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Abstract 

Soft tissue sarcomas (STS) are a group of rare malignancies with over 150 

different histological subtypes, each with different clinical behaviours and 

therapeutic responses. Following a diagnosis of advanced disease, the prognosis 

is poor, and following failure of first-line therapy, further-line treatments lack 

efficacy. The tyrosine kinase inhibitor (TKI) pazopanib showed promising results 

in early-stage clinical trials, however, failed to report a significant improvement in 

overall (OS) in the PALETTE phase III trial. Subsequent post-hoc analysis 

demonstrated a subset of patients experienced robust and durable responses to 

pazopanib, but at present there is no way to identify patients most likely to gain 

benefit. 

To characterise the immune microenvironment and develop a clinically relevant 

survival model, two cohorts of patients were curated, the combined cohort which 

had received pazopanib and the comparator cohort which had received 

alternative second-line therapies. In these cohorts, the immune 

microenvironment was characterised by immunohistochemistry of tumour-

infiltrating lymphocytes. Targeted immune gene expression was then undertaken 

on the pazopanib-treated cohort. Finally, a novel survival model in the pazopanib-

treated cohort was developed, validated and refined. 

In the combined cohort, there was a significant association between higher CD4+ 

count by IHC and inferior OS and progression-free survival (PFS). Conversely, in 

the comparator cohort, a higher CD4+ count was associated with improved PFS. 

Targeted immune gene expression identified three immune-based subgroups, 

with differential immune gene expression and immune cell infiltration. 

Subsequently, an immune gene signature was developed, and a prognostic 

model was built on the pazopanib-treated cohort which showed a significant 

association with both OS and PFS. 

This body of work adds considerable knowledge towards the characterisation of 

the tumour immune microenvironment in STS. Furthermore, the development of 
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a prognostic survival model, including an immune gene signature, is exciting and 

with further validation may aid clinical decision-making in the future.  
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1.1 Soft tissue sarcomas are cancers of unmet need 

Soft tissue sarcomas (STS) are a group of rare cancers of mesenchymal origin 

that display vast heterogeneity, comprising over 150 different histological 

subtypes with variable pathologies, genetic aberrations and therapeutic 

responses1. STS have an annual UK incidence of around 3,300 new cases per 

year, representing approximately 1% of adult cancer diagnoses, rising to 

approximately 10% in the paediatric population (Figure 1.1.A)2. Although when 

considering all STS this incidence is in a similar range to other malignancies such 

as testicular or thyroid cancer, given the large number of histological subtypes, 

the incidence of each distinct subtype is much lower. For example, the most 

common STS subtype leiomyosarcoma (LMS), representing approximately one 

fifth of all STS diagnoses, has an incidence of approximately 600 new cases per 

year, and an age-standardised incidence rate of around 8 cases per million of the 

population2. Given this rarity and the degree of heterogeneity, STS are inherently 

difficult to manage medically. 

In general, rare cancers often receive less scientific interest than more frequently 

occurring malignancies, despite an average five-year relative survival of 47%, 

compared to 65% for more common malignancies3. Indeed, STS has an 

approximate 10-year overall survival (OS) rate from diagnosis of 43%, whilst the 

development of advanced disease has a dismal prognosis with a median OS of 

between 8.9 and 17.5 months (Figure 1.1.B)4,5. The cause of these worse patient 

outcomes in rare cancers is multifactorial; with their low prevalence associated 

with incorrect or late diagnosis, limited access to appropriate specialist care and 

less efficacious standard therapies. This is driven by a lack funding of pre-clinical 

and clinical studies and a paucity of clinical trials which impedes the approval of 

novel therapies6. Furthermore, randomised trials of rare cancers present 

challenges, including small cohorts of suitable patients leading to prohibitively 

slow accrual rates. In order to access sufficiently sized patient cohorts, 

international multi-centre collaborations are often necessary. However, this can 

also bring with it pitfalls, including complexities associated with international data 

and tissue sharing, and variability in management practises between regions, 
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impeding comparability of patient outcomes7. In recent years, organisations such 

as the International Rare Cancers Initiative have made progress in this regard 

and their ongoing success will be important to sustain progress in the 

management of rare cancers. 

An additional consideration for clinical trials involving STS is that the inclusion of 

a broad range of STS subtypes in “all-comer” clinical trials risks dilution of 

subgroup-specific efficacy due to cohort heterogeneity8. Novel statistical 

methodologies and trial designs go some way to address this issue, for example, 

basket studies allow the exploration of inhibitors targeted at specific molecular 

aberrations across a range of tumour types. An example of this is the NAVIGATE 

phase II basket trial which demonstrated the activity of Larotrectinib 

(Vitraki®/LOXO-101/ARRY-470) in tumours harbouring TRK fusions 

(NCT02576431)9,10.  

However, despite increasing access to next-generation sequencing, and the 

approval of targeted therapies in a number of more common cancers, progress 

in STS is lagging and limited to a small subset of specific genomic aberrations or 

individual subtypes. For example, efforts to define molecular subtypes in 

gastrointestinal stromal tumours (GIST) have driven significant progress in the 

sequential management of advanced disease with tyrosine kinase inhibitors 

(TKI), with improved clinical outcomes the result11. Moving forward, subtype-

agnostic identification of non-GIST STS patient subpopulations most likely to 

benefit from specific therapies could greatly improve both patient outcomes and 

ensure appropriate access to funding for specific therapies. 
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Figure 1.1 Incidence and survival of STS relative to other cancer types (A) Incidence in the 
UK of all subtypes of STS with other major cancer diagnoses also plotted. (B) Rate of 10-
year survival from initial diagnosis of STS in UK with other major cancer types also plotted. 
Data for figures obtained from Cancer Research UK2. 

A 

B 
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1.2 Diagnosing and classifying soft tissue sarcomas 

1.2.1 Clinical diagnostic guidelines within the UK 

Since the publication of guidance from the National Institute for Health and 

Clinical Excellence (NICE) bone and soft tissue sarcoma services have been 

centralised to 15 specialist centres in England and Wales, and this step has 

significantly improved disease-specific survival for patients with sarcoma12,13. 

Each specialist STS centre provides a multidisciplinary team (MDT) service 

comprising a number of medical specialties including histopathologists, 

radiologists, surgeons, medical and clinical oncologists, and specialist nurses to 

review referrals from external centres. Given the fact that on average general 

practitioners may only observe a single case of sarcoma in their careers, there 

has been a drive for clinical suspicion of sarcoma to be raised if any soft tissue 

lump is increasing in size, is greater than 5cm or is painful14,15. If any of these 

symptoms are present in the context of a soft tissue mass, then an urgent 

ultrasound or direct referral to the regional sarcoma treatment centre is indicated. 

Given the lack of radiation exposure and low cost, an ultrasound is usually the 

imaging modality of choice as part of a triple assessment including history and 

examination. In those patients with features suspicious of STS, further cross-

sectional imaging of the area is then usually undertaken, be it magnetic 

resonance imaging (MRI) or computerised tomography (CT). The final step of 

diagnosis is reliant on obtaining a tumour sample via percutaneous core needle 

or excisional biopsy for tissue-based diagnosis. 

1.2.2 Tissue-based methods for subtype classification 

1.2.2.1 Histological assessment of tissue 

Histopathological assessment of tumour tissue obtained from biopsy remains the 

mainstay of diagnostic confirmation of STS subtype and, where feasible, tumour 

grade. Given the technical difficulty and variability in morphological appearances 

observed in STS, a specialist soft tissue histopathologist should be involved in 

the assessment of sarcoma tissue16. Indeed, numerous studies conducted at 
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specialist referral centres have demonstrated that the initial diagnosis made at 

referring centres was discordant with the expert second opinion in up to a third of 

cases17–19. In addition, the existence of less common morphological variants in 

STS, as well as the fact biopsies may not sufficiently capture representative 

tumour areas, can diminish accuracy in STS diagnosis and risks under-grading 

when purely based on assessment of haematoxylin and eosin (H&E) biopsy 

slides20. As sarcoma management moves towards histology-tailored therapy, 

accurate histotyping will become even more crucial to ensuring appropriate 

therapy is delivered.  

1.2.2.2 Immunohistochemistry staining 

Additional immunohistochemistry (IHC) stains can be undertaken in tumour 

specimens displaying uncertain morphological characteristics, and in some cases 

act as confirmation of diagnosis. Conventional IHC aims to identify cell lineage, 

which may yield insufficient information for a specific diagnosis, however, newer 

IHC stains are focused on specific genetic aberrations leading to higher 

specificity for particular STS subtypes (Table 1.1)21–23. 

1.2.2.3 Ancillary molecular tests 

In addition to IHC testing, additional ancillary molecular tests are available to help 

confirm the subtype diagnosis in some STS. Broadly speaking, STS can be sub-

categorised into two separate groups based upon their molecular complexity 

(Figure 1.2)24,25. These are; 

▪ genetically “simple” STS, characterised by single pathognomonic, 

recurrent alterations and relatively simple karyotypes. 

▪ genetically complex STS, characterised by unstable genomes, with 

numerous gains and losses, inconsistent genetic aberrations, often with 

multiple chromosomal abnormalities. 

For the purposes of diagnosis, fluorescence in situ hybridisation (FISH) remains 

the most widely used technique of choice for detecting the presence of a 

suspected STS translocation. FISH is a cytogenetic method utilising fluorescent 
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probes specific to pre-determined sequences of the genome and in the presence 

of a chromosomal translocation, a fusion signal is observed under fluorescent 

microscopy. As such, FISH can be used in conjunction with morphological 

assessment and IHC to confirm a suspected diagnosis, or alternatively be used 

to rule out a subtype on the list of differential diagnoses. Indeed, an SS18-SSX 

fusion-specific antibody is employed in the United States of America for the 

diagnosis of synovial sarcoma (SS)26. Looking to the future, with technological 

advances leading to cheaper, quicker and more accessible next-generation 

sequencing (NGS) capabilities, it is likely that the majority of new patients with a 

diagnosis of STS will have some form of NGS undertaken on their tumour sample. 

This may be in the shape of an anchored multiplex polymerase chain reaction 

fusion detection platform, such as ArcherDx, targeted sequencing looking at 

specific regions of interest in the context of sarcoma, or more general whole 

exome/genome sequencing27,28. Not only will this potentially provide more 

confidence in the subtype diagnosis of the tumour, but it may also be used to 

identify mutations for which a targeted therapy with proven efficacy is available. 
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Table 1.1 Table of immunohistochemistry stains used in the diagnosis of common soft 

tissue sarcomas. SMA – smooth muscle actin; EMA – epithelial membrane antigen; 
ASPS – alveolar soft part sarcoma; WD/DDLPS – well-differentiated/dedifferentiated 
liposarcoma; MPNST – malignant peripheral nerve sheath tumour; SFT – solitary fibrous 

tumour.21–23 
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Figure 1.2 The spectrum of genomic characteristics in soft tissue sarcomas. ASPS – Alveolar soft part sarcoma; DSCRT – desmoplastic small 
round cell tumours; DFSP – dermatofibrosarcoma protuberans, FMS – fibromyxoid sarcoma; CS – chondrosarcoma; SFT – solitary fibrous tumour; 
WD/DD – well differentiated/dedifferentiated; LPS – liposarcoma; UPS – undifferentiated pleomorphic sarcoma.24,25 
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1.2.3 Grading and staging in soft tissue sarcomas 

In addition to confirming the histological subtype in STS, acquisition of tumour 

samples as part of the diagnostic work-up allows the managing team to ascertain 

the grade of the tumour. Within Europe, the Fédération Nationale des Centres de 

Lutte Contre le Cancer (FNCLCC) is used to categorise tumours into one of three 

grades14,29. This grading system takes into account three factors discernible on 

histopathological assessment of tissues to assign a grading score: 

▪ Degree of tumour differentiation is assigned a score from one to three 

based upon a classification of: 

o 1 point - well-differentiated 

o 2 points - moderately differentiated 

o 3 points - poorly differentiated/anaplastic. 

▪ Degree of necrosis is assigned a score from zero to two: 

o 0 points - Absence of necrosis 

o 1 point - less than 50% necrosis  

o 2 points - greater than 50% necrosis 

▪ Mitotic count per 10 high powered fields on microscopy is assigned a score 

from one to three: 

o 1 point - less than 10 mitoses  

o 2 points - 10-19 mitoses  

o 3 points - greater than or equal to 20 mitoses  

The combined scores of these three factors contribute to the final grade assigned; 

▪ Grade 1 – a combined score of 2 or 3 

▪ Grade 2 – a combined score of 4 or 5 

▪ Grade 3 – a combined score greater than 6. 

Given the intra-tumour heterogeneity in STS, although biopsy samples are 

utilised for initial grading of tumours, further histological analysis of the full 

resection specimen may lead to modifications in the grade assigned. 
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Following confirmation of a diagnosis of STS, patients should undergo further 

radiological investigation to assess for the presence of distal metastases. The 

most common method for staging STS follows guidance laid out in the American 

Joint Committee on Cancer (AJCC) cancer staging manual30. This staging 

system draws upon the tumour grade based upon the FNCLCC system above, 

the primary tumour (T), presence or absence of regional lymph node metastases 

(N) and the presence or absence of distant metastases (M). Staging of STS is 

important as it is linked to disease prognosis and will direct clinicians to formulate 

the most appropriate management plan for each patient. For retroperitoneal, 

trunk and extremity STS, which make up the majority of STS, the TNM definitions 

are standardised. The tumour score is based on the greatest diameter: 

▪ T1 – less than or equal to 5cm 

▪ T2 – more than 5cm and less than or equal to 10cm 

▪ T3 – more than 10cm and less than or equal to 15cm 

▪ T4 – greater than 15cm 

The scoring for lymph node and distance metastases is a binary measure, with 

the presence of lymph node or distance metastases classified as N1 or M1 

respectively, compared to N0 or M0 if they are absent. For the formal staging 

score, anatomical site of the primary STS is considered, and there is a degree of 

variability based upon the TNM scores (Table 1.2)30,31.  

Table 1.2 Staging classification for STS based upon AJCC classification. Of note, primary 
STS located in the trunk or extremity are classified as stage IV in the presence of positive 
regional lymph nodes, whereas for retroperitoneal STS presence of local nodes in the 
absence of distal metastases is considered stage IIIB.30,31 
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Most notably, the presence of regional lymph node disease with or without distant 

metastatic disease is considered stage IV in trunk and extremity STS, whereas 

for retroperitoneal primary STS regional lymph node disease in the absence of 

distant metastatic disease is considered stage IIIB disease. 

Although the AJCC system is the most widely accepted staging system in STS, 

one area of weakness is that it does not consider STS histological subtype in the 

risk stratification. Looking to the future, refinement of this system to be inclusive 

of histology could allow more robust stratification of patients most at risk32. 
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1.3 Current treatment paradigms in soft tissue sarcomas 

1.3.1 Surgical management of localised disease 

Following appropriate staging and diagnostic investigations, cases of STS which 

have been confirmed to be locally confined should generally be offered surgery. 

In certain circumstances, surgery may not be appropriate, for example, for elderly 

and frail patients for whom the risk of surgery outweighs the potential benefits. 

However, for the general population surgical excision with clear margins remains 

the mainstay of treatment of curative intent. Tumour resectability is usually 

determined by the MDT and takes into account STS subtype, grade, patient 

comorbidities and the technical feasibility of removing the tumour with adequate 

margins14,15. The definition of what constitutes an adequate margin remains a 

contentious issue, although positive resection margins are recognised to be 

associated with an increased risk of local recurrence and worse OS33–36. In 

certain situations whereby anatomical constraints prevent resection with a wide 

margin, and balancing the risks of recurrence and the potential morbidity of a 

more radical procedure, it may be suitable to undertake a resection with planned 

positive margins after full consultation with the MDT and counselling of the 

patient14,15.  

For extremity STS, limb salvage is advantageous in terms of post-operative 

functionality, and in cases of lower limb sarcoma, anatomically higher amputation 

levels are associated with an increase in metabolic and oxygen demands upon 

ambulation37. However, in cases in which the STS involves the joint, is multi-focal, 

or in which the excision would be multicompartmental or risk significant 

neurovascular compromise, then amputation would be more appropriate. Indeed, 

a number of studies have shown that with judicial patient selection, amputations 

can lead to satisfactory functional outcomes, post-amputation quality of life and 

disease control and survival38–40. For truncal STS, similarly to extremity STS, 

contraindications for excision include unsuitability of the patient for major 

operative intervention, however more commonly unresectability is due to the 

inability to remove the tumour with a sufficiently adequate margin due to tumour 

proximity to major neurovascular or other important structures41. Given the 
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complex nature of the decisions and considerations associated with the surgical 

excision of STS, and the necessary pre-operative planning, the importance of 

MDT involvement is clear. 

1.3.2 The management of advanced soft tissue sarcoma  

Although surgical excision is the mainstay of treatment of curative intent, once 

STS becomes metastatic or locally advanced and unresectable, the disease is 

considered incurable. As such, the focus of management switches to palliation 

with the aim of improving symptoms, stabilising or reducing tumour burden and 

extending life42. Indeed, approximately 50% of patients presenting with a high-

grade STS will develop advanced disease, with a diagnosis of disseminated 

disease associated with a dismal median overall survival (mOS) of between 8.9 

and 17.5 months4,5. Although select patients may be suitable for individually 

tailored management involving targeted surgical resection or localised therapy, 

for the vast majority of patients with advanced STS systemic chemotherapy plays 

the most relevant role in the management of the disease.  

1.3.3 Anthracycline-based chemotherapy remains the standard 

first-line systemic therapy in advanced soft tissue sarcoma  

After the discovery of the anti-tumour activity of doxorubicin against STS in 1973, 

anthracycline-based chemotherapy has remained the cornerstone of first-line 

chemotherapeutic treatment in advanced STS for nearly 50 years43. Over this 

period of time, a number of trials have been conducted with the aim of identifying 

more efficacious regimens. These studies have explored combination strategies 

as well as alternative treatment regimens but as of yet have failed to provide 

robust evidence of prolongation of survival relative to doxorubicin alone. 

Furthermore, given the rarity of STS, the number of phase III trials is relatively 

small and often includes a heterogenous group of STS subtypes (Table 1.3).  
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Table 1.3 Select phase II and III trials of systemic cytotoxic chemotherapy comparing anthracycline-based regimens with alternative agents in advanced 
STS. *PFS and OS estimated from Kaplan-Meir plots, not formally reported in manuscript.44–53 

Trial Reference
Study 

Phase
Study arms

Response Rate 

(%)

Median PFS 

(months)

Median OS 

(months)

258
Doxorubicin 75mg/m2 day 1 plus olaratumab 

15mg/kg day 1 + 8
14 5.4 19.7

251 Doxorubicin 75mg/m2 day 1 + placebo 18.3 6.8 20.4

66
Doxorubicin 75mg/m2 day 1 plus olaratumab 

15mg/kg day 1 + 8
18.2 6.6 26.5

67 Doxorubicin 75mg/m2 day 1 11.9 4.1 14.7

65
Doxorubicin 30mg/m2/day days 1-3 followed by 

ifosfamide 12.5g/m2 continuous IV for 5 days
24.1 6* 16*

67 Doxorubicin 75mg/m2 day 1 23.4 6* 15*

109 Ifosfamide 3g/m2/day over 3hr days 1-3 5.5 2.16 10.92

107 Ifosfamide 3g/m2/day over 24hr days 1-3 8.4 3 10.92

110 Doxorubicin 75mg/m2 day 1 11.8 2.52 12

227
Doxorubicin 25mg/m2/day days 1-3 + ifosfamide 

2.5mg/m2/day days 1-4
26 7.4 14.3

228 Doxorubicin 75mg/m2 day 1 14 4.6 12.8

Seddon et al., Clin 

Sarcoma Res., 2015
II 45 45

Gemcitabine 900mg/m2 days 1 and 8 + docetaxel 

100mg/m2 day 8 (25% dose reduction if previous RT)
25 7.1 17.9

129 Doxorubicin 75mg/m2 day 1 19 5.4 17.5

128
Gemcitabine 675mg/m2 day 1 and 8 + docetaxel 

75mg/m2 day 8
20 5.5 15.5

54
Doxorubicin 75mg/m2 day 1 + Trabectedin 1.1mg/m2 

day 1
17 5.7 13.3

59 Doxorubicin 75mg/m2 day 1 17 5.5 13.7

47 Trabectedin 1.3mg/m2/3hr day 1 14.8 2.8 Not reached

43 Trabectedin 1.5mg/m2/24hr day 1 4.7 3.1 Not reached

43 Doxorubicin 75mg/m2 day 1 25.6 5.5 Not reached

61 Trabectedin 1.5mg/m2/24hr day 1 5.9 16.1 38.9

Doxorubicin 75mg/m2 day 1

or Doxorubicin 60mg/m2 day 1 + ifosfamide 6-9g/m2 

day 1

27.3
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Oncol , 2017

485III
Tap et al., 

JAMA,2020
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148II
Tap et al., Lancet, 

2016

Martin-Broto, J Clin 

Oncol. , 2016

133IIB
Bui-Nguyen, Eur J 

Cancer , 2015
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Of these studies, a number of the phase III trials stand-out as particularly notable, 

especially given the difficulty in undertaking large-scale trials in rare diseases 

such as STS. The first of these landmark trials is the EORTC sponsored, phase 

III, randomised, international trial of doxorubicin alone versus doxorubicin in 

combination with ifosfamide as first-line chemotherapy (EORTC 62012, 

NCT00061984)48. This trial recruited 455 patients with locally advanced, 

unresectable or metastatic high-grade STS and randomised them 1:1 to either 

doxorubicin alone or doxorubicin plus ifosfamide. The trial was uniquely powered 

to assess OS benefit as the primary outcome. This study reported no significant 

difference in OS, with median OS in the doxorubicin alone group 12.8 months 

compared to 14.3 months for the doxorubicin plus ifosfamide group (HR 0.83, 

95.5% CI 0.67–1.03, p=0.076). However, secondary endpoint analysis did reveal 

a significant PFS advantage in the doxorubicin plus ifosfamide group (7.4 months 

versus 4.6 months; HR 0.74, 95.5% CI 0.60 – 0.90; p = 0.003) as well as a 

significantly higher overall response rate (ORR) in the combination therapy group 

(26%) compared to the doxorubicin alone group (14%)(p=0.0006). However, 

treatment-related toxicity was more problematic in the combination therapy 

group. Although this provided some evidence of an incremental improvement in 

tumour response to combination therapy, the lack of OS benefit, and the higher 

incidence of treatment-related toxicity, have limited the adoption of doxorubicin 

plus ifosfamide as the first-line standard of care. Instead, combination 

doxorubicin plus ifosfamide is often saved for certain patients in which tumour 

shrinkage might alleviate symptoms, or potentially facilitate alternative treatment 

options14,15,54. 

A more recent randomised, controlled, phase III trial looked to compare 

gemcitabine, a nucleoside anti-metabolite, plus docetaxel, a taxane with 

microtubule-inhibiting activity, versus doxorubicin in treatment-naïve advanced 

unresectable or metastatic high-grade STS (GeDDiS, International Standard 

Randomised Controlled Trial registry ISRCTN07742377)50. A total of 257 patients 

were randomised 1:1 to either doxorubicin or gemcitabine plus docetaxel. 

Assessment of the trial’s primary end-point revealed no significant difference in 

PFS at 24 weeks; (46.3% in the doxorubicin group versus 46.4% in the 
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gemcitabine plus docetaxel group (HR 1.28, 95% CI 0.99–1.65; p=0.06)). As 

such, the trial did not show that gemcitabine plus docetaxel is a more appropriate 

standard of care for the first-line treatment of advanced STS, however 

gemcitabine alone might be an appropriate first-line agent in certain 

circumstances given the cardiotoxicity of both doxorubicin and docetaxel. 

Finally, the most recent phase III trial of note involving doxorubicin was the 

double-blind, randomised, phase III trial of doxorubicin in combination with 

olaratumab vs doxorubicin plus placebo in anthracycline-naïve unresectable 

locally advanced or metastatic STS (ANNOUNCE, NCT02451943)44. A total of 

509 patients were enrolled, all receiving doxorubicin, with 258 randomised to 

additionally receive olaratumab, and the remaining 251 patients receiving 

placebo. Olaratumab/placebo monotherapy continued until disease progression, 

toxicity, physician/patient decision or significant non-compliance. The study's 

primary end-point was OS from randomisation, and a planned analysis of the 

LMS subset was included. Analysis of these primary endpoints revealed no 

significant difference in median OS across all STS subtypes between the 

doxorubicin plus olaratumab cohort (20.4 months) versus the doxorubicin plus 

placebo group (19.7 months) (HR 1.05, 95% CI 0.84–1.30; p=0.69), nor in the 

LMS subgroup (median OS of 21.6 months in the olaratumab arm versus 21.9 

months in those receiving placebo (HR 0.95, 95% CI 0.69–1.31; p=0.76)). This 

trial is interesting as the negative result reported was disappointing given the 

results of the phase Ib/II trial of olaratumab. In this preceding trial, a significant 

11.8 month improvement in median OS was observed rising from 14.7 months in 

doxorubicin alone to 26.5 months in doxorubicin plus olaratumab (stratified HR 

0.46, 95% CI 0.30–0.71; p=0.0003) (NCT01185964)45. The reasons behind the 

failure to observe a significant survival benefit in the phase III study, relative to 

the apparent and remarkable benefit observed in the phase II study remain 

unclear. However, it may be that a subset of patients do display differential 

treatment responses to olaratumab therapy, and given the heterogeneity of the 

STS cohorts enrolled and the lack of a biomarker predictive of response, this 

observable survival benefit is lost. Given the numerous trials to date, 
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anthracycline-based chemotherapy remains the standard first-line therapy in the 

majority of advanced STS subtypes.  

1.3.4 Alternative and further-line systemic therapies in advanced 

soft tissue sarcoma 

Although anthracycline-based chemotherapy shows some efficacy as first-line 

treatment in advanced STS, alternative other monotherapy and combination 

regimens have been trialled in the first- and further-line setting of advanced STS. 

However, the evidence remains less robust than for first-line therapies, with only 

a few showing meaningful efficacy, and as such following failure of first-line 

therapy the prognosis of these patients is generally poor. Indeed, the majority of 

patients with advanced STS are subjected to very similar treatment pathways, 

with the sequential stepwise use of a narrow array of therapies irrespective of 

tumour-specific factors. Commonly considered further-line systemic therapies 

include ifosfamide monotherapy, gemcitabine in combination either with 

docetaxel or dacarbazine, trabectedin, and additional and emerging therapies 

with varying levels of evidence available for their use (Table 1.4). 
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Table 1.4 Select studies of common alternate systemic cytotoxic chemotherapy agents in advanced STS. (AS – angiosarcoma; LMS 

– leiomyosarcoma; LPS – liposarcoma; OS – overall survival; PFS – progression-free survival).55,56,65–67,57–64 

Trial Reference Study Type Study arms
Response 

Rate (%)

Median PFS 

(months)

Median OS 

(months)
Most common toxicities

89 first-line 17

25 second-line 16

21 second-line

9 third-line

23 first-line

12 second-line

10 first-line

19 second-line

Švancárová et al., Eur. J. 

Cancer, 2002
Phase II 31 31 second-line Gemcitabine 1250mg/m2 3 1.5 8.8 Neutropenia (12.9%)

18 first-line

16 second-line

73
Gemcitabine 900mg/m2 plus 

docetaxel 100mg/m2
16 6.2 17.9 Thrombocytopenia (40%)

49 Gemcitabine 1200mg/m2 alone 8 3.0 11.5 Thrombocytopenia (35%)

21 uterine 24 4.7 23.0

19 non-uterine 5 3.4 13.0

21 uterine 19 5.5 20.0

22 non-uterine 14 6.3 15.0

Losa et al., Cancer 

Cehmother. Pharmacol., 

2007

Phase II 23 23 first-line
Gemcitabine 1,800mg/m2 plus 

dacarbazine 500mg/m2
4.3 1.2 8.5 Lymphopenia (52%)

52 second-line Dacarbazine 1,200mg/m2 4 2.0 8.2 Neutropenia (19%)

57 second-line
Gemcitabine 1,800mg/m2 plus 

dacarbazine 500mg/m2
12 4.2 16.8 Neutropenia (16%)

345 Trabectedin 1.5mg/m2 9.9 4.2 12.4 Neutropenia (56%)

173 Dacarbazine 1,000mg/m2 6.9 1.5 12.9 Neutropenia (15%)

8 visceral AS

22 cutaneous AS

228 Eribulin 1.4mg/m2 4 2.6 13.5 Neutropenia (15%)

224 Dacarbazine 1,200mg/m2 5 2.6 11.5 Thrombocytopenia (8%)

8 Neutropenia (3%)

Schöffski et al., Lancet, 

2016
Phase III

452 LMS or 

LPS
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Penel et al., J. Clin. Oncol., 
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Phase II 30 AS Paclitaxel 80mg/m2 18.5 4
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Phase II 109
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518 LPS or 

LMS
Phase III

Demetri et al., J. Clin. 

Oncol., 2016

Gemcitabine 900mg/m2 plus 

docetaxel 100mg/m2

Gemcitabine 1200mg/m2 alone

83
Pautier et al., Oncologist, 

2012

Phase II in 

LMS

Thrombocytopenia (18%)

Leukopenia (25%)

5.6 17.9 Thrombocytopenia (29%)

Maki et al., J. Clin. Oncol., 

2007
122Phase II

Not reported Haematological (32%)
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Hensley et al., J. Clin. 

Oncol., 2002

Phase II in 

LMS
34

Gemcitabine 900mg/m2 plus 

docetaxel 100mg/m2
53

Okuno et al., Cancer, 

2002
Phase II 29 Gemcitabine 1250mg/m2 3 2.1

25 2.9 8.7

Haematological (60%)

Neutropenia (43%)

Ifosfamide 14g/m2 20 4.2 11.2 Encephalopathy (17.1%)

Nielsen et al., Eur. J. 

Cancer.,  2000
Phase II 114 Ifosfamide 12g/m2 3.4 12.7

Ifosfamide 14g/m2

66 trans-STS 66 Trabectedin 1.2mg/m2 12.1
Takahashi et al., 

Oncologist, 2017

Pooled phase 

II results
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Lee et al., Oncology, 2011
Retrospective 

review
30

Martin-Liberal et al., 

Sarcoma, 2013

Retrospective 

review
35

Number of patients
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Although an in-depth review of all of the trials included related to alternative and 

second/further-line therapies in the medical management of advanced STS is 

beyond the scope and relevance of this thesis, there are some interesting points 

to draw out in terms of the progress. In particular, the ability of trials to highlight 

potential efficacy in specific subtypes of STS.   

For example, trials and retrospective reviews of ifosfamide in the management of 

STS identified particular sensitivity in patients with SS and liposarcoma, with a 

relative lack of activity in patients with LMS56,57,68. As such, high-dose ifosfamide 

is commonly used as second-line therapy, and particularly in patients with SS, 

LPS of the myxoid, well- and de-differentiated subtypes, whilst it is generally 

avoided in patients with LMS. 

Additionally, gemcitabine is commonly used as standard second-line therapy in 

certain STS subtypes, and occasionally in the further line setting. Initially explored 

as monotherapy, two early phase II trials in advanced STS following failure of 

first-line therapy were disappointing, with only a single partial response observed 

in each study (ORR of 3%)58,59. As such, gemcitabine monotherapy is not 

frequently administered, but is commonly combined with additional synergistic 

anti-cancer agents such as docetaxel. The efficacy of gemcitabine plus docetaxel 

in patients with LMS was demonstrated in the first phase II trial of this 

combination60. This trial reported an ORR of 53% and the treatment regimen was 

generally well tolerated As such, although a small cohort, this trial suggested 

robust efficacy of gemcitabine plus docetaxel in patients with LMS. These results 

were supported by the Maki et al. a randomized open-label phase II study which 

utilised Bayesian adaptive randomisation to imbalance the cohorts in favour of 

the superior treatment (SARC002, NCT00142571)61. This confirmed superiority 

of combination gemcitabine plus docetaxel over gemcitabine monotherapy, with 

an ORR for gemcitabine plus docetaxel of 16% (12 of 73 patients) compared to 

8% (4 of 49) in the gemcitabine monotherapy arm. This equated to a median PFS 

of 6.2 months and a median OS of 17.9 months in the combination therapy arm 

compared to a median PFS of 3 months and median OS of 11.5 months in the 

monotherapy arm. As such, this study concluded that gemcitabine plus docetaxel 

was superior to gemcitabine alone, with particular efficacy in LMS. Given the 
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apparent lack of efficacy of ifosfamide in LMS, the demonstrable activity of 

gemcitabine plus docetaxel this subtype allows tailoring of second-line therapy to 

specific STS subtypes. 

Trabectedin is another therapy commonly used following the failure of first or 

further-line therapies with efforts made to demonstrate efficacy, particularly in the 

so-called L-sarcomas of LMS and LPS. This subtype-specific efficacy was 

demonstrated by Samuels et al. in their report from an expanded access program 

(NCT00210665)69. They presented results from 1803 patients and identified a 

clinical benefit rate (CBR) of 54% (258 of 476 patients) in the L-sarcoma cohort, 

compared to 38% (114 of 302 patients) in the non-L sarcoma cohort. Upon 

analysis of survival, this translated into a survival advantage for the L-sarcoma 

cohort (median OS 16.2 months; 95% CI 14.1-19.5) when compared to the non-

L sarcoma cohort (median OS 8.4 months; 95% CI 7.1-10.7). This efficacy in L-

sarcomas was further described in the multicentre, randomised, phase III trial 

comparing trabectedin with dacarbazine in patients with metastatic LPS or LMS 

following the failure of conventional chemotherapy (NCT01343277)70. A total of 

518 heavily pre-treated patients were enrolled with the final analysis 

demonstrating trabectedin significantly reduced the risk of disease progression 

compared with dacarbazine (HR 0.55; 95% CI 0.44-0.70; p<0.001),  translating 

into a notable improvement in median PFS (4.2 months vs. 1.5 months). As such, 

trabectedin is a viable option in the second and further line setting in advanced 

STS and in particular patients with LMS and LPS. Furthermore, a number of trials 

are planned or ongoing looking to expand the evidence base for trabectedin. For 

example, the Italian Sarcoma Group are undertaking a randomised phase II study 

comparing trabectedin with gemcitabine in advanced and pre-treated LMS, as 

well as a planned phase II study of trabectedin in advanced rearranged 

mesenchymal chondrosarcoma (NCT0438119 and NCT04305548 

respectively)71,72. As such, the utilisation of trabectedin as a disease controlling 

agent in patients with advanced and pre-treated STS may continue to expand. 

Further subtype-specific efficacy has been demonstrated for example with 

paclitaxel in advanced angiosarcoma in phase II trials  (ANGIOTAX, European 

clinical trials database 2004-002841-12)66 and eribulin in a phase II trial of heavily 
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pre-treated patients with LMS and LPS (NCT01327885)67. These trials are of 

particular importance given the limited treatment options available for patients 

with advanced disease in these subtypes which are refractory to conventional 

chemotherapy. As such, since the turn of the millennium, steady progress has 

been made in developing sequential treatment paradigms which are more 

patient-centric in the more targeted subtype-specific approach. However, further 

refinement through the identification of patient groups within subtype cohorts, and 

novel therapies, will further improve patient outcomes in these difficult to treat 

populations. 

1.3.5 Summary 

Despite numerous efforts to improve patient outcomes since the anti-tumour 

activity of doxorubicin in the early 1970s, anthracycline-based chemotherapy 

remains the standard of first-line care in subtype-agnostic advanced STS. The 

addition of ifosfamide is only occasionally used given the increased toxicity and 

is generally reserved for circumstances whereby tumour shrinkage might be 

directly beneficial by reducing symptoms or potentially allowing definitive 

treatment. In some circumstances whereby anthracyclines are contra-indicated 

due to their cumulative dose-dependent cardiotoxic effects alternative first-lines 

are necessary. In these cases, ifosfamide monotherapy or gemcitabine 

monotherapy may be suitable options and the most appropriate decided on a 

case-by-case basis. Looking forward, additional translational work may be 

beneficial in exploring patient stratification into specific molecular subgroups 

which may preferentially benefit from specific therapies. More recently, targeted 

therapies have been developed and the hope is these will go somewhere to avoid 

the treatment-related adverse events associated with systemic cytotoxic 

therapies as well as yield significant improvement in response rates and the 

survival of patients. 
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1.4 Pazopanib in the management of soft tissue 

sarcomas 

Pazopanib is an oral multi-target tyrosine kinase inhibitor (TKI) with its anti-

tumour effect postulated to be exerted by the anti-angiogenic effect of inhibiting 

multiple receptor tyrosine kinases (RTKs) such as VEGFR, platelet derived 

growth factor receptor (PDGFR), fibroblast growth factor receptors (FGFR) and 

stem cell factor receptor (c-KIT)73. It is known that angiogenesis is a key hallmark 

of cancer progression and dissemination, as sustained growth of tumours 

requires new blood vessels to deliver sufficient nutrients and oxygen74. Therefore, 

blockade of these angiogenic pathways represents an attractive target for 

therapeutic agents, such as TKIs. 

