

between attenuating and non-attenuating layers. In the second case, a model was simu-

lated with geometric and acoustic properties mimicking human skin, fat and muscle, to

assess the ability of the simulation method to calculate the attenuation of an ultrasound

pulse attenuated by materials modelled on tissue properties.

The aim of chapter 3 was to provide proof of concept results for two potential end

goals. The first was the concept of patient specific attenuation correction. Whilst the

simple models presented in chapter 3 do not represent the full complexity of the human

anatomy, the construction of wave propagation simulation models through delineating

tissue regions and assigning acoustic properties to them based on published data has

recently been applied by other authors such as Kumar et al.[169]. Although they

were modelling therapeutic ultrasound beam propagation, this required attenuation

calculation and their approach applying published attenuation coefficients to segmented

tissue regions was similar to that in chapter 3. To extend these models towards a

patient-specific attenuation correction, many further steps would be required, but the

findings presented provide a positive first step towards this goal.

The second aim of chapter 3: of generating a simulation tool within which attenu-
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ation correction algorithms could be tested, the combination of the results of chapters 3

and 4 present a strong case for this. The accurate reproduction of the total, frequency

dependent attenuation in the former and the theoretical backscatter properties in the

latter suggest that a model combining these two approaches could be used to generate

test data against which methods for correcting BSC estimates for attenuation in both

the intervening tissue and within the scattering volume could be tested with known

ground truths for both the attenuation and backscatter properties.

Two observations were made from this study. The first observation was that the

attenuation measured from the simulation was shown to be numerically closest to the

theoretically calculated value in cases where the domain was discretised to produce a

mesh comprised of elements of length equal to 1/50th of the central wavelength of the

simulation. This condition for mesh refinement was stricter than other results from the

literature. The most comparable study was performed by Egerton et al. [130], who con-

sidered mesh discretisation values of 20 elements per wavelength and 40 elements per

central wavelength for their application of the multi-band Finite element (FE) method.

Since the analysis approach was different in this study, direct comparison of the atten-

uation errors relative to the theoretical value are not directly comparable between the

studies. However, the conclusions were that increased accuracy relative to the theo-

retical model for the wave propagation was observed when the mesh discretisation was

increased from 20 elements to 40 elements per wavelength, in alignment with the obser-

vations made within chapter 3. The second observation made was that variation in the

time step over the range of values considered (corresponding to Courant values from

0.01 to 0.5 in increments of 0.01) resulted in a smaller variation in the computed atten-

uation than variation in the mesh discretisation was also noted by Egerton et al.[130].

The largest error (of 1.4%) in the measured attenuation relative to the theoretical value

was observed where a mesh discretisation of 10 elements per wavelength and a Courant

value of 0.5. Using a mesh discretisation of 50 elements per wavelength produced errors

no greater than 0.15% relative to the theoretical value. The optimal time step of the
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considered values was found to be 0.5.

These mesh discretisation observation take on increased importance when consid-

ered in relation the results of chapter 4 . In section 4.2.2.1, the scatterers that mimic

the soft tissue scatterers were designed using a mesh discretisation of 50 elements per

wavelength, which produced both accurate modelling of an isotropic sub-wavelength

scatterer (as required by the definition of the BSC) and good agreement between simu-

lated BSC estimates using the focused sources in chapter 4 and the known (theoretical)

values of the BSC. The fact that the most accurate attenuation characteristics were

observed for the properties that also produced accurate representation of the scattering

behaviour suggests that attenuation could be incorporated into the scattering simula-

tions without a need to consider the trade-off between the attenuation and scattering

behaviours. The parameters used with respect to the time step (i.e. a Courant value of

0.5 for the attenuation simulations and 0.1 for the scattering simulations) does repre-

sent a need to identify a trade off between these factors. However, as seen in chapter 3,

the time step appeared to be a much smaller factor in attenuation modelling accuracy

than the mesh refinement. Investigations into the effect of the time step on the BSC

estimation accuracy were not considered, and cannot be commented on.

A limitation of the study presented in this chapter was that sound speed dispersion

effects were not considered. Soft-tissue materials are shown to exhibit low dispersion

across clinical frequencies, and mathematical models of wave propagation typically do

not consider this effect. For this reason, a confirmation that the correct degree of

dispersion effects were produced by the multi-band approach should be considered in

future work.

In chapters 4 and 5, it is noted that the unfocused sources in chapter 5 produced

BSC estimates that deviated from the theoretical BSC more strongly than the focused

source simulations of chapter 4 (seen through comparing the results presented in figures

4.8 and 5.11). Consultation of table 5.8 confirms that the most accurate results acquired

(using method two with the sample placed at the last axial maximum) were underes-
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timates of the theoretical BSC value by 8.10% and 10.59% for the 2.0 cm and 2.4 cm

apertures respectively. By contrast, the largest discrepancy between the estimated and

theoretical BSC found in figure 4.8 was 6.35%, and the smallest 3.04%. These two

figures correspond to the estimation of the BSC over the same set of 1000 scattering

ensembles, and hence the accuracy of the two estimation accuracies can be directly

compared. Whilst comparison between focused transducers of different types (single

element comparisons against array transducers, or the comparison of single element

transducers with different f-numbers) are found in the literature [2][92][90][88][89][92],

a search of the relevant literature did not reveal any comparisons between the accuracy

of BSC estimates as measured by focused or unfocused sources. The comparison of

the results from these chapters could therefore be considered as a result in itself. Use

of the method 1 approach with the unfocused sources in chapter 5 resulted in signifi-

cant underestimates at the last axial maximum, with decreasing underestimation as the

sample and planar reflector were moved into the far-field. Even with the reduction in

error, the results deviated from the theoretical value more substantially in the case of

the unfocused source than the results presented for all the focused sources in chapter 4.

These two compared cases (the unfocused cases with method 1 and the focused cases)

employed the same measurement equation and were analysing the same set of scatter-

ing models, from which we may conclude that – for the considered cases – that focused

sources provide better BSC estimates than unfocused sources. One could hypothesise

that use of method 1 with the sample and planar reflector further into the far-field could

generate BSC estimates that are closer to the theoretical model than the estimates pro-

vided by the focused source, but – as argued previously – the effective increase in the

beamwidth and source sample distance would result in reduced spatial resolution in

the BSC estimates, and would also reduce the signal strength due to reduction in solid

angle of reception. The best results using method 2 and the unfocused source were

found to be for sample positions nearer to the source, which was hypothesised to be

due to a coincidental cancellation of the error between sample echo phase cancellation
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and reference reflection beam divergence.

Common to the results of chapters 4, 5 and 6 was the use of individual mesh

elements to represent sub-wavelength discrete scattering bodies. Using the mesh dis-

cretisation of 50 elements per centre wavelength (3mm at 0.5MHz), this results in a

scatterer size of 60µm. The effective diameter of scatterers that populate a medium can

be estimated from the backscatter coefficient estimate made from the region through

the application of analysis on the frequency dependence of the BSC. This analysis was

not performed on the backscattered data within this thesis, and yet: from the accuracy

observed in the backscatter coefficient estimates, one could hypothesise that these data

sets could produce good estimates of the scatterer size. To apply such an analysis to the

results presented would constitute a sanity check of the scattering diameter estimation

algorithm, since the scatterer diameter is already used in computation of the theoret-

ical BSC value against which the BSC estimates were computed with high accuracy.

Nevertheless, the ability to reliably produce accurate estimates of the BSC does imply

that these simulation models could be capable of testing scatterer diameter estimation

algorithms. Of interest within this field of research is the development of algorithms

to generate scatterer diameter estimates where a range of scattering sizes are present

within the scatterer population [170][171]. An example study by Nordberg et al. [170]

artificially generated BSC data values before application of the scatterer diameter esti-

mation algorithm. Their approach provided a highly idealised data set for the analysis.

