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Simple Summary: Thymidylate synthase (TS) inhibitors have remained among the most effective
chemotherapies used in the treatment of various cancer types. Imaging of tumour proliferative
activity while on antifolates has been studied with 3′-deoxy-3′-[18F]fluorothymidine positron emission
tomography (18F-FLT PET) imaging. The aim of this study was to use 18F-FLT PET/CT imaging to
understand the basis of early drug action with the antifolate drug pemetrexed on TS inhibition. While
every patient showed a global change in the plasma marker of TS inhibition after drug administration,
tumour TS inhibition was selective and patients who showed a tumour change in the imaging
biomarker had a greater therapy response and longer overall survival following a combination
treatment including pemetrexed. The study findings implicate the potential use of 18F-FLT PET/CT
to understand the basis of drug action in other studies involving TS inhibitors.

Abstract: Thymidylate synthase (TS) remains a major target for cancer therapy. TS inhibition elicits
increases in DNA salvage pathway activity, detected as a transient compensatory “flare” in 3′-deoxy-
3′-[18F]fluorothymidine positron emission tomography (18F-FLT PET). We determined the magnitude
of the 18F-FLT flare in non-small cell lung cancer (NSCLC) patients treated with the antifolate
pemetrexed in relation to clinical outcome. Method: Twenty-one patients with advanced/metastatic
non-small cell lung cancer (NSCLC) scheduled to receive palliative pemetrexed ± platinum-based
chemotherapy underwent 18F-FLT PET at baseline and 4 h after initiating single-agent pemetrexed.
Plasma deoxyuridine (dUrd) levels and thymidine kinase 1 (TK1) activity were measured before
each scan. Patients were then treated with the combination therapy. The 18F-FLT PET variables were
compared to RECIST 1.1 and overall survival (OS). Results: Nineteen patients had evaluable PET
scans at both time points. A total of 32% (6/19) of patients showed 18F-FLT flares (>20% change
in SUVmax-wsum). At the lesion level, only one patient had an FLT flare in all the lesions above
(test–retest borders). The remaining had varied uptake. An 18F-FLT flare occurred in all lesions in
1 patient, while another patient had an 18F-FLT reduction in all lesions; 17 patients showed varied
lesion uptake. All patients showed global TS inhibition reflected in plasma dUrd levels (p < 0.001)
and 18F-FLT flares of TS-responsive normal tissues including small bowel and bone marrow (p = 0.004
each). Notably, 83% (5/6) of patients who exhibited 18F-FLT flares were also RECIST responders with
a median OS of 31 m, unlike patients who did not exhibit 18F-FLT flares (15 m). Baseline plasma TK1
was prognostic of survival but its activity remained unchanged following treatment. Conclusions:
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The better radiological response and longer survival observed in patients with an 18F-FLT flare
suggest the efficacy of the tracer as an indicator of the early therapeutic response to pemetrexed
in NSCLC.

Keywords: NSCLC; 18F-FLT; PET; pemetrexed; thymidine kinase

1. Introduction

Lung cancer is the second most diagnosed cancer and the leading cause of cancer
death [1]. Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancers. In the
changing landscape of treatments, platinum-based combination therapies with pemetrexed
continue to be the standard of care along with immunotherapy [2,3], and patient selec-
tion for pemetrexed maintenance in the chemo-immunotherapy era remains an important
question. Thymidylate synthase (TS) is a critical enzyme for DNA replication catalysing
the de novo synthesis of pyrimidine nucleotides. Since the 1940s, inhibitors of thymidine
biosynthesis and TS, including classical and non-classical TS inhibitors, have remained
among the most effective chemotherapies used in the treatment of various cancer types [4].
Pemetrexed is a multi-targeted antifolate anti-cancer agent that inhibits TS, dihydrofo-
late reductase (DHFR), and glycinamide ribonucleotide formyl transferase (GARFT) [5,6].
At least two aspects of TS research seek to use tumour biomarkers to predict response.
The first involves determining the pharmacodynamics of new TS inhibitors, including
α-folate-targeted TS inhibitors [7], nucleoside transporter-independent TS inhibitors [8],
and new screening hits [9]. The other involves future efforts directed at optimising efficacy
through understanding and modulating target enzyme expression/activity, including post-
translational modification of the enzyme via O-GlcNAcylation [10]. Selective imaging of
tumour tissue TS inhibition, together with information on enzyme inhibition in diverse
TS-responsive healthy tissues, will enable a therapeutic index to be predicted.