1.4.1 Receptor tyrosine kinases as drivers of oncogenesis 

Kinases have recently emerged as one of the most intensively examined targets 

in cancer research due to their vital role in cell signalling and behaviour, whilst 

TKIs represent the largest class of targeted therapies approved by the Food & 

Drug Administration75.  

RTKs are transmembrane structures and are essential for the transduction of 

extracellular signals into the cell76. Briefly, RTKs are made up of an extracellular 

domain able to bind specific ligands, a single transmembrane helix, and an 

intracellular domain made up of a juxtamembrane regulatory region, a tyrosine 

kinase domain and a carboxyl-terminal tail. Upon binding of a receptor-specific 

ligand to the extracellular domain, receptor dimerisation (and/or oligomerisation) 

is promoted with this change in conformation enabling trans-autophosphorylation 

of the tyrosine kinase domain and removal of cis-autoinhibition. The activated 

RTK then recruits signalling proteins, which themselves bind to specific 

phosphotyrosine residues within the receptor and are able to activate 

downstream mediators and trigger intra-cellular signalling cascades (Figure 

1.3.A). In this way, the activation of signalling pathways results in cellular 

changes which can lead to proliferation, migration, survival and angiogenesis 77.  
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Figure 1.3. Schematic representation of RTK activation in health and in malignancies. A. Normal physiological response to ligand leading to receptor 
dimerization, autophosphorylation and activation of downstream signalling pathways. B. Gain of function mutations lead to ligand-independent receptor 
activation. C. RTK overexpression leads to increased local concentration of receptors overcoming antagonistic factors and over-activating intra-cellular 
pathways. D. Chromosomal translocation leads to generation of a fusion oncoprotein, part RTK and part fusion partner, leading to constitutive activation 
to the tyrosine kinase domain. E. Tyrosine kinase domain duplication leading to intra-cellular dimer formation and ligand-independent activation. F. 
Autocrine activation via increased concentration of ligands and subsequent RTK activation77.  
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Under normal physiological conditions, RTK activity is tightly controlled. However, 

genomic aberrations can alter the behaviour of RTKs in a number of ways, 

ultimately leading to aberrant activation of downstream signalling pathways and 

dysregulation of normal cellular function.  

The first of the mechanisms by which RTKs can drive tumourigenesis is through 

gain-of-function mutations which may occur at the extra-cellular domain, the intra-

membranous single helix, or the intra-cellular domain (Figure 1.3.B). In the field 

of sarcomas, an example of this would be KIT gain-of-function mutations reported 

in gastrointestinal stromal tumours (GIST). These mutations are seen to cluster 

near the tyrosine kinase domain, the intracellular juxtamembrane regulatory 

region and the extra-cellular ligand binding region of the KIT protein78,79. 

Evidence suggests that mutations in the tyrosine kinase and juxtamembraneous 

domains lead to the removal of normal cis-inhibition in the tyrosine kinase 

domain, whilst in the extracellular regions mutations stabilise interreceptor 

interactions resulting in receptor-mediated dimerisation in the absence of 

ligand78–80.  

A second mechanism which may drive tumorigenesis is abnormal amplification 

of RTK genes leading to RTK overexpression. This results in a local 

overexpression of the receptor leading to elevated RTK signalling in the presence 

of the cognate ligand and overwhelms antagonizing regulatory effects (Figure 

1.3.C)77. Well-differentiated and de-differentiated liposarcomas (WDLPS and 

DDLPS) are characterised by genomic amplifications, with one study analysing 

56 samples reporting that, after MDM2 and CDK4 gene amplifications, the next 

most notable category of gene amplifications involved those encoding RTKs and 

was identified in 18 (36%) of the samples analysed81. 

A further genomic alteration which may lead to ligand-independent activation of 

RTKs is chromosomal re-arrangements. In these cases, a novel tyrosine kinase 

fusion oncoprotein is generated, with the tyrosine kinase oncoprotein under the 

control of the promoter of its fusion partner which also contributes a 

di/oligomerisation domain leading to constitutive activation of the RTK (Figure 

1.3.D). Within sarcoma, there are numerous examples of this, including NTRK 
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gene fusions resulting in tropomyosin receptor kinase (TRK) dysregulation which 

is pathognomonic of congenital infantile fibrosarcoma, and also sporadically 

observed in hemangiopericytomas, infiltrative spindle cell sarcomas and a subset 

of uterine LMS10. 

Kinase domain duplication is another genomic anomaly that may lead to aberrant 

RTK activity (Figure 1.3.E). This phenomenon has been mostly widely 

characterised in the epithelial growth factor receptor (EGFR) gene, whereby the 

entire gene contains wild-type sequence but with a tandem in-frame duplication 

of exons 18-25 which encodes the entire tyrosine kinase domain. The forced 

proximity of the duplicated kinase domains leads to an intra-molecular 

asymmetric dimer and leads to constitutive activation of the receptor in a ligand-

independent manner82. Although more commonly encountered in non-small cell 

lung cancer, glioma and breast cancer, there are reports of kinase domain 

duplication occurring in STS82–84. 

The final mechanism by which RTKs can drive oncogenesis is via autocrine 

activation, whereby the target cells of the ligand are also the cell secreting it, with 

this positive feedback loop driving clonal expansion and tumourigenesis (Figure 

1.3.F)85. One such example is secretion of the cytokine autocrine motility factor 

which interacts with autocrine motility factor receptor, with a large cohort study 

showing both rhabdomyosarcoma and AS express higher levels of autocrine 

motility factor86. 

Given the critical role RTKs play in normal cellular function, and their ability to 

drive oncogenesis following aberrant activation, the rationale for the development 

of therapeutic agents directly targeting them is clear. 

1.4.2 Angiogenesis is an important aspect of sarcoma 

development with pazopanib displaying anti-angiogenic activity 

Induction of and sustained angiogenesis are key features of oncogenesis, and 

set-out in the Weinberg and Hanahan’s series on the hallmarks of cancer74,87. As 

with all cells, supply of oxygen and nutrients is vital for cellular survival and 

function, and in order to sustain growth tumours require neovascularisation to fuel 
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their expansion. Indeed, evidence exists supporting the fact that sarcomas 

frequently have increased expression of angiogenic RTKs as part of their 

phenotype. Moreover, the fact that pazopanib inhibits these RTKs in the pre-

clinical setting means it is an attractive potential agent in the management of 

STS88. 

1.4.2.1 Vascular endothelial growth factors and their receptors in 

angiogenesis, in the context of sarcoma and as a target for pazopanib 

In health, the family of vascular-endothelial growth factors (VEGF) and their 

receptors (VEGFR) play a key role in vasculogenesis, the development of blood 

vessels from their precursor cells in the early stages of embryogenesis, as well 

as angiogenesis, the formation of blood vessels from pre-existing vessels in later 

life, for example in response to injury89. However, in the overexpressed state, 

VEGF overactivity can lead to pathological angiogenesis. In particular, the major 

pro-angiogenic signal is generated from VEGF-A activated VEGFR2 which 

triggers intra-cellular signalling via the mitogen activated protein kinase (MAPK) 

cascade89. 

Prior xenograft studies of pazopanib have quantified the IC50 of pazopanib 

against a range of RTK targets88. Of note, pazopanib had the greatest inhibitory 

effect on VEGFR1-3, in that order. Furthermore, within the same study, 

pazopanib was demonstrated to significantly inhibit VEGF-induced angiogenesis. 

This is relevant in the context of STS as numerous studies have indicated the 

potential role of VEGF and VEGFR in sarcoma development. For example, a 

number of studies have shown that circulating levels of VEGF are significantly 

higher when compared with normal controls90. And in addition, VEGF levels 

correlated with tumour grade as well as being prognostic for STS of the extremity 

and trunk91–94. As such, there is a rationale for extrapolating these findings to 

explore pazopanib in the clinical context of STS. 
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1.4.2.2 Platelet derived growth factors and their receptors in angiogenesis, 

in the context of sarcoma and as a target for pazopanib 

Platelet derived growth factor (PDGF)-α and -β and their receptors (PDGFR) are 

a further key part of the angiogenic network. A major driver of growth, survival 

and motility of mesenchymal cells, as well as other cells, PDGF is usually 

synthesised in response to external stimuli including hypoxia, thrombin or through 

stimulation by other cytokines and growth factors95–97. In health, PDGF-α and -β 

have vital roles in embryogenesis and physiological control of tissue 

haemostasis97. Upon ligand binding, the PDGFR RTKs undergo dimerization and 

autophosphorylation, as previously described, allowing the triggering of 

intracellular signalling cascades including phosphatidylinositol 3′-kinase (PI3-

kinase), phospholipase C (PLC)-γ, Src, and MAPK98. In terms of angiogenesis, 

PDGF and PDGFR are thought to support angiogenesis through the 

establishment of functional vessel walls via recruitment and stabilisation of 

perivascular cells99. Interestingly, VEGF-A has been shown to enhance 

endothelial PDGF-β expression, whereas fibroblast growth factor-2 leads to 

enhancement of perivascular PDGFR-β expression, with stimulation by VEGF 

and fibroblast growth factor (FGF)-2 leading to functional vessel formation in 

vivo100. 

In the context of sarcoma, given the role of PDGF as a driver of growth, survival 

and motility of predominantly mesenchymal cells, there is a rationale for 

considering PDGFs may have a role in the development of STS. Indeed, PDGFR 

overexpression has been documented in a number of histological STS subtypes, 

whilst high expression of PDGFR-β has been demonstrated to be significantly 

negatively prognostic90,93,101. In addition, PDGF-β expression per protein and 

mRNA quantification is significantly associated with STS tumour grade and 

cellular proliferation102,103. As with VEGFR, Kumar et al.’s study of pazopanib 

confirms pazopanib is potently active against both PDGFR-α and -β, with in vitro 

work confirming significant inhibition of PDGFR-β phosphorylation following 

pazopanib treatment88. Again, the rationale for assessing the clinical utility of 

pazopanib in STS is apparent based upon the link between PDGF, angiogenesis, 

sarcomagenesis and targeted pazopanib activity against PDGFR. 
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1.4.2.3 Fibroblast growth factors and their receptors in angiogenesis, in 

the context of sarcoma and as a target for pazopanib 

The family of FGF, and their associated receptors (FGFR), play a role in 

angiogenesis, particularly in promoting the integrity of the endothelial cell barrier 

through the formation of tight junctions. Indeed, studies comparing VEGF-driven 

versus FGF-driven tumours demonstrated that the neovasculature was 

significantly more permeable when VEGF was the driving growth factor104. As 

with other RTKs, ligand activation leads to the activation of intra-cellular signalling 

cascades including MAPK, PI3K, PLC-γ and signal transducers and activators of 

transcription (STAT)105. In health, the role of FGF has been demonstrated in FGF-

1/FGF-2 double knockout animal models, with the hosts demonstrating poor 

wound healing, indicative of FGFs role in tissue repair and neovascularisation 

post-trauma106.  

Compared to VEGF and PDGF, there is less evidence to suggest a prevalent 

upregulation of FGF in the context of sarcoma. Evidence does exist of a potential 

stimulatory effort of FGF in SS cell lines and high-grade LPS cell lines107,108. 

Furthermore, one study identified several activating FGFR tyrosine kinase 

domain mutations in 7.5% of primary human rhabdomyosarcoma samples109. In 

addition, circulating plasma levels of basic FGF were found to be 10-13 fold 

higher in patients with STS compared to healthy controls, particularly in those 

patients with fibrosarcoma and LMS90. Therefore, although the evidence 

demonstrating the role of FGF in sarcomagenesis is less compelling than for 

VEGF and PDGF, the fact that pazopanib has confirmed activity against FGFR, 

albeit with less affinity than against VEGFR and PDGFR, confirms the potential 

for clinical benefit. 

1.4.3 Signalling pathways involved in soft tissue sarcoma 

development, and changes associated with pazopanib treatment 

Following aberrant RTK activation, recruitment of intra-cellular signalling 

molecules to the activated carboxyl-terminal tail triggers the initiation of a variety 

of downstream signalling cascades110. A number of these cascades have been 
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implicated in the development and propagation of sarcomagenesis, whilst pre-

clinical evidence exists of modulation of these pathways by pazopanib. 

 1.4.3.1 Mitogen activated protein kinase signalling 

Dysregulation and activation of the MAPK pathway has been demonstrated to be 

integral in the development of numerous malignancies, including STS. In this 

pathway, aberrant sequential activation of RAS/RAF/mitogen-activated protein 

kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) leads to 

upregulation of cellular processes involved in oncogenesis, including cell 

proliferation, survival, differentiation and migration111. Commonly, mutations in 

RAS and RAF are oncogenic drivers of the pathway, and although sources vary 

it is reported that around 20% of all human cancers harbour mutations in one of 

the three major forms of Ras112. Although common in cancers of epithelial origin, 

the role of the MAPK cascade in STS is less clearly defined. However, some pre-

clinical studies have demonstrated activity in STS cell lines. For example, Sasaki 

et al. reported the expression of RAF1 and MAPK1/2 mRNA in sarcoma cell lines 

and clinical samples, with subsequent exposure of cell lines to a MEK inhibitor 

resulting in dose- and time-dependent inhibition of cell proliferation113. 

Furthermore, targeted modulation of the MAPK pathway in SS cell lines resulted 

in inhibition of the phosphorylation of MAPK and ERK, leading to G1 cell growth 

arrest and S phase decrease, and induction of apoptosis114. 

In relation to pazopanib activity, a number of studies have demonstrated that in 

addition to the antiangiogenic effects elicited, pazopanib also has an anti-

oncogenic effect through modulation of the MAPK pathway. As mentioned above, 

pazopanib is known to potently inhibit VEGFR1-3, PDGFR-α and -β, c-KIT, and 

FGFR1, 3 and 488. These RTKs activate the MAPK signalling pathway and can 

drive tumour progression through constituent activation of this axis115–117. 

Therefore, inhibition of VEGF, PDGFR-α and -β, c-KIT and FGFR receptors will 

have an anti-oncogenic effect, and this has been demonstrated in a number of 

studies.  
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1.4.3.2 Phosphatidylinositol 3′-kinase signalling pathway 

The PI3K pathway is another major intracellular signalling cascade initiated by 

RTK activation and acts as a key regulator of survival during cellular stress. 

Following RTK activation through ligand binding, PI3K is recruited to the cellular 

membrane where it catalyses the phosphorylation of phosphatidylinositol 4,5-

bisphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3)118–120. 

Activated PIP3 then recruits signalling proteins with pleckstrin homolog domains, 

including protein kinase B (Akt), itself a key regulator of numerous cellular 

processes involved in cell survival118. Indeed, Akt is able to act on a number of 

pro-apoptotic factors including Bad and procaspase-9, as well as other regulators 

of survival factors such as NFκB. Furthermore, Akt also acts on several targets 

involved in cell cycle regulation, protein synthesis and glycogen metabolism 

including Raf (part of the MAPK pathway), the forkhead family of transcription 

factors, and importantly mammalian target of rapamycin (mTOR)118. Mammalian 

target of rapamycin activation results in the increased synthesis of numerous 

proteins which are implicated in oncogenesis, with particular involvement in the 

modulation of metabolic pathways vital for cell growth and proliferation121. 

Within the field of oncology, aberrant PI3K, Akt and mTOR activity have been 

demonstrated, driven by a diverse range of genomic alterations, leading to 

tumorigenesis, metastasis, and chemotherapy resistance122. Indeed, within STS 

numerous studies have confirmed activation of the PI3K pathway with PI3K 

overexpression in STS tumour tissue,  evidence of active phosphorylated Akt, 

and an association between Akt-mTOR pathway activation and patient 

survival123–125. 

In addition to the anti-angiogenic action of pazopanib, activity against RTKs which 

utilise the PI3K pathway will likely have additional anti-oncogenic properties 

independent of any impact on the tumour vasculature. To this end, pre-clinical 

work has demonstrated that following pazopanib treatment of SS cell lines in vitro, 

they displayed significantly reduced phosphorylation of both Akt and mTOR126. 

The same study confirmed that the suppression of Akt was more significant 

following pazopanib therapy compared to anti-PDGFR inhibition alone. 
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Furthermore, Lanzi et al. demonstrated in xenograft models that sensitivity to 

pazopanib was diminished in cases with inefficient inhibition of Akt and ERK127. 

Thus, in addition to anti-angiogenic effects, activity against the PI3K pathway is 

a further mechanism by which pazopanib likely exerts its anti-tumour effects. 

1.4.4 Early clinical development of pazopanib 

Based upon promising pre-clinical evidence of the anti-tumour effects of 

pazopanib, a multicentre open-label, non-randomised, dose-finding phase I study 

of pazopanib in advanced solid tumours was undertaken (NCT00060151)128. A 

total of 63 patients were enrolled, 43 to the dose escalation arm, and a further 20 

to the dose expansion arm, who had a histologically confirmed diagnosis of an 

advanced solid tumour refractory to standard therapy. The trial cohort was made 

up of a heterogeneous group of solid tumours, including 6 (10%) patients with 

STS. The documented treatment-related adverse events were in keeping with 

those associated with anti-angiogenic therapies, with grade 3-4 hypertension 

being the most commonly reported and seen in 16 (25%) patients. The median 

time to onset of hypertension was 7.5 days, and all episodes of hypertension 

were manageable with anti-hypertensive medications and resolved on treatment 

discontinuation. Pharmacokinetic analysis identified that steady-state exposure 

to pazopanib plateaued in the 800mg once-daily treatment group. Assessment of 

preliminary clinical activity in this trial reported 3 (4.8%) patients with a partial 

response to therapy, with 14 (22.2%) achieving a prolonged period (greater than 

6 months) of disease stabilisation. Of note, prolonged disease stabilisation (range 

7.6 months to 19.8 months) was reported in 4 out of 6 (66.6%) patients with 

sarcoma, made up of 2 patients with chondrosarcoma, 1 with LMS and 1 with a 

GIST. In addition, a subset of patients underwent dynamic contrast enhanced 

MRI (DCE-MRI) to visualise tumour blood flow following pazopanib. A greater 

than 50% reduction in tumour blood flow was observed in 58% (7 of 12) of 

patients at day 8 post-pazopanib initiation, and in 91% (10 of 11) of patients at 

day 22 post-pazopanib initiation. This suggested activity of pazopanib to target 

the tumour vasculature and diminish the supply of oxygen and nutrients vital for 

tumour growth. As such, and given the toxicity profile as well as preliminary 
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clinical efficacy, 800mg pazopanib once daily was the suggested dosing regimen 

to take forward in further clinical trials. 

In addition, a further phase I study exploring the pharmacokinetic and 

pharmacodynamic activity of pazopanib in a paediatric population was 

undertaken (NCT00929903)129. A total of 51 patients between the ages of 2 and 

22 years (median 12.9 years) with recurrent or refractory solid tumours, or 

primary central nervous system tumours, were enrolled and included for analysis, 

including 28 (55%) patients with STS. The maximum tolerable dose was 

determined to be 450mg/m2 for pazopanib tablets, and 160 mg/m2 for the 

suspension form, with dose-limiting toxicities including grade 3-4 biochemical 

abnormalities in lipase, amylase and transaminase, as well as proteinuria and 

hypertension. Of note, a patient with occult brain metastases experienced a 

grade 4 intracranial haemorrhage. Preliminary response evaluation for patients 

with STS confirmed a sustained partial response in a patient with desmoplastic 

small round cell tumour, who completed 24 weeks of protocol therapy, and a 

further 7 patients with durable stable disease of greater than 6 months (2 patients 

with alveolar soft part sarcoma, (ASPS) 1 osteosarcoma, 1 GIST, 1 alveolar 

rhabdomyosarcoma and 1 mesenchymal chondrosarcoma). Furthermore, 8 

patients had evaluable DCE-MRI data available, and all 8 showed decreases in 

tumour blood volume and permeability consistent with the anti-angiogenic effects 

of pazopanib.  

1.4.5 Clinical trials of pazopanib in soft tissue sarcomas 

1.4.5.1 EORTC Phase II clinical trial of pazopanib in STS 

Following the evidence of anti-tumour activity in phase I trials, a subsequent non-

comparative phase II study of the anti-tumour activity of pazopanib in STS was 

undertaken (EORTC 62043, NCT00297258)130. They enrolled 142 patients with 

advanced intermediate- or high-grade STS, who were ineligible for chemotherapy 

or had received a maximum of two prior lines of chemotherapy prior to trial 

participation. Of note, the cohort was generally pre-treated, with only 2 (1.4%) 

patients out of the 142 enrolled having received no prior therapy. The trial utilised 
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PFS at 12 weeks as the primary end-point, and applied a Simon two-stage design 

to four histological strata, made up of adipocytic STS, LMS, SS, and “other” STS 

subtypes. This study design dictated that during the first stage of the trial, 17 

patients would be recruited to each stratum, with at least 20% being progression-

free at 12 weeks considered a success leading to the expansion of the cohort to 

a total of 37 patients per strata. A 12-week PFS rate of greater than 40% within 

the strata of 37 patients was deemed indicative that further investigation of 

pazopanib in this strata was warranted.  

Each patient received 800mg pazopanib orally and continued on therapy until 

progression, toxicity or withdrawal of consent. In total, 136 patients were included 

in efficacy analyses. Based on the Simon two-stage design, accrual for the 

adipocytic sarcoma cohort was stopped after completion of the first stage as only 

3 (17.6%) of the 17 patients were progression-free at 12 weeks, and as such this 

did not meet the pre-determined cut-off of 20%. The remaining three strata 

continued recruiting to the second stage of the trial, and had a 12-week PFS rate 

of 44% (18 of 41 patients) in the LMS strata, 49% (18 of 37 patients) in the SS 

strata and 39% (16 of 41 patients) in the “other” STS strata. At a cohort median 

follow-up of 677 days, median PFS rates were 80 days, 91 days, 161 days and 

91 days, and median OS 197 days, 354 days, 310 days and 299 days in the 

adipocytic sarcoma, LMS, SS and “other” STS strata respectively. Of note, the 

median PFS and OS compared favourably to historical controls taken from the 

EORTC-STBSG database131. No complete responses were observed, but partial 

responses to therapy were seen in 9 (6.6%) patients, 1 (2.4%) with LMS, 5 

(13.5%) with SS and 3 (7.3%) in the “other” STS strata. Pazopanib was well 

tolerated in this trial cohort, with the majority of adverse events grade 1 or 2, with 

the most frequent grade 3-4 toxicities being hypertension in 7.7% (11 of 142 

patients), fatigue in 7.7% (11 of 142 patients) and hyperbilirubinemia in 6.3% (10 

of 142 patients). Treatment interruptions were necessitated in 60% (85 of 142) of 

patients, and dose reductions in 23% (33 of 142 patients). These results 

confirmed the tolerability of pazopanib in a larger cohort of STS patients and 

demonstrated sufficient anti-tumour activity in non-adipocytic STS to warrant 

further investigation. 
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1.4.5.2 PALETTE phase III trial of pazopanib in metastatic non-adipocytic 

soft-tissue sarcoma 

Building on the results of the phase II study, the EORTC-STBSG undertook the 

randomised, double-blind placebo-controlled phase III Pazopanib explored in 

Soft Tissue Sarcoma (PALETTE) trial, which represented the first placebo-

controlled phase III trial undertaken in STS (EORTC 62072, NCT00753688)132. 

Between October 2008 and February 2010, a total of 372 patients were enrolled 

across 72 sites in 13 different countries, and included patients over the age of 18 

with metastatic non-adipocytic STS demonstrating progression in the preceding 

6 months, or 12 months following previous adjuvant therapy. Patients were 

required to have received at least one prior line of anthracycline-containing 

therapy, and up to a maximum of four prior lines of therapy. Enrolled patients 

were randomised 2:1 to receive either 800mg oral pazopanib daily or placebo, 

with the trial’s primary end-point being PFS. 

Across the cohort of 372 patients, the median age was 55 years, and they were 

heavily pre-treated with 207 (56%) patients having received 2 or more lines of 

systemic therapy, and 78 (21%) patients 3 or more lines. Three patients were lost 

prior to randomisation, therefore 369 patients were included in intention-to-treat 

analyses, 123 of which were randomised to receive placebo and the remaining 

246 allocated to the pazopanib treatment arm. At median follow-up of 14.6 

months in the placebo group and 14.9 months in the pazopanib group, there was 

a statistically significant improvement in PFS observed for the pazopanib group 

(4.6 months vs 1.6 months; HR 0.31, 95% CI 0.24-0.40; p<0.0001). Via external 

review of images, the CBR of pazopanib was 73% (14 partial responses and 164 

with stable disease out of 246 patients) compared to 38% in the placebo group 

(47 stable disease out of 123 patients). However, despite the improved PFS 

associated with pazopanib therapy, disappointingly there was no significant 

difference in OS between the treatment arm and placebo arm (12.5 months vs 

10.7 months; HR 0.86, 95% CI 0.67-1.11; p=0.2514). Generally pazopanib was 

well tolerated, with the most common grade 3-4 toxicities being fatigue in 13% 

(31 of 239 patients) compared to 5.7% (7 of 123 patients) in the placebo arm, and 
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hypertension reported in 7% (16 patients) in the pazopanib arm and 3% (4 

patients) in the placebo arm. 

Although this study demonstrated activity of pazopanib in a heterogenous group 

of STS patients as evidenced by the significant 3-month prolongation of PFS, the 

lack of significant benefit in OS was disappointing. Indeed, as some health 

services, including the UK, base funding for medications on quality of life years 

gained, the lack of OS benefit was detrimental to cost-effectiveness analyses 

undertaken in the wake of the PALETTE trial and indeed led to funding being 

withdrawn for the use of pazopanib in STS via the National Health Service (NHS) 

Cancer Drugs Fund133,134. It was noted that post-progression therapy was given 

frequently and varied substantially, and this may have impacted OS in both the 

placebo and treatment groups, although the nature of this potentially confounding 

factor was not qualified. In addition, the median OS of the placebo group was 

anticipated to be in the region of 8 months and was therefore much longer in the 

trial population (10.7 months). Indeed, the study power calculation was for 90% 

power at 5% significance level with 279 events to detect a 33% decrease in the 

hazard ratio of death, which corresponds to a median OS improvement from 8 

months to 12 months. Given the unexpectedly long OS in the placebo group, the 

study may have been underpowered and a type II error may have occurred, 

whereby a false negative conclusion has been drawn. A further point to note is 

that in the preceding phase II trial two patients allocated to the “other” STS strata 

were later re-allocated to the adipocytic STS strata following central 

histopathology review. Both of these cases were progression-free at 12 weeks, 

resulting in a 12-week PFS rate of 26% (5 of 19 patients) for the adipocytic strata, 

and as such this cohort should have proceeded to the second stage of the trial. 

Although the PALETTE trial had a negative result in the fact an OS benefit was 

not observed, a number of subsequent studies and analyses have confirmed that 

pazopanib may have considerable utility in certain STS subpopulations of 

patients135–138. 
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1.4.6 Further evidence of pazopanib activity in soft tissue 

sarcoma 

1.4.6.1 Post-hoc analyses from the PALETTE phase III trial 

Following publication of the PALETTE trial results, a number of post-hoc analyses 

have been published undertaking subgroup and further analyses. One of the 

most important of these was by Kasper et al., who undertook a survival-based 

analysis of patients treated with pazopanib in both the phase II and phase III 

trials135. They excluded a total of 44 patients from this analysis, including those 

with adipocytic sarcomas, leaving a cohort for this retrospective analysis of 344 

patients. At a median follow-up of 2.3 years, this cohort had a median PFS of 4.4 

months, and a median OS of 11.7 months. What was interesting to note however, 

is that utilising a PFS of greater than 6 months as the definition for a long-term 

responder, and an OS of greater than 18 months to define a long-term survivor, 

from the combined cohorts 36% (124 patients) were deemed long-term 

responders, 34% (116 patients) were long-term survivors, and 22.1% (76 

patients) were both long-term responders and survivors. These figures do 

support the fact that a substantial proportion of patients with advanced STS do 

gain benefit from treatment with pazopanib in the advanced setting. Indeed, 12 

patients (3.5%) in this cohort remained on pazopanib therapy for over 2 years. 

Although small, this subgroup of 12 patients was not enriched for specific STS 

subtypes, and after a median time on therapy of 2.4 years, the median PFS was 

2.3 years and median OS 2.8 years. Undertaking multivariate logistic regression 

across the whole pazopanib-treated cohort, worse performance status and low 

baseline haemoglobin were independently negatively associated with long-term 

response and survival, whilst bone metastases were negatively associated with 

long-term response, and higher tumour grade was associated with poor long-term 

survival. However, other factors such as STS subtype, patient sex, and site of 

primary were not significantly associated with pazopanib response. As such, and 

given that tumour grade and performance status are known prognostic factors in 

STS outcome, no additional factors were identified which were able to identify 

those patients most likely to gain clinical benefit from pazopanib136.  
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A further retrospective study of the combined phase II and phase III study 

populations looked to explore differential response rates in uterine and non-

uterine sarcomas137. The authors identified a total of 44 patients with uterine 

sarcomas in the pazopanib-treated arms, with 88.6% (39 patients) being uterine 

LMS, whilst this cohort also had a higher proportion of high-grade tumours 

relative to the non-uterine sarcoma cohort (84.1% vs 54.8%). Interestingly, when 

focusing solely on uterine sarcomas, patients randomised to pazopanib versus 

those treated with placebo have a significantly longer median PFS (3.0 months 

versus 0.8 months) and longer median OS (17.5 months vs 7.9 months; p=0.038). 

This indicated that in the subgroup of uterine sarcoma patients taken from the 

phase II and III studies, there was significant clinical benefit following the 

administration of pazopanib, and again highlights the fact that although the 

PALLETTE phase III trial has led to the withdrawal of funding for the general STS 

patient population, this is depriving some patients of an active and tolerable anti-

cancer agent. 

Finally, a more recent exploratory subgroup analysis utilising median PFS as the 

outcome of interest, compared the pazopanib-treated cohort with the placebo 

group from the PALETTE trial138. The only finding of note was that median PFS 

was higher in those patients who had received 1 prior line of therapy when 

compared with those who had received 2 or more lines of therapy (24.7 weeks 

versus 18.9 weeks). When split into over/under 65 years of age, median PFS was 

similar, and a reduction in median PFS was not seen in patients requiring dose 

interruptions of modifications in the management of toxicities. 

Overall, these post-hoc analyses of the PALETTE study suggest that certain 

groups of patients do receive considerable benefit following treatment with 

pazopanib, but no particular clinicopathological variables are able to effectively 

stratify patients beyond those already known to be prognostic in STS. 
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1.4.6.2 Additional prospective and retrospective studies of pazopanib 

activity in soft tissue sarcomas 

Following the results of the PALETTE study, there have been few prospective 

clinical trials exploring the role pazopanib may play in the management of 

variable STS subtypes. The most recent trial was led by a German group and 

was a randomised, open-label phase II non-inferiority study comparing pazopanib 

with doxorubicin as the first-line treatment of metastatic STS in those over 60 

years of age139. A total of 120 patients with progressive advanced or metastatic 

STS were randomised 2:1, with 81 patients receiving pazopanib at a dose of 

800mg daily until progression or intolerance, and the remaining 39 receiving 

doxorubicin 75m/m2 once every 3 weeks for up to 6 cycles. The primary study 

end-point was non-inferiority, defined by the upper limit of the 95% CI for the HR 

for PFS being less than 1.8. The median age across the whole cohort was 71 

years, and recruited all STS subtypes with LMS being the most common, followed 

by UPS and then LPS. At a median follow-up time of 11.8 months, the median 

PFS in the pazopanib arm was 4.4 months compared to 5.3 months in the 

doxorubicin arm (HR 1.00, 95% CI 0.65-1.53), which met the pre-defined criteria 

for non-inferiority in this study. Median OS in the pazopanib arm was 12.3 months 

compared to 14.3 months in the doxorubicin arm, and although interaction 

analyses revealed no significant parameters to be associated with OS, of note 

the LPS cohort (18 patients, 13 received pazopanib and 5 received doxorubicin) 

had a HR of 1.62 (95% CI 0.88 – 2.97). However, for this trial OS analyses are 

difficult to interpret due to a large amount of post-trial crossover, including cross-

over to second-line pazopanib in 17.6% (6 of 39 patients) from the doxorubicin 

arm, and to second-line doxorubicin in 37.7% (29 patients) from the pazopanib 

arm. Tolerability of both regimens in this trial were as expected, especially 

considering the intentionally selected higher age of enrolled patients, with dose 

reductions necessary in 24.7% (20 patients) receiving pazopanib, and in 24.3% 

(9 patients) receiving doxorubicin. One of the secondary end-points of the study 

was the incidence of neutropenia in each cohort, with 0% of patients experiencing 

either grade 4 neutropenia or febrile neutropenia in the pazopanib arm, compared 

to 56.5% (22 of 39 patients) and 10.3% (4 patients) in the doxorubicin arm. As 
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such, the authors suggest that given certain considerations and given the risks 

associated with grade 4 neutropenia and febrile neutropenia in this elderly 

population, pazopanib represents a valid first-line treatment option in elderly 

patients presenting with advanced STS. 

Further prospective studies have focused on the efficacy of pazopanib in specific 

STS subtypes, including traditionally chemoresistant tumours such as SFT, 

chondrosarcomas, and epithelioid sarcomas (Table 1.5). 

Broadly speaking, these studies demonstrate pazopanib efficacy, although given 

the relatively small cohort sizes in a number of these studies, concrete assertions 

and comparisons with the OS and PFS data from the PALETTE study are difficult 

to make. Furthermore, a number of the STS subtypes, such as SFT and ASPS, 

tend to have a more unpredictable clinical course with occasional periods of 

indolence. As such, the surprisingly long periods of PFS and OS in these studies 

may not truly reflect pazopanib anti-tumour activity but rather might be part of the 

usual clinical course of that subtype. 
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Table 1.5 Select prospective trials published since the PALETTE trial of pazopanib monotherapy in STS subtype specific cohorts of patients. ASPS – 
alveolar soft part sarcoma; mOS – median OS; mPFS – median PFS; PD – progressive disease; PR – partial response; RECIST – response evaluation 
criteria in solid tumours; SD – stable disease; SFT – solitary fibrous tumour.140–146

Study Subtypes Study type
Number of 

patients

Number of line of systemic  

therapy

Patients 

evaluable 

for 

response

Best Response 

by RECIST
Survival (months)

Number of 

grade 3/4 

adverse 

events

ASPS (5) Treatment naive - 3 (37.5%) PR - 1 (12.5%) mPFS 15.7m

Epithelioid sarcoma (2) 1 prior line - 4 (50%) SD - 6 (75%)

Clear cell sarcoma (1) 2+ prior lines - 1 (12.5%) PD - 2 (25%)

Treatment naive - 4 (66.6%) PR - 1 (16.7%) mPFS 5.5m

1 prior line - 1 (16.7%) SD - 5 (83.3%) mOS 32.0m

2+ prior lines - 1 (16.7%)

Treatment naive - 7 (21%) PR - 2 (6%) mPFS 11.2m

1+ prior line - 27 (79%) SD - 29 (94%) mOS 49.8m

Treatment naive - 24 (66.6%) PR - 2 (6%) mPFS 5.57m

1 prior line - 8 (22.2%) SD - 21 (60%) mOS - not reached

2+ prior lines - 3 (5.6%) PD - 12 (34%) 24m OS - 73%

PR - 1 (7.7%) mPFS 4.7m

SD - 8 (61.5%) mOS 13.3m

PD - 2 (15.4%)

Treatment naive - 32 (68.1%) PR - 1 (2%) mPFS 7.9m

1+ prior line - 15 (31.9%) SD - 30 (64%) mOS 17.6m

PD - 11 (23%)

Treatment naive - 21 (81%) PR - 4 (18%) mPFS 19m

1 prior line - 2 (8%) SD - 16 (73%) mOS not reached

2+ prior lines - 3 (11%) PD - 2 (9%) 24m OS 90%

Urakawa et al., 

Cancer Sci. , 2020

Japanese prospective 

single-arm multi-centre 

phase II trial

8 8 12
mOS not reached

16
Kim et al., 

Oncologist , 2019
Metastatic ASPS

Korean single-arm, open-

label, multi-centre 

phase II trial

6

Stacchiotti et al., 

Lancet Oncol. , 

2019

Advanced extraskeletal 

myxoid 

chondrosarcoma

36

Martin-Bronto et 

al., Lancet Onc. , 

2020

Typical SFT
European multi-centre, 

single-arm phase II trial
34 31 31

Martin-Bronto et 

al., Lancet Onc. , 

2019

Advanced malignant 

and dedifferentiated 

SFT

European multi-centre, 

single-arm phase II trial
36 35

Maruzzo et al., 

Clin. Sarc. Res. , 

2015

SFT
UK prospective single 

centre case series
13 Treatment naive - 13 (100%)

Chow et al., 

Cancer , 2020

Unresectable or 

metastatic 

chondrosarcoma

American multi-centre, 

single-arm phase II trial
47 42

European multi-centre, 

single-arm phase II trial
26 22 27

6

51

11
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Although lacking the confined parameters of clinical trials, retrospective reports 

also offer insights into the efficacy of pazopanib in mixed subtype cohorts, with 

real-world experience again supporting the notion that pazopanib has a place in 

the arsenal of STS systemic therapies. Gelderblom et al. published the results of 

a retrospective case notes review of patients who had received pazopanib as part 

of the named patient programme (NPP) allowing access to medications in the 

compassionate use setting147. The notes from a total of 211 patients with variable 

STS subtypes who had received at least one dose of pazopanib as part of the 

NPP were reviewed. The largest STS subtype represented was LMS making up 

41% (87 out of 211 patients) of the cohort, followed by SS (11%, 24 patients) and 

UPS was the third most common subtype (9%, 19 patients). In general, the cohort 

was heavily pre-treated with only 6% (13 patients) receiving pazopanib in the first-

line setting. Clinical benefit of pazopanib therapy at any time was observed in 

46% (97 patients), with a median PFS of 3.0 months and median OS of 11.1 

months from the start of pazopanib. In terms of differential responses by subtype, 

UPS had the highest percentage of partial responses (26%, 5 of 19 patients), 

whilst rate of clinical benefit was highest in SFT and SS (both 54%, 7 of 13 and 

13 of 24 patients respectively). In terms of tolerability, the study confirmed a good 

level of dosing compliance with a relative dose intensity in this cohort of 92%, and 

only 27 patients (13%) discontinuing pazopanib due to adverse events. 