The results presented within this thesis could be argued to present an opportunity to

analyse BSC data generated from time domain simulations of wave scattering, which

would represent a more realistic method of analysing scatterer diameter. An extension

of this idea could be to consider the simulation of an inhomogeneous continuum model

(see section 1.3.3) using an adaptation of the approaches presented in this thesis to

model the scattering due to bulk modulus and/or density fluctuations over multiple

elements within the FE mesh.
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Chapter 8

Conclusion

Chapter 3 described an investigation into the attenuation characteristics of soft tis-

sue like materials through Finite Element (FE) simulations. This investigation found

that the representation of simulated models that produced the most accurate and reli-

able attenuation modelling was achieved where the simulation domain was discretised

spatially to produce 50 finite elements per centre wavelength of the simulation. The

optimal results were shown to be where the wave propagation was modelled using a

time step of Courant value 0.5. The results of this chapter indicated that a multi-band

finite element modelling approach was able to generate linear and power-law frequency

dependencies of attenuation coefficient, with the analysis of the measured attenuation

reproducing the input attenuation coefficient parameters reliably and to a high degree

of accuracy. A human tissue mimicking model containing layers of human skin, fat and

muscle was developed, which was shown to accurately reproduce attenuation and inter-

face reflection of the simulated materials based on published tissue properties. The aim

of the work presented in this chapter was to highlight the potential for the re-purposing

of a tool to show its applicability in modelling wave attenuation by soft tissue like

materials. The work reported in this chapter achieved this through demonstrating the

capability of an FE simulation tool to simulate a measurement of the attenuation of an

infinite plane wave through a region imitating a section of tissue. This work provides

a proof of concept for the concept of calculating the attenuation correction for a BSC
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measurement through use of FE methods.

Chapter 4 outlined mathematical reformulations of equations for calculation of the

backscatter coefficient (BSC) and FE simulations of a tissue backscatter experiment.

The resulting estimates of the incoherent scattering BSC for a tissue-mimicking sample

created within the FE model using focused sources of ultrasound. The results were

shown to produce accurate BSC estimates within 6% of the theoretically calculated BSC

value in the case of models simulating speckle producing tissue samples, across a range

of source f-numbers, and were also shown to exhibit speckle statistics expected of a fully

developed speckle model. The simulations were also shown to produce good estimates

of the BSC across a range of simulated number densities of scatterers present, with

results within 24% of the theoretical value. The aim of this chapter was to simulate the

backscattering behaviour from a tissue mimicking sample comprised of scattering bodies

that mimicked the speckle producing scatterers found in soft tissues. The agreement

between the simulation and the developed mathematics indicated that this had been

achieved. The value of this result is in developing a tool by which BSC estimation

approaches could be investigated using simulations with relatively low computational

cost. For example, this tool could be applied to investigate into factors related to

the test sample or the simulated source, to determine where sources of error occur

in estimations of the BSC, and help to improve experimental and analysis techniques

through interrogation of these factors.

Chapter 5 detailed an investigation into the effect of planar reflector positioning

on the quality of BSC estimates measured using unfocused sources. Through adap-

tation of the simulation and mathematical methods developed in chapter 4, a set of

planar reflector and sample distances were considered. The BSC was estimated for the

simulated tissue samples used in chapter 3 using two unfocused sources.

This investigation revealed that BSC accuracy maximisation was achieved through

placing the sample at the last axial maximum of the source and the planar reflector

at half this distance. This combination of sample and planar reflector position was
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hypothesised to minimise the error in the estimation of the backscattered powers from

the two scattering materials considered, and as a results provide the most accurate BSC

estimate. The investigation also revealed that when the sample was placed at an on-

axis point in the the far field of the unfocused source, BSC estimation inaccuracy was

minimised through placing the planar reflector at the same depth as the sample. Using

the developed tool, the effect of diffraction correction accuracy and applicability was

assessed through the positioning of the reference reflector. This result was an indication

of how the developed simulation may be used to improve the accuracy of BSC estimates,

and make the BSC a more clinically useful metric for tissue characterisation.

Chapter 6 contains descriptions of an investigation into the relationship between

the spatial wave coherence of received echoes and the measurement of the BSC. BSC

data sets were simulated using the methods developed in chapters 3 and 4, and the

backscatter characteristics were analysed relative to the coherence of the backscattered

waves. Within this chapter, a coherence based segmentation algorithm was developed

to remove coherence outliers from BSC data sets, with the aim of improving the final

BSC estimate. This investigation revealed that coherence based approaches were able

to improve the BSC estimate of the simulation model through segmentation of high and

low coherence regions in certain cases. It was found that the coherence based approach

developed was most adept at improving BSC estimations where low coherence targets

were embedded in a speckle background, and that the addition of noise to such models

was necessary to improve coherence contrast of the targets. The investigation found

that the high coherence targets modelled were less easily segmented using coherence,

and that improvement in the BSC estimation was not as reliably found, and not influ-

enced through the addition of noise. Finally, a coherence based segmentation approach

was applied to test speckle patterns, which did not alter BSC estimate in noiseless cases,

and caused underestimation of the BSC when noise was added to the RF echo data sets.

Whilst chapter 5 considered the effect of the measurement approach on the accuracy

of the BSC estimation, this chapter investigated how the structural and acoustic prop-
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erties of a sample affect the resulting BSC estimate. This work provided both insight

into the effect of spatial variation in coherence on BSC estimation and contributed to

the investigation into spatial wave coherence through analysis of simulated coherence

targets. In addition this chapter contributed a novel method for the segmentation of

BSC data.

The limitations of the results presented in this thesis are in their applicability to

real world examples, particularly in terms of dimensionality. Whilst chapter 3 presented

results using tissue properties taken from published data, the design of the scattering

media, and of the coherence targets in chapters 4, 5 and 6 were constructed theoretically

in order to generate certain effects: the impact of which on the BSC were then evaluated.

To improve on the applicability of these results, the first step for future work should

be to develop and improve on the similarity between the simulated models and the

soft tissue structures they represent. An obvious example of this is to reconstruct the

models in 3D. A limitation of the results presented lies in their dimensionality.

This thesis has presented methods for and results from investigating BSC measure-

ment methods, with the aim of improving their accuracy. With future work, application

of these approaches and findings should contribute to further research that will increase

the clinical applicability of BSC estimation, particularly for tissue characterisation in

assessment of tumour state. If developed and applied in this way, BSC measurement

holds potential to provide biomarkers that are early indicators of response, which would

make treatment more adaptable and personalised. This could allow early selection of

treatments that are most effective, reduction of suffering of patients throught earlier

cessation of treatments that otherwise prove eventually ineffective.

250



Bibliography

[1] Goutam Ghoshal, Michael L. Oelze, and William D. O’Brien Jr. Quantitative

Ultrasound in Soft tissues. Ed. by Jonathan Mamou and Michael L. Oelze. Dor-

drecht: Springer, 2013. Chap. 2, pp. 21–42.

[2] Roberto Lavarello and Michael L. Oelze. “Quantitative ultrasound estimates

from populations of scatterers with continuous size distributions”. In: IEEE

Transactions on Ultrasonics, Ferroelectrics and Frequency Control 58.4 (Apr.

2011), pp. 744–753. doi: 10.1109/tuffc.2011.1867.

[3] Gloria H. Heppner and Fred R. Miller. “The Cellular Basis of Tumor Progres-

sion”. In: International Review of Cytology. 1997, pp. 1–56. doi: 10 . 1016 /

s0074-7696(08)62230-5.

[4] Patrick Therasse et al. “New Guidelines to Evaluate the Response to Treatment

in Solid Tumors”. In: JNCI: Journal of the National Cancer Institute 92.3 (Feb.

2000), pp. 205–216. doi: 10.1093/jnci/92.3.205.

[5] Martin D. Pickles et al. “Diffusion changes precede size reduction in neoadjuvant

treatment of breast cancer”. In: Magnetic Resonance Imaging 24.7 (Sept. 2006),

pp. 843–847. doi: 10.1016/j.mri.2005.11.005.