The imaging of tumour proliferative activity has been studied with 3′-deoxy-3′-
[18F]fluorothymidine (18F-FLT) positron emission tomography (PET) scans in various
tumour types including NSCLC [11]. Beyond proliferation imaging, we previously demon-
strated that tumour cells can translocate the equilibrative nucleoside transporter (ENT1)
to the cell membrane within minutes to hours in response to TS inhibition, allowing in-
creased uptake of thymidine nucleosides—including 18F-FLT—via the salvage pathway for
their activation by thymidine kinase 1 (TK1), resulting in a transient “flare” response [12].
Such changes are concomitant with the block in the utilisation of nucleosides following
TS inhibition, leading to increases in deoxyuridine (dUrd) [12]. The inhibition of TS is
associated with the accumulation of precursors of the de novo thymidine monophosphate
synthesis pathway, including dUrd which can diffuse into plasma. This has enabled the use
of the change in plasma dUrd concentration as a surrogate biomarker of TS inhibition [13].
The use of nucleosides such as 18F-FLT to detect TS inhibition is only possible during
early “on-drug” pharmacodynamics assessment [14], as decreases in 18F-FLT resulting
from decreased proliferation could occur over time. Appropriate timing of an 18F-FLT PET
after the administration of pemetrexed is a clinical unknown. In translating our under-
standing from preclinical studies, a pilot study performed in patients with breast cancer by
our group using the TS inhibitor capecitabine demonstrated increased uptake in tumour
lesions, compared to baseline, at 1 h after initiating treatment, demonstrating feasibility
for the approach in humans [15]. Furthermore, 18F-FLT flare effects have been reported in
mouse models of cancer for the TS inhibitors plevitrexed and BGC945/CT900 at 4 and 24 h,
respectively [14]. A clinical study of CT900 in seven patients showed increases in 18F-FLT
tumour uptake at 16–24 h [7]. Initial studies of pemetrexed at 4 h also showed flare effects;
however, the patient-level tumour 18F-FLT flare was unrelated to clinical outcome [16].

In view of the potential utility that a clinical TS inhibitor imaging assay will provide
the research community, we conducted a detailed lesion assessment of 18F-FLT flares to
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investigate whether the TS inhibitor pharmacodynamic imaging technique is a reliable early
predictor of treatment response and survival in NSCLC patients scheduled for treatment
with pemetrexed ± platinum, using the timing informed by our preclinical studies [14] and
initial clinical studies [16]. This study represents the first analytical approach that shows all
lesions within a patient as a weighted sum variable.

2. Study Design
2.1. Patients

We studied twenty-one patients attending oncology clinics at Imperial College Health-
care NHS Trust and the Royal Marsden Hospital NHS Trust, London, over a period of
3 years (2011–2014). All patients included were aged ≥18 years, of good performance
status (ECOG 0–2), and had clinically acceptable blood parameters and tumour molecular
analysis results collected from that performed for routine clinical care. All had at least one
measurable site of disease ≥2 cm (primary tumour or lymph node) and were scheduled for
treatment with pemetrexed ± platinum. Ethical approval was granted for this study by the
Hammersmith Hospital Research Ethics Committee (10/H1109/40) and the administration
of radioactivity was approved by the Administration of Radioactive Substances Advisory
Committee (ARSAC). All patients provided written informed consent in accordance with
the Declaration of Helsinki.

Baseline 18F-FLT PET scans were obtained within one week before the start of treatment
with pemetrexed followed by a similar scan conducted approximately 4 h after the first
therapeutic pemetrexed dose (500 mg/m2). Combination therapy with either cisplatin
or carboplatin was given the following day to avoid interference with 18F-FLT uptake.
Patients continued to receive the chemotherapy schedule as per the standard of care of
3 weekly cycles.