Furthermore, grade 3/4 adverse events were uncommon, with grade 3 nausea 

the most frequently reported and documented in only 6 (2.8%) patients. This 

study confirms the utility of pazopanib in the clinic, and in this advanced heavily 

pre-treated cohort the high rate of clinical benefit and tolerability across multiple 

subtypes is promising. 

Oh et al.’s recently published multi-centre retrospective case series of Korean 

patients with advanced sarcoma treated with pazopanib is notable for the large 

cohort reported, with a total of 347 patients included148. The authors included all 

patients who had received pazopanib for the treatment of advanced sarcoma and 

who had failed at least one line of conventional systemic chemotherapy, with just 

under half having failed two or more lines of therapy (44.1%, 153 of 347 patients). 

The median age of the cohort was 51 years, and LMS was the most common 
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histological subtype represented (27.4%, 95 of 347 patients), with UPS (13.5%, 

47 patients) and AS (12.7%, 44 patients) the next most common. Of the whole 

cohort, disease control was achieved in 60.1% (190 of 313 evaluable patients) 

with a median PFS of 5.3 months and median OS of 12 months. The authors note 

that patients with ASPS and SFT appeared to have excellent outcomes following 

pazopanib initiation, however as previously noted these results may be 

confounded by the occasionally indolent course of these tumours when 

compared to more aggressive subtypes such as LMS and UPS. As with previous 

studies, pazopanib was relatively well tolerated with a mean dose intensity of 

83.4% and a daily average dose of 700mg. Indeed, although treatment-related 

adverse events were documented for 170 patients (49%), none were grade 4 or 

higher, and grade 3 toxicities were only observed in 8 (2.3%) patients. Although 

a retrospective study, this large cohort provides further evidence of the robust 

subtype-agnostic anti-tumour activity of pazopanib and its tolerability in the 

context of a heavily pre-treated cohort of patients. Numerous additional 

retrospective studies have been published demonstrating the real-world utility of 

pazopanib in both mixed and subtype-specific cohorts, and these are 

summarised in Table 1.6. From this selection of retrospective studies, what 

stands out in the mixed subtype studies is the relatively uniform median PFS and 

OS reported, and a combined PR and SD rate observed in most studies of above 

40% and as high as 69% in Nakamura’s cohort of 156 patients. This real-world 

evidence again supports the notion that a subgroup of patients, frequently heavily 

pre-treated and thus difficult to manage, gain significant benefit from pazopanib 

therapy. 
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Table 1.6 Select retrospective trials published since the PALETTE trial of 
pazopanib monotherapy in STS cohorts. AS – angiosarcoma; EHE – epithelial 
haemangioendothelioma; mOS – median OS; mPFS – median PFS; PD – 
progressive disease; PR – partial response; RECIST – response evaluation 
criteria in solid tumours; SD – stable disease.147,148,157,149–156   

Study Subtypes Study type

Number 

of 

patients

Number of line of 

systemic  therapy

Patients 

evaluable 

for 

response

Best 

Response by 

RECIST

Survival 

(months)

Number of 

grade 3+ 

adverse 

events

1 prior line - 21 (46.7%) PR - 9 (20%) mPFS 4.1m

SD - 16 (35.6%) mOS 12.4m

PD - 20 (44.%)

1 prior line - 11 (73.3%) SD - 2 (32.4%) mPFS 3.0m

2 prior lines - 4 (26.7%) PD - 13 (86.7%) mOS not reached

Treatment naive - 14 

(17.7%)
CR - 1 (1.3%)

1 prior line - 35 (44.3%) PR - 12 (15.2%)
2 prior lines - 24 

(30.4%)
SD - 23 (29.1%)

3+ prior lines - 6 (7.6%) PD -  43 (54.4%)

1 prior line - 194 

(55.9%)
PR - 54 (17.3%) mPFS 5.3m

2 prior lines - 92 

(26.5%)
SD - 136 (43.5%) mOS 12.0m

3+ prior lines - 61 

(17.6%)
PD - 123 (39.3%)

1 prior line - 26 (21%) CR - 1 (0.8%)

2 prior lines - 28 (23%) PR - 12 (9.8%)

SD - 34 (27.6%)

PD - 76 (61.8%)

Treatment naive - 13 

(6%)
PR - 15 (10.8%)

1 prior line - 59 (28%) SD - 38 (27.3%)

2 prior lines - 60 (28%) PD - 86 (61.9%)
3+ prior lines - 80 

(38%)
Treatment naive - 30 

(19.2%)
PR - 13 (10.4%) mPFS 3.5m

1 prior line - 57 (36.5%) SD - 74 (59.2%) mOS 11.2m

2+ prior lines - 69 

(44.2%)
PD -  38 (30.4%)

1 prior line - 9 (20.9%) PR - 7 (17.1%) mPFS 5.0m

2 prior lines - 15 

(34.9%)
SD - 18 (43.9%) mOS 8.2m

3+ prior lines - 19 

(44.2%)
PD - 16 (39%)

SD - 9 (50%) mPFS 3.0m

PD -  9 (50%) mOS 14.0m

1 prior line - 1 (3%) CR - 1 (3%)

2 prior lines - 6 (21%) PR - 1 (3%)

SD - 16 (55%)

PD -  11 (38%)

CR - 1 (2.9%)
PR - 9 (26.5%)

SD - 11 (32.4%)
PD -  13 (38.2%)

Treatment naive - 5 

(9.6%)
CR - 1 (1.9%) AS mPFS 3.0 m

1 prior line - 18 (34.6%) PR - 11 (21.2%) AS mOS 9.9m

SD - 11 (21.2%) EHE mPFS 26.3m

PD - 26 (50%) EHE mOS 26.3m

49 Not reported
Vascular 

sarcomas

2+ prior lines - 24 

(53.3%)

3+ prior lines - 69 

(56%)

3+ prior lines - 22 

(76%)

2+ prior lines - 1 

(55.8%)

29

American single-

centre case 

series

DSRCT

23

mOS 11.4m

mPFS 3.97m

Median number of 

prior lines - 2 (range 1-

4)

18

International 

multi-centre 

case series

Menegaz et al., 

Oncologist , 

2018

Kollar et al., 

Acta Oncol. , 

2017

European 

multicentre 

case series

52

Not reported

mOS 15.7m

mPFS 5.63m

29

2+ prior lines - 18 

(51%)

1 prior line - 17 (49%)
35

Korean single-

centre case 

series

Uterine 

sarcomas

Kim et al., J 

Gynecol Oncol , 

2017 mOS 20.0m

mPFS 5.8m

Karaağaç et al., 

J Oncol Pharm 

Pract. , 2020

Multiple 

subtypes

Turkish multi-

centre case 

series

79 79

Epithelioid 

sarcoma

Frezza et al., 

JAMA Oncol. , 

2018

Not reported18

Not reported

Nakamura et al., 

Cancer , 2016

Multiple 

subtypes

Japanese multi-

centre case 

series

156 125 44

Halim et al., 

Cancer Treat 

Res Commun , 

2021

Multiple 

subtypes

Lebanese single-

centre case 

series

15 15

534

13

Korean multi-

centre case 

series

Yoo et al, BMC 

Cancer , 2015

Multiple 

subtypes
43 41 Not reported

Alshamsan et 

al., Cancer 

Manag Res , 

2021

Multiple 

subtypes

Saudia Arabian 

single-centre 

case series

45 45

123123

mOS not reported

mPFS 3.0m

Not reported

15

8

mOS 11.1m

mPFS 3.0m

313347

Gelderblom et 

al., Acta 

Oncologica , 

2017

Multiple 

subtypes

Internaional 

multicentre 

case series

211 139

American 

regional case 

series

Multiple 

subtypes

Seto et al., Med 

Sci (Basel) , 

2018

Korean multi-

centre case 

series

Multiple 

subtypes

Oh et al., 

Targeted 

Oncol. , 2020
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1.4.6.3 Summative pazopanib effectiveness based on previous prospective 

and retrospective trials 

Although the trials detailed above have a number of variables between them, 

given the potential use of pazopanib in a subtype agnostic manner it may be 

possible to combine the data to derive a pooled median overall and progression-

free survival, as well as the proportions of patients obtaining clinical benefit from 

pazopanib treatment. In order to obtain a pooled median survival time, the use of 

an inverse weighted average is the most appropriate method, as it will give more 

weight to more precise trials158,159. In order for the data to be included, specific 

hazard ratio data for the OS and PFS from pazopanib initiation must be available 

from the published manuscript. Therefore, including all available data from the 

trials included above, the pooled median PFS from start of pazopanib therapy is 

4.03 months, and pooled median OS is 11.4 months132,142,156,157,160–162,144,145,147–

149,151,153,154. 

In terms of response rates per RECIST criteria, including all prospective and 

retrospective studies with complete data, a total of 1412 patients can be included 

for summative analysis132,140,152–154,156,157,160–163,142,144–149,151. In this combined 

cohort, best response upon radiological assessment was classified as complete 

response in 5 (0.4%) patients, partial response in 169 (12%), stable disease in 

667 (47.2%), and progressive disease in 571 (40.4%). 

1.4.7 Biomarkers for pazopanib response 

Despite the promising evidence of pazopanib anti-tumour activity in both the 

clinical trial and real-world settings, what is apparent is that individual responses 

to therapy remain significantly variable. In the clinical setting, the challenge is 

then identifying those who might glean considerable advantage from being 

treated with pazopanib and those who might benefit from an alternative 

therapeutic regimen. This has ramifications on the management of the individual, 

in terms of optimising the care of each patient, but also at a healthcare system 

level, as the correct selection of patients most likely to gain benefit could 

drastically improve the cost-effectiveness of pazopanib therapy. As such, 
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biomarkers able to predict response to pazopanib in STS are highly sought after 

to improve patient outcomes and also to ensure funding for pazopanib is made 

available to those patients likely to respond.  

1.4.7.1 The relationship between resistance, tumour progression and 

survival in the context of TKI therapy 

Given the evidence of a statistically significant improvement in PFS compared to 

placebo in the PALETTE phase III trial and further real-world confirmation of 

activity, one challenge is exploring why this is not translated into an OS benefit132.  

One potential mechanism is that pazopanib exposure drives a phenotypic switch 

to a highly malignant, aggressive and invasive tumour, through the application of 

potent clonal selection pressure. Indeed, xenograft mouse modelling of 

pancreatic neuroendocrine tumour and glioblastoma has demonstrated that anti-

angiogenic therapies drive tumour adaption164.  In these models, VEGF blockade 

was associated with deficiency in tumour capsule, degree of invasiveness and 

progression to a form with greater malignant potential, with elevated invasiveness 

and greater propensity for metastasis. Given their observation of distinct regions 

of intense hypoxia in the VEGF targeted tumours, the authors suggested a role 

of the hypoxia response system as a key modulator of the shift to a more 

malignant and aggressive phenotype. As such, although pazopanib may be 

active as evidenced by a significant PFS advantage in the phase III trial, this may 

not have translated into an OS benefit due to this malignant transformation. In 

addition, VEGF inhibition has previously been shown to diminish tumour 

vasculature, however upon cessation of therapy it has been observed that there 

is a rebound rapid revascularisation response165,166. This would suggest that at 

evidence of progression, and subsequent treatment cessation, previously 

responsive tumours would demonstrate a rapid flare of disease activity resulting 

in rapid progression negating any anti-tumour activity during therapy and 

resulting in no observable survival benefit. 

The idea of disease flare following withdrawal of therapy has been demonstrated 

across a range of neoplasms and various TKIs. In a study of patients with EGFR-
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mutant lung cancer, after a period of initial benefit and subsequent progression, 

after cessation of the TKIs erlotinib or gefitinib, 23% experienced a disease flare 

after TKI discontinuation167. Similarly, in patients with thyroid cancer treated with 

lenvatinib, upon treatment cessation 14.3% of patients experienced a flare of 

disease168. Indeed, although only a small number of patients, 37.5% (3 of 8 

patients) who experienced a disease flare had died within a month of treatment 

cessation. In addition, a case report has demonstrated the phenomenon of 

disease flare in the context of STS and pazopanib169. In this report, a patient with 

uterine LMS was treated with pazopanib with good effect, with stable disease 

after 3 months of therapy. However, upon treatment cessation she experienced 

rapid disease progression, with a 55% increase in the size of the lung metastases 

2 weeks following pazopanib withdrawal, and the patient died one month after 

treatment cessation. 

Therefore, there is evidence that treatment with TKIs, as with other therapies, is 

responsible for the application of significant selective pressures generating a 

more aggressive subclonal population. In addition, in a subset of patients, 

withdrawal of TKI therapy may lead to rapid tumour progression  and early death. 

This may all contribute to the results observed in the PALETTE study, whereby a 

significant PFS advantage was reported versus placebo, but with no apparent 

OS benefit. Furthermore, the rebound rapid progression following treatment 

cessation in a subset of patient may have contributed to this finding, and being 

able to identify those at risk and combatting this phenomenon may help 

personalise and target therapy for improved patient outcomes. 

1.4.7.2 The development and use of predictors of response in oncology 

With the development of therapies targeted at specific vulnerabilities harboured 

by cancer, biomarkers are becoming a promising avenue to help tailor therapy to 

individual patients. Broadly, prognostic biomarkers are able to stratify patients 

based on disease outcome, whilst predictive biomarkers are more specific to a 

drug of interest. As such, prognostic biomarkers are able to stratify a cohort of 

patients based upon the prognosis of their disease based upon the marker(s) of 

interest in the absence of treatment, or following standard of care. Conversely, 



 

 
69 

predictive biomarkers are able to stratify patients based on the marker(s) of 

interest with respect to their outcome following a particular specific treatment170. 

In order for a biomarker to be acceptable to be adopted into routine clinical usage 

it should fulfil certain criteria; 

It should be robust and reliable; 

It should reliably trigger a clinical decision that results in patient benefit; 

The clinical community has to be convinced of the need for the biomarker 

and the benefit it affords, weighed against the cost and burden of 

undertaking the test171. 

Failure to fulfil any of these three criteria would result in a biomarker which would 

not have utility in the clinical setting. In order to develop biomarkers a number of 

critical steps need to be undertaken171–173. Foremost, a cohort of samples must 

be available to be analysed to test or discover a new potential biomarker. 

Subsequent testing of an independent cohort of samples is then necessitated to 

validate the original biomarkers findings from the hypothesis-generating analysis, 

and confirm that the biomarker will provide additional information in the clinical 

setting to help drive decision-making for patient benefit. 

 1.4.7.2.1 Analytical validity 

An important prerequisite in the process of developing a new biomarker is an 

assessment of the robustness and reliability of the analytical process involved in 

determining the result of any biomarker testing174. This step also involves pre-

analytic validity, whereby factors involved in the handling and processing of 

tissues may negatively influence the reliability of the assessment of the 

biomarker. Analytical validity involves an assessment of the specificity, sensitivity 

and robustness of a chosen assay, as well as considering inter-user reliability 

such that results from different laboratories do not display excessive variability175. 

1.4.7.2.2 Clinical validity 

Once a technically sound analysis pathway has been settled upon, the question 

of clinical validity is then approached. Following discovery of a potential 
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biomarker which is apparently able to stratify a cohort into those more or less 

likely to respond, it must then be validated on a separate cohort of samples172. 

Important considerations of this stage include the sensitivity/specificity of the test, 

reproducibility, analyte stability and the cut-off used for the biomarker result176. 

After training and validation, the next stage to confirm clinical validity would 

involve obtaining high-level evidence of robustness. The original guidance from 

the American Society of Clinical Oncology (ASCO) stated that a prospective 

randomised trial was the only means to formulate level I evidence of biomarker 

validity177. However, more recent updated guidance opened additional routes 

whereby sufficient validity could be obtained via less costly and time-consuming 

means. Indeed, the use of samples from a previously completed prospective trial 

can be utilised in this regard, in a “prospective-retrospective“ biomarker study177. 

The benefits of such an approach include the fact that previously obtained and 

archived samples are made use of, with careful curation of clinical data, patient 

recruitment practices and standard sampling procedures all followed as part of 

the original prospective clinical trial. Furthermore, a pre-determined biomarker 

analysis operating procedure and statistical analysis plan ensure unbiased 

validity of subsequent biomarker results. 

A number of challenges can be faced during the clinical validity stage of 

biomarker development. For example, a single analyte biomarker, such as an 

aberration of a single gene, should have a relatively straight forward analysis 

process. However, in cases of a multianalyte biomarker, for example utilising 

high-dimensionality data will often require a degree of computational processing 

in order to derive a useable result. As such, the computational pipeline and 

analytical framework involved in processing the data to derive the biomarker 

result should be “locked in” prior to assessment of validation on the validation 

cohort176. Statistical “over-fitting” is another potential pitfall in biomarker 

development, in which a large number of potential predictors are applied to a 

small number of outcome variables. However, the inclusion of a validation set of 

samples which are independent of the original discovery set of samples can go 

some way to act as an internal validation of the biomarker validity. During 

development, it is vital that the validation set remains independent and analysis 
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is not undertaken upon it which may influence the design of the biomarker 

algorithm176,178.  

 1.4.7.2.3 Clinical utility 

Finally, the biomarker should have clinical utility. One aspect of this is there 

should be clear and well-communicated guidance on how to interpret and act on 

results from a biomarker used in the clinic177. Indeed, a lack of clarity following 

the introduction of a new biomarker can be highly detrimental to patient care and 

result in incorrect clinical decisions being made. In addition, the steps of analytical 

and clinical validity must have been completed to generate robust high-level 

evidence to ensure the correct patients are receiving the correct treatments172. 

1.4.7.2.4 Clinical biomarkers - treatment stratification and methods used  

Clinically relevant biomarkers able to stratify and select for patients most likely to 

respond to a specific therapy, or family of therapies, are becoming more 

commonplace. Generally, the methodologies utilised for identification of the 

biomarker of interest are variable, and depend on the type of biomarker being 

assessed, as well as implications related to availability, cost and feasibility of the 

test involved. 

In its most simple format, biomarkers predictive of treatment response might be 

a particular drug target protein expressed in cancer cells which is detectable via 

IHC testing. IHC has the advantage of being inexpensive, making it feasible for 

large-scale biomarker testing, whilst also not requiring high-cost equipment, as is 

the case with genomic assays. Furthermore, it is relatively simple to perform, 

once an optimised protocol for staining and scoring which is repeatable and 

robust is established. One example of a clinically relevant, drug target detectable 

by IHC and able to predict treatment response is Human epidermal growth factor 

receptor 2 (HER2). Overexpression of HER2 is found in approximately 20% of 

cases of invasive breast cancer, and as well as being associated with worse 

prognosis, it is the sole predictor of sensitivity to HER2 targeted therapies, such 

as trastuzumab (Herceptin)179. Indeed, numerous large-scale clinical trials have 

confirmed a significant survival benefit associated with trastuzumab therapy in 
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patients with HER2 positive breast cancer180. Detection of HER2 positivity, and 

therefore stratification of patients to receive HER2 targeted therapy, is usually via 

IHC, with in situ hybridization utilised to classify cases deemed equivocal by 

IHC179. Another clinically relevant biomarker that is usually determined by IHC 

testing is PD-L1. The landmark phase III KEYNOTE-024 trial demonstrated a 

significant OS and PFS advantage for patients with non-small cell lunger cancer 

(NSCLC) treated with the anti-PD-L1 drug pembrolizumab when compared to 

standard platinum-based chemotherapy, in a cohort of 305 patients in which 

greater than 50% of cancer cells expressed PD-L1181. As a result of this work, 

pembrolizumab is approved by NICE in the first-line treatment of NSCLC with 

greater than 50% positive staining of tumour cells for PD-L1182.  

Aside from IHC staining of particular drug target proteins of interest, specific 

genomic aberrations, such as translocations, may also act as biomarkers which 

are effectively able to stratify patients into those most likely to gain clinical benefit 

from treatment. Indeed, identification of the reciprocal chromosomal translocation 

between chromosomes 9 and 22, forming the “Philadelphia chromosome”, was a 

landmark discovery in the field of oncology. The BCR-ABL1 fusion gene resulting 

from the translocation leads to abnormal tyrosine kinase activity, driving 

dysregulated proliferation of immune precursors183. This disease process can 

then drive the development of haematological malignancies, including the 

majority of cases of chronic myeloid leukaemia, and up to 30% of acute 

lymphoblastic leukaemia184. Identification of the driver BCR-ABL1 fusion gene 

paved the way for the development and eventual clinical use of targeted TKI 

therapies, with a number of TKIs approved for first line use in chronic myeloid 

leukaemia. As the driver mutation, and key vulnerability targeted by the first-line 

TKIs in the management of these malignancies, identification of the BCR-ABL1 

fusion gene is crucial at diagnosis. Historically this was done by FISH, with 

fluorescent probes binding to the BCR and ALB1 genes able to confirm the 

rearrangement. However, more recently guidance suggests the use of 

polymerase chain reaction (PCR) techniques to establish the presence of 

quantifiable BCR-ABL1 mRNA transcripts and subsequent monitoring of these 

levels during treatment185,186.  
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Another example of translocation-driven cancers not amenable to IHC 

characterisation are cancers resulting from tropomyosin receptor kinase (TRK) 

fusion proteins, postulated to occur in 1% of solid tumours9,10. Indeed, although 

recurrent rearrangement of ETV6-NTRK3 in congenital infantile fibrosarcoma 

was the first described NTRK fusion gene driving sarcomagenesis, subsequent 

work has also described sporadic NTRK fusions in a number of other sarcomas, 

including spindle cell sarcomas and uterine LMS187–189. Given the development 

of the anti-TRK inhibitors larotrectinib, entrectinib, and ongoing development and 

testing of second-generation inhibitors, there is a need to identify cancers 

harbouring NTRK fusions which could be targeted. Although pan-TRK IHC 

protocols exist, high levels of false-positive expression has been reported in 

tumours of neuronal and smooth-muscle differentiation, limiting IHC’s role in STS 

NTRK fusion screening. Furthermore, application of FISH is not a robust 

approach due to variable partner genes in NTRK fusions, leading to an inability 

to identify the 5’ fusion partner and limiting clinically vital information. In addition, 

complex genomic rearrangement patterns, or deletion of genomic regions, leads 

to failure of the FISH probes to bind and can result in false-negative results190. 

As such, screening of tumours known to harbour NTRK fusions is reliant on 

nucleic acid based assays, for example, whole exome/genome sequencing, or 

anchored multiplex PCR in which only one of the fusion partners is targeted, in 

this case NTRK1-3, but which allows characterisation of novel or variable fusion 

sequences27. Given the sequencing options and lack of clarity as to the best 

approach, a recent European Society of Medical Oncology released a consensus 

approach for detecting TRK fusions191. In specific histological tumours types in 

which NTRK fusions are recurrently rearranged with specific fusion partners, any 

confirmatory method is valid, including FISH, reverse transcription PCR, and 

increasingly commonly targeted RNA sequencing. For histology-agnostic 

screening, RNA sequencing remains the gold standard, assuming RNA quality is 

sufficient, with subsequent IHC confirmation of protein kinase expression 

advisable given this is the pharmacological target. 

In addition to specific genomic aberrations, more complex genomic analyses 

have also been deployed to act as biomarkers for therapy response. One such 
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example is the role of tumour mutational burden (TMB) to act as a biomarker for 

therapy response to immune checkpoint inhibitors (ICIs) and other 

immunotherapies. Although showing promising results, ICIs do show variable 

response between patients, and as such a biomarker predictive of response 

helps select patients for which treatment is most effective. The rationale behind 

the association between TMB and immunotherapy response lies in the fact that 

mutations will lead to the formation of neoantigens present on the cancer cell 

surface192. Of these, some may be immunogenic, thus driving an anti-tumour 

immune response and leading to the accumulation of immune cells within the 

tumour microenvironment. Upon initiation of immunotherapy, these immune cells 

are then able to act directly against the tumour cells leading to a treatment 

response. Indeed, TMB has been demonstrated to predict response to a number 

of immunotherapies in the clinical setting. The first association between TMB and 

response to ICIs was in melanoma, with mutational load demonstrated to be 

significantly associated with clinical benefit to anti-CTLA-4 therapy193. This led to 

the exploration of TMB and ICI response across a number of different cancers, 

with Goodman et al. showing that across a diverse range of tumour types, high 

TMB was an independent predictive factor of clinical response to PD-1/PD-L1 

blockade194. A subsequent prospective, non-randomised phase II trial, 

KEYNOTE-158, was then undertaken to investigate the role of TMB as a 

biomarker for objective response to pembrolizumab in a range of solid tumours 

(NCT02628067)195. Of 790 patients evaluable for TMB quantification and clinical 

response, 102 (13%) were considered TMB-high, and of these patients an 

objective response to pembrolizumab was seen in 29% (30 patients), compared 

to just 6% in the TMB-low cohort. Historically, next-generation whole exome 

sequencing (WES) was deployed to give a measure of TMB, reported as the 

number of mutations per megabase. However, given the complexity and cost of 

undertaking WES, a number of targeted representative panels have been 

designed and approved for use in the clinical setting, Indeed, the KEYNOTE-158 

trial utilised the FoundationOne assay of 324 genes to determine TMB in their 

cohort, and following the trial this assay was approved in the United States of 

America for TMB quantification for use as a biomarker for anti-PD-1 therapy 

following failure of prior lines of therapy196,197. Of note, the FoundationOne assay 
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includes analysis of the NTRK1-3 genes, allowing determination of NTRK gene 

fusions which may be amenable to anti-TRK therapy. 

Finally, complex molecular signatures have also been developed with the aim of 

guiding targeted therapy in the era of precision medicine. One example is in 

breast cancer where variation in gene expression patterns in breast tumour tissue 

from 42 patients using DNA microarrays covering 8,102 genes was observed198. 

Selection of a subset of 496 ‘intrinsic’, genes with significantly greater variation 

in expression between different tumours than between paired samples, was able 

to identify 4 intrinsic breast cancer subtypes. Since this initial work, the gene list 

has been refined to 50 genes (PAM50) and the Prosigna score based upon the 

classification derived from this gene signature is licensed and approved by the 

Medicines and Healthcare Products Regulatory Agency (MHRA) to help guide 

adjuvant chemotherapy decisions in early stage breast cancer199–201. Indeed, 

prospective studies examining the use of the Prosigna score in the real-world 

setting have confirmed its clinical utility, with one study showing that Prosigna 

classification and risk stratification led to a change in adjuvant therapy indicated 

in 39% of patients202. Although the Prosigna platform in breast cancer represents 

the most developed molecular classification system, work has also been done in 

a number of other solid tumours, including colorectal, pancreatic and bladder 

cancer, in pursuit of a clinically relevant molecular classification system203–205. 

1.4.7.3 Clinical predictors of pazopanib response in STS 

Through a number of analyses, both pre-planned and ad-hoc analyses have been 

undertaken on the PALETTE phase III trial cohort with the aim of identifying 

predictive clinicopathological biomarkers able to stratify patients most likely to 

gain benefit from pazopanib. As expected, good performance status and tumours 

being of low or intermediate grade were deemed favourable prognostic factors 

based upon multivariable modelling, but these are known prognostic factors in 

STS and not specific to pazopanib response132. Further post-hoc analysis by the 

authors looked to explore additional baseline characteristics with the aim of 

identifying additional factors predictive of OS following pazopanib, but none of 

age, gender, ethnicity, histology or the number of prior lines of therapy were 
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associated with OS in this cohort206. In addition, when the PALETTE pazopanib-

treated cohort was combined with the preceding phase II trial cohort, Kasper et 

al. reported that multivariate logistic regression identified low baseline 

haemoglobin as negatively impacting PFS and OS, whilst bone metastases were 

associated with worse PFS alone135. However, low haemoglobin has also been 

shown to be a poor prognostic factor in STS, whilst the presence of bone 

metastases may be associated with more aggressive primary disease207,208. 

From the numerous retrospective studies including various STS subtypes, as 

discussed above, clinical benefit was not specific to a histological subtype, and 

responses and prolongation of survival following pazopanib therapy were 

independent of any specific and clinically relevant factor. 

Given the fact a number of toxicities associated with pazopanib are driven by the 

on-target effect of VEGF-receptor (VEGFR) inhibition, the development of 

toxicities as predictive markers of pazopanib efficacy has been explored. Duffaud 

et al. drew on the pazopanib-treated cohorts enrolled in the PALETTE phase III 

trial and preceding phase II trial to assess the association of pazopanib-induced 

hypertension with antitumour efficacy209. Of the 337 patients included in analysis, 

130 (38.6%) previously normotensive patients developed hypertension, with the 

majority doing so within 5 weeks of pazopanib initiation. At this cut-off, on both 

multivariate analysis including other important prognostic factors, and univariate 

analysis, there was no significant association between hypertension and OS or 

PFS. Vos et al. undertook a similar study on the same cohort, however analysed 

pazopanib-induced proteinuria, hypothyroidism and grade 3/4 cardiotoxicity210. 

However, as with the Duffaud study, no significant association was identified 

between pazopanib-induced toxicities and OS or PFS.  

As such, this evidence suggests that pazopanib-induced toxicities are not able to 

identify those patients experiencing an anti-tumour effect of pazopanib. 

Alternative avenues are required to explore potential serological or molecular 

biomarkers which may be able to stratify patients into those most likely to 

respond, and shed some light on the biology driving sensitivity and resistance.   
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1.4.7.4 Serological predictors of response to pazopanib 

Given the activity of pazopanib against mediators of angiogenesis, and the rise 

of multiplex antibody-based platforms to quantify a number of proteins in blood 

utilising a relatively small volume of plasma as input material, there have been a 

number of studies exploring circulating cytokines and angiogenic factors in 

response to pazopanib therapy. Although not in STS, the work by Tran et al. 

which retrospectively explored circulating factors in patients with metastatic renal 

cell cancer (RCC) treated with pazopanib is of interest. The authors initially 

screened 17 circulating angiogenic factors (CAF) in 129 patients who had the 

largest or smallest change in tumour size in an open label phase II of 215 patients 

with metastatic RCC treated with pazopanib. These candidate CAFs were then 

confirmed to be associated with tumour response and PFS on assessment of the 

entire 215 patient cohort from this phase II trial via an independent analytical 

platform. Finally, the findings were then validated on a cohort of 344 patients 

enrolled on a placebo-controlled phase III trial of pazopanib. Of the candidate 

circulating candidate biomarkers taken to the validation stage, interleukin (IL)-6, 

IL-8 and osteopontin were all associated with poorer PFS following pazopanib 

therapy. However, both IL-8 and osteopontin were also prognostic markers in the 

placebo group, and only IL-6 was a significant predictive marker for PFS benefit 

from pazopanib treatment compared to placebo. Interestingly, high baseline 

levels of IL-6 were associated with worse PFS, but this negative prognostic effect 

appeared to be attenuated by pazopanib when compared to placebo. Indeed, a 

more recent meta-analysis has confirmed the negative prognostic effect of high 

IL-6 levels in RCC211. However, despite this finding, IL-6 as a biomarker is yet to 

make an impact in the clinical setting and may be due to limitations related to the 

analytical reproducibility of IL-6 assays on a wider scale. 

Focusing on an STS-specific study of CAFs in a pazopanib-treated cohort, 

Sleijfer et al. quantified the baseline levels of 23 CAFs from 85 patients enrolled 

in the phase II trial of pazopanib in advanced STS utilising PFS at 12 weeks as 

their primary end-point for prediction of pazopanib response130,212. Based on a 

univariate logistic regression model, low levels of both IL-12 p40 subunit and 

monocyte chemotactic protein-3 were significantly associated with improved PFS 
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at 12 weeks. However, because of repeat statistical testing the false discovery 

rate was around 50%, limiting the reliability of these results, and this is further 

confounded by a lack of validation of these results in an independent cohort.  

In addition, studies of peripheral blood for markers predictive of pazopanib 

response have shown that a low pre-treatment neutrophil-to-lymphocyte ratio 

(NLR), and a decrease in the ratio following treatment, are both predictive of 

favourable outcomes following pazopanib therapy213,214. However, a high NLR 

ratio has consistently been demonstrated to be a poor prognostic factor across a 

range of solid tumours215. Furthermore, analysis of the NLR for 333 pazopanib-

treated patients from the phase II and phase III trials of pazopanib in advanced 

STS demonstrated that although the negative prognostic impact of a high pre-

treatment NLR was confirmed, there was no difference in outcome observed with 

a drop in the NLR following therapy216. As such, although the NLR is a widely 

available and simple measure to quantify, its role as a predictive biomarker for 

pazopanib response does not appear particularly encouraging at this time. 

1.4.7.5 Molecular predictors of response to pazopanib 

An alternative strategy employed in the search for biomarkers predictive of 

pazopanib responses has involved the interrogation of tissue samples in the hope 

of identifying molecular characteristics which might allow stratification of patients 

most likely to respond. Earlier pre-clinical work in STS cell lines demonstrated 

that loss of function tumour protein 53 (TP53) mutant cells produced significantly 

more VEGF, contributing directly to angiogenesis and metastasis217. As such, 

given pazopanib’s activity against VEGFR there is a rationale for exploring TP53 

mutational status as a potential predictive biomarker for response. Koehler et al. 

reported results of 18 patients with advanced mixed-subtype sarcoma treated 

with pazopanib and whose tumours had undergone pre-treatment next 

generation sequencing218. Of this cohort of 19 patients, 9 (53%) harboured TP53 

mutations predicting loss of function in p53. Utilising PFS as the primary clinical 

outcome of interest, those patients identified as having a tumour classified as 

TP53 mutant had a significantly improved PFS relative to cases considered wild-

type TP53 (HR 0.38, 95% CI 0.09–0.83; p=0.036). A similar finding was reported 
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in a phase I study of combination pazopanib and vorinostat, a histone 

deacetylase inhibitor, therapy in a range of advanced malignancies 

(NCT01339871)219. A total of 78 patients were enrolled, of which 23 (30%) had a 

diagnosis of STS, and of which 36 were tested for TP53 mutations. Of these 36 

patients, TP53 mutations were detected in 11 (31%) and compared to those 

considered wild-type, this mutant TP53 cohort had a significantly longer median 

PFS (3.5 months versus 2.0 months; p=0.042) and a favourable improvement in 

median OS (12.7 months vs 7.4 months; p=0.1). Although potentially promising 

as a biomarker predictive of response to pazopanib, more recent research, 

although not validated, has demonstrated that TP53 mutation is also associated 

with response to anthracycline based chemotherapy220. As such, although 

potentially promising, TP53 mutational status as a clinical aid for stratifying 

patients for pazopanib response has not yet been adopted into the clinic, and is 

currently lacking proven clinical utility. 

More recently, a survival-driven genome-wide approach to biomarker discovery 

has been explored by Suehara et al., in which 13 patients with advanced STS 

and treated with pazopanib were followed up, and genomic alterations associated 

with clinical response retrospectively identified. The discovery phase of this study 

involved whole-exome sequencing, transcriptome sequencing, and RTK 

phosphorylation profiling of pre-pazopanib tumour tissue from a single case of 

high-grade axillary UPS which was observed to have a complete response to 

pazopanib, in order to characterise genetic alterations in this case. These findings 

were then validated via targeted sequencing utilising tissue from a further 5 

patients, 3 of which experienced long-term stable disease and 2 who experienced 

progressive disease on pazopanib, and a further validation of comparative 

expression levels compared to 27 other high grade STS. From this molecular 

profiling, glioma-associated oncogene homolog-1 (GLI1) amplification and 

elevated PDGFRB phosphorylation were both associated with high antitumour 

activity of pazopanib. However, this study did have limitations in only having one 

patient with a complete response to analyse, and only included 5 pazopanib 

treated patients in the validation phase of this study. As such, although 

methodologically interesting the findings lack robustness, and a larger cohort of 
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patients and further independent validation would be necessary to confirm the 

role of GLI1 amplification and PDGFRB phosphorylation as clinically relevant 

biomarkers. 