[6] A.R Padhani. “Functional MRI for anticancer therapy assessment”. In: European

Journal of Cancer 38.16 (Nov. 2002), pp. 2116–2127. doi: 10.1016/s0959-

8049(02)00388-x.

251

https://doi.org/10.1109/tuffc.2011.1867
https://doi.org/10.1016/s0074-7696(08)62230-5
https://doi.org/10.1016/s0074-7696(08)62230-5
https://doi.org/10.1093/jnci/92.3.205
https://doi.org/10.1016/j.mri.2005.11.005
https://doi.org/10.1016/s0959-8049(02)00388-x
https://doi.org/10.1016/s0959-8049(02)00388-x


[7] Vanessa N Harry et al. “Use of new imaging techniques to predict tumour re-

sponse to therapy”. In: The Lancet Oncology 11.1 (Jan. 2010), pp. 92–102. doi:

10.1016/s1470-2045(09)70190-1.

[8] Robert A. Gatenby et al. “Adaptive Therapy”. In: Cancer Research 69.11 (June

2009), pp. 4894–4903. doi: 10.1158/0008-5472.can-08-3658.

[9] Martin D. Pickles et al. “Role of dynamic contrast enhanced MRI in monitoring

early response of locally advanced breast cancer to neoadjuvant chemotherapy”.

In: Breast Cancer Research and Treatment 91.1 (May 2005), pp. 1–10. doi:

10.1007/s10549-004-5819-2.

[10] T. L. Chenevert. “Diffusion Magnetic Resonance Imaging: an Early Surrogate

Marker of Therapeutic Efficacy in Brain Tumors”. In: Journal of the National

Cancer Institute 92.24 (Dec. 2000), pp. 2029–2036. doi: 10.1093/jnci/92.24.

2029.

[11] Daniel A Hamstra, Alnawaz Rehemtulla, and Brian D Ross. “Diffusion magnetic

resonance imaging: a biomarker for treatment response in oncology”. In: Journal

of clinical oncology 25.26 (2007), pp. 4104–4109.

[12] Martin D Pickles et al. “Role of dynamic contrast enhanced MRI in monitoring

early response of locally advanced breast cancer to neoadjuvant chemotherapy”.

In: Breast cancer research and treatment 91 (2005), pp. 1–10.

[13] ML George et al. “Non-invasive methods of assessing angiogenesis and their value

in predicting response to treatment in colorectal cancer”. In: British Journal of

Surgery 88.12 (2001), pp. 1628–1636.

[14] Mark C Preul et al. “Using proton magnetic resonance spectroscopic imaging

to predict in vivo the response of recurrent malignant gliomas to tamoxifen

chemotherapy”. In: Neurosurgery 46.2 (2000), p. 306.

252

https://doi.org/10.1016/s1470-2045(09)70190-1
https://doi.org/10.1158/0008-5472.can-08-3658
https://doi.org/10.1007/s10549-004-5819-2
https://doi.org/10.1093/jnci/92.24.2029
https://doi.org/10.1093/jnci/92.24.2029


[15] Amita Shukla-Dave et al. “Prediction of treatment response of head and neck

cancers with P-31 MR spectroscopy from pretreatment relative phosphomo-

noester levels”. In: Academic radiology 9.6 (2002), pp. 688–694.

[16] Wolfgang A Weber et al. “Positron emission tomography in non–small-cell lung

cancer: prediction of response to chemotherapy by quantitative assessment of

glucose use”. In: Journal of Clinical Oncology 21.14 (2003), pp. 2651–2657.

[17] Jian-Wei Wang et al. “Ultrasound elastography as an imaging biomarker for

detection of early tumor response to chemotherapy in a murine breast cancer

model: a feasibility study”. In: The British Journal of Radiology (Feb. 2018),

p. 20170698. doi: 10.1259/bjr.20170698.

[18] Jason Fernandes et al. “Monitoring Breast Cancer Response to Neoadjuvant

Chemotherapy Using Ultrasound Strain Elastography”. In: Translational Oncol-

ogy 12.9 (Sept. 2019), pp. 1177–1184. doi: 10.1016/j.tranon.2019.05.004.

[19] JC Bamber and CR Hill. “Acoustic properties of normal and cancerous human

liver—I. Dependence on pathological condition”. In: Ultrasound in medicine &

biology 7.2 (1981), pp. 121–133.

[20] Kibo Nam et al. “Ultrasonic Attenuation and Backscatter Coefficient Estimates

of Rodent-Tumor-Mimicking Structures: Comparison of Results among Clinical

Scanners”. In: Ultrasonic Imaging 33.4 (Oct. 2011), pp. 233–250. doi: 10.1177/

016173461103300403.

[21] Roxana M. Vlad et al. “Quantitative Ultrasound Characterization of Responses

to Radiotherapy in Cancer Mouse Models”. In: Clinical Cancer Research 15.6

(Mar. 2009), pp. 2067–2075. doi: 10.1158/1078-0432.ccr-08-1970.

[22] Jonathan Mamou et al. “Three-Dimensional High-Frequency Backscatter and

Envelope Quantification of Cancerous Human Lymph Nodes”. In: Ultrasound

in Medicine and Biology 37.3 (Mar. 2011), pp. 345–357. doi: 10 . 1016 / j .

ultrasmedbio.2010.11.020.

253

https://doi.org/10.1259/bjr.20170698
https://doi.org/10.1016/j.tranon.2019.05.004
https://doi.org/10.1177/016173461103300403
https://doi.org/10.1177/016173461103300403
https://doi.org/10.1158/1078-0432.ccr-08-1970
https://doi.org/10.1016/j.ultrasmedbio.2010.11.020
https://doi.org/10.1016/j.ultrasmedbio.2010.11.020


[23] Sandeep K Kasoji et al. “Early assessment of tumor response to radiation ther-

apy using high-resolution quantitative microvascular ultrasound imaging”. In:

Theranostics 8.1 (2018), p. 156.

[24] François Destrempes and Guy Cloutier. “A Critical Review and Uniformized

Representation of Statistical Distributions Modeling the Ultrasound Echo Enve-

lope”. In: Ultrasound in Medicine and Biology 36.7 (July 2010), pp. 1037–1051.

doi: 10.1016/j.ultrasmedbio.2010.04.001.

[25] Frederic L. Lizzi et al. “Theoretical framework for spectrum analysis in ultrasonic

tissue characterization”. In: The Journal of the Acoustical Society of America

73.4 (Apr. 1983), pp. 1366–1373. doi: 10.1121/1.389241.

[26] Rubens A. Sigelmann and John M. Reid. “Analysis and measurement of ul-

trasound backscattering from an ensemble of scatterers excited by sine-wave

bursts”. In: The Journal of the Acoustical Society of America 53.5 (May 1973),

pp. 1351–1355. doi: 10.1121/1.1913479.

[27] Mitsuhiro Ueda and Yasuhiko Ozawa. “Spectral analysis of echoes for backscat-

tering coefficient measurement”. In: The Journal of the Acoustical Society of

America 77.1 (1985), pp. 38–47. doi: 10.1121/1.391898.

[28] Jeffrey Bamber et al. “Ultrasonic propagation through fixed and unfixed tissues”.

In: Ultrasound in Medicine & Biology 5.2 (1979), pp. 159–165. doi: 10.1016/

0301-5629(79)90084-x.

[29] Cuiping Li et al. “In vivo Breast Sound-Speed Imaging with Ultrasound Tomog-

raphy”. In: Ultrasound in Medicine and Biology 35.10 (Oct. 2009), pp. 1615–

1628. doi: 10.1016/j.ultrasmedbio.2009.05.011.

[30] Jakob Nebeker and Thomas R. Nelson. “Imaging of Sound Speed Using Re-

flection Ultrasound Tomography”. In: Journal of Ultrasound in Medicine 31.9

(Sept. 2012), pp. 1389–1404. doi: 10.7863/jum.2012.31.9.1389.