2.2. PET Protocol

The 18F-FLT used in this study was manufactured according to standard protocols.
All patients were scanned on a Siemens Biograph 64-slice PET/CT scanner. All patients
received a single bolus intravenous injection of 18F-FLT (mean: 208 (range 150–238) MBq)
over 30 s, followed by dynamic single-bed list mode acquisition (thoracic/abdominal to
cover the primary tumour, regional lymph nodes, and liver) for 66 min, and a whole-body
scan (vertex to thighs) for 30 min commencing at approximately 90 min after radiotracer
injection. These were each preceded by a CT scan (50 mA, 110 kVp, 0.8 pitch, 0.6 s/rotation)
for both attenuation correction and co-registration with PET images to allow good anatom-
ical visualisation and localisation of 18F-FLT activity. Raw PET data were corrected for
scatter and attenuation and reconstructed with an iterative algorithm using ordered subset
expectation maximisation reconstruction with 8 iterations and 16 subsets. The data were
binned into time frames as follows: 1 × 30 (background), 6 × 10, 4 × 20, 4 × 30, 5 × 120,
4 × 180, and 4 × 600 s.

2.3. PET Analysis

Volumes of interest (VOIs) were defined on a Hermes workstation (Hermes Diagnos-
tics, Stockholm, Sweden) by a single experienced observer (TDB, 20 years’ experience)
around tumour index lesions and normal background organs. VOIs were drawn on sites of
identifiable tumour uptake >20 mm size using a semiautomatic threshold technique, with
40% of the SUVmax threshold with manual adjustment if required. SUV40% is a routinely
used auto-segmentation adaptive threshold target delineation method in semi-quantitative
PET analysis and available on commercial software platforms such as that used here (Her-
mes Gold3; Hermes Medical Solutions Ltd., London, UK). The method has been shown to
be robust in phantom studies [17]. Mean and maximum voxel standardised uptake values
(SUVs) were determined at 60 min normalised to body weight (SUV60mean and SUV60max)
on baseline and post-treatment 18F-FLT PET/CT studies. The percentage change in SUV in
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both SUVmean and SUVmax was then calculated for each target lesion visible on baseline
imaging as follows:

∆SUVmax = 100 × SUVmax(PET2) - SUVmax(PET1)/SUVmax(PET1)

In addition, mean SUVs corrected for bodyweight were calculated for normal back-
ground non-tumour reference tissues: 3 cm VOI liver, small bowel and lung; 2 cm VOI
mediastinal blood pool, bone marrow.

To obtain a measure of the combined uptake in all lesions within a patient, we cal-
culated the ∆SUVmax variable as the weighted sum of the ∆SUVmax values in all lesions
according to Equation (1).

∆SUVmax wsum = Σi (wi × ∆SUVmax i)/Σi wi with i = [1, N]. . . (1)

with N = number of lesions.
In the equation above, wi is the weight relative to the i-th lesion (with a

∆SUVmax = ∆SUVmax i). Weights were proportional to the uptake of the lesion (e.g., w = 1
for the hottest lesion). The sum-weighted PET variable was used to depict patient-level
disease burden with which to correlate patient-level variables (plasma dUrd levels and
plasma TK1 activity).

The patients’ standard imaging contrast-enhanced CT (CECT) scans were evaluated
by one experienced observer blinded to the PET data (N.S., 10 years’ experience) to assess
response by Response Evaluation Criteria in Solid Tumours version 1.1 RECIST1.1 [18].

The repeatability of quantitative uptake measures with the 18F- fluorodeoxyglucose
(18F-FDG) PET that has been integrated into the response assessment criteria Positron
Emission Tomography Response Criteria in Solid Tumours (PERCIST) [19], as well as that
of 18F-FLT, is deemed to be about 20% [20–22]. To assess the true change in tumour uptake
at the patient level, we used a cut-off 20%, i.e., patients with an increase >20% were deemed
to have an 18F-FLT flare [20–22].

2.4. Analysis of Plasma Thymidine Kinase 1 (Plasma TK1) and Plasma Deoxy Uridine (Plasma dUrd)

Plasma samples for TK1 and dUrd were collected at the baseline scan visit, 4 h after
the administration of pemetrexed, and prior to the injection of the 18F-FLT radiotracer.
Plasma TK1 activity was determined via the DiviTum Tka assay [23], a refined ELISA-
based method, at Biovica laboratories (Uppsala, Sweden). Analysis was blinded. The
working range of the assay is 100–2000 Du; the coefficient of variation (CV) is <20% at
100 DuL. Durd (ng/mL) was measured using a validated liquid chromatography with
tandem mass spectrometry detection (LC-MS/MS) assay [24] under contract by the Kymos
group (Barcelona, Spain). The method was validated in the range of 5 to 400 nM for
2′-deoxyuridine. The lower limit of quantification was set at 5 nM.