1.4.8 Summary 

Despite promising early-stage clinical trial results, as well as real-world and 

retrospective experience, a lack of OS benefit in the PALETTE phase III trial has 

had serious ramifications for the regular use of pazopanib in advanced STS. 

Although, numerous studies have demonstrated that a subpopulation of patients 

gain significant and robust benefit from pazopanib treatment, there is currently 

no clinically relevant marker which is able to stratify and predict which patients 

are most likely to gain benefit from treatment with pazopanib. With technological 

advances, the ability to undertake molecular characterisation of tumours has led 

to advances in a number of solid tumours, and this route could yield similar 

progress in identifying biomarkers for pazopanib response in STS. 
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1.5 The tumour immune microenvironment in cancer 

development and responses to pazopanib 

1.5.1 Immune evasion as a hallmark of cancer 

1.5.1.1 The immunosurveillance hypothesis of cancer development 

Although the concept that the host immune system is a key factor in the 

development of malignancy has existed for over 100 years, the field of cancer 

immunology has developed significantly in recent years as technological 

advances have enhanced our ability to understand the cellular and molecular 

basis of this immunity. Indeed, it is now well recognised that elements of the host 

immune system are able to recognise neo-antigens present on tumour cells that 

develop as a result of an accumulation of genetic aberrations required for 

tumourigenesis. The original hypothesis behind host anti-tumour immunity was 

one of cancer immunosurveillance, whereby an ever-alert immune system is 

constantly surveying tissues and cells of the host, and upon detection of cancer-

specific antigens the immune system is directed to launch a cytotoxic response 

thus eliminating incipient cancer cells and nascent tumours74. This theory leads 

to the logic that tumours that are able to thrive do so due to some mechanism 

which has allowed them to avoid this usual detection, and as such avoid 

eradication. Indeed, the observation that immunodeficient mice have a higher 

incidence of malignancies, as well reports indicating higher rates of cancers of 

non-viral aetiology in patients with both acquired or innate immunodeficiencies, 

indicates that immunosurveillance is at least in part involved in anti-tumour 

immune responses221,222.  

1.5.1.2 The immunoediting hypothesis of cancer development 

More recently, however, there has been a general acceptance that 

immunosurveillance is actually part of a more complex tumourigenesis facilitating 

process termed cancer immunoediting. Initially described by Dunn et al. in the 

early 2000s, the cancer immunoediting hypothesis was founded on early 

experiments which demonstrated that the host immune system exerts control not 
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only on tumour quantity but also on tumour quality in terms of the degree of 

immunogenicity displayed by the tumour (Figure 1.4)223,224.  

As such, the host immune system has dual functionality, both protecting against 

tumour formation but also shaping the phenotype and genotype of the 

subsequently formed tumour via the selective immune pressure applied. The 

hypothesised process of cancer immunoediting follows three phases (Figure 

1.4), elimination, equilibrium and escape, however this is over-simplistic and 

tumour cells may enter equilibrium or escape and bypass early stages. 

Furthermore, external factors may influence the flow of tumour cells through the 

phases, and may explain the influence of external factors of tumour growth in 

patients. 
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Figure 1.4.A-C: Schematic representation of the three phases of the 
immunoediting hypothesis. (A) Initial elimination of the most immunogenic tumour 
cells. Tumour neoantigens present as a result of genomic mutations are detected 
by cells of the innate and adaptive immune system. The release of immune 
stimulatory chemical signalling proteins recruits additional immune cells to the 
microenvironment. Effector cells of the innate and adaptive immune work in 
synergy to launch an anti-tumour immune response. (B) A phase of equilibrium 
whereby cells which evaded the initial elimination phase enter a period of 
dynamic equilibrium with the immune system. This moulds the tumour cells 
through selective pressures to preferentially develop a population of tumour cells 
immune to anti-cancer immune influences. (C) Tumour outgrowth and occult 
cancerous growth occurs in the escape phase. The selective pressures and 
subsequent evolution of resistant tumour cells eventually leads to a state of occult 
tumour growth through evasion of host immune responses driven by a number of 
potential escape mechanisms. Figure created by myself using the Biorender 
figure design software, and based upon figures included in previously published 
peer-review articles224–226.CTLA – cytotoxic T-lymphocyte associated antigen; 
DC – dendritic cell; FAS – Fas cell surface death receptor; IFN – interferon; IL – 
interleukin; LAG – Leukocyte activation gene; NKT – Natural killer T-cell; NK – 
Natural killer cell; PD-1 ; programmed cell-death receptor-1; PD-L1 – 
programmed cell-death ligand receptor-1; STAT – Signal transducer and 
activator of transcription; TGF -  Tissue growth factor; TRAIL – Tumour necrosis 
factor-related apoptosis-inducing ligand; Treg – regulatory T-cell.  
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1.5.1.2.1 Elimination phase of cancer immunoediting 

The elimination phase of the immunoediting hypothesis represents an updated 

form of the immunosurveillance hypothesis, whereby aspects of both the innate 

and adaptive host immune system work synergistically to detect and destroy 

developing tumour cells before they are able to flourish and become clinically 

apparent (Figure.1.4.A). The transformation of normal cells into tumour cells by 

genetic aberrations and failure of intrinsic tumour suppressor mechanisms results 

in expression of tumour specific neoantigens and other stress-induced cell 

surface markers. The exact mechanism for the initiation of tumour cell elimination 

is unclear, however most accept there is interplay between cells of the innate and 

adaptive immune system, with cell surface markers recognised by effector CD8+ 

cells, natural killer (NK) cells, γδT cells, and antigen presentation by dendritic 

cells (DCs) to CD4+ and CD8+ T-cells. Ultimately, the key outcome from the first 

stages of elimination is believed to be the release of interferon (IFN)-γ from the 

activated effector cells, which acts as a central orchestrator of the elimination 

phase227. Indeed, IFN-γ directly regulates the differentiation and activation of T-

helper1 (Th1) cells, inhibits the development of T-helper2 (Th2) cells, promotes 

NK cell activity, and via induction of several other cytokines recruits specific 

effector cells of the immune system to the microenvironment. Effector CD8+ T-

cells are able to cause tumour cell apoptosis by interacting with Fas and TRAIL 

receptors on tumour cells, or by secreting perforin and granzymes, whilst γδT 

cells are able to kill tumour cells expressing major histocompatibility complex 

(MHC) class I chain-related (MIC) proteins228–230. The destruction of tumour cells 

then causes the release of tumour antigens which are further presented by 

activated DCs, whilst cell death leads to a pro-inflammatory state further 

increasing the influx of immune cells to the microenvironment. The elimination 

phase may be wholly successful with complete removal of tumour cells and 

eradication prior to progression to the next stages. If not totally cleared, then it is 

thought a subset of rarer variant tumour cells which have avoided elimination 

enter the immune-mediated tumour dormancy phase. 
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1.5.1.2.2 Equilibrium phase of cancer immunoediting 

The cancer immune equilibrium phase is defined as a period during which those 

tumour variants which escaped elimination enter into a phase of dynamic 

equilibrium with the immune system (Figure.1.4.B)223. Evidence behind the 

equilibrium phase of immunoediting is predominantly generated from murine 

models. An example of this was the work by Koebel et al., in which 

immunocompetent mice were treated with the carcinogen 3’-methylchloranthrene 

and were found to harbour cancerous cells without developing occult tumours231. 

However, upon ablation of their immune systems via monoclonal antibodies 

targeted against T-cells and IFN-γ, sarcomas rapidly appeared and enlarged at 

the carcinogen injection site, suggesting a crucial role of the adaptive immune 

system in maintaining cancerous cells in the state of equilibrium. Indeed, this was 

confirmed in further mouse studies in which the comparative analysis of the 

immune microenvironments of tumours in equilibrium versus escape was 

undertaken232. In this study, higher proportions of CD8+ T-cells, NK cells and 

γδT-cells and lower proportions of FOXP3+ regulatory T-cells (Treg) and myeloid 

derived suppressor cells (MDSCs) were associated with maintaining occult 

cancerous cells in a state of immune-mediated equilibrium. As such, although the 

elimination phase is reliant on both the innate and adaptive immune systems to 

function, the current belief is that equilibrium is maintained predominantly by cells 

of the adaptive immune system. 

Of the three phases, equilibrium is thought to be the longest phase, and may 

occur over many years in humans224. Of the variant clones that manage to survive 

the elimination phase, heterogeneity and inherent genetic instability allow these 

tumour cells to resist the host immune responses, whilst subsequently produced 

variants with decreased immunogenicity will have the capacity to grow unabated 

by host immune influences.  

1.5.1.2.3 Escape phase of cancer immunoediting 

Following the often drawn-out process of immune-mediated equilibrium, the 

clones of cancerous cells that remain, via immune pressures, have been selected 
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to be immune-resistant largely owing to the activation of immunosuppressive 

and/or immunoevasive pathways (Figure.1.4.C). Recently, there has been a 

focus on identifying mechanisms of immune escape and then developing 

therapies which target these mechanisms with the hope of re-activating the host 

immune system against the cancerous cells. A prime example of this is the 

immunoevasive action of tumour cells presenting immune checkpoint proteins 

such as programmed death-ligand 1 (PD-L1) on their cell surface. In physiological 

conditions, PD-L1 interacts with programmed cell death-1 (PD-1) on T-cells to 

prevent immune system hyperactivity and is used to maintain immune 

haemostasis in healthy individuals. However, when hijacked by cancer cells the 

PD-1/PD-L1 axis is able to counter the T-cell receptor signalling cascade, 

resulting in impaired T-cell activation and cancer cell escape from immune 

influences233. However, a number of monoclonal antibodies have been 

developed which target this immune checkpoint axes, and with removal of the 

inhibitory effect of tumour cell PD-L1, CD8+ T-cells are induced to kill cancer 

cells. Indeed, the management of a number of cancers have been revolutionised 

by the introduction of ICIs into the clinic, for example advanced melanoma is 

particularly sensitive to ICI therapy and long-term durable disease control for up 

to 6 years is now possible in up to 50% of patients compared to less than 10% in 

the pre-ICI era234. 

There are numerous other mechanisms which allow unrestricted tumour 

outgrowth and they can be broadly classed into; 

• Evasion of tumour cell recognition; for example cancer neoantigen 

depletion, and loss of MHC class I surface antigens235,236 

• Increased resistance to the cytotoxic effect of the immune system; for 

example hyperactivation of signal transducer and activator of transcription 

3 (STAT3), and overexpression of anti-apoptotic bcl-2 proteins237,238 

• Expression of immunosuppressive molecules; for example PD-L1, 

cytotoxic T-lymphocyte associated antigen (CTLA)-4, and lymphocyte 

activation gene (LAG)-3239 
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• Secretion of cytokines which promote an immunosuppressive 

environment; for example VEGF, transforming growth factor-β (TGF-β), 

and IL-6240,241 

Ultimately, the escape phase of the tumour immunoediting model results in 

unrestricted outgrowth by a subset of tumour cells which, through over-exposure 

and Darwinian selection exerted by host immune factors, have become resistant 

to immune attack. 

1.5.2 Tumour evolution and clonal selection as a further hallmark 

of cancer driving sarcomagenesis and treatment responses 

In addition to the selection of immune-resistant clones of cells, during their 

development populations of cancerous cells also undergo molecular and 

phenotypic evolution and preferential proliferation. From a linear perspective, the 

progression and evolution goes from normal tissue, through localised treatment-

naïve tumour, to metastatic and therapy-resistant disease. Along this timeline, 

variable environmental selective pressures are exerted on the tissues to select 

for clonal molecular variants within the primary tumour cell mass242,243. Indeed, 

microenvironmental pressures including hypoxia, restricted nutrient availability 

and restricted space for expansion encourage proliferation of an invasive and 

migratory phenotype244–246. Furthermore, initiation of therapy acts as an intense 

selection pressure for the most drug-resistant clones leading to eventual 

treatment failure and tumour progression whilst on therapy247. 

1.5.2.1 Heterogeneity drives evolution 

One of the key facets of cancer which allows their evolution is tumour 

heterogeneity whereby a single tumorous mass is made up of a diverse 

population of phenotypically and genetically variable cells. As a result, different 

cells will survive selective pressures in a variable manner leading to the 

expansion of clones, groups of tumour cells with highly similar genotypes, and 

subclones, the differentiation of several tumour cells from one single cell following 

the acquisition of new mutations248. Indeed, a higher number of subclonal 
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populations within a single tumour has been shown to correlate with 

invasiveness, metastasis, and poorer prognosis249.   

1.5.2.2 Genomic and epigenomic evolution leads to phenotypically variable 

cell populations 

Inherent tumour heterogeneity is driven by a number of factors. Firstly, genomic 

instability is one of the characteristics of cancer, increasing the probability of new 

mutations at each cellular replication248,250. Furthermore, driven by higher levels 

of apoptosis and cell turnover, the number of cell generations per unit time in 

tumours is increased, and as such the number of mutations per unit time will also 

be higher251.  

In addition to genomic alterations, the phenotype of individual cancer cells is also 

driven by epigenetic factors. Components of the epigenome play a role in 

regulating gene expression, without intrinsic changes in the DNA sequence, 

therefore the epigenome also acts as a driver of intratumoural heterogeneity and 

neoplastic evolution252. Indeed, epigenetic variation in tumour cells of origin may 

drive increased phenotypic flexibility and intercellular heterogeneity before the 

emergence of genomic mutations, and as such be selected for in the tumour 

tissue upon progression253. In addition, aberrant epigenetic changes, 

predominantly DNA hypermethylation and histone modification, have been 

identified in many of the major components of cancer-related signalling 

pathways252. These include components of cell cycle regulation, DNA damage 

repair and tumour suppressor pathways, such as p53. In this way, the 

epigenome, in response to environmental factors, is able to influence the 

genomic evolution of tumour cells. 

Interestingly, genetic and epigenetic mechanisms are inter-linked whereby not 

only do epigenetic factors influence expression of DNA sequences, but also 

mutations in epigenetic regulators can occur altering the function of the 

epigenome254. As such, both the genome and epigenome are vital for cancer cell 

evolution and progression towards a phenotype able to survive and proliferate. 

Importantly, the process of tumour evolution and clonal/subclonal selection 
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results in a tumour which is able to evade immune elimination, respond to hostile 

microenvironmental changes, be locally invasive, metastasise, and be resistant 

to therapeutic interventions255–257. 

1.5.2.3 Evidence of evolution in soft tissue sarcoma 

Within the field of STS, numerous studies have demonstrated the importance of 

tumour evolution and clonal selection in clinical course and treatment responses. 

A pre-clinical study involving mouse models of sarcoma was able to trace clonal 

dynamics throughout the natural progression of sarcoma development258. 

Harvesting tumours at the early stages of sarcomagenesis and comparing them 

to sarcomas at later stages of progression demonstrated a significantly higher 

degree of clonal heterogeneity early in the process of sarcomagenesis, 

suggesting primary tumour progression is associated with the selective 

expansion of a dominant clone. Interestingly, when assessing the clonal 

heterogeneity in these models, lesions from a local recurrence were polyclonal, 

whereas advanced metastatic lesions were driven by the clonal selection of a 

single metastatic clone. Crucially, to model metastasis, the tumours were excised 

early in their progression at a point characterised by intratumoural heterogeneity, 

indicating that the metastatic clone was selected prior to the reduction in clonal 

numbers as the primary tumour progressed. This could guide future studies 

targeting the specific metastatic clones to better guide treatments and prolong 

patient survival. 

A different study looked to explore clonal evolution in sarcomas arising through 

variable mechanisms, namely amplicon-driven well-differentiated LPS, 

translocation-driven myxoid LPS and STS characterised by complex genome 

rearrangements259. For the amplicon driven LPS, only a small number of 

mutations were observed with few known to be oncogenic, suggesting well-

differentiated LPS either develops early in life or has undergone far fewer cell 

cycles prior to the development of the progenitor cell. In a similar way, the 

translocation-driven myxoid LPS showed slow clonal evolution at the 

chromosome level, with only 5% of cells showing non-clonal aberrations. 
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Furthermore, following local recurrence the myxoid LPS samples showed less 

complexity compared to the primary lesion, highlighting the importance of the 

driver translocation as the key mediator of sarcomagenesis. In contrast, the 

complex karyotype STS samples displayed nucleotide and chromosome level 

mutations in a similar fashion to carcinomas. The importance of this study 

highlights that within the field of STS, between subtype differences in natural 

history and behaviour at the genomic level are important considerations and will 

direct therapy. 

Finally, Anderson et al. has undertaken two studies assessing at the role and 

context of evolution in sarcomas. The first of these undertook genomic and 

transcriptomic analysis of LMS samples, including multi-regional sampling and 

paired metastatic samples260. Interestingly, within their cohort of LMS, they were 

able to define three distinct molecular subtypes via principle component analysis. 

Furthermore, analysis of temporal samples confirmed that stability of the subtype 

classification suggesting early acquisition of canonical mutations with 

subsequent acquisition of additional mutations occurring in parallel following 

divergence from the progenitor clone. This study supports the notion of “catch-

all” histological subtypes of STS actually being formed of distinct molecular 

subgroups with variable biological behaviour and treatment responses, and the 

potentially value in defining these further for more targeted therapies. Further 

supporting the idea of early canonical mutations as a driver for sarcomagenesis, 

Anderson et al. have also explored the evolution of gene-fusion sarcomas261. 

They identified that chromoplectic rearrangements led to the formation of 

canonical driver gene fusions, and furthermore this chromoplexy likely occurs as 

a singular burst event as one of the primary, clonal mutations in translocation-

driven sarcomagenesis.  

1.5.3 The relationship between neoangiogenesis and the tumour 

immune microenvironment 

As previously mentioned, the growth of tumour cells requires the formation of an 

expanding network of blood vessels to provide sufficient oxygen and nutrients for 

growth, and to remove waste products of metabolism. In health, aside from 
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following trauma and in the female reproductive cycle, normal vasculature is 

largely quiescent. However, during tumour progression, an angiogenic switch is 

almost always activated and remains active to help sustain growing occult 

tumours74.  

1.5.3.1 The impact of elevated angiogenic factors on anti-tumour immune 

responses 

The interplay between the host immune system and angiogenesis is complex, as 

a number of cells of the immune system display versatility in their effect on blood 

vessel formation262. In addition, increases in levels of pro-angiogenic factors 

including VEGF, PDGFR and FGFR, as well as cytokines such as TGF-β, in the 

tumour microenvironment contribute to polarization of immune cells towards a 

pro-tumour and pro-angiogenic phenotype263.  

Macrophages are thought to play a key role in orchestrating the immune systems 

influence of tumour angiogenesis. Macrophages are recruited from the peripheral 

circulation by angiogenic growth factors, including VEGF, and chemokines, such 

as CCL2, which are present in the tumour microenvironment. Furthermore, 

macrophages are then able to produce additional CCL2, recruiting further 

macrophages to the microenvironment264. Macrophages typically undergo 

activation to a polarized state dependant on the surrounding environment and 

are considered to polarize to; 

• M1 macrophages associated with high quantities of pro-inflammatory 

cytokines, mediating pathogen and tumour cell killing. They are typically 

associated with high levels of IL-23 and IL-12 and help drive Th1 and T-

helper 17 (Th17) cell pro-immunogenic responses. 

• M2 macrophages associated with a more anti-inflammatory phenotype 

and are associated with high levels of IL-10 which acts to promote Th2 

cells and their anti-immunogenic profile265. 

Tumour-associated macrophages (TAMs) themselves display plasticity, 

responding to stimuli within the tumour microenvironment and behaving along the 

spectrum of M1- and M2-like phenotypes266. However, hypoxia-primed cancer 
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cells tend to polarize TAMs to a pro-angiogenic M2-like state via eotaxin and 

oncostatin M267. In this state, M2-like TAMs secrete a number of pro-angiogenic 

factors, including growth factors such as VEGF, PDGF, FGF, and EGF, 

angiogenic CXC-family chemokines, and other immune inhibitory cytokines, such 

as TGF-β. In addition, release of matrix metalloproteases act to degrade 

components of the extracellular matrix and basement membrane, leading to 

destabilisation of the vasculature and facilitating sprouting of new blood 

vessels263. Within the tumour microenvironment, the interplay between various 

aspects of the immune system is complex, driven by a number of cytokines and 

cellular interactions (Figure 1.5). 

In addition to macrophages, DCs are another cell of the innate immune system 

which undergoes polarization to an immunosuppressive subtype driven by 

tumour cell signalling and hypoxia-induced factors. In health, mature DCs act as 

key antigen presenting cells, taking in foreign antigen and then presenting the 

captured antigen in the form of peptide-MHC complexes to T-cells. Upon 

interaction with DCs, naïve CD4+ cells can differentiate into Th1, Th2, Th17 or 

follicular T-helper cells, with their main function being communication with B-cells 

to differentiate into specific antibody-secreting cells. Whilst naïve CD8+ T-cells 

frequently give rise to effector cytotoxic T-cells268. In relation to cancerous cells, 

DCs have the ability to capture tumour neoantigens and present them to T-cells, 

either through the capture of antigen following apoptosis or through ‘nibbling’ of 

live tumour cells269. However, in order to evade anti-tumour immune responses, 

tumours are able to preferentially recruit and maintain DCs in their immature state 

through high levels of TGF-β and, via the receptor neurolipin-1, VEGF270,271. In 

this immature state, DCs predominantly act to stimulate and encourage 

proliferation of Treg cells which act to inhibit cytotoxic cells. The suppression of 

effector T-cell responses and proliferation of Tregs to enforce their 

immunosuppressive actions tends to be an indirect result of the effects of 

angiogenic factors on cells of the innate immune system. However, some recent 

studies have demonstrated that sub-populations of Tregs in cancer express 

VEGFR2, and therefore are able to undergo VEGF-A-dependent proliferation272. 

In addition, evidence suggests that VEGF-A present in the tumour 
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microenvironment enhances the expression of the inhibitory molecules PD-1, 

CTLA-4 and LAG3 on VEGFR-expressing intratumoural CD8+ T-cells273. 

 

 

 

Figure 1.5: Interplay between pro and anti-angiogenic immune factors. M2-type tumour-
associated macrophages (TMAs), immature dendritic cells (iDC) and myeloid derived 
suppressor cells (MDSC), secrete pro-angiogenic cytokines including VEGF, IL-10 and 
matrix metalloproteases 1,2 ,3, 9 and 12, whilst Th2, Th17 and Tregs secrete VEGF and 
interleukins to stimulate angiogenesis. In terms of inhibitors of angiogenesis, M1 polarized 
macrophages and mature dendritic cells produce cytokines including TNFα, IL-12 and 
tumour necrosis factor (TNF) and chemokines, such as CCL21, which act to suppress 
angiogenesis. In addition, MDSCs and Tregs can interact with TAMs and promote 
polarization towards the M2-like phenotype. Figure generated in Biorender based upon 
information in the literature266. 
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1.5.3.2 Abnormal tumour vasculature facilitates immune suppression in the 

tumour microenvironment 

The process of neoangiogenesis in tumours is typically reliant on sprouting from 

pre-existing blood vessels promoted by the imbalance of pro- and anti-angiogenic 

factors as discussed above. The abundance of these pro-angiogenic signals 

leads to chaotic blood vessel formation, and relative to normal vasculature, the 

neovasculature supplying tumour beds is characterised by slow and irregular 

blood flow, variable and often oversized luminal diameters, erratic and tortuous 

branching, high compression levels due to raised interstitial pressure, and the 

basement membrane may be lacking or unusually thick274. This immature and 

chaotic network of blood vessels generates a hypoxic and acidic tumour 

microenvironment, and in itself also contributes to suppression of the antitumour 

immune response. 

In order to mount an anti-tumour immune response, effector cells of the host 

immune system must pass from the circulation into the microenvironment through 

the endothelium of adjacent blood vessels. However, the endothelial cells (ECs) 

of tumour neovasculature act themselves as a barrier for this influx of anti-tumour 

effectors. For example, the high levels of VEGF in the vicinity of tumour 

vasculature has been shown to induce defects in intercellular adhesion molecule-

12 and vascular cell adhesion protein-1 clustering at the EC surface275. This leads 

to dramatic inhibition of lymphocyte adhesion on activated ECs and acts as a 

physical barrier preventing the influx of immune cells into the tumour 

microenvironment. In addition, high levels of VEGF, IL-10 and prostaglandin E2 

in the tumour microenvironment induce the expression of Fas ligands on the ECs 

of tumour vasculature, which upon binding of Fas expressed on T-cells leads to 

immune cell apoptosis276. Furthermore, this T-cell killing was predominantly of 

effector CD8+ T-cells, whilst Treg cells were preserved due to higher levels of c-

FLIP cell surface expression. Finally, another study demonstrated that tumour-

related ECs showed increased expression of stabilin-1, which acts to support T-

cell transendothelial migration but with strong preferential activity of Treg cells277. 

As such, this suggests that the endothelial cells themselves are supporting the 

generation of an immunosuppressive environment through being less penetrable 
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to immune cells, and via the preferential transport of immunomodulating Treg 

cells in the tumour microenvironment at the expense of CD8+ effector T-cells. 

1.5.4 The immune microenvironment as a source for prognostic 

and predictive biomarkers in sarcoma 

Relative to other more common solid tumours, the immune microenvironment 

STS remains incompletely characterised and immune influences on prognosis 

and treatment responses are lacking. More recent efforts have gone some way 

to address this with a number of studies looking at the prognostic impact of 

immune cell numbers quantified by IHC. In addition, the emerging potential for 

gene-signature based immune subgroups to stratify patients has been explored 

in STS. However, there is little in the way of immune-based biomarkers predictive 

of response to pazopanib and other anti-angiogenic therapies. 

1.5.4.1 Tumour infiltrating immune cells and checkpoint inhibitors as soft 

tissue sarcoma biomarkers 

A number of relatively small variable STS subtype studies have been published 

exploring the potential for quantification by IHC of tumour infiltrating to act as a 

prognostic tool. The largest of these was published by Dancsok et al., in which 

they generated formalin-fixed, paraffin-embedded (FFPE) tissue microarrays 

(TMAs) containing tissue from 1072 STS samples covering 22 different subtypes, 

with complete matched clinical and outcome data available for 660 (61.6%)278. 

IHC assessment was carried out on serial TMA sections, with sections stained 

for CD4, CD8, CD56, FOXP3, PD-1, LAG3 and T-cell immunoglobulin domain 

and mucin domain (TIM)-3. Of the 660 specimens with matched data, all were 

primary surgical resections, and 58% (380 patients) were treatment-naïve. As 

translocation-associated sarcomas are believed to have a lower mutational 

burden and be less immunogenic, the authors looked to compare translocation 

and non-translocation driven sarcomas. Upon multivariate analysis, non-

translocation-associated sarcomas had significantly increased tumour infiltrating 

lymphocytes (TILs) (p=0.002), with increased CD8+ (p=0.03) and CD4+ 

(p<0.001) tumour-infiltrating lymphocytes. To explore the prognostic role of 
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immune cell IHC, multivariate Cox proportional hazards modelling was 

undertaken, taking into account age, grade and diagnosis, and among the non-

translocation-associated sarcomas, increasing lymphocytic infiltration was 

significantly associated with marginally superior OS (HR 0.996, 95% CI 0.992-

0.999; p=0.02) and PFS (HR 0.996, 95% CI 0.992-0.999; p=0.012). In addition, 

increasing CD56+ TILs (HR 1.059, 95% CI 1.005-1.116; p=0.032) and PD-1+ 

TILs (HR 1.047, 95% CI 1.001-1.096; p=0.046) were associated with a  

significantly inferior on OS, but no difference in PFS. It should be noted however, 

that CD56+ TILs were rare across the entire sample set, as such it may be a few 

tumours that did attract NK cells were a particularly aggressive subset of STS. In 

separate survival analysis of the translocation-associated sarcoma subgroup, no 

significant associations between TILs nor immune checkpoint expression and OS 

or PFS were reported. Taken in isolation this study suggests that, at least in non-

translocation-associated sarcomas, given the association between both higher 

levels of CD8+ and lower levels of PD-1 and improved OS, that a tumour 

microenvironment which is conducive to anti-tumour immune activity correlates 

with a positive prognosis. Indeed a number of additional IHC-based studies have 

explored the relationship between levels of TILs, PD-1/PD-L1 expression and 

clinical outcome (Table 1.7). The results of these individual studies are somewhat 

difficult to interpret in a combined fashion given the variable histological subtypes 

included, combination of primary, metastatic and recurrent lesions, and variable 

exposure to prior treatments. Furthermore, despite the numerous studies often 

exploring multiple immune cells of interest, the majority showed no significant 

association with immune cell infiltration and clinical outcome. Of note, all of these 

studies were aiming to define prognostic biomarkers, and none were designed to 

explore the role of immune cell infiltrate to predict response to specific therapy. 

Regarding expression of the immune checkpoint molecule PD-L1, given recent 

advances in anti-PD-L1 therapies, more studies have explored this expression in 

STS, and subsequently a recently published systematic review was undertaken 

by Wang et al., to comprehensively review the role of PD-L1 expression as a 

prognostic biomarker in bone and soft tissue sarcoma. In total, 31 publications 

were included to assess the prognostic significance of PD-L1 expression, with 30 
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containing sufficient data to allow pooled HR quantification for OS. Of note, 11 of 

the articles were related to osteosarcoma, and 2 to chondrosarcoma, with the 

remainder made up of STS subtypes. Across the studies, PD-L1 expression was 

quantified by either IHC, quantitative polymerase chain reaction or RNA 

sequencing. A random-effect model was utilised for analysis, and showed that 

elevated PD-L1 expression was significantly correlated with poor OS (HR 1.445, 

95% CI 1.11-1.90; p<0.001), with neither sarcoma subtype nor assay method 

responsible for the observed effect. In addition, elevated PD-L1 expression also 

predicted poor metastasis-free survival and event-free survival. These results 

appear to confirm that given the activity of elevated PD-L1 to create an 

immunosuppressive environment, that patients with STS considered immune 

“hot” have superior clinical outcomes.
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Table 1.7: Select trials assessing the prognostic effect of tumour infiltrating immune cells by immunohistochemistry analysis, with or without immune 
checkpoint analysis. ARMS – alveolar rhabdomyosarcoma; AYA – children, adolescent and young adult; CS – chondrosarcoma; DFS – disease free 
survival; DSS – disease specific survival; LMS – leiomyosarcoma; MFS – metastasis free survival; MPNST – malignant peripheral nerve sheath tumour; 
OS – overall survival; PFS – progression free survival; RFS – recurrence free survival; SS – synovial sarcoma; TC – tumour cell; TMA – tissue microarray; 
UPS – undifferentiated pleomorphic sarcoma.279,280,289,281–288

Study N Subtypes Methods T-cell markers
Prognostic association with high 

immune cells

Immune checkpoint 

markers

Prognostic association with 

high checkpoint markers

Boxberg et al., 2017 37 Primary UPS TMA CD3, CD8
CD3+ and CD8+ : improved OS 

and DFS
PD-1, PD-L1, PD-L2

TC PD-L1 : improved OS and 

DFS

Shurell et al., 2016 35 Primary MPNST TMA CD8 No association PD-L1 No association

van Erp et al., 2017 208
Primary mixed-subtype 

AYA sarcomas

TMA and 

sections
CD8 CD8+ : worse MFS in SS PD-1, PD-L1

PD-L1 : improved OS in 

ARMS

Simard et al., 2016 26 Primary conventional CS Sections CD3, CD4, CD8, CD163 CD3+, CD4+, CD8+  : improved OS

D'Angelo et al., 2015 50 Primary mixed subtype Sections CD3, CD4, CD8, FOXP3 CD3+, CD4+ : worse OS PD-1, PD-L1 No association

Nowicki et al., 2017 29 Mixed-time point SS Sections CD8 No association PD-1, PD-L1
PD-1 at invasive margin - 

worse PFS

Kostine et al., 2018 100 Mixed-time point LMS Sections CD3, CD163 CD163+ : worse OS and DSS PD-L1, PD-L2 No association

Sorbye et al., 2012 80 Primary mixed subtype TMA
Peritumoural CD3, CD4, 

CD8, CD20
Peritumoural CD20 - worse DSS

Oike et al., 2018 36 Primary SS Sections CD4, CD8, FOXP3, CD163 CD163+ : worse OS and PFS PD-L1, PD-L2 No association

Smolle et al., 2021 192 Primary mixed subtype TMA CD3, CD4, CD8, FOXP3 FOXP3+ : worse RFS PD-1, PD-L1 No association

CD20+ - improved DSS

CD3+ worse DSS in none-wide 

resection margin

Sorbye et al., 2011 249 Primary mixed subtype TMA
CD3, CD4, CD8, CD20, 

CD45
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1.5.4.2 Emerging potential for immune subtypes as a biomarker 

Moving forward from individual immune cells and markers as biomarkers in STS, 

there is a growing body of evidence exploring the potential for immune gene 

based signatures as a source of biomarkers in STS, and to further our 

understanding of STS biology and therapeutic responses. The Cancer Genome 

Atlas (TCGA) 2017 publication is one such comprehensive body of work which 

included immune-based analysis290. A total of 206 sarcomas were included for 

analysis and included five subtypes of interest, but was predominantly made up 

of LMS, DDLPS and UPS. The authors report that generally, adult STS harbour 

frequent copy number alterations, but have a relatively low mutational burden 

when compared to other solid tumours. From the pan-sarcoma RNA analysis, 

206 of the 2038 most variably expressed genes were considered immune-related 

and/or inflammatory-related. When assessing these differentially expressed 

genes, immune-related ontologies significantly upregulated included 

inflammatory responses, positive regulation of immune system processes, 

regulation of lymphocytes, cell and leukocyte activation and chemotaxis. The 

authors then assigned each sample an immune infiltration score for various 

immune cells of interest based upon the gene expression data. Unsupervised 

clustering identified three distinct clusters, with a subset of DDLPS, UPS, LMS 

and myxofibrosarcoma (MFS) reported to have high immune infiltrates. The 

authors then compared disease specific survival (DSS) with tumours in the top 

third versus the bottom third based on immune infiltrate scores. Of note, a higher 

NK cell infiltration score was significantly associated with improved DSS across 

different sarcoma subtypes, whilst a higher CD8+ infiltration score was 

associated with better survival in uterine LMS, and higher DC infiltration scores 

were associated with superior DSS in the UPS/MFS subgroup. Conversely, 

higher Th2 infiltration scores were associated with poorer DSS in DDLPS. These 

findings suggest that a pro-immune microenvironment are generally associated 

with better survival. However, this work was based on primary tumour samples 

only, and no treatment effect was considered in the analysis. As such, although 

these findings might be useful in prognostication for patients with STS, potentially 

highlighting patients who would most benefit from more aggressive therapy, they 
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are not predictive of response to specific therapies. This work does however 

highlight the value of exploring immune gene expression analysis to add 

granularity to immune subtyping. 

In addition to the above study, a number of more recent studies have also utilised 

the TCGA STS dataset to generate immune-based prognostic signatures. The 

first of these reported by Hu et al., identified differentially expressed immune 

related genes when comparing the data from 259 tumour tissues from the TCGA 

STS dataset with RNA sequencing data obtained from 911 non-diseased muscle 

and adipose tissue samples from the Genotype-Tissue Expression dataset291. A 

total of 364 differentially expressed immune related genes were identified, and 

based upon consensus clustering the cohort of 259 STS samples was separated 

into 4 clusters. Interestingly, the C3 cluster was significantly associated with 

worse OS relative to the remainder of the cohort, and was noted to be enriched 

for immune checkpoints and had the lowest immune scores of the four clusters. 

The study subsequently generated a prognostic predictor score based upon the 

weighted expression of 11 immune-related genes. Again, as the tissue samples 

are primary tumours and treatment was not taken into consideration, this risk 

score is prognostic in nature as opposed to being predictive in nature. However, 

this study represents further evidence of the value of exploring immune-related 

gene expression to elucidate potentially meaningful signatures in STS. An 

additional study reported by Shen et al. adopted a slightly different methodology 

to develop an immune-based prognostic signature292. Clinical and RNA 

sequencing data was obtained from the TGCA dataset, and the samples were 

randomly allocated to either the training set (170 of 255 included samples) or the 

validation set (85 of 255 samples). From the immune related gene set covering 

2498 genes, univariate cox proportional hazard modelling selected 105 genes to 

be related to OS, with further analysis generating a 19 gene signature which was 

able to stratify patients into high and low risk in the training set, and this result 

replicated in the validation set. Interestingly, utilising the CIBERSORT package, 

the study found that the infiltration level of resting and activated NK cells, 

monocytes and pro-immune M1 macrophages were all significantly higher in the 

low risk group. As previously discussed, these are all primary samples and 
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therefore as a prognostic signature the utility of the derived nomogram would be 

in the pre-treatment setting to stratify patients most at risk of adverse outcomes. 