254

https://doi.org/10.1016/j.ultrasmedbio.2010.04.001
https://doi.org/10.1121/1.389241
https://doi.org/10.1121/1.1913479
https://doi.org/10.1121/1.391898
https://doi.org/10.1016/0301-5629(79)90084-x
https://doi.org/10.1016/0301-5629(79)90084-x
https://doi.org/10.1016/j.ultrasmedbio.2009.05.011
https://doi.org/10.7863/jum.2012.31.9.1389


[31] James F Greenleaf et al. “Algebraic reconstruction of spatial distributions of

acoustic velocities in tissue from their time-of-flight profiles”. In: Acoustical

Holography: Volume 6 (1975), pp. 71–90.

[32] CM Sehgal et al. “Measurement and use of acoustic nonlinearity and sound speed

to estimate composition of excised livers”. In: Ultrasound in medicine & biology

12.11 (1986), pp. 865–874.

[33] T Lin, J Ophir, and G Potter. “Correlations of sound speed with tissue con-

stituents in normal and diffuse liver disease”. In: Ultrasonic imaging 9.1 (1987),

pp. 29–40.

[34] Jeffrey Bamber, Christopher Hill, and John A. King. “Acoustic properties of

normal and cancerous human liver—II Dependence on tissue structure”. In: Ul-

trasound in medicine & biology 7.2 (1981), pp. 135–144.

[35] Marko Jakovljevic et al. “Local speed of sound estimation in tissue using pulse-

echo ultrasound: Model-based approach”. In: The Journal of the Acoustical So-

ciety of America 144.1 (July 2018), pp. 254–266. doi: 10.1121/1.5043402.

[36] P. Huthwaite and F. Simonetti. “High-resolution imaging without iteration: a

fast and robust method for breast ultrasound tomography”. In: The Journal

of the Acoustical Society of America 130.3 (Sept. 2011), pp. 1721–1734. doi:

10.1121/1.3613936.

[37] Chris D Madsen et al. “Hypoxia and loss of PHD 2 inactivate stromal fibroblasts

to decrease tumour stiffness and metastasis”. In: EMBO reports 16.10 (2015),

pp. 1394–1408.

[38] Jiacheng Huang et al. “Extracellular matrix and its therapeutic potential for can-

cer treatment”. In: Signal Transduction and Targeted Therapy 6.1 (Apr. 2021).

doi: 10.1038/s41392-021-00544-0.

255

https://doi.org/10.1121/1.5043402
https://doi.org/10.1121/1.3613936
https://doi.org/10.1038/s41392-021-00544-0


[39] Norman F. Boyd et al. “Evidence That Breast Tissue Stiffness Is Associated

with Risk of Breast Cancer”. In: PLoS ONE 9.7 (July 2014). Ed. by Judy R.

Rees, e100937. doi: 10.1371/journal.pone.0100937.

[40] Eun Jee Song, Yu-Mee Sohn, and Mirinae Seo. “Tumor stiffness measured by

quantitative and qualitative shear wave elastography of breast cancer”. In: The

British Journal of Radiology (Apr. 2018), p. 20170830. doi: 10.1259/bjr.

20170830.

[41] Kyung Hee Ko et al. “Potential role of shear-wave ultrasound elastography for

the differential diagnosis of breast non-mass lesions: preliminary report”. In:

European Radiology 24.2 (Oct. 2013), pp. 305–311. doi: 10.1007/s00330-013-

3034-4.

[42] Huisuo Hong et al. “Performance of Real-Time Elastography for the Staging of

Hepatic Fibrosis: A Meta-Analysis”. In: PLoS ONE 9.12 (Dec. 2014). Ed. by

Seung Up Kim, e115702. doi: 10.1371/journal.pone.0115702.

[43] Norihisa Yada et al. “Diagnosis of Fibrosis and Activity by a Combined Use of

Strain and Shear Wave Imaging in Patients with Liver Disease”. In: Digestive

Diseases 35.6 (2017), pp. 515–520. doi: 10.1159/000480140.

[44] Cheng Fang et al. “Strain elastography for noninvasive assessment of liver fi-

brosis: A prospective study with histological comparison”. In: Ultrasound 27.4

(July 2019), pp. 262–271. doi: 10.1177/1742271x19862836.

[45] Daniel Jesper et al. “Ultrasound-Based Attenuation Imaging for the Non-Invasive

Quantification of Liver Fat - A Pilot Study on Feasibility and Inter-Observer

Variability”. In: IEEE Journal of Translational Engineering in Health and Medicine

8 (2020), pp. 1–9. doi: 10.1109/jtehm.2020.3001488.

[46] Yu Ogino et al. “The ultrasound-guided attenuation parameter is useful in quan-

tification of hepatic steatosis in non-alcoholic fatty liver disease”. In: JGH Open

5.8 (July 2021), pp. 947–952. doi: 10.1002/jgh3.12615.

256

https://doi.org/10.1371/journal.pone.0100937
https://doi.org/10.1259/bjr.20170830
https://doi.org/10.1259/bjr.20170830
https://doi.org/10.1007/s00330-013-3034-4
https://doi.org/10.1007/s00330-013-3034-4
https://doi.org/10.1371/journal.pone.0115702
https://doi.org/10.1159/000480140
https://doi.org/10.1177/1742271x19862836
https://doi.org/10.1109/jtehm.2020.3001488
https://doi.org/10.1002/jgh3.12615


[47] P.A. Narayana and J. Ophir. “On the Frequency Dependence of Attenuation in

Normal and Fatty Liver”. In: IEEE Transactions on Sonics and Ultrasonics 30.6

(Nov. 1983), pp. 379–382. doi: 10.1109/t-su.1983.31444.

[48] Kibo Nam, James A. Zagzebski, and Timothy J. Hall. “Quantitative Assess-

ment of In Vivo Breast Masses Using Ultrasound Attenuation and Backscat-

ter”. In: Ultrasonic Imaging 35.2 (Mar. 2013), pp. 146–161. doi: 10.1177/

0161734613480281.

[49] F.T. D’Astous and F.S. Foster. “Frequency dependence of ultrasound attenua-

tion and backscatter in breast tissue”. In: Ultrasound in Medicine and Biology

12.10 (Oct. 1986), pp. 795–808. doi: 10.1016/0301-5629(86)90077-3.

[50] Nikolaos Liasis et al. “The use of Speckle Reduction Imaging (SRI) Ultrasound

in the characterization of carotid artery plaques”. In: European Journal of Ra-

diology 65.3 (Mar. 2008), pp. 427–433. doi: 10.1016/j.ejrad.2007.05.004.

[51] C. P. Loizou et al. “Quality evaluation of ultrasound imaging in the carotid

artery based on normalization and speckle reduction filtering”. In: Medical and

Biological Engineering and Computing 44.5 (Apr. 2006), pp. 414–426. doi: 10.

1007/s11517-006-0045-1.

[52] Sergio Mondillo et al. “Speckle-Tracking Echocardiography”. In: Journal of Ul-

trasound in Medicine 30.1 (Jan. 2011), pp. 71–83. doi: 10.7863/jum.2011.30.

1.71.

[53] Brage H. Amundsen et al. “Noninvasive Myocardial Strain Measurement by

Speckle Tracking Echocardiography”. In: Journal of the American College of

Cardiology 47.4 (Feb. 2006), pp. 789–793. doi: 10.1016/j.jacc.2005.10.040.

[54] Arco J Teske et al. “Echocardiographic quantification of myocardial function

using tissue deformation imaging, a guide to image acquisition and analysis

using tissue Doppler and speckle tracking”. In: Cardiovascular Ultrasound 5.1

(Aug. 2007). doi: 10.1186/1476-7120-5-27.