2.5. Statistical Analysis

Statistical analysis was performed using GraphPad Prism version 8.0 (GraphPad
Software, San Diego, CA, USA) and SPSS for Mac version 27 (SPSS, Chicago, IL, USA).
Radiotracer uptake was determined at the patient level (n = 19) and median percentage dif-
ferences in SUVmean and SUVmax were determined at the lesion level (n = 61). The statistical
analysis to determine changes and compare groups consisted of the Wilcoxon signed-rank
test, Kruskal–Wallis test, and paired t-test. The association between PET parameters, plasma
TK1, and plasma dUrd were determined by calculating the Pearson correlation coefficient
(95% confidence interval; two-tailed); p ≤ 0.05 was considered significant. The differences
in 18F-FLT uptake were correlated with clinical outcome measured as tumour response.
Response was evaluated according to RECIST 1.1. TTP and OS were calculated at a median
of 10 years of follow up. The median value for time to tumour progression (TTP, defined as
date of treatment start to date of disease progression) and overall survival (OS, defined as
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date of diagnosis to date of death) were calculated using the Kaplan–Meier method and
p-values were derived with the log rank test.

3. Results
3.1. Demographics

Twenty-one NSCLC patients with Stage III and IV disease were included in the study
(Table 1). All patients tolerated the PET scanning protocol, and none reported adverse
events due to the study imaging intervention. The median age was 62 years (range 38–78)
and nine patients (43%) were male. Twenty patients were chemotherapy naïve and one
patient had prior treatment with gefitinib. Three patients had prior radiotherapy targeted
on the index lesions which were classified by the RECIST criteria. After study enrolment,
nine patients received pemetrexed in combination with carboplatin, twelve with cisplatin
combination, and four continued on pemetrexed maintenance monotherapy per routine
clinical decision making. Of the 21 patients recruited to the study, 19 had both 18F-FLT PET
static scans for analysis. Two patients were not evaluable for dynamic scan results due to
technical issues with the PET scanner and two patients withdrew consent after the first
scan (Figure 1A).

Table 1. Baseline patient characteristics for all twenty-one patients with NSCLC enrolled in the study.

Demographics N (%)

Median age 62 38–78 (IQR)

Gender

Male 9 (43)

Female 12 (57)

Race

Caucasian 18 (86)

Asian 2 (9.5)

African 1 (5)

Smoking History

Non-smoker 5 (24)

Ex-smoker 8 (38)

Smoking at time of diagnosis 8 (38)

Clinical

ECOG PS

0 3 (14)

2 3 (14)

1 15 (72)

Histology

Genetic Alterations

Nil reported 13 (62)

KRAS codon 61 1 (5)

KRAS G12V 1 (5)

ALK fusions 2 (10)

EGFR ex 19 del, T790M 3 (14)

EGFR L858R 1 (5)

TTF1

Negative 2 (10)

Positive 19 (1)

Chemotherapy

Cisplatin + pemetrexed 12 (57)

Carboplatin + pemetrexed 9 (43)

Prior local therapies 3 (14)

Note: data are presented as N(IQR) or N(%). Abbreviation: IQR, interquartile.
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ing 17 patients had varied uptake among the individual lesions (Figure 2B). 

Figure 1. Study design and PET images. (A) Consort diagram of the PET study and summary
of patients. (B) Representative 18F-FLT PET/CT images of two responding patients acquired at
baseline and 4 h post pemetrexed demonstrating increase in 18F-FLT radiotracer uptake in the left
upper lobe primary tumour (white arrow on fused images, black arrow in PET image). Increased
uptake in the tumour represented by white arrow in fused I mage and black arrow in the PET image.
(C) Representative images of a non-responding patient’s 18F-FLT PET/CT scan acquired at baseline
and 4 h post pemetrexed demonstrating decrease in 18F-FLT radiotracer uptake in the coeliac node
and right lower lobe lung primary tumour (white arrow on fused images, black arrow in PET image);
also noted is the increase in uptake in background bone marrow (green arrow).
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We analysed the 18F-FLT uptake in individual tumour lesions (primary and metastatic
lymph nodes, n = 61 lesions). Figure 1B,C show an example of 18F-FLT PET/CT scans of
two patients with increased 18F-FLT uptake and another patient with decreased uptake
before and after pemetrexed administration.