In addition, although the risk score was validated, both the training and validation 

set are effectively from the same cohort and an external validation utilising an 

independent cohort would be necessary to prove replicability. 

Although the articles discussed above all focused solely on generating prognostic 

signatures based upon the TCGA cohort, a recent paper from Petitprez et al. 

includes additional cohorts to derive immune signatures, and then applied these 

to a real world cohort to demonstrate the signature’s utility as a predictor or 

clinical response to immune checkpoint blockade293. In order to generate an 

immune-based classification of STS, the publicly available gene expression data 

from the TCGA (n=213) dataset as well as from Gene Expression Omnibus 

(GEO) accessions GSE21050 (n=283), GSE21122 (n=72) and GSE30929 

(n=40) were analysed for a total discovery cohort of 608 samples. From this 

cohort, 5 sarcoma immune classes (SIC) A-E were identified with significantly 

variable immune microenvironments described. Of note, 3 SICs showed 

homogenous profiles; SIC A being characterised as having the lowest expression 

of immune cell gene signatures and considered an ‘immune desert’, SIC C being 

dominated by high expression of endothelial cell genes and considered 

‘vascularised’, and SIC E which was categorised as ‘immune and tertiary 

lymphoid structure (TLS) high’ and demonstrated the highest expression of T 

cells, NK cells, CD8+ cells and most differentially high expression of B lineage 

signature. Utilising the two cohorts for which survival data was available, namely 

the TCGA cohort and GSE21050 (496 patients), the authors reported that the 

‘immune desert’ SIC A cohort exhibited the shortest overall survival, with 

significantly poorer outcomes when compared to SIC D and E (p=0.048 and 

0.025 respectively). The validity of these molecular SIC profiles were confirmed 

by IHC in an independent cohort of 73 samples from the National Taiwan 

University Hospital. Characterisation of these immune subgroups identified that 

the ‘immune desert’ SIC A was observed to have very low densities of CD3+, 

CD8+ and CD20+ TILs, whereas SIC E tumours had significantly higher densities 

of these cells. Finally, the authors obtained 47 pre-treatment metastatic samples 
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from the SARC028 phase II clinical trial of the anti-PD1 antibody pembrolizumab 

in patients with advanced STS (NCT02301039)294. These pre-treatment tumour 

samples were classified into SICs based upon gene expression data, and it was 

observed that SIC E tumours were associated with the highest response rate to 

pembrolizumab relative to other SIC groups, and exhibited significantly improved 

PFS compared to SIC A and B tumours. As such, this study added value to the 

exploration of the immune contexture as a potential biomarker for response. 

Relative to the previously discussed studies in this section, inclusion of data from 

the GEO created a larger discovery cohort from which the subgroups were 

generated. In addition, inclusion of the independent cohort from Taiwan and IHC 

data goes some way to validate the gene expression based classifications. And 

as well as demonstrating the prognostic impact of the immune classifications, 

with the immune cold SIC A having the worst outcome, the study was also able 

to demonstrate the SIC classification was able to predict response to 

pembrolizumab, with the immune hot SIC E patients gaining the most benefit.  

1.5.4.3 Evidence exists confirming immune-modulatory effect of tyrosine 

kinase inhibitors, including pazopanib 

Given the evidence presented previously (section 1.5.2) which demonstrates a 

complex but interwoven relationship between angiogenic factors and host 

immune responses, there is a rationale to explore the potential for anti-angiogenic 

therapies to confer off-target immunomodulating effects as part of their 

mechanism of action. Indeed, a number of pre-clinical studies have demonstrated 

immunological effects of anti-angiogenic TKIs (including pazopanib), and 

although there is a paucity of clinical studies in STS patients treated with 

pazopanib, a number of studies exist from cohorts of RCC patients. 

1.5.4.3.1 Pre-clinical evidence of immune modulating effects of anti-VEGF 

TKIs 

Zizzari et al. undertook in vitro work exploring the impact of pazopanib on a 

number of immune cells and demonstrated activity which acts to promote anti-

tumour immunity295. Human monocyte derived DCs were obtained from the blood 
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of healthy donors, and these cells were cultured in the presence of pazopanib. 

Relative to untreated controls, pazopanib led to a significant increases in both 

immature and mature DC activation, evidenced by increased expression of HLA-

DR and CD40 by immature DCs, and increased expression of CCR7 and CD40 

by mature DCs. In addition, during the activation of immature DCs, exposure to 

pazopanib resulted in a decrease in PD-L1 expression compared to untreated 

DCs. And finally, treatment with pazopanib significantly reduced the production 

of IL-10 by DCs which favours immune activation. The pro-immunogenic impact 

of these changes was then confirmed, as DCs differentiated in the presence of 

pazopanib had a greater capacity to stimulate T-cells when compared with 

untreated DCs and DCs which underwent differentiation in the presence of an 

alternate anti-angiogenic therapy sunitinib. As such, this work suggests that as 

well as the anti-angiogenic RTK activity, pazopanib also exerts an effect on the 

immune contexture creating an environment which promotes anti-tumour 

immunity through the activation of DCs and subsequent stimulation of effector T-

cells. 

Further pazopanib-specific in vitro work is limited, however alternative anti-VGEF 

therapies have also been shown to modulate immune cell differentiation. For 

example, the anti-VGEF TKI sunitinib has been shown in vitro to increase the 

population of IFN-γ producing cells leading to diminished Treg function, whilst the 

peripheral blood from 28 patients with metastatic RCC treated with sunitinib 

demonstrated a reduction in the number of Treg cells which was also associated 

with improved OS296,297. Sorafenib, another multi-target TKI with anti-VGEF 

activity, has also demonstrated similar off-target immunomodulating effects, with 

in vivo mouse models of hepatocellular carcinoma demonstrating that sorafenib 

induces a reversal of the accumulation of immune suppressive MDSCs and Tregs 

as well as decreasing the proportion of PD-1 expressing cytotoxic CD8+ T-

cells298,299. Indeed, blood taken before and after sorafenib therapy from 30 

patients with advanced hepatocellular carcinoma demonstrated a sustained 

reduction in circulating Tregs and MDSCs as well as enhancement of IFN-γ 

producing effector CD4+ and CD8+ T-cells which was seen to correlate with 

improved survival300. Finally, assessment of the immune microenvironment in 
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tumour-bearing mice treated with the anti-VEGF TKI axitinib, demonstrated an 

increase in the number of CD8+ T-cells, and via downregulation of STAT3 

expression, a reduction in the number of MDSCs301,302. As such, although pre-

clinical this evidence from a number of TKIs targeting the VEGF axis suggests 

that there is off-target immune modulating effects which acts to diminish immune 

suppressive cells and create a microenvironment which is conducive to anti-

tumour immune activity.  

 1.5.4.3.2 Clinical evidence of the immune modulating impact of pazopanib 

Given the rarity of STS, there is minimal evidence exploring the impact of the 

immune microenvironment in STS and changes to the immune microenvironment 

following pazopanib therapy. As such, to gain some potential insights in the 

immune modulating effects of pazopanib in the clinical setting, we are reliant on 

studies involving patients with RCC who have received pazopanib as part of their 

management.  

Looking solely at serial peripheral blood samples taken from 21 patients with 

metastatic RCC treated with pazopanib, Khurana et al. reported that pazopanib 

led to a significant increase over time in the proportion of IFN-γ producing effector 

T-cells present in the peripheral blood mononuclear cells collected303. Although 

no changes were reported in various subsets of MDSCs, the increase in effector 

T-cells provides initial evidence of an in vivo shift promoting anti-tumour 

immunity. In addition, Rinchai et al. recently published their transcriptional 

analysis of serial blood samples at baseline and 3 and 6 months following 

treatment initiation in 8 patients with metastatic RCC treated with pazopanib as 

the first-line agent304. As with Khurana et al., the predominantly differentially 

upregulated genes from pre- to post-treatment blood samples were associated 

with cytotoxic functionality and IFN signalling, consistent with an increase in the 

activity of NK cells and effector T-cells. Of note, although attenuated, these 

changes were consistent at both 3 and 6 months following treatment initiation. 

Further analysis comparing baseline and post-treatment samples by single 

sample Gene Set Enrichment Analysis (ssGSEA) demonstrated enriched scores 

for NKdim, NK cells, cytotoxic cells, CD8+ cells and γδT-cells, whilst Tregs and 
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MDSCs showed diminished expression scores. These results again suggest that 

administration of pazopanib induces synergistic modulation of the immune 

system, enhancing anti-tumour immunity whilst diminishing cells associated with 

suppressive mechanisms. However, both of these studies are in small patient 

populations with no confirmatory external validation reported, and it should be 

noted that analysing populations of peripherally circulating immune cells may not 

reflect the tumour microenvironment effectively. 

1.5.4.4 Evidence supporting an association between baseline tumour 

immune microenvironment and response-benefit to pazopanib 

In addition to modulating the tumour immune microenvironment, there is a body 

of evidence that baseline immune contexture is associated with variable 

responses to pazopanib. Although robust immune-based biomarkers predictive 

of pazopanib response in patients with STS are lacking, these reports are  

suggestive of a mechanistic link between the immune microenvironment and 

response benefit. 

1.5.4.4.1 Immunohistochemistry of PD-L1 

Given the role PD-L1 has in acting as an immune checkpoint, and dampening 

anti-tumour immune responses, there is rationale for investigating levels of 

expression as an indicator for the immune contexture. A previous study 

undertook retrospective analysis of pre-treatment tumour tissue of a cohort of 

patients with unresectable or metastatic STS who went on to receive pazopanib 

therapy305. In a cohort of 67 patients, they performed PD-L1 IHC staining, as well 

as scoring the number of TILs, quantified by counting the number of mononuclear 

cells (excluding neutrophils) in each tumour specimen. Of the 67 patients, 13 

(19.4%) stained positively for PD-L1, and survival analysis showed a significantly 

inferior PFS in the PD-L1 positive strata compared to the PD-L1 negative (median 

PFS 2.8 months versus 5.0 months; p = 0.003) and a non-significant inferior OS 

(median PFS 7.9 months versus 12.6 months; p= 0.11). Indeed, multivariable 

Cox regression analysis demonstrated that only PD-L1 status was an 

independent factor for determining inferior response to pazopanib after adjusting 
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for confounding variables. Interestingly, in additional analysis PD-L1 and TIL 

status were combined to form three strata namely PD-L1 and TIL positive, PD-

L1 and TIL negative, and either PD-L1 or TIL negative. The study then identified 

that specimens classified as both PD-L1 and TIL positive were significantly 

associated with the shortest PFS when compared with specimens classed as PD-

L1 and TIL negative, or either PD-L1 or TIL negative (median PFS 2.7 months, 

5.1 months and 4.3 months respectively; p = 0.035). This would suggest that an 

immune-cold microenvironment is associated with inferior clinical response to 

pazopanib treatment. 

Further evidence of an association between baseline tumour immune features 

and pazopanib response in STS is limited, however two additional studies have 

reported a similar observation where increased pre-treatment PD-L1 expression 

is associated with an inferior clinical response to other anti-VEGF therapies. The 

first of these studies leveraged on clinical samples obtained from the phase III 

COMPRAZ trial of first-line pazopanib versus sunitinib in metastatic renal cell 

carcinoma (NCT 00720941)306,307. Of the 1,110 patients enrolled onto the trial, 

IHC data for PD-L1 and intra-tumoural CD8+ TILs was available for 453 patients. 

Combining the number of tumour cells staining positively for PD-L1 and the 

intensity of this staining, the authors generated a semi-quantitative score and 

reported an association between higher PD-L1 scores (greater than 55) and 

inferior OS in the pazopanib cohort (median OS 15.1 months versus 35.6 

months). Furthermore, when additionally considering the intra-tumoural CD8+ T-

cell count, specimens with a PD-L1 score of greater than 55 and a CD8+ TIL 

count of greater than 300 were associated with the shortest OS when compared 

with PD-L1 high and TIL low, and PD-L1 low cases (median OS 9.6 months).  

A similar but smaller study also investigated PD-L1 expression in metastatic renal 

cell carcinoma, also undertaking IHC analysis of pre-treatment samples in 

patients who went on to receive anti-VEGF TKI therapy308. Pre-treatment tissue 

was available for 91 patients, with 16 (17.6%) specimens identified as being PD-

L1 positive. As with the above studies, PD-L1 positivity was significantly 

associated with an inferior response rate to anti-VEGF TKI therapy, with 87.5% 

of PD-L1 positive cases being non-responders compared to 53.3% in the PD-L1 
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negative cases (p = 0.012). Of note, this study only included 3 patients treated 

with pazopanib, with the majority being treated with sunitinib, and a further cohort 

treated with sorafenib. Although a smaller study, in conjunction with the 

abovementioned studies, there is evidence that the pre-treatment immune 

contexture impacts subsequent treatment response upon initiation of anti-VEGF 

TKI therapy. 

1.5.4.4.2 Gene expression based immune subtypes 

In addition to IHC based studies of the immune checkpoint PD-L1, additional work 

exists investigating pre-treatment gene expression-based immune subtypes and 

the impact these may have on response benefit to pazopanib and other anti-

VEGF TKIs. Although specific studies exploring the potential for gene-based 

immune scores predictive of anti-VEGF TKIs in STS are limited, the associations 

identified in other tumour types do suggest a mechanistic role the immune 

microenvironment may play in clinical responses to pazopanib and other anti-

VEGF TKIs. 

The first example is drawn from a study where transcriptomic profiles of pre-

treatment FFPE tissue samples obtained from patients with metastatic clear cell 

RCC who were subsequently treated with first-line pazopanib versus sunitinib as 

part of the phase III COMPRAZ trial (NCT00720941) were analysed307,309.  The 

translational study included a total of 409 patients of which 212 received sunitinib 

and the remaining 197 pazopanib, and identified 4 clusters of patients based on 

gene expression data. Survival analysis identified cluster 4 as having the poorest 

OS and PFS, and subsequent analysis of immune related gene expression 

categorised this cluster as having the highest immune score using the estimation 

of stromal immune cells in malignant tumours using expression data (ESTIMATE) 

method310. In addition, cluster 4 also had a significantly higher tumour cell PD-L1 

expression (60% vs 34%, p<0.001). Immune deconvolution via ssGSEA 

demonstrated that macrophages were the most differentially enriched cell type, 

with higher macrophage scores  in cluster 4 compared to clusters 1-3, and when 

assessing the whole cohort irrespective of cluster, patients with high 

immunosuppressive M2 macrophage infiltration had worse OS. Of note, when 
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assessing the cohorts by TKI received, only in the pazopanib treated group was 

having a high level of macrophage infiltration associated with inferior OS and 

PFS. Although one of the limitations of this study is the lumping together of 

sunitinib and pazopanib treated patients, it represents one of the few studies 

which has characterised pre-treatment immune gene signatures and their relation 

to response to pazopanib. Given the fact the study was in clear cell RCC, there 

is evidence here to support the rationale for investigating the immune 

microenvironment in STS will not only shed light on the biology of STS but may 

be fruitful in the pursuit of biomarkers for pazopanib response. 

Also of interest is the work reported by Beuselinck et al., who developed a 

molecular classifier for metastatic clear cell RCC predictive of response to the 

anti-VEGF TKI sunitinib311. A total of 121 patients were retrospectively identified 

who had undergone nephrectomy, had developed synchronous or metachronic 

metastases and had received sunitinib as first-line chemotherapy. The pre-TKI 

tissue was then interrogated via a multi-omic pipeline including genomic and 

transcriptomic analyses. Unsupervised consensus clustering identified four 

robust subgroups of tumours, named ccrcc 1-4, with distinct immune profiles and 

variable response to sunitinib. Indeed, pre-treatment specimens classified as 

ccrcc1 and ccrcc4 were associated with significantly inferior PFS when compared 

to ccrcc2 and ccrcc3 (13, 8, 19 and 24 months respectively; p = 0.0003) and 

significantly inferior OS (24, 14, 35 and 50 months respectively; p = 0.001). 

Subsequent analyses demonstrated that ccrcc4 was characterised by high 

expression of markers of pro-immunogenic inflammation, and contained high 

amounts of B, T and cytotoxic cells-specific transcripts. However, ccrcc4 was also 

found to highly express immune suppressive IL-10, FOXP3+ regulatory T-cells, 

and the inhibitory receptors PD-1 and LAG3 and their cognate ligands. This study 

suggests of a link between the baseline immune microenvironment and patient 

benefit in response to the anti-VEGF TKI sunitinib. 

The team then looked to investigate the utility of the same classifier in a 

retrospective cohort of patients treated with pazopanib312. A total of 28 patients 

who presented with clear cell RCC with synchronous or metachronous 

metastases and who were treated with pazopanib in the first-line setting were 
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included for analysis. Extracted ribonucleic acid (RNA) was analysed and the 

tumour classified into one of the four molecular subgroups based upon the 35-

gene classifier previously determined. Due to the small number of patients 

classified as ccrcc3, these were pooled with the ccrcc2 samples, as both 

subgroups had previously been associated with improved response to sunitinib. 

Of the 28 patients, 6 (21%) were assigned to ccrcc1, 4 to ccrcc4 (14%) and the 

remaining 18 (60%) to the pooled ccrcc2&3 subgroup. Across the whole cohort 

median PFS was 7 months and median OS was 28 months, however both median 

PFS and OS were significantly different between subgroups. Median PFS was 9 

months in ccrcc2&3 compared to 5 months for the ccrcc1 subgroup and 3 months 

for ccrcc4 (p=0.011), whilst ccrcc2&3 subgroup median OS was 69 months 

compared to 19 months for ccrcc1 patients and 5 months for ccrcc4 patients 

(p=0.003). Furthermore, mean change in tumour size was -34% in the ccrcc2&3 

group, -6% in the ccrcc1 subgroup and -2% in the ccrcc4 subgroup. 

Although retrospective and a relatively small cohort size, these results are 

promising and act to validate the robustness of the signature as previously 

demonstrated in the sunitinib-treated cohort. As a result of this work, a biomarker-

driven phase II has recently completed recruitment, and follow-up is ongoing 

(NCT02960906)313. The study was designed to test the utility of the ccrcc 

classification to improve patient outcomes by assigning treatment based on 

classification. In the study, given the previous immune-based characterisation of 

ccrcc1 or 4, these patients were randomised to immune checkpoint inhibitor (ICI) 

monotherapy, nivolumab, or ICI combination therapy, nivolumab plus ipilimumab, 

whilst patients classed as ccrcc2 or 3 were randomised to receive either 

combination ICI therapy or to either pazopanib or sunitinib based upon clinician’s 

choice. Provisional results with a median follow-up time of 16 months were 

presented at the European Society of Medical Oncology 2020 virtual congress, 

and interestingly for the ccrcc2 cohort, the median PFS for the immune 

checkpoint inhibitor arm was 10.4 months but was yet to be reached at 16 months 

of follow-up in the TKI arm314. The data regarding OS was not yet mature as there 

had only been 16% of necessary events at the time of the presentation. Although 

the full trial results are awaited, this is a very promising example of the 
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development of a molecular classification which is able to stratify patients and 

allow a more patient-specific treatment algorithm. Furthermore, given the link 

between immune contexture and response to anti-VEGF TKIs, it utilises this 

knowledge to target specific vulnerabilities in a patient’s tumour. At present, no 

such work has been carried out in the field of sarcoma, but such an endeavour 

could prove equally promising, resulting in patients receiving the most optimal 

management for their tumour, but also potentially leading to the re-approval for 

pazopanib funding for STS via the NHS Cancer Drugs Fund. 

1.5.5 Summary 

In recent times there has been a growing appreciation of the importance of the 

role the immune system plays in the development of cancer, and great progress 

has been made harnessing the host immune system to improve outcomes in a 

number of solid tumours. For now, the immune microenvironment is incompletely 

characterised, but evidence exists that anti-angiogenic therapies have off-target 

immuno-modulating effects which reverse immune suppressive influences whilst 

empowering effector cells. As such, there is a rationale to further characterise the 

immune microenvironment in STS, and assess how the immune contexture may 

influence responses to anti-angiogenic TKIs.  
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1.6 Thesis overview 

Soft tissue sarcomas are rare cancers of unmet clinical need, and the term STS 

covers a wide range of different histologies with vastly different behaviours and 

responses to therapies. Despite efforts within the STS community, across many 

subtypes anthracycline-based chemotherapy remains the first-line treatment of 

choice in the advanced setting. Upon failure of first-line treatment, patients have 

limited further-line therapies available and each subsequent line has diminishing 

returns in terms of tangible clinical benefit. 

Encouragingly, the recent development of therapies which target the 

vulnerabilities harboured by cancers has shown promising results, and in certain 

cancer types these therapies have led to drastic improvements in outcomes for 

patients. The multi-target TKI pazopanib is one such targeted therapy, with 

activity demonstrated against VEGF, PDGFR and FGFR. Although showing 

promising results in early stage clinical trials, the PALETTE phase III study 

comparing pazopanib with placebo in non-adipocytic STS was disappointing, in 

that although a PFS benefit was shown, a lack of OS benefit has impacted cost-

effectiveness analyses, and in the UK led to the withdrawal of funding via the 

NHS cancer drugs fund. Despite this, subsequent post-hoc analyses and 

additional studies have demonstrated that a proportion of patients with STS do 

derive robust and meaningful benefit from treatment with pazopanib. The clinical 

challenge however, is being able to identify which patients are most likely to gain 

benefit from treatment. Identification and validation of a biomarker which is 

predictive of response to pazopanib would not only benefit the individual patients 

by ensuring the correct individuals receives the most appropriate treatment, but 

may also improve the perceived benefit and thus ensure cost-effectiveness and 

therefore funding is made available once more. 

In recent times, there has been a growing appreciation of the role the host 

immune system plays, not only in cancer development, but also as a tool in the 

armoury in the treatment of cancer. However, the immune microenvironment in 

STS is incompletely characterised, and there are gaps in the science 

community’s knowledge about the immune-based biology which may be driving 
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STS. Furthermore, it is known that the process of neoangiogenesis and the 

various signalling factors which drive this process are inexorably linked to 

creating an immune suppressive environment and hindering anti-tumour immune 

responses. As such, there is a rationale to explore the impact of the tumour 

immune microenvironment and how it may influence responses to therapies 

which target the mechanisms involved in driving neoangiogenesis. 

1.6.1 Hypothesis 

The overarching hypothesis of this thesis is that the characterisation of the tumour 

immune microenvironment in patients treated with pazopanib or alternate 

systemic therapies will identify if immune signatures are associated with clinical 

outcomes.  

1.6.2 Aims 

1. Generate the cohorts of patients required to explore the immune 

microenvironment in STS and undertake IHC of TILs to identify immune 

based profiles associated with clinical outcomes following pazopanib 

therapy 

2. Undertake targeted gene expression analysis of immune related genes to 

characterise the immune microenvironment in STS, and identify any 

associations between STS subtype, tumour grade and patient age with 

differential immune gene expression 

3. Build prognostic models incorporating an immune gene signature which is 

associated with differential survival in a pazopanib-treated cohort of 

patients  
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2.1 Study design and overall strategy 

The overall study design was based on undertaking comprehensive profiling of 

the immune microenvironment of soft tissue sarcoma (STS) samples integrated 

with clinicopathological features and mature survival data. The research strategy 

involved profiling of formalin-fixed paraffin-embedded (FFPE) pre-treatment 

tissue samples in a combined cohort of patients treated with pazopanib utilising 

immunohistochemistry (IHC) of tumour infiltrating lymphocytes (TILs) and 

targeted immune gene sequencing through the nCounter immune profiling panel. 

Data generated were correlated with a well-annotated database of 

clinicopathological features and survival outcomes curated for this work. An in-

depth analysis of this data was then undertaken to identify differential survival 

outcomes based on TIL counts determined via IHC, and distinct immune-gene 

based subgroups within the combined cohort. These immune subgroups were 

further analysed to describe differential immune-gene expression and contrasting 

enrichment of specific immune cells, to shed light on the immune-based biology 

of STS. Furthermore, the association between STS subtype, patient age, and 

tumour grade with immune-gene expression was assessed. Finally, survival 

models were built employing Cox proportional hazards regression modelling with 

the ultimate goal of generating a prognostic model which included information 

gleaned from immune-gene expression analysis. 

In terms of the overall strategy, given the relative scarcity of patients meeting the 

criteria for inclusion, the quality and volume of tumour tissue available for analysis 

was limited and it was necessary to prioritise work packages. Indeed, a number 

of FFPE samples had been stored for a number of years leading to significant 

challenges associated with degradation of the ribonucleic acid (RNA). 

Furthermore, for some cases, only physically small biopsy samples were 

available. As such, the decision was made that extraction of RNA would be the 

priority, as the data yield from the targeted gene expression profile would be 

highest. In order to maximise the number of patients included, the degree of RNA 

degradation sometimes necessitated a number of RNA extractions. As such, 

some cases initially planned to be included for both gene sequencing and IHC 
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workflows had insufficient material for either tissue microarray (TMA) construction 

or single section staining for TILs. This was due to the exhaustion of the tissue 

blocks available for analysis and no further tissue samples available for inclusion.  

 

2.2 Patient selection and cohort generation  

2.2.1 Combined cohort 

Sixty-five patients for inclusion in the combined cohort were identified either from 

the Royal Marsden (RM) or from external collaborators. For the RM patients, 

these were retrospectively identified from the prospectively-maintained Royal 

Marsden (RM) STS patient database. All patients who had received pazopanib 

as part of the management of their STS at the RM were assessed and screened 

for inclusion. To expand the number of patients available for inclusion, suitable 

cases were also obtained from collaborators at the Beaston West of Scotland 

Cancer Centre (Glasgow, Scotland) and the National Cancer Centre Singapore 

(Singapore). For inclusion in the study, both RM and external cases were 

screened for the following inclusion and exclusion criteria; 

Inclusion criteria for the combined cohort 

• Confirmed diagnosis of STS, as per contemporaneous histopathology 

record 

• Received at least one dose of pazopanib in the treatment of advanced 

STS 

• In absence of patient death, a minimum of 18 months follow-up from first 

dose of pazopanib 

• Presence of metastatic disease and/or localised/locally recurrent disease 

not amenable to radical resection at time of pazopanib initiation, as per 

contemporaneous medical records 

• Retrievable FFPE tumour material sampled prior to initiation of pazopanib 

• Where recorded, Eastern Cooperative Oncology Group (ECOG) 

performance status ≤2 
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Exclusion criteria for the combined cohort 

• Diagnosis of fibromatosis, desmoid tumour, lymphangiomatosis, GIST 

• Insufficient period of documented follow-up 

In cases identified from the RM, pre-treatment FFPE tumour material was 

requested from the archival tissue bank maintained at the RM. Baseline 

clinicopathological characteristics and survival data were collected via a 

retrospective review of contemporaneous electronic patient medical records held 

by the RM. For the purposes of outcome analysis overall survival (OS) was 

defined as the period of time from the date of the first dose of pazopanib until the 

date of death or the date of most recent evidence of survival if still alive at the 

time of data censoring. For progression-free survival (PFS), this was defined as 

the length of time from the date of the first dose of pazopanib until the date of 

progression as demonstrated on cross-sectional imaging and reported by a 

specialist radiologist using response evaluation criteria in solid tumours 

(RECIST).  

For cases supplied by external collaborators, tissue blocks or curls were 

transferred from their centre to ours under a tissue transfer agreement. In order 

to comply with data transfer responsibilities, patients included from collaborators 

were assigned a study-specific code and all clinical data were obtained at the 

collaborating site by inputting it into a data template and transferring it in a 

pseudonymised format. All clinical data for the combined cohort was censored at 

18 months.  

2.2.2 Comparator cohort 

The comparator cohort was designed to closely resemble the combined cohort, 

aside from the fact these patients had not received pazopanib as they were 

managed after the withdrawal of NHS funding for pazopanib. The comparator 

cohort (n=28) was assembled from patients managed at the RM with the same 

inclusion and exclusion criteria as the combined cohort apart from; 

Inclusion criteria for comparator cohort 
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• Commenced 2nd line clinician’s choice systemic treatment for 

advanced STS no earlier than April 2015 (after withdrawal of 

pazopanib availability through NHS Cancer Drugs Fund funding)  

Exclusion criteria for comparator cohort 

• Patients must never have received one or more doses of pazopanib  

As such, the comparator cohort was designed to identify a cohort of patients who 

may have been suitable for pazopanib therapy, but this was unavailable due to 

the central decision to withdraw NHS funding. In order to identify these patients, 

the prospectively maintained RM STS database was searched for all patients 

who had received at least two lines of systemic therapy since April 2015. Patients 

with available pre-second line FFPE tissue were identified and tissue blocks were 

requested from the RM STS archival tissue bank. Clinical data were acquired 

from the RM electronic patient record system, with the definitions for OS and PFS 

the same for the combined cohort, but calculated from the date of the first dose 

of the alternative second-line systemic therapy used.  

2.2.3 Power calculation 

This study is a retrospective biomarker data study, as opposed to a prospective 

clinical trial, thus the conventional sample size methodology developed for 

prospective clinical studies was not applicable. The appropriate method for power 

calculation is based on the study population and modelled against their 

associated survival outcome. Using the Riley et al315,316. sample size calculator 

methodology, based on the observed clinical data of the combined cohort (n = 

65) in this study, it was indicated as follows: 

 

 

 

(i) Overall survival: 
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To develop a prediction model for overall survival probability at 18 months that 

minimised overfitting and allowed up to 8 parameters*, with a median follow-up 

of 0.60 in years, a sample size of 540 patients will be needed assuming an 

outcome event rate of 0.914 corresponding to 324 person-time of follow-up with 

297 outcome events. 

 

A sample size of 68 patients is needed to develop a model with 1 parameter** 

assuming an outcome event rate of 0.914, corresponding to 40.8 person-time of 

follow-up with 38 outcome events. 

 

(ii) Progression-free survival: 

To develop a prediction model for progression-free survival probability at 18 

months that minimised overfitting and allowed up to 8 parameters*, with a median 

follow-up of 0.60 in years, a sample size of 515 patients will be needed assuming 

an outcome event rate of 1.731 corresponding to 309 person-time of follow-up 

with 535 outcome events. 

 

A sample size of 65 patients is needed to develop a model with 1 parameter** 

assuming an outcome event rate of 1.731, corresponding to 39 person-time of 

follow-up with 64 outcome events. 

 

*8 parameters = gene signature (1 parameter, continuous variable) + Age (1 

parameter, continuous variable) + performance status (3 parameters, categorical 

variable – 4 level) + grade (3 parameters, categorical variable – 4 level)  

*1 parameter = gene signature (1 parameter, continuous variable) 
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It will be extremely challenging to assemble a cohort of hundreds of pre-treatment 

sarcoma samples exposed to the same therapy, however, as it will be of interest 

to adjust for confounding factors, we took a pragmatic approach to estimate the 

clinical value of a biomarker of interest in both univariable and multi-variable 

analyses. Within chapter 5, the aim was to determine the potential clinical 

applicability of an immune signature as a predictor for patient survival, therefore 

the strategy was to first determine whether there is a consistent association of 

increased or reduced survival risk within the training and validation cohort. Given 

the small sample size, if there is a consistent direction of signal, this would 

suggest the immune biomarker could be a useful marker. Then the final survival 

models of the immune biomarker with other clinicopathological variables would 

be estimated in the combined cohort of 65 patients. 

 

2.3 Tissue processing procedures 

2.3.1 Sample processing 

All blocks received from the RM archival tissue bank were formally logged onto 

FreezerPro, (Azenta Life Sciences, Massachusetts, USA) a laboratory 

information management system in order to comply with legislation laid out in the 

Humans Tissue Act 2004 and to allow tracking of samples. Each individual patient 

for which tissue was received was allocated a laboratory-specific 5-digit identifier, 

and each FFPE block and histopathology slide assigned a laboratory-specific 

code. Following receipt of the FFPE block within the lab, a single haematoxylin 

and eosin (H&E) slide was then generated. The slide was then marked to show 

which areas of the section harboured tumour tissue. Additionally, three dots were 

marked to identify representative tumour area for subsequent tissue microarray 

(TMA) generation.  

2.3.2 Tissue microarray generation 

Following marking up of H&Es slides, all cases with sufficient tumour area were 

identified. For each cohort, a TMA was designed and manually created to include 
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1mm cores from each case in triplicate distributed randomly across the design317. 

Aside from tissue cores, the TMA also included; 

Blank areas to aid subsequent TMA orientations 

Positive control for immune stains in the form of tonsillar and lymph node 

tissue 

Negative controls in the form of normal adipose tissue. 

Utilising the manual TMA machine, a 1mm core was removed from the recipient 

FFPE block. For each case to be included, the FFPE block and H&E slide were 

compared, and the position of one of the marked TMA sample points noted for 

the FFPE block. A 1mm core of tumour tissue was then taken from this position 

and deposited into the vacant slot in the recipient block. A minimum of 0.5mm 

gap was allowed between cores in all directions, whilst occasional blank channels 

allowed for TMA orientation as well as providing structural integrity. Following 

completion of TMA creation, the recipient block was placed in an oven at 60oC 

for 15 minutes topped with a glass slide to ensure adequate embedding of the 

cores within the paraffin and to provide integrity for subsequent sectioning. 

 

2.4 Immunohistochemistry workflow and analysis 

The methods detailed in this section relate to experiments for which the results 

are discussed in Chapter 3. 

2.4.1 Immunohistochemistry for tumour infiltrating lymphocytes 

To undertake IHC staining of TMA slides, sequential 4 µm sections were taken 

and utilised as input for the IHC protocol. For cases where there was insufficient 

tumour tissue to obtain TMA cores, single whole sections were used instead. 

Immunohistochemistry experiments were performed on the Dako Link 

Autostainer (Agilent, California, USA) and carried out by the Institute of Cancer 

Research (ICR) core facility. Tissue sections underwent deparaffinisation with 
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xylene, and then rehydrated down an ethanol gradient (100%, 95%, then 70%) 

to water. Antigen retrieval was then undertaken, with the method selected based 

on previous antibody optimisation and detailed below. Slides were then incubated 

with the primary antibody of investigation, as detailed below, for 60 minutes at 

room temperature, followed by the application of 3,3’-diaminobenzidine (DAB) 

resulting in a dark brown staining of positively labelled cells. Finally, haematoxylin 

counter-staining of the nuclei was undertaken. prior to the application of a cover 

slip.  

 CD3 IHC method 

Staining for CD3 was performed using rabbit polyclonal anti-human CD3 antibody 

(Agilent product A0452) at a dilution of 1/600. Epitope retrieval was carried out 

using Dako Target low pH retrieval solution using the pressure cooker module. 

 CD4 IHC method 

Staining for CD4 was performed using mouse monoclonal anti-human CD4 

antibody(clone 4B12, Agilent product M7310) at a dilution of 1/80. Epitope 

retrieval was carried out utilising Dako Target high pH retrieval solution in the PT 

link tank. 

CD8 IHC method 

Staining for CD8 was carried out using mouse monoclonal anti-human CD8 

antibody (clone C8/144B, Agilent product M7103) at a dilution of 1/100. Epitope 

retrieval was carried out with Dako Target low pH retrieval solution in the PT link 

tank. 

For all IHC experiments, technical controls were included in the form of; positive 

control was normal tonsillar tissue, negative control omitting the primary antibody, 

and isotype control using mouse/rabbit immunoglobulin G. 
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2.4.2 Automated cell counting of immunohistochemistry stained 

immune cells 

Following staining, the TMA slides were converted to digital images using the 

Nanozoomer 2.0HT digital slide scanner (Hamamatsu, Japan). The number of 

TILs per 1mm core was then quantified by automated cell counting. 

2.4.2.1 ImageJ automated cell counting 

The first method for automated cell counting utilised the ImageJ software with the 

Fiji image processing package318. Each core was isolated at 10x magnification, 

exported as a .tif file and cropped to a uniform 1mm diameter (0.785mm2 area) 

using ImageJ, and saved as a new image. With all of the files for analysis in a 

single folder the code detailed (Table 2.1) was utilised to sequentially open the 

image file of the single TMA core, undertake colour deconvolution resulting in a 

black and white image (Figure 2.1), and then count the positively stained cells 

using the ImageJ ‘Analyze Particles’ function utilising optimised conditions taking 

into account circularity, particle size and pixel intensity; 
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Table 2.1: Macro code used for automated cell counting on the ImageJ platform. 

 

 

 

 

 

Figure 2.1: Example of the ImageJ processing of a single CD8 stained TMA core. The image 

on the left represents a single core isolated from the digital image of the whole TMA section. 

Following colour deconvolution the resultant image is shown on the right, which is then 

processed using the ‘Analyze Particles’ function in ImageJ to quantify the number of cells 

present.  