257

https://doi.org/10.1109/t-su.1983.31444
https://doi.org/10.1177/0161734613480281
https://doi.org/10.1177/0161734613480281
https://doi.org/10.1016/0301-5629(86)90077-3
https://doi.org/10.1016/j.ejrad.2007.05.004
https://doi.org/10.1007/s11517-006-0045-1
https://doi.org/10.1007/s11517-006-0045-1
https://doi.org/10.7863/jum.2011.30.1.71
https://doi.org/10.7863/jum.2011.30.1.71
https://doi.org/10.1016/j.jacc.2005.10.040
https://doi.org/10.1186/1476-7120-5-27


[55] K J Parker. “Shapes and distributions of soft tissue scatterers”. In: Physics

in Medicine and Biology 64.17 (Sept. 2019), p. 175022. doi: 10.1088/1361-

6560/ab2485.

[56] Michael F. Insana et al. “Describing small-scale structure in random media using

pulse-echo ultrasound”. In: The Journal of the Acoustical Society of America 87.1

(Jan. 1990), pp. 179–192. doi: 10.1121/1.399283.

[57] Mitsuhiro Ueda and Yasuhiko Ozawa. “Spectral analysis of echoes for backscat-

tering coefficient measurement”. In: The Journal of the Acoustical Society of

America 77.1 (Jan. 1985), pp. 38–47. doi: 10.1121/1.391898.

[58] D. K. Nassiri and C. R. Hill. “The use of angular acoustic scattering measure-

ments to estimate structural parameters of human and animal tissues”. In: The

Journal of the Acoustical Society of America 79.6 (June 1986), pp. 2048–2054.

doi: 10.1121/1.393213.

[59] D. Nicholas. “Evaluation of backscattering coefficients for excised human tissues:

results, interpretation and associated measurements”. In: Ultrasound in Medicine

and Biology 8.1 (Jan. 1982), pp. 17–28. doi: 10.1016/0301-5629(82)90065-5.

[60] Malcolm J. Crocker and Jeffrey Bamber. Encyclopedia of acoustics. Nashville,

TN: John Wiley Sons, May 1997. Chap. 141, pp. 1703–1727.

[61] Roxana M. Vlad et al. “Quantitative Ultrasound Characterization of Cancer

Radiotherapy Effects In Vitro”. In: International Journal of Radiation Oncology

Biology Physics 72.4 (Nov. 2008), pp. 1236–1243. doi: 10.1016/j.ijrobp.

2008.07.027.

[62] Maurice M. Pasternak et al. “High-frequency ultrasound detection of cell death:

Spectral differentiation of different forms of cell death in vitro”. In: Oncoscience

3.9-10 (Sept. 2016), pp. 275–287. doi: 10.18632/oncoscience.319.

258

https://doi.org/10.1088/1361-6560/ab2485
https://doi.org/10.1088/1361-6560/ab2485
https://doi.org/10.1121/1.399283
https://doi.org/10.1121/1.391898
https://doi.org/10.1121/1.393213
https://doi.org/10.1016/0301-5629(82)90065-5
https://doi.org/10.1016/j.ijrobp.2008.07.027
https://doi.org/10.1016/j.ijrobp.2008.07.027
https://doi.org/10.18632/oncoscience.319


[63] Ali Sadeghi-Naini et al. “Quantitative evaluation of cell death response in vitro

and in vivo using conventional-frequency ultrasound”. In: Oncoscience 2.8 (Sept.

2015), pp. 716–726. doi: 10.18632/oncoscience.235.

[64] M.C Kolios et al. “Ultrasonic spectral parameter characterization of apoptosis”.

In: Ultrasound in Medicine and Biology 28.5 (May 2002), pp. 589–597. doi:

10.1016/s0301-5629(02)00492-1.

[65] G J Czarnota et al. “Ultrasound imaging of apoptosis: high-resolution non-

invasive monitoring of programmed cell death in vitro, in situ and in vivo”.

In: British Journal of Cancer 81.3 (Sept. 1999), pp. 520–527. doi: 10.1038/sj.

bjc.6690724.

[66] E.J. Feleppa et al. “Diagnostic spectrum analysis in ophthalmology: A physical

perspective”. In: Ultrasound in Medicine and Biology 12.8 (Aug. 1986), pp. 623–

631. doi: 10.1016/0301-5629(86)90183-3.

[67] R M Golub et al. “Differentiation of breast tumors by ultrasonic tissue charac-

terization”. In: Journal of Ultrasound in Medicine 12.10 (Oct. 1993), pp. 601–

608. doi: 10.7863/jum.1993.12.10.601.

[68] P Mohana Shankar et al. “Classification of ultrasonic B-mode images of breast

masses using Nakagami distribution”. In: IEEE transactions on ultrasonics, fer-

roelectrics, and frequency control 48.2 (2001), pp. 569–580.

[69] Emi Saegusa-Beecroft et al. “Three-dimensional quantitative ultrasound for de-

tecting lymph node metastases”. In: Journal of Surgical Research 183.1 (July

2013), pp. 258–269. doi: 10.1016/j.jss.2012.12.017.

[70] W. Fraser Symmans et al. “Paclitaxel-induced Apoptosis and Mitotic Arrest

Assessed by Serial Fine-Needle Aspiration: Implications for Early Prediction

of Breast Cancer Response to Neoadjuvant Treatment1”. In: Clinical Cancer

Research 6.12 (Dec. 2000), pp. 4610–4617. issn: 1078-0432.

259

https://doi.org/10.18632/oncoscience.235
https://doi.org/10.1016/s0301-5629(02)00492-1
https://doi.org/10.1038/sj.bjc.6690724
https://doi.org/10.1038/sj.bjc.6690724
https://doi.org/10.1016/0301-5629(86)90183-3
https://doi.org/10.7863/jum.1993.12.10.601
https://doi.org/10.1016/j.jss.2012.12.017


[71] Ali Sadeghi-Naini et al. “Quantitative Ultrasound Evaluation of Tumor Cell

Death Response in Locally Advanced Breast Cancer Patients Receiving Chemother-

apy”. In: Clinical Cancer Research 19.8 (Apr. 2013), pp. 2163–2174. doi: 10.

1158/1078-0432.ccr-12-2965.

[72] Hamidreza Taleghamar et al. “Deep learning of quantitative ultrasound multi-

parametric images at pre-treatment to predict breast cancer response to chemother-

apy”. In: Scientific Reports 12.1 (Feb. 2022). doi: 10.1038/s41598-022-06100-

2.

[73] Daniel DiCenzo et al. “Quantitative ultrasound radiomics in predicting response

to neoadjuvant chemotherapy in patients with locally advanced breast cancer:

Results from multi-institutional study”. In: Cancer Medicine 9.16 (June 2020),

pp. 5798–5806. doi: 10.1002/cam4.3255.

[74] Trong N. Nguyen et al. “Estimation of Backscatter Coefficients Using an in situ

calibration Source”. In: IEEE Transactions on Ultrasonics, Ferroelectrics, and

Frequency Control 67.2 (Feb. 2020), pp. 308–317. doi: 10.1109/tuffc.2019.

2944305.

[75] Xucai Chen, Karl Q. Schwarz, and Kevin J. Parker. “Radiation pattern of a

focused transducer: A numerically convergent solution”. In: The Journal of the

Acoustical Society of America 94.5 (Nov. 1993), pp. 2979–2991. doi: 10.1121/

1.407329.

[76] D. Nicholas, C.R. Hill, and D.K. Nassiri. “Evaluation of backscattering coeffi-

cients for excised human tissues: Principles and techniques”. In: Ultrasound in

Medicine and Biology 8.1 (Jan. 1982), pp. 7–15. doi: 10.1016/0301-5629(82)

90064-3.