The SUV differences for individual lesions are shown in Figure 2A,B. We found no
differences in the overall change in radiotracer uptake at the patient level. The median
percentage differences of SUVmean and SUVmax in all tumour lesions combined increased
by 0.02% and 8%, respectively.
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Figure 2. Response heterogeneity detected by 18F-FLT uptake and plasma deoxyuridine (dUrd).
(A) The difference in SUVmean and SUVmax between the two scans for all lesions represented as a
box plot. (B) Visual depiction of the heterogeneity in 18F-FLT uptake between the first and second
scan in the individual lesions in each patient as seen on a heatmap (lesions with 18F-FLT flare shown
with black arrow). (C) Box plot of the changes in plasma dUrd between the two scans. (D) The
difference in plasma dUrd among the group with 18F-FLT flare above 20% threshold and group with
no flare is seen on the box plot (Note * significant p value). (E) The difference in plasma dUrd among
the responders and non-responders based on RECIST 1.1 on imaging depicted by box plot. (F) The
correlation graph between dUrd change and 18F-FLT ∆SUVmax for all tumour lesions (as depicted
by different colours for each patient with multiple lesions). The Spearman correlation coefficient is
R2 = 0.082, p = 0.476.

On the contrary, there was a flare effect at the lesion level. Based on the ∆SUVmax-wsum,
32% (6/19) of patients showed a significantly increased 18F-FLT tumour uptake 4 h after
therapy compared with baseline (beyond test–retest borders of 20%) [20,22]. In the remain-
ing thirteen patients, the change in 18F-FLT uptake was within the test–retest variability
<20%. No additional significant change in SUVmax was seen in the dynamic images as
estimated at the 60:1 min and 60:5 min time points (Supplementary Figure S1).

In the lesion-level analysis, 1 patient had 18F-FLT uptake increased in all the individual
lesions at 4 h after pemetrexed, 1 patient had a decrease in all lesions, and the remaining
17 patients had varied uptake among the individual lesions (Figure 2B).
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3.2. Analysis by Plasma dUrd

A global change in plasma dUrd levels was detected between the two time points
(Figure 2C). The baseline plasma dUrd had a median of 37.7 ± 9.31 ng/mL. At 4 h after
administration of pemetrexed, plasma dUrd levels significantly rose in all patients (median
of 96.0, p < 0.001) (Figure 2C). No significant difference was seen with FLT flare (Figure 2D)
and no correlation was found between the ∆plasma dUrd and ∆SUVmax (Figure 2F).

3.3. Clinical Outcome

The RECIST-defined response comparing the baseline CT to the 9-week follow-up
CT demonstrated a partial response in 4 patients, stable disease in 11, and progressive
disease in 4. No association was noted between treatment response and baseline SUVmean
and SUVmax. Of the six patients who had an 18F-FLT flare above the threshold, five were
classified as (RECIST) responders (Figure 3A,B). The ∆SUVmax was not related to RECIST
response (p = 0.230).
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respectively), in keeping with the previous studies [14,16]. There was decreased 18F-FLT 
uptake in background liver tissue and no change in the 18F-FLT uptake in normal lung 
tissue (Figure 4B). The uptake in normal tissue together with lesion changes paralleled 
systemic changes in dUrd. Of note, the magnitude of SUV variables in TS-responsive tis-
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Figure 3. Patient-level comparison of RECIST and clinical outcome with 18F-FLT flare. (A) The
relative tracer uptake represented as waterfall plot of the percentage variation in 18F-FLT (∆SUVmax-
wsum) in all patients and their radiological RECIST 1.1 response. (B) The percentage variation in
the number of lesions per patient with or without a flare among responders and non-responders as
shown in the scatter diagram. Responders: progressive disease on follow-up scan. (C) Kaplan–Meier
survival curve of OS according to ∆SUVmax (15 m vs. 31 m, log rank p = 0.15, HR 0.48, 95% CI
10.89–25.11). Cut-offs for Kaplan–Meier curve were determined by those above and below the 20%
18F-FLT flare threshold.