//gets filename and directory selectWindow("Colour Deconvolution"); 

dir=getDirectory("image"); run("Close"); 

name=getTitle; selectWindow(name+"-(Colour_1)"); 

path=dir+name+"result195-18-

25.txt"; 
run("Close"); 

colour2=name+"-(Colour_2)"; selectWindow(name+"-(Colour_3)"); 

run("Colour Deconvolution",

"vectors=[H DAB]"); 
run("Close"); 

selectWindow(colour2); run("Watershed"); 

run("8-bit"); 
run("Analyze Particles...", "size=18-Infinity circularity=0.25-

1.00 display exclude clear"); 

setAutoThreshold("Default"); 
//saves to defined path and closes windows down to

original image 

run("Threshold..."); saveAs("Results", path); 

setThreshold(0, 195); selectWindow("Results"); 

setOption("BlackBackground", 

false); 
run("Close"); 

run("Convert to Mask"); selectWindow(name+"-(Colour_2)"); 

run("Close"); run("Close");
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2.4.1.2 QuPath automated cell counting 

The second method for automated cell counting utilised QuPath, an open-source 

software platform for bioimage analysis and able to quantify TILs in TMA cores319. 

The digitally stored TMA slide images were opened in the QuPath software and 

the image type set to Brightfield (H-DAB). The ‘TMA Dearrayer’ function was then 

used with the expected number of rows and columns added, the core diameter 

set to 1.2mm, the density threshold set to 1 and the bounds scale set to 100. This 

then generated a grid over the scanned TMA, and any cores which were 

intentionally left blank for orientation, or whereby a core has dropped out during 

sectioning were classified as “missing” cores and not included in further 

automation steps. All cores were then selected and the simple tissue detection 

function was utilised with the threshold set to 250 and the pixel size to 2. In order 

to optimise the parameters for the cell detection functionality available on 

QuPath, a small number of cores were selected, the parameters modified and 

the resulting automated positive cell allocation checked until optimal detection of 

positively stained cells was achieved. For example, for CD8 staining the optimal 

conditions were pixel size 0.4, minimum area 20, threshold 0.05, maximum 

background intensity 2, single threshold of 0.2 and nucleus DAB optical density 

mean. Once optimised, the positive cell detection programme was run on the 

whole TMA slide, and the data was exported for further analysis. 

2.4.3 Statistical analysis of immunohistochemistry data 

2.4.3.1 Bland-Altman plots 

In order to identify the most reproducible method of automated cell counting, a 

pilot study was undertaken in which a selection of cores (n=120) from CD8 

stained TMA slides were selected and the CD8+ cells were counted manually. 

Independently, both the ImageJ platform and the QuPath platform were used to 

quantify the number of CD8+ cells present in the same cores319,320. The 

agreement between the manual counts and the two methods for automated cell 

counting were then compared using a Bland-Altman agreement plot321. This 

scatter graph plots the difference between the two paired measurements, manual 



 

 
126 

cell count versus automated count, against the mean of the paired 

measurements. On the same figure, lines are plotted for the mean difference 

between the values, and 1.96 standard deviations above and below the mean. 

The interval between the two standard deviation lines represents the limits of 

agreement between the two methods, and 95% of values are expected to fall 

within this interval if the two methods are felt to be comparable. Based on the 

results of this pilot study, and the subsequently generated Bland-Altman plots, 

the most appropriate automated counting method was subsequently taken 

forward.  

2.4.3.2 Outcome analysis based on IHC results 

In order to analyse the association between IHC-derived TIL counts and OS and 

PFS, following automated cell counting of the TMA cores the average TIL value 

from the three cores included per-sample in the TMA was calculated. For the 

combined cohort, the median cohort TIL value for each stain was determined, 

and this cut-off was used to stratify the cohort into TIL high and low subgroups. 

Based upon this stratification, Kaplan-Meier plots were generated, and Cox 

univariable analysis was employed to assess if TIL count was significantly 

associated with OS and PFS, with a p-value <0.05 considered significant322,323. 

In addition, Cox multivariable proportional hazards regression models were used 

to analyse the association between TIL and survival, with the routine 

clinicopathological variables including age, performance status and tumour grade 

added as co-variables324. Subsequently, the same CD3+, CD4+ and CD8+ 

median value determined in the combined cohort was used to stratify the 

comparator cohort into high and low TIL subgroups. Kaplan-Meier plots were then 

generated for OS and PFS to identify any association between subgroup 

classification and survival. Additional Cox multivariable models were also built for 

the comparator cohort, incorporating the same clinicopathological features as co-

variables. 

2.4.3.3 Correlation of CD3 count with CD4 and CD8 

As a method of checking the reliability of the IHC counts generated, correlation 
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analysis was undertaken to compare the TMA core CD3+ raw count with the 

summation of the raw CD4+ and CD8+ counts for the same core. Correlation 

plots were generated utilising the log2 raw TIL counts, and a correlation coefficient 

of greater than 0.65 was considered “good”, and greater than 0.75 was 

considered “strong” correlation. 

 

2.5 Nanostring data generation and analysis 

The methods detailed in this section relate to experiments for which the results 

are discussed in Chapter 4. 

2.5.1 Nucleic acid extraction 

Samples selected for inclusion for targeted gene expression analysis underwent 

standard processing, whereby 4x20 µm sections were cut by microtomy, and 

where necessary macrodissected to enrich for a minimum of 75% tumour 

content. Tumour RNA was then extracted from the tissue sections utilising the All 

Prep DNA/RNA FFPE kit (Qiagen, Hiden, Germany) following the standard 

procedures dictated by the vendor. The concentration of RNA was quantified 

using both the Qubit and Nanodrop fluorometer (both Thermo Fisher Scientific, 

Massachusetts, USA), and the RNA integrity number and proportion of total RNA  

between 50 and 300 base pairs was measured using the 2100 Bioanalyzer and 

associated software (Agilent, California, USA). Based on the RNA quality and 

concentrations, a total of 150 ng RNA, or up to 300 ng in particularly degraded 

samples, was aliquoted and used as input material for targeted immune gene 

expression analysis using the nCounter PanCancer Immune Profiling Panel 

(Nanostring Technologies, Washington, USA).  

2.5.2 Raw data normalisation 

Data output from the Nanostring platform was in the form of .RCC files. In order 

to normalise the data, all .RCC files for the combined cohort were normalised 

utilising the “NanostringNorm” R package325, through; 
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 Subtraction of the geometric mean of the negative control probes 

Normalisation by the positive control normalisation factor calculated as the 

geometric mean of the positive control probes 

Normalisation as a factor of the housekeeping gene probes 

Data was then log2 transformed and the normalised data matrix was then 

subjected to gene-based median centring.  

2.5.3 Principle component analysis 

With the aim of reducing dimensionality whilst minimising data loss, principle 

component analysis (PCA) is a method for transforming potentially correlated 

variables into a smaller number of uncorrelated variables326. As such, PCA was 

undertaken at various stages of data analysis utilising the PCAtools R 

package327. 

Initially, PCA was undertaken on the combined cohort with a PCA plot used to 

visualise if 2 principle components were sufficient to cluster different groups of 

samples together. Overlaying the gene loadings as a biplot was also used to 

identify which specific genes were driving the separation of samples. A scree plot 

was also generated, with both the horn and the elbow method added to the plot, 

to identify the ideal number of principal components required to explain the 

variance within the dataset328,329. A pairs plot was also generated to visualise the 

variance explained by each paired sets of principle component. Finally, a 

loadings plot was used to visualise which genes were driving each principle 

component. 

2.5.4 Heatmap generation 

In order to observe more complex patterns in the data not diminishable by PCA, 

heatmaps were generated utilising the ComplexHeatmap package in R330. A 

heatmap of the immune gene expression for the combined cohort was plotted 

using unsupervised hierarchical clustering to group samples together based on 

the similarity in expression profiles. Any obvious subgroups following this 
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clustering were then taken forward and investigated further to better describe the 

immune-based biology underpinning STS.  

2.5.5 Identifying differentially expressed genes between 

subgroups 

Significance analysis of microarray (SAM) was undertaken to identify any 

differentially expressed genes between subgroups of interest. In order to 

undertake this, the “samR” package was employed331. An appropriately formatted 

.xsls data sheet was uploaded to samR console launched through R studio. The 

data type was set at array, and for all SAM analyses, two-class unpaired was the 

response type selected. For analyses involving more than two subgroups, serial 

SAM analyses were undertaken to compare the subgroup of interest with the rest 

of the cohort, and the genes in which differential expression was unique for that 

subgroup were taken forward for discussion. After running the SAM analysis, a 

robust delta value was selected which generated the maximum number of 

significant genes, whilst keeping the false discovery rate to a minimum, and no 

greater than 5%332.  

2.5.6 Single samples gene set enrichment analysis 

In order to define specific phenotypic characteristics of the immune gene 

expression data, single sample gene set enrichment analysis (ssGSEA) was 

undertaken. ssGSEA is an analytical method which derives its power by focusing 

on pre-defined sets of genes which share a common biological function333. The 

gene annotations as supplied by Nanostring were used to generate gene sets for 

specific immune cells of interest (Table 2.2). In order to undertake ssGSEA, a 

.gct data file was created using the desired normalised, log2 transformed, 

median-centred data set. In addition, a .gmt file of the gene set of interest was 

also created. Both files were uploaded to the Gene Pattern website 

(www.genepattern.org) and the gene set enrichment function used. The 

subsequent .gct data file was then read into R, and used to generate heatmaps 

and boxplots of the ssGSEA results. 
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Table 2.2: Gene set for specific immune cells.  

 

Immune cell
Activated dendritic cells CCL1 EBI3 IDO1 LAMP3 OAS3

Dendritic cells CCL13 CCL17 CCL22 CD209 HSD11B1

Immature dendritic cells CD1A CD1B CD1E F13A1 SYT17

Plasmacytoid dendritic cell IL3RA

B-cell BLK CD19 CR2 HLA-DOB MS4A1 TNFRSF17

Cytotoxic cells GNLY GZMA GZMH KLRD1 KLRF1

Eosinophils CCR3 IL5RA PTGDR2 SMPD3 THBS1

Macrophages APOE CCL7 CD68 CHIT1 CXCL5 MARCO MSR1

Mast cells CMA1 CTSG KIT MS4A2 PRG2 TPSAB1

Neutrophils CSF3R FPR2 MME

Natural killer bright FOXJ1 MPPED1 PLA2G6 RRAD

Natural killer dim GTF3C1 GZMB IL21R

Natural killer BCL2 FUT5 NCR1 ZNF205

T-cell CD2 CD3E CD3G CD6

CD8 T-cell CD8A CD8B FLT3LG GZMM PRF1

T-helper cells ANP32B BATF NUP107 CD28 ICOS

T-helper1 cells CD38 CSF2 IFNG IL12RB2 LTA STAT4 TBX21 CTLA4

T-helper2 cells CXCR6 GATA3 IL26 LAIR2 PMCH SMAD2 STAT6

T-helper17 cells IL17A IL17RA RORC

Follilcular helper T-cells BCL6 CXCL13 MAF PDCD1

Memory T-cell ATM DOCK9 NEFL REPS1 USP9Y

Effector T-cells AKT3 CCR2 EWSR1 LTK NFATC4

Gamma delta T cells CD160 FEZ1 TARP

T-reg cell FOXP3

Immune checkpoint ADORA2A BTLA CD27 CD40LG HAVCR2 KIR3DL1 LAG3 TNFRSF4 TNFRSF9

Genes included in gene set
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2.6 Building survival models 

The methods detailed in this section relate to experiments for which the results 

are discussed in Chapter 5. 

2.6.1 Strategy to analyse the combined cohort 

For this workflow, after considering the desire to generate a prognostic model 

and validate it on an independent cohort, as well as the small cohort size, the 

strategy employed was to split the combined cohort into distinct discovery and 

validation cohorts. This would allow a prognostic model to be built on the 

discovery cohort, and for any significant findings to be tested and validated on 

the independent validation cohort. However, due to the small sample size, the 

decision was made to then combine the discovery and validation cohorts together 

to build the final model. 

2.6.2 Building prognostic models using the discovery cohort 

To address this work package, the immune gene expression data for discovery 

cohort (n = 37) was normalised using the “NanostringNorm” R package. Following 

this normalisation, a gene-filtering process was performed in which genes for 

which 25% or greater of the samples had a value of 0 were removed for 

subsequent analysis. Following normalisation and filtering, the median immune 

gene value of the remaining genes for each sample was identified, termed the 

median immune score (MIS). Subsequently, six different Cox regression models 

incorporating different variables for both OS and PFS were built using the 

discovery cohort; 

A univariate Cox regression model for both OS and PFS built using the 

MIS for each sample, 

A Cox multivariable regression model for OS and PFS built incorporating 

the clinicopathological features of patient age at the start of pazopanib, 

patient performance status (PS), at the start of pazopanib therapy, and 

tumour grade, 
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A multivariable Cox regression model for OS and PFS built using tumour 

grade, patient age, patient PS, and MIS. 

This strategy would allow the association of MIS and differences in survival 

through univariate analysis, whilst comparing the multivariable clinicopathological 

model with the model which also includes the MIS has the aim of identifying if 

MIS adds additional prognostic information compared to standard 

clinicopathological variables alone. 

2.6.3 Building prognostic models on the validation cohort 

To build prognostic models using the validation cohort (n=28) immune gene data, 

the data set was first normalised with normalisation factors for the geometric 

means of positive control and housekeeping genes of the discovery cohort used 

to dictate a normalisation target334. Genes which were filtered out of the discovery 

cohort analysis were then also excluded from the validation cohort analysis. From 

this gene list, the median gene score, the MIS, was calculated for each sample. 

The same six Cox regression models were then built using the validation cohort, 

with the aim of validating any findings previously reported during analysis of the 

discovery cohort. 

2.6.4 Building prognostic models on the combined cohort 

Finally, the discovery and validation cohorts were merged into the combined 

cohort (n=65) and the final models were built on this larger cohort. The same six 

Cox models as previously detailed were built, but in addition on the combined 

cohort Cox multivariable models for OS and PFS were built incorporating 

clinicopathological features, MIS and STS subtype as co-variables. The aim of 

including STS subtype was to assess if the histological subtype had an impact 

on the prognostic value of the model, or if it could be used across a range of STS 

subtypes. 
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2.7 Ethical approval 

The collection and analysis of pseudonymised archival FFPE tissue and the 

associated clinical data obtained from the RM electronic patient records was 

approved under the RM-sponsored Elucidation of a Molecular signature of 

Pazopanib Response in Advanced STS including SFT (EMPRASS) study 

denoted by NHS Research Ethic Committee reference 14/WA/0164 and RM 

Committee for Clinical Research reference 4107. 
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Chapter 3  - Generating cohorts and 

immunohistochemistry assessment of immune 

associations with clinical outcomes following 

pazopanib treatment 
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3.1 Background and objectives 

Soft tissue sarcomas (STS) are rare cancers with limited treatment options in the 

advanced setting following failure of first-line therapies4,5. Although newer 

targeted therapies have led to advances in a number of other solid tumours, in 

STS this progress is lacking. Pazopanib is a multi-target, anti-angiogenic tyrosine 

kinase inhibitor (TKI) which although showed promise in early-stage clinic trials, 

disappointingly showed no overall survival (OS) advantage in the PALETTE 

phase III clinical trial132. Although post-hoc analysis demonstrated that a 

subgroup of patients did gain robust progression-free survival (PFS) and OS 

benefit from treatment with pazopanib, at present there is no way of stratifying 

patients into those most likely to respond135. Given the relationship between 

neoangiogenesis and the creation of an immune-suppressive tumour 

microenvironment274–277, the reported potential for the immune contexture to 

provide prognostic biomarkers in STS290,291,293 and existing evidence of immune 

modulation by anti-angiogenic therapy303,304,307,309, there is a rationale for 

exploring the immune tumour microenvironment and its association with clinical 

benefit from pazopanib. 

Given the rarity of STS, there currently exist no published studies looking to 

define immune-based biomarkers for clinical outcomes following pazopanib 

therapy in this patient group. Furthermore, studies undertaking immune-based 

genomic analyses in STS are infrequent, and the immune microenvironment of 

STS is incompletely characterised. As such, the aims of this chapter are to; 

1. design and generate cohorts of patients with adequate tissue samples and 

clinical data available to characterise the tumour immune microenvironment.  

These cohorts include a population of patients with a diagnosis of advanced 

STS, including a range of STS subtypes, who received pazopanib in their 

treatment. 

2. undertake immunohistochemistry (IHC)-based analysis of pre-pazopanib STS 

samples to explore the immune contexture of a cohort including a range of 

STS subtypes. This looks to address the discordant published reports of IHC-

based biomarkers in STS (Table 1.6)279,280,289,281–288, whilst additionally, there 
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remains a lack of IHC-based work concerning STS treated with pazopanib. 

Tissue microarrays (TMAs) permit high-throughput histological studies of 

multiple samples simultaneously and were therefore chosen as the most 

effective and tissue-efficient method for this analysis335.  

3. correlate IHC-based immune profiles with clinical outcomes in relation to 

pazopanib therapy. 

3.1.1 Contributions 

Work of the candidate include; 

• Study conception and design in conjunction with the supervisory team. 

• Review and modification of the pre-existing Royal Marsden cohort generated 

by Dr Alex Lee, and updating of the associated clinical data. 

• Identification, collection and curation of archival formalin-fixed paraffin-

embedded (FFPE) material and associated clinical data for additional Royal 

Marsden (RM) cases for the validation cohort and all cases in the comparator 

cohort. 

• Co-ordination and processing of samples and incoming clinical data from 

external collaborating centres. 

• Tissue mark-up for tumour area and tissue microarray (TMA) cores under the 

training of Dr Khin Thway, consultant histopathologist, RM. 

• TMA design and creation. 

• Digital microscopy image capture and processing, and quantification of IHC 

stained immune cells. 

• Figure generation and data analysis. 

Cases included in the validation cohort were identified and provided by 

collaborators in Glasgow and Singapore, who also transferred pseudonymised 

clinical data in a pre-designed database form designed by the candidate. 

FFPE slide cutting, IHC optimisation, and IHC staining were performed by staff 

of the ICR’s histopathology core facility. 
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3.2 Results 

3.2.1 Patient selection  

To address the first aim of this chapter, namely generating cohorts on which to 

describe the immune microenvironment in STS, and subsequently to assess 

immune associations with clinical outcomes following pazopanib therapy, I 

curated a cohort of patients who received treatment with pazopanib (named the 

combined cohort), and an additional cohort of patients who were treated with an 

alternative second-line therapy (named the comparator cohort)(Figure 3.1). 

These two cohorts were designed to allow in-depth characterisation of the 

immune microenvironment of pre-pazopanib tissue, with the aim of determining 

biomarkers associated with differential clinical outcomes. The two cohorts are: 

1. The combined cohort is made up of pre-pazopanib tissue from patients who 

received pazopanib as part of the management of advanced STS from the 

Royal Marsden, Beatson Cancer Centre in Glasgow and National Cancer 

Centre in Singapore.  

2. The comparator cohort is made up of patients treated with clinician’s choice 

alternative second-line therapies from the Royal Marsden, and the pre-second 

line tumour tissue was analysed. 

3.2.1.1 Combined cohort 

Between October 2009 and September 2016, a total of 42 patients were identified 

to have been treated with pazopanib at the RM, who met the inclusion and 

exclusion criteria as detailed previously (section 2.2.1) and who on review had 

retrievable pre-pazopanib FFPE material which was of adequate quality for 

downstream analysis. In addition, 23 cases from collaborating centres (Glasgow 

and Singapore) were added.  In total, there were 65 cases with sufficient tissue 

in the combined cohort  (Figure 3.1).  
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Figure 3.1: Consort diagram showing patient selection for cases from the Royal Marsden 
(RM) as well as from external collaborators for the combined cohort. A total of 65 cases were 
included for Nanostring immune gene expression analysis (42 from the RM, 21 from Glasgow 
and 2 from Singapore) with 50 of these cases having sufficient tissue for TMA construction 
or sectioning for immunohistochemistry (IHC) experiments. 
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3.2.1.2 Comparator cohort 

For the comparator cohort, all patients identified on the RM STS prospectively 

maintained database who had received a minimum of two lines of systemic 

therapy but never received a dose of pazopanib, between April 2015 and January 

2019 were assessed. For those with archival tissue available, this was requested. 

Following extraction and assessment of RNA quality, a total of 28 patients were 

suitable for inclusion in the comparator cohort (Figure 3.2). 

 

Figure 3.2: Consort diagram for patient inclusion for the comparator cohort. 
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3.2.2 Baseline clinicopathological characteristics 

Baseline clinicopathological variables of the pazopanib-treated combined cohort 

and the comparator cohort are summarised in Tables 3.1 and 3.2). The median 

age at the start of pazopanib therapy was 55 years in the combined cohort (range 

18 – 81.2 years), whilst for the comparator cohort the median age at the start of 

second-line therapy was 54.3 years (range 29 to 79.9 years). 

Tumour grade is a known prognostic factor, and where retrievable was 

documented. The majority of tumours across the cohorts were grade 2 or 3 

(Figure 3.3.A). To assess for any statistically significant differences between the 

cohorts in relation to clinicopathological variables, Chi-squared statistical testing 

was employed which showed no significant difference in the proportion of cases 

being classified as low, medium or high grade.  

All patients had an Eastern Cooperative Oncology Group (ECOG) performance 

status (PS) of between 0 and 2.  The majority of cases in these cohorts were PS 

0 or 1, with only a small minority PS 2, and there was no significant difference in 

PS when comparing the cohorts (Figure 3.3.B). 

The best response to treatment was also recorded for each patient, and 

determined by cross-sectional imaging and per Response Evaluation Criteria in 

Solid Tumours (RECIST). Across the cohorts, there were no complete responses 

(CR), and statistical analysis did not show any significant differences in the best 

responses to treatment between the cohorts (Figure 3.3.C). 

A range of STS subtypes were included, as the intention of the study was to 

investigate the immune microenvironment of STS across multiple histological 

subtypes (Figure 3.4). For the combined cohort and the comparator cohort, the 

most common STS subtype was leiomyosarcoma (LMS), and these made up a 

similar proportion of the cases across both cohorts. The most noticeable 

difference between the cohorts in terms of subtype distribution was the relative 

enrichment for solitary fibrous tumours (SFTs) in the combined cohort compared 

to the comparator cohort. Otherwise, the subtype breakdown between cohorts is 
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comparable, and around 15% of each cohort is made up of subtypes with a single 

case included. 
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Table 3.1: Baseline clinicopathological variables for the combined and comparator cohorts 
generated for this study. Prior lines of therapy for the combined cohort refers to systemic 
therapies prior to pazopanib. For the comparator cohort, all cases were second-line, 
therefore all had received 1 line of prior systemic therapy. LMS – leiomyosarcoma; LPS  - 
liposarcoma; MPNST – malignant peripheral nerve sheath tumour; NOS – not otherwise 
specified; SFT – solitary fibrous tumour; UPS – undifferentiated pleomorphic sarcoma. 

 

 

n 65 28

Sex

M 26 12

F 39 16 0.797

Age (years)

Median 55 54.3

Range 18 - 81.2 29 - 79.9 0.503

Grade

1 4 0

2 21 8

3 35 16

UNK 5 4 0.435

Performance Status

0 19 8

1 32 14

2 7 3

UNK 7 3 0.999

Sarcoma Subtype

LMS 18 9

SFT 9 0

UPS 3 4

Angiosarcoma 1 3

Chondrosarcoma 2 0

MPNST 1 2

Myxofibrosarcoma 2 1

Myxoid LPS 2 0

Synovial Sarcoma 5 4

Sarcoma NOS 5 0

Spindle Cell Sarcoma 7 1

Other* 10 4 0.078

Prior lines systemic therapy

0 12 0

1 24 28

2 15 0

3+ 14 0 <0.001

Cohort Combined Comparator

* other cases include; in the discovery cohort, single cases of alvolear soft part sarcoma, clear 

cell sarcoma, fibromyxoid sarcoma, fibrosarcoma, granular cell tumour,  malignant 

haemangioendothelioma, and PEComa; in the validation cohort atypical Ewings, 

dedifferentiatied liposarcoma and fibromyxoid sarcoma; and in the comparator cohort two 

cases of adenosarcoma, and single cases of endometrial sarcoma and pleomorphic 

rhabdomyosarcoma.

p value
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Table 3.2: Clinicopathological variables of the combined and comparator cohorts including 
response to therapy and survival data at 18-month censor. Response to therapy was 
assessed on cross-sectional imaging by response evaluation criteria in solid tumours 
(RECIST 1.1)336. For some patients best response is unknown, either as a scan wasn’t 
performed due to the patient’s medical condition, or the scan was not available for review. 
CR – complete response; IQR – interquartile range; OS – overall survival; PD – progressive 
disease; PFS – progression-free survival; PR – partial response; SD – stable disease; UNK 
– unknown.  

 

 

n 65 28

Sample Type

Primary 35 20

Metastasis 17 4

Local Recurrence 10 4

UNK 3 0

Best Response

PD 14 14

SD 26 8

PR 12 6

CR 0 0

UNK 13 0 0.093

PFS (months)

Median 3.7 3.43

Range 0.27 - 18 1.1 - 18

IQR 1.93 - 8.65 1.4 - 7.0 0.556

OS (months)

Median 8.9 10.7

Range 0.27 - 18 2.27 - 18

IQR 3.67 - 15.58 4.54 - 15.68 0.599

p value

0.314

ComparatorCohort Combined
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Figure 3.3: Stacked bar charts showing the proportional make-up of the combined and comparator cohorts by A tumour grade, B performance status, 
and C best response to treatment. PD – progressive disease; PR – partial response; SD – stable disease; UNK – unknown. 
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Figure 3.4: Breakdown of STS subtypes in the combined and comparator cohorts. Of note, leiomyosarcoma (LMS) is the most common subtype included 
across both cohorts; LPS  - liposarcoma; MPNST – malignant peripheral nerve sheath tumour; NOS – not otherwise specified; SFT – solitary fibrous 
tumour; UPS – undifferentiated pleomorphic sarcoma.
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For all cases included in this study, based upon the PALETTE phase III trial 

median OS (mOS) from pazopanib of 12.5 months132, and real-world experiences 

in STS reporting a mOS from pazopanib of between 8.2 months and 12.4 

months147–149,151,153, all survival data were censored after 18 months. At this 18-

month cut-off, for the combined cohort, 59 of the 65 (90.1%) patients had 

experienced disease progression and 50 of 65 (84.6%) had died. For the 

comparator cohort, 25 out of the cohort of 28 (89.3%) patients had experienced 

disease progression following second-line therapy, and 20 out of 28 (71.4%) 

patients had died.  

To undertake comparative survival analysis between the cohorts, Kaplan-Meier 

plots were generated showing the OS and PFS of the combined cohort and the 

comparator cohort over time. Univariable survival analysis based on cohort 

assignment showed no significant difference in OS between the cohorts (mOS 

combined cohort 8.9 months vs 10.7 months in comparator; p=0.556)(Figure 

3.5). Additionally, no significant difference in  PFS was observed, with a median 

PFS (mPFS) of 3.9 months in the comparator cohort compared to 3.7 months in 

the combined cohort (p=0.599)(Figure 3.6). 

The importance of confirming comparable OS and PFS between the cohorts is 

that the patients included in the combined cohort, and treated with pazopanib, 

have not been selected based on clinical outcomes. As such, the aim of 

biomarker discovery was to identify a subset of these patients with superior 

clinical outcomes following pazopanib treatment. In order to then compare this 

biomarker with the comparator cohort, it was important to confirm the two cohorts 

had similar baseline survival risks. Therefore, having no significant difference in 

OS and PFS between the combined cohort and the comparator cohort provides 

confidence that they are comparable in terms of their survival profiles, and will 

allow comparison of the impact of a biomarker on clinical outcomes. 
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Figure 3.5. Kaplan-Meier plots for overall survival (OS) comparing the pazopanib-treated combined cohort with the alternative second-line therapy 
comparator cohort, with the comparator cohort the reference for hazard ratio (HR) analysis. 95% CI – 95% confidence interval. 

Median OS 
(months) HR (95% CI) p value

28 27 20 19 9 8 8 10.7 1.00

65 52 38 29 23 17 15 8.9 1.17 (0.69 – 1.99) 0.556



 

 
148 

 

Figure 3.6: Kaplan-Meier plot showing progression-free survival (PFS) comparing the pazopanib-treated combined cohort with the alternative second-
line therapy comparator cohort, with the comparator cohort acting as the reference for hazard ratio (HR) comparisons. 95% CI – 95% confidence interval.  

Median OS 
(months) HR (95% CI) p value

28 16 10 5 3 3 3 3.9 1.00

65 39 21 15 13 8 6 3.7 0.88 (0.55 – 1.41) 0.599
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3.2.3 Comparing ImageJ and QuPath for automated cell counting 

Having curated clinical cohorts and acquired tumour tissue on which to assess 

the tumour immune microenvironment, I then looked to quantify tumour infiltrating 

lymphocytes (TILs) in these samples. This looks to address aims 2 and 3 of this 

chapter; 

• undertake IHC-based analysis of pre-pazopanib STS samples to analyse the 

immune contexture of a cohort including a range of STS subtypes.  

• correlate IHC-based immune profiles with clinical outcomes in relation to 

pazopanib. 

The rationale for undertaking this work is multi-factorial, including evidence that;  

• Elevated levels of angiogenic factors in the tumour microenvironment 

contribute to the polarization of immune cells into their immune-suppressive 

subtypes267,272,273. 

• Tumour-induced neoangiogenesis facilitates immunosuppression via the 

formation of chaotic blood vessels, and the preferential transendothelial 

migration of immunosuppressive regulatory T-cells and apoptosis of effector 

CD8+ T-cells274,276,277. 

• Evidence of immune-modulation by pazopanib to promote anti-tumour 

immunity in vitro, and in vivo in patients with renal cell carcinoma treated with 

pazopanib295,303,304. 

However, there remains a lack of work assessing the immune microenvironment 

in STS and how it may be associated with clinical outcomes in patients who have 

received pazopanib. As such, I aim to address this initially by undertaking IHC for 

TILs and correlating these findings with clinical outcomes in relation to pazopanib.  

In view of the different available software to facilitate automated IHC cell counting, 

a pilot study was undertaken on a selection of cores stained for CD8, a cell 

surface co-receptor of the T-cell receptor, with CD8+ cells involved in T-cell 

signalling and cytotoxic activities. The number of CD8+ cells for each core were 

counted manually, and then also quantified using two widely available automated 
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counting platforms. The first of these platforms was ImageJ, a free-to-use image 

processing software suite, which previous studies have used to quantify tumour 

infiltrating immune cells318,337,338. The second software assessed was QuPath, an 

open-source platform for bioimage analysis which has also been used by 

previously published studies for immune cell quantification in tumour 

samples319,339,340.  

For this pilot study, a total of 120 individual cores were selected from the 

combined and comparator cohorts, and the number of infiltrating CD8+ cells was 

quantified. Bland-Altman plots were then generated to identify the automated cell 

counting method which correlates most closely with manual cell counting (Figure 

3.7.A and B). Bland-Altman plots map the difference in score between the two 

methods against the mean of the combined scores. Also shown on the plot is the 

interval of agreement, defined as the mean score +/- 1.96 standard deviations. 

An acceptable degree of concordance between two methods is visualised on a 

Bland-Altman agreement plot when 95% of the points lie within this interval of 

agreement321. From Figure 3.7.A, when comparing the manually counted CD8+ 

scores with the value quantified on ImageJ, all but 2 of the 120 scores lie outside 

the interval of agreement, with the remaining 118 (98.3%) within the interval. In 

comparison, from Figure 3.7.B, a total of 8 points lie outside the interval of 

agreement when comparing manual counting with QuPath automated counting, 

with 112 of the 120 (93.3%) within the acceptable range. As such, this suggests 

that ImageJ is the preferable method for undertaking automated cell counting as 

the scores are most closely aligned to manual counting. 

However, Bland-Altman plots are subjective in the sense they allow a visual 

assessment of agreeability between tests but not a statistical assessment. 

Therefore, the intraclass correlation coefficient (ICC), an index to measure 

reproducibility and reliability, for both methods was determined341. The ICC for 

ImageJ was 0.767 compared to 0.629 for QuPath, confirming not only that 

ImageJ is the superior method but that there is strong agreement between 

ImageJ and manual counting. Although from Figure 3.7.A two outliers are noted, 

these represented a small proportion of cases. In addition, as one if high and one 

is low, there is no clear bias for under or over-estimation of either method. As 
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such, and given the comparatively superior results relative to QuPath, the most 

acceptable method for automated immune cell quantification was deemed to be 

ImageJ.  
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Figure 3.7: Bland-Altman plot of CD8+ count comparing manual scoring with automated 
scoring by A Image J and B QuPath.  

A 

B 
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3.2.4 Immunohistochemistry of tumour infiltrating lymphocytes 

As discussed above, evidence exists that there may be value in exploring the 

tumour immune microenvironment as a potential source of biomarkers 

associated with outcomes following pazopanib treatment. However, at present, 

there is a paucity of published work exploring this line of research. In addition, 

the immune microenvironment in STS is incompletely characterised, and 

therefore there is value in further exploring the immune contexture in cohorts of 

a range of STS subtypes.  

In order to analyse the immune microenvironment in our STS cohorts, I undertook 

a study workflow as outlined in Figure 3.8.  IHC was undertaken initially as it is a 

widely available and cheap method for allowing the characterisation of TILs. 

Furthermore, tissue microarrays (TMAs) permit high-throughput histological 

studies of multiple samples simultaneously and was therefore chosen as the most 

effective and tissue-efficient method for this analysis335. 

To assess tumour infiltrating lymphocytes (TILs) in our cohort, TMAs were 

generated (per Section 2.3.2) for each cohort for those cases with sufficient 

tissue. If the tumour available was unsuitable for TMA generation, whole sections 

were cut and stained. The TMAs were designed such that each tumour block was 

represented in triplicate, with additional positive and negative controls added to 

the TMA. Consecutive sections were then cut from the TMA and IHC staining for 

TILs was carried out (per Section 2.4.1) with stains undertaken for CD3, CD4 

and CD8. CD3 is a pan-lymphocyte marker, whilst CD4 and CD8 are T-cell co-

receptors commonly associated with T-helper cells and cytotoxic T-cells 

respectively. As such the stains were selected as markers of the T-cell infiltrate 

in the tumour microenvironment. Stained slides were then converted to digital 

images, with individual cores isolated as digital images to be used as input for 

subsequent immune cell quantification. For IHC-stained whole sections, digitally 

annotated 0.5mm radius cores were applied to the scanned slide images. 

Following our pilot study, ImageJ was deemed the most effective and reliable 

automated cell counting software to quantify the number of positively stained TILs 
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(per Section 2.4.2). Therefore, ImageJ was employed to quantify the raw TIL 

count for each core, and the average for the three cores was taken as the TIL 

count for each patient. 

As outlined in Figure 3.8, the average IHC result for each case was determined, 

and survival analysis undertaken as a categorical variable following stratification 

of the combined cohort based on the median IHC value. Survival analysis was 

carried out for OS and PFS, with Kaplan-Meier plots generated to visualise any 

differences in survival. Further survival analysis was then undertaken utilising the 

IHC as continuous data employing univariable and multivariable Cox regression 

analysis. 
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Figure 3.8: Workflow for assessment of tumour infiltrating lymphocytes (TILs), stratification 
of the cohorts and survival analysis. Tissue microarrays were generated and IHC was 
employed to stain for TILs. Slides were then digitised, individual cores isolated and then 
interrogated by automated cell count using ImageJ software resulting in a raw TIL count per 
core. Each sample was represented on the TMA in triplicate, and these individual core scores 
were averaged to give a per-sample TIL count. These average IHC scores then underwent 
survival analysis, initially as categorical data after stratification based on the median IHC 
value. The data was then further analysed as a continuous variable employing Cox 
univariable and multivariable analysis. IHC – immunohistochemistry; TMA – tissue 
microarray. 

 

IHC Staining

TMA Generation

Digitisation and Automated 
Cell Counting

Survival analysis of IHC data 
as a categorical variable 

through Kaplan-Meier plots

Survival analysis of IHC data 
as a continuous variable 

employing Cox univariate 
and multivariate analysis
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3.2.4.1 CD3+ lymphocytes 

The first TIL marker assessed on the two cohorts previously discussed was the 

pan-lymphocyte marker CD3. This was selected on the basis that all lymphocytes 

will express CD3 on their cell surface and would provide information on the global 

level of infiltrating lymphocytes in my cohorts. Each sample was represented on 

a TMA in triplicate, with the CD3 positively stained TILs quantified for each 

0.7854mm2 circular core. The average score from the three cores was taken as 

the TIL count for analysis. The CD3+ IHC data for the combined pazopanib-

treated cohort (n=50) was first analysed as a categorical variable, by splitting the 

cohort into two equally sized subgroups based on the median IHC value for the 

cohort. For the combined cohort, the median IHC score for CD3+ was 44.8 cells 

per 0.7854mm2 core, the interquartile range (IQR) was 12.5 to 96.5, and the 

cohort range was 1 to 613.5. Following stratification into CD3+ high and CD3+ 

low subgroups, Kaplan-Meier plots were generated for OS and PFS, with 

univariable Cox regression analysis employed with CD3+ count the variable of 

interest (Figure 3.9.A and B). For OS, there was no significant difference when 

comparing CD3+ high and low groups (mOS CD3.Hi 9.1 months versus CD3.Lo 

9.7 months; p=0.821). For PFS, again there was no statistically significant 

difference reported (mPFS CD3.Hi 4.7 months versus 3.7 months CD3.Lo; 

p=0.820). 