[77] Mitsuhiro Ueda and Hiroshi Ichikawa. “Analysis of an echo signal reflected from

a weakly scattering volume by a discrete model of the medium”. In: The Journal

260

https://doi.org/10.1158/1078-0432.ccr-12-2965
https://doi.org/10.1158/1078-0432.ccr-12-2965
https://doi.org/10.1038/s41598-022-06100-2
https://doi.org/10.1038/s41598-022-06100-2
https://doi.org/10.1002/cam4.3255
https://doi.org/10.1109/tuffc.2019.2944305
https://doi.org/10.1109/tuffc.2019.2944305
https://doi.org/10.1121/1.407329
https://doi.org/10.1121/1.407329
https://doi.org/10.1016/0301-5629(82)90064-3
https://doi.org/10.1016/0301-5629(82)90064-3


of the Acoustical Society of America 70.6 (Dec. 1981), pp. 1768–1775. doi: 10.

1121/1.387196.

[78] M.F. Insana, T.J. Hall, and L.T. Cook. “Backscatter coefficient estimation using

array transducers”. In: IEEE Transactions on Ultrasonics, Ferroelectrics and

Frequency Control 41.5 (1994), pp. 714–723. doi: 10.1109/58.308508.

[79] Xucai Chen et al. “The measurement of backscatter coefficient from a broadband

pulse-echo system: a new formulation”. In: IEEE Transactions on Ultrasonics,

Ferroelectrics and Frequency Control 44.2 (1997), pp. 515–525. doi: 10.1109/

58.585136.

[80] Kibo Nam, James A. Zagzebski, and Timothy J. Hall. “Simultaneous Backscatter

and Attenuation Estimation Using a Least Squares Method with Constraints”.

In: Ultrasound in Medicine and Biology 37.12 (Dec. 2011), pp. 2096–2104. doi:

10.1016/j.ultrasmedbio.2011.08.008.

[81] Andres Ruland, James M. Hill, and Gordon G. Wallace. “Reference Phantom

Method for Ultrasonic Imaging of Thin Dynamic Constructs”. In: Ultrasound

in Medicine and Biology 47.8 (Aug. 2021), pp. 2388–2403. doi: 10.1016/j.

ultrasmedbio.2021.04.014.

[82] Timothy J Hall et al. “Ultrasonic measurement of glomerular diameters in nor-

mal adult humans”. In: Ultrasound in medicine & biology 22.8 (1996), pp. 987–

997.

[83] E. Holasek et al. “A method for spectra-color B-scan ultrasonography”. In: Jour-

nal of Clinical Ultrasound 3.3 (Sept. 1975), pp. 175–178. doi: 10.1002/jcu.

1870030305.

[84] F.S. Foster, M. Strban, and G. Austin. “The Ultrasound Macroscope: Initial

Studies of Breast Tissue”. In: Ultrasonic Imaging 6.3 (July 1984), pp. 243–261.

doi: 10.1177/016173468400600301.

261

https://doi.org/10.1121/1.387196
https://doi.org/10.1121/1.387196
https://doi.org/10.1109/58.308508
https://doi.org/10.1109/58.585136
https://doi.org/10.1109/58.585136
https://doi.org/10.1016/j.ultrasmedbio.2011.08.008
https://doi.org/10.1016/j.ultrasmedbio.2021.04.014
https://doi.org/10.1016/j.ultrasmedbio.2021.04.014
https://doi.org/10.1002/jcu.1870030305
https://doi.org/10.1002/jcu.1870030305
https://doi.org/10.1177/016173468400600301


[85] M Insana. “Parametric ultrasound imaging from backscatter coefficient measure-

ments: Image formation and interpretation”. In: Ultrasonic Imaging 12.4 (Oct.

1990), pp. 245–267. doi: 10.1016/0161-7346(90)90002-f.

[86] L Yao. “Backscatter coefficient measurements using a reference phantom to ex-

tract depth-dependent instrumentation factors”. In: Ultrasonic Imaging 12.1

(1990), pp. 58–70. doi: 10.1016/0161-7346(90)90221-i.

[87] Keith A. Wear and Brian S. Garra. “Assessment of bone density using ultrasonic

backscatter”. In: Ultrasound in Medicine and Biology 24.5 (June 1998), pp. 689–

695. doi: 10.1016/s0301-5629(98)00040-4.

[88] E L Madsen et al. “Interlaboratory comparison of ultrasonic backscatter, atten-

uation, and speed measurements.” In: Journal of Ultrasound in Medicine 18.9

(1999), pp. 615–631. doi: 10.7863/jum.1999.18.9.615.

[89] Janelle J. Anderson et al. “Interlaboratory Comparison of Backscatter Coeffi-

cient Estimates for Tissue-Mimicking Phantoms”. In: Ultrasonic Imaging 32.1

(Jan. 2010), pp. 48–64. doi: 10.1177/016173461003200104.

[90] Keith A. Wear et al. “Interlaboratory Comparison of Ultrasonic Backscatter Co-

efficient Measurements From 2 to 9 MHz”. In: Journal of Ultrasound in Medicine

24.9 (2005), pp. 1235–1250. doi: 10.7863/jum.2005.24.9.1235.

[91] James J. Faran. “Sound Scattering by Solid Cylinders and Spheres”. In: The

Journal of the Acoustical Society of America 23.4 (July 1951), pp. 405–418. doi:

10.1121/1.1906780.

[92] Kibo Nam et al. “Cross-imaging system comparison of backscatter coefficient

estimates from a tissue-mimicking material”. In: The Journal of the Acoustical

Society of America 132.3 (Sept. 2012), pp. 1319–1324. doi: 10.1121/1.4742725.

[93] Michael R. King et al. “Ultrasonic backscatter coefficients for weakly scattering,

agar spheres in agar phantoms”. In: The Journal of the Acoustical Society of

America 128.2 (Aug. 2010), pp. 903–908. doi: 10.1121/1.3460109.

262

https://doi.org/10.1016/0161-7346(90)90002-f
https://doi.org/10.1016/0161-7346(90)90221-i
https://doi.org/10.1016/s0301-5629(98)00040-4
https://doi.org/10.7863/jum.1999.18.9.615
https://doi.org/10.1177/016173461003200104
https://doi.org/10.7863/jum.2005.24.9.1235
https://doi.org/10.1121/1.1906780
https://doi.org/10.1121/1.4742725
https://doi.org/10.1121/1.3460109


[94] Lauren A. Wirtzfeld et al. “Cross-Imaging Platform Comparison of Ultrasonic

Backscatter Coefficient Measurements of Live Rat Tumors”. In: Journal of Ul-

trasound in Medicine 29.7 (July 2010), pp. 1117–1123. doi: 10.7863/jum.2010.

29.7.1117.

[95] J C Bamber and R J Dickinson. “Ultrasonic B-scanning: a computer simulation”.

In: Physics in Medicine and Biology 25.3 (May 1980), pp. 463–479. doi: 10.

1088/0031-9155/25/3/006.

[96] B Oosterveld. “Texture of B-mode echograms: 3-D simulations and experiments

of the effects of diffraction and scatterer density”. In: Ultrasonic Imaging 7.2

(Apr. 1985), pp. 142–160. doi: 10.1016/0161-7346(85)90073-2.

[97] Jørgen Arendt Jensen. “Field: A program for simulating ultrasound systems”.

In: Medical & Biological Engineering & Computing 34.sup. 1 (1997), pp. 351–

353.

[98] J.A. Jensen and N.B. Svendsen. “Calculation of pressure fields from arbitrarily

shaped, apodized, and excited ultrasound transducers”. In: IEEE Transactions

on Ultrasonics, Ferroelectrics and Frequency Control 39.2 (Mar. 1992), pp. 262–

267. doi: 10.1109/58.139123.

[99] Bernard Shieh, F. Levent Degertekin, and Karim Sabra. “Simulation of absolute

backscattering coefficient in Field II”. In: 2014 IEEE International Ultrasonics

Symposium. IEEE, Sept. 2014. doi: 10.1109/ultsym.2014.0604.

[100] Alfonso Rodriguez-Molares et al. “The Generalized Contrast-to-Noise Ratio: A

Formal Definition for Lesion Detectability”. In: IEEE Transactions on Ultra-

sonics, Ferroelectrics, and Frequency Control 67.4 (2020), pp. 745–759. doi:

10.1109/TUFFC.2019.2956855.