Median TTP and OS were 5.1 m (range 1.1–26.0 m) and 17.7 m (range 0.9–94.0) for
the entire group of patients (n = 21). The median OS in the patients with 18F-FLT flares
(n = 6) was 31.0 m, unlike the group without 18F-FLT flares (<20%, n = 13) (median OS,
15.0 m) (Figure 3C). The ∆SUVmax was not associated with survival (p = 0.152) (Table S1).
Interestingly, patients who showed response on RECIST also had a higher plasma dUrd
change, indicating effective global TS inhibition (Figure 2E).

3.4. Pemetrexed Increased 18F-FLT Uptake in TS-Responsive Healthy Tissues

A flare effect was also observed in TS-responsive normal tissue, as shown by the
SUVmean and SUVmax in Figure 4A. Both bowel tissue and bone marrow have physiologi-
cally high rates of cell turnover and are TS responsive [12,14]. The median SUVmax and
SUVmean for background bowel tissue were 2.7 and 1.9 for baseline and increased to 4.12
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and 2.83 at 4 h, which was statistically significant (p = 0.004 and 0.004, respectively). The
median SUVmax and SUVmean for background bone marrow were 9.2 and 6.5 at baseline
and increased to 14.5 and 9.16 at 4 h, which was also statistically significant (p = 0.004 and
0.005, respectively), in keeping with the previous studies [14,16]. There was decreased
18F-FLT uptake in background liver tissue and no change in the 18F-FLT uptake in normal
lung tissue (Figure 4B). The uptake in normal tissue together with lesion changes paralleled
systemic changes in dUrd. Of note, the magnitude of SUV variables in TS-responsive
tissues at baseline was found to be higher in the tumour flare group (>20%) compared to
those without flares (<20%) (Figure S2). We do not understand the basis for this.
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3.5. Plasma TK1 Activity Is Unchanged with Pemetrexed Treatment

We considered if the increase in tissue 18F-FLT could be explained in part by increases
in TK1 activity. To examine the role of TK1 in 18F-FLT flares, we measured plasma TK1
activity before and after treatment with pemetrexed. The baseline plasma TK1 activity
showed a wide range of values (range 99–2000 DuA). No change in plasma TK1 activity was
observed at 4 h after administration of pemetrexed (p = 0.6, paired t-test) (Figure 5A). No
significant correlation was found between ∆plasma TK1 and ∆SUVmax-wsum (p = 0.546)
(Figure 5B). Interestingly, however, baseline plasma TK1 activity correlated strongly with
overall survival (68 m with plasma TK1 activity <105 DuA vs. 25 m in plasma activity >105
DuA, log rank p = 0.02), as seen in Figure 5C.
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4. Discussion

Pemetrexed is used routinely with platinum-based chemotherapy in non-squamous
lung cancer and thereafter as a first-line maintenance therapy. However, there is a dearth
of predictive biomarkers that will help determine optimal patient selection for peme-
trexed, especially in the era of immunotherapy where hepatic and renal toxicities from the
immunotherapy–pemetrexed combination can be problematic and where chemotherapy
treatment selection in the PD-L1 ≥ 50% subgroup remains imprecise, along with intrinsic
and acquired treatment resistance to pemetrexed and the utility of future TS inhibitors
under development. In the future, novel imaging biomarkers could also help decide which
patients should be offered alternative therapies early, or which patients benefit little from
pemetrexed, where an immune checkpoint inhibitor only based strategy may be preferred.

In this study, we have explored the activity of the thymidine salvage pathway in
investigating early lesion pharmacodynamic response reflected in 18F-FLT flares with peme-
trexed. We show that 18F-FLT PET flares occur in a subset of NSCLC patients undergoing
treatment with pemetrexed ± platinum and that patients who demonstrate the 18F-FLT
flare showed survival two times longer than those not showing a flare.