To assess if any survival difference was observed in a cohort of STS treated with 

an alternative second-line therapy, the comparator cohort (n=22) was then 

analysed. The comparator had a median CD3+ IHC score of 44.7 cells per core, 

the IQR was 20.2 to 103.2, and a cohort range of 1 to 1249. Using the same cut-

off score as was applied to the combined cohort, the comparator was stratified 

into CD3+ high and CD3+ low groups, each containing 11 cases. Kaplan-Meier 

survival curves for OS and PFS were plotted, and Cox univariable regression 

based on high or low subgrouping was employed for statistical analysis (Figure 

3.10.A and B). The CD3+ high group had a mOS of 11.2 months and a mPFS of 

4.7 months. For the CD3+ low group, the mOS was 11.2 months and mPFS was 

3.4 months. For both OS and PFS, there was no significant difference reported 

between the CD3+ high and low subgroups (p=0.789 and p=0.188 respectively). 
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Figure 3.9: Kaplan-Meier survival plots for A overall survival and B progression-free survival for the combined cohort stratified based on the median 
CD3+ count into high and low subgroups. 

Median PFS 
(months) HR (95% CI) p value

25 14 10 6 5 3 3 4.7 1.00

25 15 6 5 4 3 1 3.7 1.07 (0.58 – 1.96) 0.820

Median OS 
(months) HR (95% CI) p value

25 19 14 13 9 8 8 9.1 1.00

25 20 13 10 9 5 3 9.7 1.08 (0.55 – 2.12) 0.821

A

B
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Figure 3.10: Kaplan-Meier survival plots for A overall survival and B progression-free survival for the comparator cohort stratified based on the median 
CD3+ count (44.8) previously reported in the combined cohort, into high and low subgroups. 

Median PFS 
(months) HR (95% CI) p value

11 7 4 4 3 3 3 4.7 1.00

11 6 4 1 0 0 0 3.4 1.91 (0.73 – 5.00) 0.188

Median OS 
(months) HR (95% CI) p value

11 11 8 8 4 4 4 11.2 1.00

11 10 10 9 4 3 3 11.2 1.15 (0.42 – 3.17) 0.789

A

B
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The CD3+ IHC data were then analysed as a continuous variable, employing Cox 

univariable and multivariable analysis. For multivariable analysis, patient age, 

tumour grade, performance status and STS subtype were included as co-

variables along with the CD3+ count. For the combined cohort, Cox univariable 

analysis did not show any statistically significant association between CD3+ 

count and either OS or PFS (OS – HR 1.002 (95% CI 0.99 – 1.01), p = 0.222; 

PFS – HR 1.00 (95% CI 0.99 – 1.00), p = 0.602). For the multivariable analysis 

of the combined cohort, both performance status and tumour grade were 

significantly associated with OS, however, the other co-variables including CD3+ 

count did not have a significant association with OS (Figure 3.11.A). 

Multivariable analysis for PFS only revealed a significant association between 

performance status and PFS, with all the other co-variables not demonstrating 

any significant differences (Figure 3.11.B).  

The comparator cohort was then analysed utilising the same methods. 

Univariable analysis of CD3+ count showed no significant association with either 

OS or PFS (OS – HR 1.00 (95% CI 0.99 – 1.00), p = 0.694; PFS – HR 1.00 (95% 

CI 1.00 – 1.00), p = 0.336). Furthermore, following multivariable analysis, CD3+ 

demonstrated no significant association with either OS or PFS (Figure 3.12.A 

and B). Indeed, the only variable associated with significant differences in either 

OS or PFS was tumour grade which was significantly associated with PFS. 
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Figure 3.11: Table of results and equivalent forest plot demonstrating results of multivariable 
Cox analysis of the combined cohort for A overall survival and B progression-free survival. 

Figure 3.12: Table of results and equivalent forest plot demonstrating results of multivariable 
Cox analysis of the comparator cohort for A overall survival and B progression-free survival. 

 

 

Overall Survival

Progression Free Survival

OS H R 95% CI p value

CD3 1.001 1.00 - 1.00 0.603

Age 1.006 0.98 - 1.04 0.627

PS 2.131 1.29 - 3.52 0.003

Grade 3.145 1.47 - 6.72 0.003

Subtype 1.256 1.00 - 1.58 0.052

PFS H R 95% CI p value

CD3 1.000 1.00 - 1.00 0.832

Age 1.001 0.98 - 1.02 0.955

PS 1.551 1.02 - 2.36 0.041

Grade 1.825 0.94 - 3.53 0.074

Subtype 1.065 0.87 - 1.31 0.551

A

B

Overall Survival

Progression Free Survival

OS H R 95%  CI p value

CD3 1.001 1.00 - 1.00 0.599

Age 1.036 0.98 - 1.10 0.207

PS 1.285 0.53 - 3.10 0.577

Grade 0.395 0.12 - 1.35 0.139

Subtype 1.243 0.89 - 1.74 0.207

PFS H R 95%  CI p value

CD3 1.000 1.00 - 1.00 0.738

Age 1.023 0.98 - 1.07 0.330

PS 1.388 0.61 - 3.14 0.431

Grade 0.313 0.11 - 0.91 0.033

Subtype 0.864 0.65 - 1.16 0.324

A

B
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3.2.4.2 CD4+ lymphocytes 

The CD4 cell surface glycoprotein serves as a co-receptor for T-cell receptors 

and is expressed on several immune cells, including helper class T-cells. Given 

the interaction between CD4+ T-cells and B-cell driven antibody production, as 

well as the interaction with cytotoxic T-cells, CD4+ cells play a key role in immune 

responses. As such, there is a rationale for exploring these as potentially 

important biomarkers associated with clinical outcomes following treatment with 

pazopanib. 

The CD4+ IHC data for the combined cohort (n=50) was first analysed as a 

categorical variable, with stratification using the cohort median CD4+ value of 

14.2 cells per 0.7854mm2 core to categorise the cohort into CD4+ high and low 

subgroups. For the combined cohort, the IQR was 2.8 to 28.8 positively stained 

cells per core, whilst the cohort minimum CD4+ cell count was 0, and the 

maximum was 168.7. Survival differences between the CD4+ high and low 

subgroups of the combined cohort were then analysed by plotting Kaplan-Meier 

survival curves for both OS and PFS, with univariable Cox analysis with CD4+ 

positive cell counts the variable of interest (Figure 3.13.A and B). In terms of OS, 

the CD4+ high subgroup had a mOS of 6.4 months compared to 9.1 months in 

the CD4+ low subgroup, and this was not a significant difference (p=0.544). For 

PFS, the CD4+ high subgroup mPFS was 2.7 months compared to 4.8 months 

in the CD4+ low subgroup, and again this was not a significant difference 

(p=0.155).  

The association between CD4+ count and survival was then analysed for the 

comparator cohort (n=21). For the comparator cohort, the median CD4+ score 

was 35 cells per core, with a cohort interquartile range of 5.3 to 35 positive cells, 

and a cohort minimum value of 0 and maximum value of 689.7. In order to stratify 

the cohort, the same cut-off that was applied to the combined cohort, an average 

score of 14.2 positive CD4+ cells per core, to determine CD4+ high and low 

subgroups in the comparator cohort. This resulted in a CD4+ high subgroup 

containing 14 cases, and a CD4+ low subgroup containing 7. Kaplan-Meier OS 

and PFS survival plots were generated, and Cox univariable analysis was 



 

 
162 

employed to assess for any between-subgroup significant differences in survival 

(Figure 3.14.A and B). From these analyses, the CD4+ low subgroup mOS was 

14.7 months compared to 10.2 months in the CD4+ high subgroup, and this was 

not significantly different (p=0.188). However, the CD4+ low subgroup had a 

shorter mPFS than the CD4+ high subgroup (1.7 months versus 5.7 months), 

and Cox univariable analysis demonstrated that the difference in PFS between 

the two subgroups was statistically significant, with the CD4+ low subgroup 

having a higher risk of progression (HR 3.0, 95% confidence interval (CI) 1.06-

8.58); p=0.039).  
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Figure 3.13: Kaplan-Meier survival plots for A overall survival and B progression-free survival for the combined cohort stratified based on the median 
CD4+ count into high and low subgroups. 

Median PFS 
(months) HR (95% CI) p value

25 11 7 5 4 2 2 2.7 1.00

25 18 9 6 5 4 2 4.8 0.62 (0.34 – 1.13) 0.119

Median OS 
(months) HR (95% CI) p value

25 17 13 12 9 7 6 6.4 1.00

25 22 14 11 9 6 5 9.1 0.81 (0.41 – 1.59) 0.544

A

B
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Figure 3.14: Kaplan-Meier survival plots for A overall survival and B progression-free survival for the comparator cohort stratified based on the median 
CD4+ count (14.2) previously reported in the combined cohort, into high and low subgroups. 

Median PFS 
(months) HR (95% CI) p value

14 9 7 5 3 3 3 5.7 1.00

7 3 1 0 0 0 0 1.7 3.0 (1.06 – 8.58) 0.039

Median OS 
(months) HR (95% CI) p value

14 13 10 9 4 4 4 10.2 1.00

7 7 7 7 4 3 3 14.7 0.52 (0.16 – 1.67) 0.188

A

B
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To further investigate the CD4+ data, it was then analysed as a continuous 

variable and Cox univariable and multivariable analysis was employed. As with 

the CD3+ analysis, for the multivariable analysis, patient age, tumour grade, 

performance status and STS subtype were included as co-variables along with 

the CD4+ count.  

In the combined cohort, from univariable analysis, there was a significant 

association between CD4+ count and OS (HR 1.02 (95% CI 1.01 – 1.03); p = 

0.0026). In addition, there was a significant association between CD4+ count and 

PFS (HR 1.02 (95% CI 1.004 – 1.03); p = 0.0048). In both cases, increased CD4+ 

count was associated with a higher hazard ratio and therefore shorter OS and 

PFS. When including the clinicopathological variables described above as part of 

the multivariable analysis, again both OS and PFS showed a significant 

association with CD4+ count (OS p=0.0007; PFS p=0.002) (Figure 3.15.A and 

B). As with the univariable analysis, for multivariable analysis increasing CD4+ 

count was associated with an increase in the hazard ratio, and therefore a shorter 

OS and PFS time. In addition, tumour grade and patient performance status were 

significantly associated with inferior OS (p=0.006 and p=0.0004 respectively), 

whilst for PFS only tumour grade, as well as CD4+ count, were associated with 

inferior PFS (p=0.012).  

The comparator cohort was then analysed utilising the same methods. 

Univariable analysis of CD4+ count showed no significant association with either 

OS or PFS (OS - HR 1.00 (95% CI 0.99 – 1.00), p = 0.478; PFS - HR 0.992 (95% 

CI 0.98 – 1.00; p = 0.051). In addition, multivariable analysis did not show any 

significant associations between any of the variables included and OS (Figure 

3.16.A). However, multivariable analysis for PFS showed a significant 

association between CD4+ count and PFS, with increased CD4+ count 

associated with a reduced hazard ratio, and thus a longer time to progression 

(p=0.049)(Figure 3.16.B). For the comparator cohort, tumour grade was also 

shown to be significantly associated with PFS.  
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Figure 3.15: Table of results and equivalent forest plot demonstrating results of multivariable 
Cox analysis of the combined cohort for A overall survival and B progression-free survival. 

Figure 3.16: Table of results and equivalent forest plot demonstrating results of multivariable 
Cox analysis of the comparator cohort for A overall survival and B progression-free survival. 

Overall Survival

Progression Free Survival

OS H R 95%  CI p value

CD4 1.022 1.01 - 1.04 0.0007

Age 1.006 0.98 - 1.04 0.703

PS 2.383 1.48 - 3.84 0.0004

Grade 2.839 1.34 - 6.01 0.006

Subtype 1.319 1.06 - 1.65 0.015

PFS H R 95%  CI p value

CD4 1.020 1.01 - 1.03 0.002

Age 0.998 0.97 - 1.02 0.864

PS 1.658 0.84 - 3.12 0.148

Grade 1.621 1.12 - 2.46 0.012

Subtype 1.100 0.90 - 1.34 0.348

A

B

Overall Survival

Progression Free Survival

OS H R 95%  CI p value

CD4 0.998 0.99 - 1.00 0.477

Age 1.030 0.98 - 1.08 0.307

PS 1.335 0.58 - 3.08 0.498

Grade 0.487 0.15 - 1.62 0.240

Subtype 1.278 0.89 - 1.83 0.178

PFS H R 95%  CI p value

CD4 0.990 0.98 - 1.00 0.049

Age 1.004 1.055 0.862

PS 1.844 0.77 - 4.40 0.168

Grade 0.259 0.08 - 0.82 0.022

Subtype 0.847 0.62 - 1.15 0.290

A

B
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3.2.4.2 CD8+ lymphocytes 

The final IHC stain considered was CD8, another T-cell co-receptor expressed 

most frequently by cytotoxic effector T-cells. As such, a high CD8+ cell count was 

hypothesised to be a marker for an immune microenvironment with strong anti-

tumour immune activity. 

Following the same workflow as previous, the combined cohort was stratified into 

CD8+ high and low around the median cohort CD8+ value of 26.7 positively 

stained cells per 0.7854mm2 core. The cohort CD8+ cell count IQR was 5.7 to 

59.1 per core, with the minimum count being 0 and the maximum count 469.3 

CD8 positively stained cells. Kaplan-Meier plots for OS and PFS were generated, 

with statistical analysis by Cox univariable analysis based on CD8+ high or low 

subgroups (Figure 3.17.A and B). For OS, the CD8+ low subgroup mOS was 

13.2 months compared to 6.4 months for the CD8+ high subgroup, but this 

difference was not significant (p=0.201). For PFS, the CD8+ low subgroup mPFS 

was 3.7 months compared to 4.6 months for the CD8+ high subgroup, and again 

this difference was not significant (p=0.683). 

The comparator cohort was then analysed in the same fashion, being divided into 

high and low subgroups based on the combined cohort CD8+ median score of 

an average of 26.7 CD8+ positive cells per core. For the comparator cohort, the 

cohort median CD8+ count was 36.7 per core, with a cohort IQR of 13 to 93.3 

positively stained cells, a maximum count of 1365.5 and a minimum count of 0.3. 

For the comparator cohort, the CD8+ high subgroup had a mOS of 11.5 months 

compared to 10.7 months for the CD8+ low subgroup, and no significant 

difference was observed (p=0.273) (Figure 3.18.A). For PFS, the CD8+ high 

subgroup mPFS was 4.7 months compared to 4.0 months for the CD8+ low 

subgroup, with no significant difference in PFS reported (p=0.364)(Figure 

3.18.B). 
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Figure 3.17: Kaplan-Meier survival plots for A overall survival and B progression-free survival for the combined cohort stratified based on the median 
CD8+ count into high and low subgroups. 

Median PFS 
(months) HR (95% CI) p value

25 15 7 5 4 2 2 4.6 1.00

25 14 9 6 5 4 2 3.7 0.88 (0.48 – 1.61) 0.683

Median OS 
(months) HR (95% CI) p value

25 21 14 11 6 5 5 6.4 1.00

25 18 13 12 12 8 6 13.2 0.63 (0.32 – 1.27) 0.201

A

B
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Figure 3.18: Kaplan-Meier survival plots for A overall survival and B progression-free survival for the comparator cohort stratified based on the median 
CD8+ count (26.7) previously reported in the combined cohort, into high and low subgroups. 

Median PFS 
(months) HR (95% CI) p value

13 7 5 4 3 3 3 4.7 1.00

8 5 3 1 0 0 0 4.0 1.57 (0.59 – 4.13) 0.364

Median OS 
(months) HR (95% CI) p value

13 13 10 9 6 6 6 11.5 1.00

8 7 7 7 2 1 1 10.7 1.81 (0.63 – 5.21) 0.273

A

B
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The CD8+ data was then analysed as a continuous variable, employing Cox 

univariable and multivariable analysis to assess for associations between CD8+ 

count and variable OS and PFS. For the multivariable analysis, patient age, 

tumour grade, performance status and STS subtype were included with CD8+ 

count as co-variables for analysis.  

In the combined cohort, the univariable analysis did not show any significant 

association between CD8+ and either OS (HR 1.002 (95% CI 0.99 – 1.01), p = 

0.280) or PFS (HR 0.999 (95% CI 0.99 – 1.00), p = 0.860). Following multivariable 

analysis for OS, both performance status (p=0.005) and tumour grade (p=0.002) 

were both significantly associated with OS (Figure 3.19). However, the CD8+ 

count was not significantly associated with OS. Following multivariable analysis 

for PFS, only performance status was significantly associated with PFS 

(p=0.033), with none of the other co-variables, including CD8+ count, significantly 

associated with PFS.  

Subsequent analysis of the comparator cohort CD8+ results was also 

undertaken, and again there was no significant association between CD8+ count 

and either OS or PFS on univariable analysis (OS - HR 1.00 (95% CI 1.00 – 1.00), 

p = 0.857; PFS - HR 0.999 (95% CI 0.997 – 1.001), p = 0.290). Multivariable 

analysis did not show any of the co-variables to be significantly associated with 

OS, whilst only tumour grade was found to be significantly associated with PFS 

(Figure 3.20).  
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Figure 3.19: Table of results and equivalent forest plot demonstrating results of multivariable 
Cox analysis of the combined cohort for A overall survival and B progression-free survival. 

Figure 3.20: Table of results and equivalent forest plot demonstrating results of multivariable 
Cox analysis of the comparator cohort for A overall survival and B progression-free survival. 

Overall Survival

Progression Free Survival

OS H R 95%  CI p value

CD8 1.002 1.00 - 1.01 0.403

Age 1.006 0.98 - 1.03 0.673

PS 2.049 1.24 - 3.39 0.005

Grade 3.341 1.54 - 7.24 0.002

Subtype 1.246 0.99 - 1.56 0.056

PFS H R 95%  CI p value

CD8 0.999 0.99 - 1.00 0.621

Age 1.002 0.98 - 1.03 0.883

PS 1.628 1.04 - 2.55 0.033

Grade 1.776 0.91 - 3.47 0.093

Subtype 1.090 0.89 - 1.34 0.412

A

B

Overall Survival

Progression Free Survival

OS H R 95% CI p value

CD8 1.000 1.00 - 1.00 0.819

Age 1.035 0.98 - 1.10 0.226

PS 1.374 0.55 - 3.41 0.493

Grade 0.409 0.11 - 1.46 0.168

Subtype 1.205 0.85 - 1.70 0.291

PFS H R 95% CI p value

CD8 1.000 1.00 - 1.00 0.681

Age 1.027 0.98 - 1.08 0.291

PS 1.504 0.63 - 3.59 0.358

Grade 0.281 0.09 - 0.89 0.030

Subtype 0.833 0.61 - 1.13 0.236

A

B
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3.2.4.3 Correlation of immune markers 

In order to confirm the robustness of our results, correlation plots were generated 

to examine the relationship between CD3+ cells and the sum of CD4+ and CD8+ 

cells per 0.7854mm2 TMA core (Figure 3.21). The rationale for this being that as 

a pan-lymphocyte marker, CD4+ and CD8+ lymphocytes would also express 

CD3. Therefore, as the sum of the CD4+ and CD8+ counts increase, so should 

the CD3+ counts. From the correlation plot, a Spearman coefficient of 0.79 

confirms, as expected, a strong positive correlation between the two IHC 

measures. 

 

 

Figure 3.21: Correlation plot of the log2CD3+ cell count per 0.7854mm2 circular core, plotted 
against the log2 of the sum of the CD4+ plus CD8+ cell count per 0.7854mm2 core. 
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3.2.4.5 Summary of results 

From my analysis of the IHC data for the combined cohort and comparator cohort, 

I observed that for the pazopanib-treated combined cohort on both univariable 

analysis, and multivariable analysis including clinicopathological features, 

increased CD4+ count was significantly associated with inferior OS and PFS. 

Conversely, for the non-pazopanib treated cohort, the data showed that following 

both stratification into CD4+ high and low subgroups, and from multivariable 

analysis as a continuous variable, lower CD4+ count was significantly associated 

with inferior PFS. For CD3+ and CD8+ IHC, there were no significant associations 

between IHC count and either OS or PFS in both the combined cohort and 

comparator cohort. 
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3.3 Discussion 

3.3.1 Cohort generation and curation 

Given the rarity of STS, and the scarcity of pre-pazopanib tissue available for 

these patients, one of the key steps for this thesis was to generate robust cohorts 

of patients. This would allow us to undertake work characterising the immune 

microenvironment and its association with clinical outcomes following pazopanib 

treatment in patients with advanced STS. To my knowledge, this body of work 

represents the largest effort to date to analyse the immune-based biology 

associated with clinical outcomes following pazopanib treatment in STS and 

identify immune-based biomarkers.  

Initial analysis of the cohort clinicopathological variables shows the cohorts to be 

well balanced. Indeed, given the associations between both tumour grade and 

performance status and clinical outcomes, the lack of significant difference 

between the cohorts was an important observation to ensure comparability342,343. 

In addition, analysis of the Kaplan-Meier survival plots for OS and PFS comparing 

the combined and comparator cohorts showed no significant difference in survival 

by Cox univariable analysis. As the ultimate aim of this thesis is to identify 

immune-based biomarkers able to identify a subset of patients with superior 

clinical outcomes following pazopanib therapy, it was desirable to have cohorts 

with comparable survival data. The reason being that the pazopanib-treated 

combined cohort has not been selected based on clinical outcomes, but rather 

the combined cohort represents an unselected group of patients a clinician would 

encounter in the clinical setting. Thus, via description and characterisation of the 

tumour immune microenvironment, the study aims to determine a biomarker 

which is able to identify a subset of patients more likely to gain clinical benefit 

from pazopanib therapy. 

The range of subtypes generated is also noted (Figure 3.4). Given the stated aim 

of generating an immune-based biomarker that can be utilised across multiple 

STS subtypes, and the use of pazopanib in the management of all non-adipocytic 

STS in the real-world setting, this variety of subtypes is a strength of these 
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cohorts. Furthermore, I chose to include tissue from a range of time points during 

the clinical course of disease, including primary tumour tissue, local recurrence 

tissue and metastatic tissue. As mentioned, there was only limited availability of 

primary tumour tissue available in patients with advanced STS treated with 

pazopanib. Therefore, in order to generate cohorts of sufficient size, the study 

was not limited to only include primary tissue. In addition, adopting this pragmatic 

approach would be more clinically relevant in the real-world setting for any future 

biomarkers as it would not limit applicability only to patients for whom primary 

tissue is readily available for analysis. Comparative analysis of the tissue 

timepoint between the cohorts also showed no significant difference in the 

proportion of primary, recurrence or metastatic tissue. 

3.3.2 Association between tumour infiltrating lymphocytes and 

clinical outcome 

Having confirmed the relative comparability of our cohorts in terms of 

clinicopathological variables, I then evaluated associations between levels of TIL 

and survival outcomes. My analysis showed a limited number of statistically 

significant results when utilising IHC TIL count to assess the association with OS 

and PFS. Comparing the results obtained here to the previously published 

literature is challenging because, as mentioned (Section 1.5.3.1), previously 

published results are relatively discordant. Indeed, from Table 1.6, it appears that 

in general, quantification of CD3+, CD4+ and CD8+ cells has rarely yielded 

statistically significant prognostic value, save for a small number of 

studies282,283,344.   

The most interesting results from the analysis of TILs in this chapter relate to the 

CD4+ results. For the combined cohort, multivariable analysis demonstrated a 

significant association between CD4+ count and inferior OS and PFS. 

Conversely, for the comparator cohort, CD4+ count was significantly associated 

with superior PFS, but not with OS. The results in the comparator cohort are 

concordant with the previous work by Schroeder et al., which demonstrated that 

for dedifferentiated liposarcoma, higher levels of CD4+ cells were significantly 

associated with longer recurrence-free survival345. As a generic marker for T-
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helper cells, the association between CD4+ and variable clinical outcome is 

interesting, as it highlights the potential for characterisation of the immune 

microenvironment to offer potential clinically relevant biomarkers for variable 

clinical outcomes.  Furthermore, the fact higher CD4+ levels are associated with 

superior outcomes in the pazopanib-treated cohort, whilst in the cohort which 

received alternative second-line therapy higher CD4+ counts were associated 

with inferior PFS, suggests there may be an association with pazopanib 

treatment. This would be more valuable in the clinical setting as it would allow 

patient stratification and identification of patients who would most likely gain 

clinical benefit from pazopanib, thus leading to patient-specific treatment. This 

has benefits in terms of the specific patient being targeted with the most 

efficacious treatment, gaining clinical benefit whilst also limiting exposure to the 

morbidity of less effective therapy. And on a wider health economics perspective, 

the cost of treating patients would be focused on those most likely to benefit from 

it.  

The consensus from previous molecular studies is that STS which are considered 

immune hot and have higher levels of infiltrating effector cells of the immune 

system tend to be associated with superior clinical outcomes290,291,293. It is 

hypothesised that an immune-infiltrated tumour microenvironment is indicative of 

an active anti-tumour immune response. Conversely, in an “immune desert” 

tumour which is poorly infiltrated by immune cells, this provides a niche for tumour 

cells to grow without exposure to the effects of anti-tumour immune cells293. 

Immunohistochemistry only characterises single immune cells, and therefore 

may not capture nuanced interactions between various immune cells as well as 

other microenvironment factors. Nonetheless,  in our combined cohort I reported 

a trend for higher levels of CD4+ cells to be associated with inferior clinical 

outcomes. Although not possible to imply causation from these associations, our 

data can be used as a hypothesis-generating exercise. Based on the fact that the 

more immune infiltrated tumours, in terms of CD4+ cells, have a trend towards 

inferior PFS and OS following pazopanib therapy, we could hypothesise that 

fewer immunosuppressive CD4+ regulatory or helper2 T-cells present in the 

microenvironment heightens the anti-tumour immunity of additional effector cells 
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recruited into the microenvironment following pazopanib therapy. However, in 

order to confirm this hypothesis, a comparison of pre- and post-pazopanib 

immune profiles would be necessary. Alternatively, it could be that a regulated 

immune tumour microenvironment in some way protects STS from the anti-

tumour effects of pazopanib. The observed trends in this chapter do indicate that 

there is value in looking at the immune microenvironment in more detail. Firstly 

to gain a deeper knowledge of the immune biology in STS, but also as a potential 

source for biomarkers predictive of clinical outcomes following pazopanib 

treatment. 

3.3.3 Critical assessment of methods and potential alternatives 

One of the key considerations when designing the cohorts and planning the flow 

of experiments was the scarcity and quality of tumour tissue available for a small 

subset of patients with rare cancers. As such, the choices made reflect a need to 

maximise the information acquired from each tissue sample. Indeed, a sizeable 

portion of the samples available were tumour biopsies rather than excisional 

samples, and therefore only provided a small volume of tumour tissue for 

analysis. In these cases, taking three cores for TMA generation would exhaust 

the tissue sample, whilst taking whole sections would only allow a small number 

of IHC stains before the tissue block was exhausted. Thus, the decision was 

made to prioritise nucleic acid extraction for downstream analysis over IHC 

studies. The rationale being that the planned immune gene expression analysis 

would offer more insight and granularity to the immune microenvironment, 

including immune cell infiltration through deconvolution techniques. Furthermore, 

surplus nucleic acids could be stored for future experiments outside the remit of 

this present study.  Given this decision, some cases were available for immune 

gene analysis but the number available for IHC analysis was smaller (Figures 

3.1 and 3.2). 

As well as focusing on nucleic acid extraction, the decision to employ TMAs as 

input for the IHC experiments was again based on the limited volume of tissue 

required for TMA construction. An alternative approach would have been to take 

whole sections and stain each for the marker in question, however, such an 
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approach would be more consumptive of the precious tumour tissue. In addition, 

studies have previously demonstrated TMAs to be a reliable method for immune 

cell characterisation, robustly accounting for intra-tumoural heterogeneity317.  

If a greater supply of tissue were to become available, a potentially interesting 

extension of this IHC work could become feasible. For example, an assessment 

of the immune microenvironment in different spatial areas of the tumour might be 

an interesting study to undertake given evidence that immune cells, including 

regulatory T-cells, demonstrate significant spatial intratumoural heterogeneity346. 

Therefore, exploring the spatial variability in the immune contexture could 

highlight variable clinical outcomes based on enrichment of immune cells in 

different tumoural areas. An alternate body of work could employ recent 

advances in multiplex IHC or immunofluorescence techniques to undertake the 

staining of multiple immune cells on the same single section of tumour tissue. 

This has the advantage of allowing the description of the spatial relationships 

between different immune cells. Both of these techniques require multiple 

sections of tumour tissue, and assessing spatial intratumoural heterogeneity 

requires multiple well-curated tissue blocks. As such, given the limited tissue 

available these were not feasible in this study, but would represent interesting 

future studies if more tissue becomes available. 

Having decided on the approach to proceed with, this arm of the project did have 

some limitations. Firstly, by only examining the IHC stains CD3, CD4 and CD8, 

these markers are relatively generic in their expression across a range of immune 

cells involved in both anti- and pro-immunogenic responses. For example, CD4 

is expressed on both T-helper1 cells which promote the cytotoxic anti-tumour 

effects of CD8+ cells, but also on T-helper2 cells and regulatory T-cells, which 

suppress effector cells of the immune system and help promote tumour growth. 

As such, it is difficult to confidently imply the biology driving the trends identified 

in OS and PFS differences between the high and low subgroups. Indeed, 

genomic analyses may yield more granularity into the nature of the immune 

microenvironment and the immune-related biology within our cohorts.  
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In terms of the markers selected for IHC analysis, additional immune cells of 

interest could have been assessed to add further information to the 

microenvironment in these samples. Indeed, a number of additional stains were 

explored as part of the experimental work associated with this chapter. For 

example, tumour-associated macrophages have previously been identified as 

potentially associated with clinical outcomes in STS264,347. However, previous 

attempts within the lab had difficulty in accurately quantifying the number of 

positively stained macrophages given the amorphous structure macrophages 

adopt. As such, past experience with the assistance of a consultant 

histopathologist (Dr Khin Thway) deemed it not feasible to include macrophage 

stains due to the lack of robust and reliable quantification methods. Additionally, 

the TMA slides were stained for CD20, a marker for antibody-producing B-cells. 

However, it was observed there was minimal positive staining across the whole 

cohort. Subsequently, a paper was published which identified that within STS, B-

cells tend to be focused within B-cell rich tertiary lymphoid structures, and as such 

are more likely to be identified, if at all, on whole sections rather than TMAs293. 

Given the generally minimal staining observed, and the high risk of not sampling 

B-cell rich tertiary lymphoid structures as part of the TMA core, the decision was 

made not to include this stain within the data. Finally, the marker for the anti-

immunogenic regulatory T-cells, FOXP3, was explored as a potential interesting 

marker to quantify. However, the facility which undertook these IHC staining 

experiments did not have an optimised protocol to undertake the staining. Despite 

efforts to acquire robust antibodies and determine an optimal protocol, this was 

ultimately unsuccessful.  

A further limitation to note is that these cohorts were generated retrospectively, 

and do represent a heterogeneous cohort, making them susceptible to a range 

of biases. Indeed, factors such as variable time from sampling to treatment 

initiation, STS subtype heterogeneity, and the inclusion of primary, recurrence 

and metastatic tissue, need to be considered as potential sources of 

uncontrollable variability. However, as discussed this heterogeneity is more 

aligned to real-world clinical experience, and could allow greater unrestricted 

utility for any putative biomarkers for improved outcomes following pazopanib 
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treatment that I develop. Furthermore, for the combined cohort, the OS and PFS 

from pazopanib are similar to those reported in the literature supporting the 

generalisability of results garnered from analysis of these cohort130,132.  

3.3.4 Summary 

In summary, given the finding that higher CD4+ levels are significantly associated 

with OS and PFS in the combined cohort following initiation of pazopanib, and 

the lack of granularity provided by these IHC experiments, there is a rationale for 

pursuing more in-depth characterisation of the immune contexture through gene 

expression analyses which will be described in subsequent chapters. 
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Chapter 4 - Immune gene expression in soft 

tissue sarcomas and the association with clinical 

benefit from pazopanib therapy   
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4.1 Background and objectives 

In order to characterise the tumour immune microenvironment of a cohort of 

patients with advanced soft tissue sarcoma (STS) treated with the tyrosine kinase 

inhibitor (TKI) pazopanib, targeted immune-related gene expression analysis was 

undertaken. As discussed in Section 1.5.3.2, there is an increasing appreciation 

of the potential of molecular immune genotypes to play a role as biomarkers in 

STS, including evidence of value in predicting response to immune checkpoint 

inhibitors291,293. Furthermore, in Section 1.5.3.3, published reports have 

demonstrated an immune-modulating effect of anti-vascular endothelial growth 

factor receptor (VEGFR) TKIs including pazopanib303304. In Chapter 3 I showed 

a statistically significant association between increased CD4+ tumour infiltrating 

lymphocyte (TIL) count and inferior overall survival (OS) and progression-free 

survival (PFS) in the pazopanib-treated combined cohort. Conversely, in the 

comparator cohort treated with alternative second-line therapies, increased 

CD4+ TIL count was associated with superior PFS.  

At present, the tumour immune microenvironment in STS is incompletely 

characterised. As such, the work in this chapter looks to address the hypothesis 

that molecular characterisation of the tumour immune microenvironment will 

identify immune-based biological subgroups which are characterised by 

differential immune gene expression and enrichment for different immune cells. 

In order to address this hypothesis, the aims of this chapter were to; 

1. Undertake immune gene expression analysis of pre-pazopanib formalin-fixed 

paraffin-embedded (FFPE) tumour samples from patients who received 

pazopanib in the management of advanced STS. 

2. Identify immune-gene based subgroups, and assess these subgroups for 

differential enrichment for different immune cells. 

3. Characterise differences in the tumour immune microenvironment in STS 

based on histological subtype, patient age and tumour grade. 
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4.1.1 Contributions 

Work of the candidate included; 

• Study conception and design in conjunction with the supervisory team 

• Data normalisation  

• Principle component analysis 

• Complex heatmap generation  

• Curation of gene sets for immune cells from gene annotations supplied by 

Nanostring 

• Single sample gene set enrichment analysis 

• Generation of box plots based on immune cell and immune function gene 

signatures 

Advanced statistical analysis was undertaken under the supervision of Dr Maggie 

Cheang, team leader at the Institute of Cancer Research’s (ICR) Clinical Trials 

and Statistics Unit. 

The original Royal Marsden cases for the combined cohort were identified by Dr 

Alex Lee. This cohort was checked and modified by the candidate, and the clinical 

data was updated. 

RNA extraction, quality control and aliquoting of RNA for subsequent Nanostring 

analysis were performed by higher scientific officer Nafia Guljar. 

Running of the Nanostring assay was performed by Richard Buus, senior 

scientific officer at the ICR’s Ralph Lauren centre. 
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4.2 Results 

4.2.1 Comprehensive immune gene expression analysis 

employing the Nanostring nCounter platform 

In order to generate robust immune gene expression profiles of pre-pazopanib 

tissue in the combined cohort, I chose to employ the nCounter PanCancer 

immune profiling panel (Nanostring Technologies, Washington, USA). 

Nanostring nCounter is a high-throughput, multiplex, fluorescence-based digital 

hybridisation technology which allows the profiling of individual molecular 

targets348. This is achieved by assigning fluorescently labelled probes to genes 

of interest. Each assay consists of two probes of 50 base pairs (bp) in length, 

constituting a biotin-labelled capture probe and a reporter probe labelled with 7 

fluorescent tags. The fluorescent tags are then read by a computerised camera 

and microscope, with the order of the tags acting as a barcode to indicate which 

gene target the probs have bound to. In this manner, up to 800 genes can be 

assessed per sample, and up to 12 samples can be analysed on a single 

cartridge. 

The Nanostring platform has a number of advantages over other technologies 

available for gene expression analysis. One of the greatest considerations for this 

study was the quality and quantity of tumour material available for analysis. All of 

the samples included in my cohort were obtained from archival storage, and had 

been processed via formalin fixation and generally had been stored for long 

periods in paraffin. FFPE tissue has the advantage of preserving morphological 

features of the tumour, however, the process is known to lead to the degradation 

of ribonucleic acid (RNA) into low molecular weight species, limiting its use as 

input material for other gene expression technologies349. In addition, in my 

cohorts, for a number of cases, the only available tissue for analysis was a biopsy 

sample and therefore was of low tissue volume. As such, although utilising an 

optimised RNA extraction protocol, the key challenges faced were in terms of 

RNA integrity and quantity which was extractable from a limited supply of 

precious tumour material. However, Nanostring technology is able to reliably 
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detect fragmented RNA, whilst the direct measurement of target molecules and 

the absence of an amplification step help reduce bias. Indeed, a number of 

studies have confirmed that Nanostring is able to generated high-quality data 

from degraded RNA samples, including from clinical biopsy samples350–353.  