[101] M. A. Lediju et al. “Short-lag spatial coherence of backscattered echoes: imaging

characteristics”. In: IEEE Transactions on Ultrasonics, Ferroelectrics and Fre-

263

https://doi.org/10.7863/jum.2010.29.7.1117
https://doi.org/10.7863/jum.2010.29.7.1117
https://doi.org/10.1088/0031-9155/25/3/006
https://doi.org/10.1088/0031-9155/25/3/006
https://doi.org/10.1016/0161-7346(85)90073-2
https://doi.org/10.1109/58.139123
https://doi.org/10.1109/ultsym.2014.0604
https://doi.org/10.1109/TUFFC.2019.2956855


quency Control 58.7 (July 2011), pp. 1377–1388. doi: 10.1109/tuffc.2011.

1957.

[102] Bradley E. Treeby and B. T. Cox. “Modeling power law absorption and disper-

sion for acoustic propagation using the fractional Laplacian”. In: The Journal

of the Acoustical Society of America 127.5 (May 2010), pp. 2741–2748. doi:

10.1121/1.3377056.

[103] Samuel W. Key and Raymond D. Krieg. “Comparison of Finite-Element and

Finite-Difference Methods.” In: Numerical and Computer Methods in Structural

Mechanics. Elsevier, 1973, pp. 337–352. doi: 10.1016/b978-0-12-253250-

4.50019-1.

[104] Peter Huthwaite. “Accelerated finite element elastodynamic simulations using

the GPU”. In: Journal of Computational Physics 257 (Jan. 2014), pp. 687–707.

doi: 10.1016/j.jcp.2013.10.017.

[105] Robert D Cook et al. Concepts and applications of finite element analysis. en.

4th ed. Nashville, TN: John Wiley & Sons, Oct. 2001.

[106] Adrian I. Nachman, James F. Smith, and Robert C. Waag. “An equation for

acoustic propagation in inhomogeneous media with relaxation losses”. In: The

Journal of the Acoustical Society of America 88.3 (Sept. 1990), pp. 1584–1595.

doi: 10.1121/1.400317.

[107] RC Chivers. “The scattering of ultrasound by human tissues—Some theoretical

models”. In: Ultrasound in medicine and biology 3.1 (1977), pp. 1–13.

[108] S. A. Goss, R. L. Johnston, and F. Dunn. “Comprehensive compilation of empiri-

cal ultrasonic properties of mammalian tissues”. In: The Journal of the Acoustical

Society of America 64.2 (Aug. 1978), pp. 423–457. doi: 10.1121/1.382016.

[109] L.L. Fellingham and F.G. Sommer. “Ultrasonic Characterization of Tissue Struc-

ture in the In Vivo Human Liver and Spleen”. In: IEEE Transactions on Sonics

and Ultrasonics 31.4 (July 1984), pp. 418–428. doi: 10.1109/t-su.1984.31522.

264

https://doi.org/10.1109/tuffc.2011.1957
https://doi.org/10.1109/tuffc.2011.1957
https://doi.org/10.1121/1.3377056
https://doi.org/10.1016/b978-0-12-253250-4.50019-1
https://doi.org/10.1016/b978-0-12-253250-4.50019-1
https://doi.org/10.1016/j.jcp.2013.10.017
https://doi.org/10.1121/1.400317
https://doi.org/10.1121/1.382016
https://doi.org/10.1109/t-su.1984.31522


[110] Martin F. Schiffner and Georg Schmitz. “On the separate recovery of spatial

fluctuations in compressibility and mass density in pulse-echo ultrasound imag-

ing using linear inverse scattering”. In: The Journal of the Acoustical Society of

America 135.4 (Apr. 2014), pp. 2179–2179. doi: 10.1121/1.4877088.

[111] F.L. Lizzi et al. “Relationship of Ultrasonic Spectral Parameters to Features

of Tissue Microstructure”. In: IEEE Transactions on Ultrasonics, Ferroelectrics

and Frequency Control 34.3 (May 1987), pp. 319–329. doi: 10.1109/t-uffc.

1987.26950.

[112] The MathWorks Inc.MATLAB version: 9.13.0 (R2022b). Natick, Massachusetts,

United States, 2022.

[113] J.R. Pettit et al. “A Stiffness Reduction Method for efficient absorption of waves

at boundaries for use in commercial Finite Element codes”. In: Ultrasonics 54.7

(2014), pp. 1868–1879. issn: 0041-624X. doi: https://doi.org/10.1016/j.

ultras.2013.11.013.

[114] A. Van Pamel et al. “Numerical and analytic modelling of elastodynamic scatter-

ing within polycrystalline materials”. In: The Journal of the Acoustical Society

of America 143.4 (Apr. 2018), pp. 2394–2408. doi: 10.1121/1.5031008.

[115] Peter Huthwaite. “Accelerated finite element elastodynamic simulations using

the GPU”. In: Journal of Computational Physics 257 (2014), pp. 687–707. issn:

0021-9991. doi: https://doi.org/10.1016/j.jcp.2013.10.017.

[116] George West et al. “Multi-band finite element simulation of ultrasound attenua-

tion by soft tissue”. In: 2021 IEEE International Ultrasonics Symposium (IUS).

2021, pp. 1–5. doi: 10.1109/IUS52206.2021.9593686.

[117] Jong Keon Jang et al. “Accuracy of the ultrasound attenuation coefficient for

the evaluation of hepatic steatosis: a systematic review and meta-analysis of

prospective studies”. In: Ultrasonography 41.1 (Jan. 2022), pp. 83–92. doi: 10.

14366/usg.21076.

265

https://doi.org/10.1121/1.4877088
https://doi.org/10.1109/t-uffc.1987.26950
https://doi.org/10.1109/t-uffc.1987.26950
https://doi.org/https://doi.org/10.1016/j.ultras.2013.11.013
https://doi.org/https://doi.org/10.1016/j.ultras.2013.11.013
https://doi.org/10.1121/1.5031008
https://doi.org/https://doi.org/10.1016/j.jcp.2013.10.017
https://doi.org/10.1109/IUS52206.2021.9593686
https://doi.org/10.14366/usg.21076
https://doi.org/10.14366/usg.21076


[118] Yasutomo Fujii et al. “A New Method for Attenuation Coefficient Measurement

in the Liver”. In: Journal of Ultrasound in Medicine 21.7 (July 2002), pp. 783–

788. doi: 10.7863/jum.2002.21.7.783.

[119] L. Landini, R. Sarnelli, and F. Squartini. “Frequency-dependent attenuation

in breast tissue characterization”. In: Ultrasound in Medicine and Biology 11.4

(1985), pp. 599–603. issn: 0301-5629. doi: https://doi.org/10.1016/0301-

5629(85)90031-6.

[120] S Flax. “Spectral characterization and attenuation measurements in ultrasound”.

In: Ultrasonic Imaging 5.2 (Apr. 1983), pp. 95–116. doi: 10 . 1016 / 0161 -

7346(83)90013-5.

[121] M.E. Lyons and K.J. Parker. “Absorption and attenuation in soft tissues. II.

Experimental results”. In: IEEE Transactions on Ultrasonics, Ferroelectrics and

Frequency Control 35.4 (July 1988), pp. 511–521. doi: 10.1109/58.4189.

[122] Andrew Gray. Atlas of ultrasound-guided regional anesthesia. Elsevier, 2019.

Chap. 3, p. 5.

[123] P.N.T. Wells. “Absorption and dispersion of ultrasound in biological tissue”. In:

Ultrasound in Medicine and Biology 1.4 (1975), pp. 369–376. issn: 0301-5629.

doi: https://doi.org/10.1016/0301-5629(75)90124-6.

[124] Francis A. Duck. “Acoustic Properties of Tissue at Ultrasonic Frequencies”. In:

Physical Properties of Tissues. Elsevier, 1990, pp. 73–135. doi: 10.1016/b978-

0-12-222800-1.50008-5.