Prior studies by Kenny et al. showed that of the six patients with breast cancer who
were treated with the TS inhibitor capecitabine, the 18F-FLT uptake kinetics increased at
1 h after treatment [15]. However, the study by Frings et al. with pemetrexed in NSCLC
showed no association of increased 18F-FLT with outcome when patient-level flare was
investigated [16]. Furthermore, they reported the increased uptake at 4 h post pemetrexed
in two patients who showed an SUVmax increase (31% and 35%, respectively), whereas
two other patients showed a 35% decrease in uptake [16]. One possibility for the positive
outcome of our study compared to the outcome reported by Frings et al. is the investigation
at an individual lesion level since we also did not identify overall patient-level changes.
Whether further interventions for lesions that do not flare would lead to improved patient
outcomes remains to be seen. Recently, Banerji et al. showed in a clinical study on ovarian
cancer that a subset of patients who were treated with BCG945/CT400 (a novel alpha
FR targeted TS inhibitor) and underwent pre- and post-treatment 18F-FLT PET scans had
increases in 18F-FLT PET signals in the tumour tissue at 16–24 h post treatment, consistent
with TS inhibition in tumour tissue [7]. The flare effect among patients was independent
of the global increases in dUrd and flare of TS-responsive healthy tissues. Our data are
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consistent with that of Frings et al., demonstrating changes in TS-responsive healthy tissues
and plasma dUrd in all patients [16].

Preclinical studies have shown that tumour-selective alpha-folate-targeted inhibitors
only display flares in tumours, compared to TS inhibitors that target both the reduced
folate carrier (RFC) and alpha folate transporters [14]. An increase in uptake is expected
in responding patients if clinical response is mainly attributed to TS inhibition. Our
study has further demonstrated that TS inhibition on target lesions is not uniform. Only
six out of nineteen patients (32%) demonstrated an increased 18F-FLT uptake 4 h after
administration of pemetrexed beyond test–retest boundaries (20% for SUVmax) for wsum
in each patient. Five of the six (83%) patients with an increase in ∆SUVmax-wsum were
responders measured with RECIST after 9 weeks. Of clinical relevance, patients who
showed 18F-FLT flares had twice as long median OS (31 months versus 15 months). The
data presented support the notion that an FLT flare may have clinical use as a biomarker,
due to longer OS in the flare vs. non-flare groups, respectively (OS: 31 vs. 15).

The rationale for using the change in the weighted summed variable (∆SUVmax-wsum),
by combining values from all the lesions in a weighted manner as an analytical method,
was to reflect the aggregate flare response. This variable needs to be explored in future
studies to evaluate the heterogeneity among multiple lesions.

No significant change in plasma TK1 was seen in the treatment within 4 h of peme-
trexed. This is most likely since changes in plasma protein expression are unlikely to occur
in a short time interval. Thus, the flare effect is unlikely to be due to changes in TK1 as this
was not seen even in easily accessible blood. Our previous study further demonstrated
the redistribution of ENT1 to the cell surface for the increased transport of thymidine into
the cell to activate the TK1-catalysed salvage pathway [12]; we did not assess ENT1 levels,
which are known to be redistributed to the cell surface [25]. Plasma TK1 has previously
been shown to be a prognostic marker for survival as it is a reflection of the tumour bur-
den [26–28] and was similarly demonstrated in our study independently of its effect on
18F-FLT uptake.

We demonstrated early effective TS inhibition with increased 18F-FLT uptake in the
small bowel within 4 h of pemetrexed administration, in line with preclinical studies by
Perumal et al. who also showed differential uptake with the use of selective and non-
selective TS inhibitors [12]. The 18F-FLT uptake also increased in bone marrow, which is
supported by the study from Frings et al., suggesting that bone marrow and the small
bowel are possible surrogate tissues to assess sub-clinical toxicity from pemetrexed [16].
The decreased uptake in the liver despite the limited hepatic metabolism of pemetrexed is
likely explained by the effect on glucuronidation [29]. A limitation of our study is the small
number of patients analysed.

Overall, the magnitude of 18F-FLT flares detected among the subset of patients has
the potential to be used in the future to develop new TS inhibitors, evaluate the effect of
modulators [9,10], and to evaluate further strategies on the personalisation of pemetrexed–
immunotherapy use in advanced non-squamous NSCLC.

5. Conclusions

Effective TS inhibition was seen at 4 h post pemetrexed in TS-responsive normal
tissues and in tumours. The subset of patients who showed a tumour change in the imaging
biomarker had better response and longer survival following a combination treatment with
pemetrexed. This effect could be used to understand the basis of the drug action of TS
inhibitors and modulators.
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