[125] R. Kuc and M. Schwartz. “Estimating the Acoustic Attenuation Coefficient Slope

for Liver from Reflected Ultrasound Signals”. In: IEEE Transactions on Sonics

and Ultrasonics 26.5 (1979), pp. 353–361. doi: 10.1109/T-SU.1979.31116.

[126] R. Kuc. “Estimating acoustic attenuation from reflected ultrasound signals:

Comparison of spectral-shift and spectral-difference approaches”. In: IEEE Trans-

266

https://doi.org/10.7863/jum.2002.21.7.783
https://doi.org/https://doi.org/10.1016/0301-5629(85)90031-6
https://doi.org/https://doi.org/10.1016/0301-5629(85)90031-6
https://doi.org/10.1016/0161-7346(83)90013-5
https://doi.org/10.1016/0161-7346(83)90013-5
https://doi.org/10.1109/58.4189
https://doi.org/https://doi.org/10.1016/0301-5629(75)90124-6
https://doi.org/10.1016/b978-0-12-222800-1.50008-5
https://doi.org/10.1016/b978-0-12-222800-1.50008-5
https://doi.org/10.1109/T-SU.1979.31116


actions on Acoustics, Speech, and Signal Processing 32.1 (1984), pp. 1–6. doi:

10.1109/TASSP.1984.1164282.

[127] Timothy A. Bigelow et al. “Comparison of algorithms for estimating ultrasound

attenuation when predicting cervical remodeling in a rat model”. In: 2011 IEEE

International Symposium on Biomedical Imaging: From Nano to Macro. 2011,

pp. 883–886. doi: 10.1109/ISBI.2011.5872545.

[128] J Ophir. “Elimination of diffraction error in acoustic attenuation estimation via

axial beam translation”. In: Ultrasonic Imaging 10.2 (Apr. 1988), pp. 139–152.

doi: 10.1016/0161-7346(88)90055-7.

[129] Yassin Labyed and Timothy A. Bigelow. “A theoretical comparison of attenu-

ation measurement techniques from backscattered ultrasound echoes”. In: The

Journal of the Acoustical Society of America 129.4 (Apr. 2011), pp. 2316–2324.

doi: 10.1121/1.3559677.

[130] J. S. Egerton et al. “Ultrasonic attenuation and phase velocity of high-density

polyethylene pipe material”. In: The Journal of the Acoustical Society of America

141.3 (2017), pp. 1535–1545. doi: 10.1121/1.4976689. eprint: https://doi.

org/10.1121/1.4976689.

[131] J.R. Pettit et al. “A Stiffness Reduction Method for efficient absorption of waves

at boundaries for use in commercial Finite Element codes”. In: Ultrasonics 54.7

(2014), pp. 1868–1879.

[132] Mickael Brice Drozdz. “Efficient finite element modelling of ultrasound waves in

elastic media”. PhD thesis. Imperial College London, 2008.

[133] Karan Chopra et al. “A Comprehensive Examination of Topographic Thickness

of Skin in the Human Face”. In: Aesthetic Surgery Journal 35.8 (Oct. 2015),

pp. 1007–1013.

267

https://doi.org/10.1109/TASSP.1984.1164282
https://doi.org/10.1109/ISBI.2011.5872545
https://doi.org/10.1016/0161-7346(88)90055-7
https://doi.org/10.1121/1.3559677
https://doi.org/10.1121/1.4976689
https://doi.org/10.1121/1.4976689
https://doi.org/10.1121/1.4976689


[134] Paul Störchle et al. “Measurement of mean subcutaneous fat thickness: eight

standardised ultrasound sites compared to 216 randomly selected sites”. In: Sci-

entific Reports 8.1 (Nov. 2018). doi: 10.1038/s41598-018-34213-0.

[135] ITIS Foundation: Tissue Acoustic Properties Database. ”https://itis.swiss/

virtual-population/tissue-properties/database/acoustic-properties/”.

Accessed: 2021-04-20.

[136] Robert L. McIntosh and Vitas Anderson. “A Comprehensive Tissue Properties

Database Provided For The Thermal Assessment Of A Human At Rest”. In:

Biophysical Reviews and Letters 05.03 (Sept. 2010), pp. 129–151. doi: 10.1142/

s1793048010001184.

[137] Kyriakou, Adamos. “Multi-Physics Computational Modeling of Focused Ultra-

sound Therapies”. en. PhD thesis. 2015. doi: 10.3929/ETHZ-A-010469577.

[138] D.E. Collins. “Tissues Substitutes, Phantoms and Computation Modelling in

Medical Ultrasound”. In: International Commission on Radiation Units and

Measurements 61 (2009).

[139] R. C. Chivers and R. J. Parry. “Ultrasonic velocity and attenuation in mam-

malian tissues”. In: The Journal of the Acoustical Society of America 63.3 (Mar.

1978), pp. 940–953. doi: 10.1121/1.381774.

[140] M. A. El-Brawany et al. “Measurement of thermal and ultrasonic properties of

some biological tissues”. In: Journal of Medical Engineering and Technology 33.3

(Jan. 2009), pp. 249–256. doi: 10.1080/03091900802451265.

[141] Dinah Maria Brandner et al. “Estimation of Tissue Attenuation from Ultrasonic

B-Mode Images: Spectral-Log-Difference and Method-of-Moments Algorithms

Compared”. In: Sensors 21.7 (Apr. 2021), p. 2548. doi: 10.3390/s21072548.

[142] Francis A Duck. “Nonlinear acoustics in diagnostic ultrasound”. In: Ultrasound

in Medicine and Biology 28.1 (Jan. 2002), pp. 1–18. doi: 10.1016/s0301-

268

https://doi.org/10.1038/s41598-018-34213-0
https://itis.swiss/virtual-population/tissue-properties/database/acoustic-properties/
https://itis.swiss/virtual-population/tissue-properties/database/acoustic-properties/
https://doi.org/10.1142/s1793048010001184
https://doi.org/10.1142/s1793048010001184
https://doi.org/10.3929/ETHZ-A-010469577
https://doi.org/10.1121/1.381774
https://doi.org/10.1080/03091900802451265
https://doi.org/10.3390/s21072548
https://doi.org/10.1016/s0301-5629(01)00463-x
https://doi.org/10.1016/s0301-5629(01)00463-x


5629(01)00463-x. url: https://doi.org/10.1016/s0301-5629(01)00463-

x.

[143] Eenas Omari, Heichang Lee, and Tomy Varghese. “Theoretical and phantom

based investigation of the impact of sound speed and backscatter variations on

attenuation slope estimation”. In: Ultrasonics 51.6 (Aug. 2011), pp. 758–767.

doi: 10.1016/j.ultras.2011.03.004.

[144] Masaaki Omura et al. “Validation of differences in backscatter coefficients among

four ultrasound scanners with different beamforming methods”. In: Journal of

Medical Ultrasonics 47.1 (Oct. 2019), pp. 35–46. doi: 10.1007/s10396-019-

00984-w.

[145] Prerna Singh, Ramakrishnan Mukundan, and Rex De Ryke. “Texture Based

Quality Analysis of Simulated Synthetic Ultrasound Images Using Local Bi-

nary Patterns”. In: Journal of Imaging 4.1 (Dec. 2017), p. 3. doi: 10.3390/

jimaging4010003.

[146] Michael L. Oelze and William D. O’Brien. “Defining optimal axial and lateral

resolution for estimating scatterer properties from volumes using ultrasound

backscatter”. In: The Journal of the Acoustical Society of America 115.6 (June

2004), pp. 3226–3234. doi: 10.1121/1.1739484.

[147] Isabelle Fontaine, Michel Bertrand, and Guy Cloutier. “A System-Based Ap-

proach to Modeling the Ultrasound Signal Backscattered by Red Blood Cells”.

In: Biophysical Journal 77.5 (Oct. 1999), pp. 2387–2399. doi: 10.1016/s0006-

3495(99)77076-1.
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