There are alternative methods for gene expression analysis but some lack this 

flexibility when handling low-quality RNA samples. There are optimised protocols 

for next generation sequencing platforms, such as total RNA-Seq, that would 

allow characterisation of many thousands of transcripts. However, given the 

primary focus of this work is the immune microenvironment, the decision was 

made to proceed with  Nanostring, having balanced the cost and need for roubst 

data In addition, techniques such as reverse transcription polymerase chain 

reaction (RT-PCR) are only able to measure the expression of small panels of 

genes at a time. As such, they lack the multiplex capability of the Nanostring 

technology. Therefore, Nanostring was selected as the most suitable 

methodology to employ for immune-gene profiling of my cohorts. 

The PanCancer immune profiling panel is a targeted 770-plex gene expression 

panel designed to allow comprehensive profiling of immune-related genes that 

fall into one of four functional categories354; 

• Infiltrating immune cells, including cells of the innate and adaptive immune 

systems 

• Assessment of immunological functions including signalling pathways  

• Identification of tumour-specific antigens 

• Housekeeping genes for normalisation of data 

As such, the PanCancer immune profiling panel provides an annotated set of 

genes encompassing the spectrum of immune influences on cancer 

development.  

In order to optimise results obtained from the Nanostring experiments, a 

standardised workflow was adopted for the extraction of RNA and subsequent 

data analysis (Section 2.5.1). To assess tumour-related immune gene 

expression, haematoxylin and eosin (H&E) slides were marked for tumour area, 
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and where necessary macrodissection was performed to ensure a minimum of 

75% tumour content. A total of four 4x20 µm sections were cut by microtomy for 

each case, and RNA extracted utilising the All Prep DNA/RNA FFPE kit (Qiagen, 

Hiden, Germany) as per the vendors procedures. Quality control (Qc) of the 

extracted RNA was then undertaken; 

• The concentration of RNA was quantified using both the Qubit and Nanodrop 

fluorometer (both Thermo Fisher Scientific, Massachusetts, USA) 

• The RNA integrity number (RIN) and proportion of total RNA  between 50 and 

300 bp was measured using the 2100 Bioanalyzer and associated software 

(Agilent, California, USA). 

Based on prior experience within the team, a total of 150 ng of RNA, or up to 300 

ng in particularly degraded samples, was aliquoted and was the input material for 

targeted immune gene expression analysis on the Nanostring platform. The raw 

data files were then processed and subsequent downstream analysis performed 

(Figure 4.1). 
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Figure 4.1.A and B: Planned workflows for A Tissue processing from formalin-fixed paraffin-embedded (FFPE) blocks, through RNA extraction and 
quality control (QC) to final aliquot to be used as input for Nanostring analysis B Data analysis work plan.  RNA – ribonucleic acid. 

Data analysis workflowTissue processing workflowA B

Data norrmalisation

Differential gene expression 
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Raw .RCC data files

Principal component 
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Hierarchical clustering 
Single-sample gene set 
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Mark tumour area to 
ensure minimum 75% 

tumour content

Aliquot 150 ng, or up to 
300 ng, of RNA for input 

into assay

Curation of FFPE blocks and 
cut of H&E slide

Extraction of RNA

Qc of RNA concentration 
and quality

Nanostring analysis
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4.2.2 Data normalisation 

A total of 65 patients treated with pazopanib for the management of advanced 

STS met the inclusion and exclusion criteria for this study. In addition, adequate 

tumour material was available and extracted RNA was of sufficient quality to be 

included in Nanostring immune gene codeset analysis. Raw .RCC data files were 

log2 transformed, normalised in relation to positive and negative controls, and 

housekeeping genes, and finally median-centred (Figure 1.A-E).   

For the combined cohort, Figure 1.A demonstrates that the distribution of the raw 

data, as expected, is skewed by the overexpression of a small number of genes 

in a few samples, but following log2 transformation, this effect is diminished 

(Figure 1.B). Background technical variability is corrected by normalisation 

(Figures 1.C and D) before the final standardised data set is visualised in Figure 

1.E with the gene expression ranges centred around the median value. 
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Figure 4.2.A-E: Dot and Box plots generated from the individual gene expression scores for each sample, and demonstrating the data normalisations 
processes for the discovery cohort. A. Raw gene expression data. B log2 transformation of the data. C Normalised against positive controls to remove 
background noise. D Normalised against housekeeping genes. E The final data set for downstream analysis following median centring.
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4.2.3 Principal component analysis 

Following normalisation of the combined cohort immune gene expression 

dataset, I then proceeded to undertake exploratory analysis, starting with 

principal component analysis (PCA). The role of PCA is to act as a 

dimensionality-reduction approach, whereby a large set of variables is 

transformed into a smaller set of variables contributing to the highest variance for 

each principle component326. The ultimate goal is to reduce the large gene 

expression data set into a small number of principal components, retaining only 

the most important variables which can be used to explain the between-sample 

variations observed in the data.  

From Figure 2.A, it can be observed that the samples do not cluster together 

when taking into account principal components 1 and 2. This suggests that 

reducing the dimensionality of the data to 2 principal components is not suitable 

for the dataset, as too much granularity is lost. Indeed, the variance explained by 

principal components 1 and 2 should be greater than 60%355. If less than 60% of 

variance is explained, then any assessment of between-sample differences 

would not be robust as not all of the available information is taken into account. 

Therefore, for these data in which the first 2 principal components only explain 

30.0% of variance, reducing the data to principal components is not robust for 

subsequent analysis. To assess if alternative principle components might cluster 

the samples more effectively, a pairs plot (Figure 2.B) was generated. However, 

for all of the combinations up to five principal components, no clear clustering of 

samples is observed. Finally, the scree plot shown in Figure 2.C demonstrates 

that the optimal number of principal components is 10 by Horn’s method or 11 by 

the elbow method. However, this degree of dimensionality is not suitable for data 

visualisation and analysis, and therefore for robust downstream analysis, 

reduction of these data to principle components was not considered the best 

method for this dataset. 



 

 
191 

Figure 4.3.A-C: Principle component analysis of the combined cohort  (n=65) data set. A 
PCA plot showing the distribution of samples based on the first two principal components. B 
Pairs plot showing sample distribution based upon different combinations up to the fifth 
principal component. C Scree plot demonstrating the degree of variance explained by each 
principal component, with Horn’s and the elbow method labelled showing the optimal number 
of principal components. 
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4.2.4 Hierarchical clustering identifies three distinct immune-

based subgroups 

I next looked to analyse the gene expression patterns through hierarchical 

clustering. A heatmap of the 65 samples based on the 730 genes captured by 

the entire Nanostring immune codeset was generated using unsupervised 

hierarchical clustering (Figure 4.4). Based on this heatmap there is differential 

expression of these immune genes across the samples. Furthermore, three 

immune-based sarcoma subgroups (ISS) are apparent, with one subgroup 

appearing to be characterised by generally elevated expression of immune-

related genes (ISS1), one by average immune-gene expression (ISS2), and the 

third by low expression of immune-related genes (ISS3). In addition, STS 

subtypes do not appear to fall specifically into any of the three subgroups and 

there is substantial heterogeneity in immune subtype within groups of the same 

STS subtype. Indeed, cases of leiomyosarcoma (LMS), synovial sarcoma (SS), 

and spindle cell sarcoma are present in each of the 3 immune-based subgroups. 

Of note, the cases of solitary fibrous tumour (SFT) are only identified in immune 

subgroups 2 and 3, suggesting they tend towards an immune-based profile 

characterised by lower expression of immune genes. 

A table comparing the clinicopathological features of each of the ISS groups was 

generated (Table 4.1). Statistical analysis for differences between ISS groups 

was performed by one-way analysis of variation (ANOVA) for age, and by chi-

square analysis for the remaining clinicopathological variables. From this table, 

there are no statistically significant differences between the three ISS groups in 

terms of the patient age, tumour grade, performance status or STS subtype.  
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Figure 4.4: Heatmap displaying unsupervised hierarchical clustering of the full gene 
expression data set of the combined cohort (n=65). GEx – gene expression; LMS – 
leiomyosarcoma (n=18), SFT – solitary fibrous tumour (n=9), spindle cell sarcoma (n=7), 
SS- synovial sarcoma (n=5). 
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Table 4.1: Clinicopathological features of the combined cohort (n=65) when split into the 
three immune sarcoma subgroups (ISS). Statistical analysis was performed with one-way 
ANOVA for age, and with chi-square  for the other variables, and revealed no significant 
differences between the three ISS subgroups. LMS – leiomyosarcoma, LPS – liposarcoma, 
NOS – not otherwise specified, SFT – solitary fibrous tumour, spindle cell sarcoma, SS- 
synovial sarcoma, UNK – unknown. 

  

n 15 38 12

Age (years)

Median 53 57.2 51.3

Range 43.1 - 68.4 18 - 77 30 - 81.2 0.565

Grade

1 1 (6.5%) 3 (8%) 0

2 4 (27%) 13 (34%) 4 (33.3%)

3 9 (60%) 19 (50%) 7 (58.3%)

UNK 1 (6.5%) 3 (8%) 1 (8.3%) 0.965

Performance Status

0 5 (33%) 10 (26%) 4 (33%)

1 7 (47%) 20 (53%) 5 (42%)

2 2 (13%) 4 (10.5%) 1 (8%)

UNK 1 (7%) 4 (10.5%) 2 (17%) 0.972

Sarcoma Subtype

LMS 5 (33%) 9 (24%) 4 (33%)

SFT 0 7 (18%) 2 (17%)

UPS 0 3 (8%) 0

Chondrosarcoma 0 1 (2.5%) 1 (8%)

Myxofibrosarcoma 0 2 (5%) 0

Myxoid LPS 1 (7%) 1 (2.5%) 0

Synovial Sarcoma 2 (13%) 1 (2.5%) 2 (17%)

Sarcoma NOS 1 (7%) 4 (11%) 0

Spindle Cell Sarcoma 2 (13%) 3 (8%) 2 (17%)

Other* 4 (27%) 7 (18.5%) 1 (8%) 0.108

* other cases include single cases; in ISS1 of angiosarcoma, fibromyxoid sarcoma, fibrosarcoma,and 

dedifferentiated liposarcoma; in ISS2 of alveolar soft part sarcoma, atypical Ewing, clear cell sarcoma, fibromyxoid 

sarcoma, granular cell sarcoma,  haemangioendothelioma, and malignant peripheral nerve sheath tumour; and in 

ISS3 one case of PEComa.  

Cohort
Combined cohort split into

ISS2 p valueISS1 ISS3
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SAM analysis was then undertaken to identify the immune genes statistically 

significantly differentially expressed between the three ISS subgroups. For this 

purpose, two-class unpaired SAM analysis was performed, comparing ISS1 with 

ISS2 and ISS3, ISS2 versus ISS1 and 3, and ISS3 versus ISS1 and 2. 

Differentially expressed genes which were unique to each subgroup were thus 

identified. Via this method, 204 differentially expressed genes were identified, 

102 genes with comparatively high expression in ISS1, 3 genes with 

comparatively low gene expression in ISS2, and 99 with comparatively low 

expression in ISS3. A heatmap and table of these 204 genes were then 

generated, visually demonstrating the differential expression of the genes within 

each immune subgroup (Figure 4.5, Table 4.2). As expected based on the 

heatmap of the entire 730 gene set, the SAM results outputs were driven by high 

and low expression of two gene clusters (ISS1 and ISS3). 
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Figure 4.5: Heatmap of 204 genes identified as being differentially expressed between 
immune subgroups 1-3 in the combined cohort (n=65). Diff.in – differentially expressed 
in, GEx – gene expression; LMS – leiomyosarcoma, SFT – solitary fibrous tumour, SS- 
synovial sarcoma.
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Table 4.2: List of genes with differential expression based on SAM comparing immune sarcoma subgroup (ISS)1 with ISS2 and 3, ISS2 compared to 
ISS1 and 3, and ISS3 compared to ISS1 and 2. Genes with differential gene expression, and which were unique for a particular ISS are included. 

Gene d score Gene d score Gene d score Gene d score Gene d score Gene d score Gene d score

LY9 5.83 IFNA8 3.73 PTGDR2 3.15 PRAME -3.31 LYN -6.42 IFITM2 -3.89 CD33 -3.24

FLT3 5.38 SSX1 3.71 IFNB1 3.10 MAGEA12 -2.73 FCGR3A -6.12 TNFRSF11A -3.88 NOD1 -3.23

CCL4 5.09 IFNA17 3.69 FLT3LG 3.09 F12 -2.65 SYK -5.36 ITGA4 -3.88 ITGB3 -3.21

CCL3 5.06 MAGEB2 3.67 CCL26 3.04 C3AR1 -5.28 CD53 -3.84 OAS3 -3.19

SLAMF1 5.02 C8A 3.64 IL1RL1 3.03 TLR4 -5.11 CMKLR1 -3.83 NCR1 -3.18

MS4A1 4.96 SSX4 3.62 IL12RB2 3.00 HLA-DPA1 -5.01 IFITM1 -3.83 LGALS3 -3.15

CD160 4.80 CR2 3.62 FOS 3.00 v CX3CR1 -4.86 FCGR2A -3.81 BST1 -3.12

IRGM 4.73 NLRC5 3.61 CLEC4C 2.99 GZMB -4.78 CXCL13 -3.79 TNFRSF9 -3.10

TLR10 4.62 CD83 3.59 PYCARD 2.99 HAVCR2 -4.74 ICAM1 -3.74 IL6 -3.04

MBL2 4.52 LCN2 3.58 CD79A 2.99 ANXA1 -4.67 ISG20 -3.74 NRP1 -3.03

CCL16 4.49 IFNA7 3.57 TLR5 2.98 TNFSF13B -4.64 VEGFC -3.71 IRF1 -3.03

FPR2 4.42 CAMP 3.52 CCL18 2.97 CXCL10 -4.52 IL6R -3.70 THY1 -3.03

IL5RA 4.40 KLRC1 3.48 IFNL2 2.94 IFI27 -4.50 HLA-DMA -3.69 CCL14 -3.01

CCL1 4.36 CD1A 3.44 ATM 2.92 IL10 -4.50 INPP5D -3.68 STAT1 -2.99

CTSG 4.35 IL4 3.42 PRM1 2.92 CTSS -4.49 GNLY -3.65 TICAM2 -2.96

LILRA4 4.32 DEFB1 3.38 C4B 2.91 HLA-DRA -4.43 CSF1 -3.62 C3 -2.96

CLEC6A 4.30 NFKB2 3.34 IL22 2.89 MRC1 -4.36 CD5 -3.62 CD44 -2.94

PAX5 4.26 CCL22 3.33 IRF4 2.89 FCGR2B -4.23 CD96 -3.61 FN1 -2.93

IFNG 4.23 CD8B 3.33 LAMP3 2.88 TAP1 -4.21 F13A1 -3.59 HLA-C -2.90

S100A12 4.10 CEACAM6 3.33 TCF7 2.86 LILRB1 -4.21 C1R -3.53 EGR2 -2.89

IL27 4.09 CXCL1 3.31 IL24 2.86 MSR1 -4.21 HLA-DQA1 -3.47 CD28 -2.88

MS4A2 3.98 IL12B 3.30 FCER2 2.84 HLA-DMB -4.21 ICOSLG -3.43 CD58 -2.87

AMBP 3.96 IL5 3.29 IL1A 2.84 HLA-DPB1 -4.16 IL1R1 -3.43 PLAU -2.87

CHIT1 3.92 OSM 3.29 IL25 2.81 ITGAM -4.15 IFIH1 -3.40 IL23A -2.86

IL17F 3.91 APOE 3.28 C7 2.80 CCR1 -4.07 IFI16 -3.39 COL3A1 -2.84

CXCL6 3.90 CXCR2 3.28 IL23R 2.80 IRF5 -4.07 TLR6 -3.38 IL8 -2.82

C9 3.88 IL21 3.27 CCL11 2.80 EBI3 -4.06 KLRG1 -3.37 PSMB8 -2.82

IKBKE 3.87 AIRE 3.26 IL2 2.76 JAK3 -4.06 S100B -3.34 LTBR -2.81

IFNA2 3.86 CCR3 3.24 TNFRSF18 2.75 KLRK1 -4.04 IFNGR1 -3.32 IL4R -2.81

FOXP3 3.85 RORC 3.24 CLU 2.75 IL2RB -4.03 PDCD1LG2 -3.31 RIPK2 -2.80

KIR3DL2 3.82 CLEC4A 3.22 MX1 2.72 MICB -3.99 THBD -3.27 CXCL14 -2.74

HLA-DOB 3.81 EGR1 3.21 C8B 2.70 C1S -3.97 HLA-DQB1 -3.27

S100A7 3.75 PRG2 3.20 CD68 2.70 PDGFRB -3.97 CD163 -3.25

PMCH 3.74 PTGS2 3.16 BID 2.67 ITGAX -3.93 LTF -3.25

Immune Subgroup1 Immune Subgroup2 Immune Subgroup3
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From the list of differentially expressed genes, a number of interesting 

observations can be made regarding the immune microenvironment of the 

tumours in each subgroup. For example, ISS1 has comparatively high expression 

of C4B, C7, C8A and B and C9, genes associated with components of the 

complement cascade. In addition, several immune-stimulating cytokine and 

chemokine genes have comparatively high levels of expression in ISS1, including 

a number of C-C motif chemokine ligand (CCLK), interferon (IFN) and interleukin 

(IL) genes. Individual genes may also suggest an increased presence of 

particular immune cells based upon the proteins and markers they encode for, 

and indicate a potentially immune infiltrated phenotype. For instance, CD83 

encodes a protein associated with antigen-presenting cell activation and 

maturation, CD8B encodes a subunit of the CD8 cell surface glycoprotein found 

on cytotoxic T-cells, CD79A protein expression is a marker for mature B-cells, 

and CD68 protein expression is a marker for cells of monocyte/macrophage 

lineage356–358. Conversely, the increased gene expression of FOXP3, a marker 

for regulatory T-cells, and CD160, an immune-inhibitory molecule leading to the 

inhibition of CD4+ T-cells, suggest the potential for suppression of anti-

tumourigenic immune activity even if infiltrated by populations of immune 

cells359,360.  

In contrast, the genes differentially expressed in ISS3 all had low relative 

expression. As such, the immune genotype demonstrated by the immune gene 

list suggests an immune cold phenotype. For example, elements of the 

complement cascade have decreased expression (C1R, C1S and C3), and the 

same is true for the C-X-C motif chemokine ligand (CXCL) family of genes 

associated with pro-inflammatory chemokine activity, as well genes associated 

with the anti-tumourigenic cytokines IL-6 and IL10, and tumour necrosis factor 

(TNF) genes. Strikingly, a number of human leukocyte antibody (HLA) genes 

have decreased expression in ISS3. As key components of the adaptive immune 

system through neo-antigen presentation, their comparatively low expression in 

ISS3 would suggest the STS in this group have an immune cold phenotype. A 

number of genes associated with specific immune cells also have comparatively 

low expression, including CD163 a marker for monocyte/macrophage lineage 
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cells, CD28 a major costimulatory marker essential for activation of naïve T-cells, 

and the leukocyte surface antigen CD53361–363. In addition, CD96 a known 

stimulatory modulator of both NK and T-cells has decreased gene expression in 

ISS3364.  

4.2.5 Single sample gene set enrichment analysis identifies 

immune cells enriched in different immune subgroups 

Given the findings of differential immune gene expression between the different 

immune subgroup previously described, I wished to characterise in more detail 

the immune-based biology underpinning the different subgroups. Based on the 

published evidence that; 

• specific classes of immune cells behave in a way that can be either pro- or anti-

tumourigenic227–230,232,233 

• certain immune cells are impacted by cancer-driven neoangiogenesis263,267,270–

273 

• anti-angiogenic therapies may influence the activity of various cells of the 

immune system295,298–300,303,304 

I looked to describe the immune cell infiltrate within the tumour microenvironment 

employing single-sample gene set enrichment analysis (ssGSEA). Prior to 

analysis, genes associated with a specific immune cell type are curated into 

specific gene sets333. ssGSEA was then employed to calculate the enrichment 

scores for each sample and gene set. Each enrichment score represents the 

degree to which the genes which make up that specific gene set have 

concordantly elevated or reduced expression levels. This results in an enrichment 

score for each gene set of interest for each individual sample. Statistical 

differences between immune subgroups was assessed employing pairwise t-

tests with the Bonferroni correction applied to correct for multiple statistical 

testing. 

I curated gene sets for 22 immune cells of interests based upon Nanostring 

supplied gene annotations for the PanCancer immune profiling panel. The 
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immune cells included for analysis were selected to provide cells from both the 

adaptive immune system, including B-cells and a range of T-cells, as well as the 

innate immune system, including macrophages, mast cells and natural killer (NK) 

cells. In addition, antigen-presenting cells, such as dendritic cells and neutrophils, 

were also included for analysis. Furthermore, immune cells encompassing both 

anti-tumourigenic activity, such as CD8+ T-cells and T-helper1 (Th1) cells, and 

pro-tumourigenic activity, such as T-helper2 cells (Th2), were included. The 

immune cells included along with their categorisation as being part of the innate 

or adaptive immune systems, and their functions are included below (Table 4.3).  

Having conducted ssGSEA utilising the immune cell gene sets, the enrichment 

scores generated were then plotted as a heatmap supervised by the immune 

subgroup categorisation (Figure 4.6).  
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Table 4.3: Summary of the 22 immune cells included in gene sets used for ssGSEA. Categorisation of an immune cell type as being part of the innate 
or adaptive immune system is included, in addition to a description of their role within the immune system. 

Immune cell gene set Adaptive or Innate? Function and activity related to cancer

Activated dendritic cells

Dendritic cells

Immature dendritic cells

B-cell Adaptive Respond to foreign/cancer antigens by secreting specific antibodies into the microenvironment.

Cytotoxic cells Both Non-specific term used to describe immune cells able to directly lyse tumour cells.

Eosinophils Innate Effector cells which play a role in killing cells as well as stimulating inflammation.

Macrophages Innate
Act to phagocytose and destroy foreign material, and present antigens to cells of the adaptive immune 

system. 

Mast cells Innate Act to stimulate inflammation throught the secretion of histamine via degranulation.

Neutrophils Innate Able to phagocytose foreign material and present antigen to cells of the adaptive immune system.

Natural killer bright
Natural killer dim

Natural killer

T-cell Adaptive
The term T-cell covers both effector cells of the adaptive immune system, but also those involved in 

regulation of immune responses.

CD8 T-cell Adaptive Key effector cell with cytotoxic activity against tumour cells.

T-helper cells Adaptive
T-helper class of cells includes cells which have activity which stimulate anti-tumour immune activity, but 

also can inhibit anti-tumour immunity.

T-helper1 cells Adaptive Involved in anti-tumour immune responses through stimulation of CD8+ cells.

T-helper2 cells Adaptive Immune modulating class of T-helper cells, with activity to inhibit anti-tumour immune responses.

T-helper17 cells Adaptive Can act in both a pro- and anti-immune stimulating capacity, given their varied cytokine profile.

Follilcular helper T-cells Adaptive Specialised T-helper cell, commonly located in secondary lymphoid tissue and involved in B cell activation.

Memory T-cell Adaptive
Antigen-specific T-cells which contribute to triggering adaptive immune responses upon re-exposure to a 

known antigen.

Effector T-cells Adaptive
Non-specific term covering adaptive immune cells involved in pro-inflammatory and anti-tumour immune 

responses.

Gamma delta T cells Both
Considered innate immune cells as they do not require antigen presentation to activate, but do posses T-cell 

receptors. Have a role in lysis of tumour cells, but also immune regulation through cytokien release.

Antigen presenting cells. Activity involves capture, processing and presentation of of antigens, including 

tumour antigens. Play a role in polarization of cells of the adaptive immune cells into effector subtypes.

Effector cells which are able to lyse cells under stress, including tumour cells. The NKdim class tends 

towards a more cytolytic subgroup, whilst NKbright are more secretory and involved in cytokine secretion.

Innate

Innate
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Figure 4.6: Heatmap of single-sample gene set enrichment analysis (ssGSEA) immune cell 
gene set scores for the combined cohort (n=65), supervised by immune sarcoma subgroup 
(ISS). LMS – leiomyosarcoma; SFT – solitary fibrous tumour; SS – synovial sarcoma; 
ssGSEA.s – single sample gene set enrichment analysis score. 
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Assessing the heatmap, as would be expected ISS1 has generally higher 

ssGSEA enrichment scores for a proportion of the immune cells analysed. For 

example, the anti-tumourigenic CD8+ cells, T-helper1 cells, cytotoxic cells and 

activated dendritic cells all appear to be enriched for in ISS1 compared to the rest 

of the cohort, and especially ISS3. The immune checkpoint gene set also appears 

to have higher enrichment scores for ISS1, again suggesting an infiltrated but 

suppressed immune phenotype. Also of note, ISS3, which was characterised as 

being immune cold when assessing the 730 gene dataset, upon ssGSEA can be 

seen to be enriched for memory T-cells, natural killer (NK) and NKbright cells. This 

finding supports the fact that ssGSEA adds important complementary granularity 

to analysis relative to single-gene approaches. To better visualise the 

comparative immune cell enrichment between the three immune subgroups, box 

and dot plots were generated for gene sets identified as having significantly 

different enrichment scores by multiple t-tests, with the Bonferroni correction 

employed to account for multiple testing. 

Looking first at cells of the adaptive immune system which were identified as 

showing significant variation, a number of observations can be made. Firstly, 

ISS1 is significantly enriched for T-cells of all subsets compared to ISS3 

(p=0.0001 respectively), and ISS2 is significantly enriched compared to ISS3 

(p=0.0001)(Figure 4.7.A). Although a general class of immune cells, covering 

both pro- and anti-tumourigenic cells, this suggests significantly lower T-cell 

infiltration within the microenvironment of tumours classed as ISS3 compared to 

the rest of the cohort. Furthermore, assessing different subsets of T-cells allows 

the identification of particular subsets which may be driving this result. And 

indeed, when analysing the ssGSEA enrichment scores for CD8+ cells, ISS1 has 

significantly higher enrichment scores than both ISS2 (p=0.001) and ISS3 

(p=0.0006)(Figure 4.7.B). This would suggest an immune microenvironment in 

cases classed as ISS1 with higher levels of anti-tumour and pro-inflammatory 

cytotoxic T-cells when compared to both ISS2 and ISS3. Although there was no 

significant differences in the global T-helper ssGSEA enrichment scores, it can 

be seen that ISS1 is significantly enriched for T-helper1 cells compared to both 

ISS2 and ISS3 (p=0.008 and p=0.0003 respectively)(Figure 4.7.C). The 
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importance of this result is that T-helper1 cells are considered pro-immunogenic 

and interact with and facilitate the activity of cytotoxic CD8+ T-cells. Finally, a 

further key adaptive immune system effector cell, antibody-producing B-cells, 

also demonstrated significantly different enrichment scores between the ISS 

subgroups, with ISS1 having significantly higher scores compared to ISS2 

(p=0.0002)(Figure 4.7.D). Taken as a whole, these results suggest ISS1 appears 

to have significant enrichment for anti-tumour cells of the adaptive immune 

system compared to both ISS2 and ISS3.  

Figure 4.7: Box and dot plots categorised by immune subgroup for A T-cells B CD8+ cells 
C T-helper1 cells D B-cells. ** p<0.01, *** p<0.001. 
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Although considered part of the innate immune system, dendritic cells play a key 

role in antigen presentation and activation of effector cells of the adaptive immune 

system, including cytotoxic T-cells and antibody-producing B-cells. Assessing the 

ssGSEA enrichment scores for dendritic cells in general, it can be seen that ISS1 

has significantly higher enrichment scores compared to ISS3 (p=0.001)(Figure 

4.8.A). Looking more closely at the innate immune system, general and bright 

and dim NK cells were assessed via ssGSEA. When looking solely at the global 

NK cell ssGSEA scores, these are significantly higher for ISS3 compared to ISS1 

(p=0.002)(Figure 4.8.B). However, with the added granularity of distinguishing 

NKdim and NKbright cells, it appears this significant difference in global NK cell 

ssGSEA score is driven by higher scores for NKbright cells in ISS3 compared to 

ISS1 (p=0.0006)(Figure 4.8.C). For NKdim cells, there were no significant 

differences in enrichment between the subgroups. Previous research has 

demonstrated that NKbright cells can produce abundant cytokines and act in an 

immunoregulatory capacity, whereas NKdim cells play a key role in natural and 

antibody-mediated cytotoxicity and contain greater levels of perforin and 

granzyme A365. As such, and in conjunction with significantly higher CD8+, T-

helper1, B-cell, and dendritic cell gene set scores for ISS1, these results suggest 

that ISS1 is characterised by a more pro-immunogenic phenotype, whereas ISS3 

is more characterised by an immune-modulating phenotype. 
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Figure 4.8: Box and dot plots for A dendritic cells B natural killer cells C natural killer bright cells 
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4.2.6 Characterising the differences in the immune 

microenvironment based on sarcoma subtype 

In addition to describing immune-based gene profiles identified independently 

from histological subtypes, given the range of STS subtypes within this combined 

cohort, describing differences in the tumour microenvironment between subtypes 

was then undertaken. Initially, a heatmap of the 730 genes captured by the entire 

Nanostring immune codeset was generated, supervised by STS subtype (Figure 

4.9). Assessing this heatmap, no obvious patterns of differential gene expression 

was observed between the different STS subtype categories. As such, SAM 

analysis was undertaken to define genes which were statistically significantly 

differentially expressed between the different subtypes. Two-class unpaired SAM 

was employed comparing each subtype-specific subgroup with the remainder of 

the cohort to identify uniquely differentially expressed genes for that subtype. This 

generated a list of 64 differentially expressed genes; 11 differentially expressed 

in leiomyosarcoma (LMS), 38 in solitary fibrous tumours (SFT), 2 in spindle cell 

sarcomas, 4 in synovial sarcoma (SS) and 9 in “other” STS subtypes (Figure 

4.10 and Table 4.4). 
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Figure 4.9: Heatmap of the gene expression data for the full 730 immune gene Nanostring 
codeset of the combined cohort (n=65), supervised by histological subtype. LMS – 
leiomyosarcoma; SFT – solitary fibrous tumour; SS – synovial sarcoma. 
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Table 4.4: List of differentially expressed genes by STS subtype identified by a series of two-class unpaired SAM analyses, with subtype-specific groups 
compared to the rest of the cohort. This identified a total of 64 genes, represented in this table along with the T-statistic output from SAM showing the 
direction and degree of differential expression.  

 

Gene d score Gene d score Gene d score Gene d score Gene d score Gene d score

CDH1 3.95 APP 3.94 CD207 8.84 CD79B -2.98 MAGEA1 3.62 PSMB9 -2.82

LBP 3.45 LYN 3.39 HSD11B1 6.55 IL4R -3.12 ITGAE -3.43 PSMB8 -2.83

CXCL2 3.21 IL2RB 3.34 LAG3 6.20 ST6GAL1 -3.13 MICB -3.12

RRAD 3.12 CXCL13 3.22 VCAM1 5.68 TNFSF15 -3.16 PBK -3.59

A2M 3.09 IL21R 3.20 STAT6 5.11 IL6R -3.16

ALCAM 3.02 CXCR4 2.97 IL11RA 4.43 IRAK1 -3.20

IL24 2.98 FCGR3A 2.97 CD40 3.88 CREB5 -3.24

MFGE8 2.81 PPARG 2.83 SAA1 3.85 CD276 -3.28

ROPN1 2.51 NFATC4 -3.20 PRKCD 3.82 ITGA4 -3.30

CD97 2.44 CD1D 3.67 CD24 -3.38

C5 2.39 CFI 3.55 PNMA1 -3.61

LRP1 3.53 LTK -3.62

IL1RL2 3.50 FN1 -3.74

CEACAM1 3.39 COL3A1 -3.86

KLRD1 3.34 ITGB4 -4.21

SPA17 3.26 THBD -4.34

KLRF1 3.16 PDGFC -4.66

ADORA2A -2.94 THBS1 -4.71

CCL20 -2.95 RORA -5.19

LMS Others SFT Spindle SS
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Figure 4.10: Heatmap of differentially expressed genes in the combined cohort (n=65) based 
on STS subtype. A series of two-class unpaired SAM analyses were performed with subtype-
specific groups compared to the rest of the cohort. This identified a total of 64 genes, 
represented in this heatmap supervised by the sarcoma subtype and ordered by the subtype 
the genes are differentially expressed in.  
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From the heatmap and results of SAM, for the LMS cases, all of the 11 

differentially expressed genes have higher gene expression relative to the rest of 

the cohort. The genes are predominantly associated with increased immune 

activity and include pro-inflammatory chemokines and cytokines (CXCL2, A2M 

and IL24) and a component of the complement cascade (C5). In addition, CD97 

has been associated with the stabilisation of immunological connections between 

dendritic cells and T-cells. Conversely, MFG-E8 has previously been shown to 

be involved in reprogramming macrophages from the pro-inflammatory M1 

subtype to the anti-inflammatory M2 subtype366. And furthermore, higher 

expression of cadherin-1 (CDH1), as seen in the LMS subgroup, has previously 

been shown to inversely correlate with immune infiltration in other cancer 

types367. As such, the genes overexpressed in LMS have both anti and pro-

inflammatory facets. 

For the subgroup of SFTs, of the 38 differentially expressed genes, 17 had 

increased relative expression compared to the rest of the cohort, with the 

remaining 21 having decreased expression. Of those which have higher levels of 

expression, some interesting observations can be made. For example, both 

CD40 and CD207 both encode proteins identified on antigen-presenting cells and 

may help drive anti-tumour immune responses through antigen presentation and 

activation of effector immune cells. Indeed, based on SAM, CD207 is the most 

strongly differentially expressed gene in SFTs compared to the rest of the 

combined cohort. Furthermore, IL-11 encodes a cytokine released by tumour-

associated macrophages and T-cells. In addition, high expression of protein 

kinase C delta (PRKCD) has previously been correlated with TIL infiltration368. 

These findings are suggestive of SFTs harbouring an immune microenvironment 

characterised by T-cell infiltration, with enrichment for antigen-presenting cells 

driving activation of these cells. Conversely, higher expression of LAG3, a 

described immune checkpoint, in this the subgroup of SFTs might indicate that 

despite infiltration with effector immune cells, their anti-tumourigenic activity may 

be suppressed. Furthermore, serum amyloid A1 (SAA1) has been associated 

with the induction of suppressive neutrophil subtypes, giving further evidence of 

a suppressed immune microenvironment.  
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In the SS subgroup, 4 genes were differentially expressed relative to the rest of 

the cohort, with all 4 showing comparatively low levels of expression. Notably, 

proteasome subunit beta (PSMB)8 and 9, key components of the 

immunoproteasome and correlated with immune infiltration and immune 

checkpoint inhibitor response, were both found to have decreased expression in 

SS369,370. In addition, PDZ binding kinase (PBK) is classed as a cancer antigen, 

being involved in the regulation of mitosis and tumorigenesis, but was found to 

have reduced expression in this SS subgroup. Previously, PBK expression has 

been shown to correlate with tumour mutational burden as well as infiltration of 

M0 and M1 macrophages, follicular helper T-cells and memory T-cells371. Finally, 

MHC class I chain-related polypeptide B (MICB) also had decreased expression 

in SS, but is known to play a role in NK cell-mediated cell death372. 

Finally assessing the “other” subtype group, 9 genes were found to have 

differential expression, with nuclear factor of activated T-cells (NFATC4) showing 

decreased expression, and the remaining 8 showing higher levels of expression. 

Of the genes with increased expression, these include genes involved in pro-

inflammatory chemokine signalling (CXCL13 and CXCR4) and cytokine signalling 

(IL21R and IL2RB). In addition, expression of Fc gamma receptor 3A (FCGR3A) 

has been found to positively correlate to the infiltration of numerous immune cells 

across various cancer types373. This would suggest a generally pro-immunogenic 

microenvironment, but given the wide range of subtypes included in the ”other” 

category, it may be difficult to extrapolate these findings.  

4.2.7 Characterisation of subtype specific immune cell 

populations  

Given the differential expression of individual genes as identified via SAM and 

presented above, ssGSEA was then undertaken to identify any significant 

differences in specific immune cell enrichment scores based on STS subtype. 

The same gene set list was used as previously described. Looking at the whole 

immune cell ssGSEA heatmap, supervised by STS subtype, there are no obvious 

clear patterns of expression scores (Figure 4.11). However, by analysing 

individual immune cells there does appear to be differences in enrichment scores 
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between different STS subtypes. For example, SFTs appear to have higher 

expression scores for activated dendritic cells compared to the rest of the cohort, 

but lower natural killer dim cells, especially relative to the “other” STS subtype 

subgroup. Given these observations, multiple t-tests, with the Bonferroni 

correction employed to account for repeat testing,  were performed to identify 

gene sets with statistically significant differences based on STS subtype.  Only 

NKdim cells were found to have significantly different enrichment scores between 

subtypes, with a box and dot plot generated to visualise this difference (Figure 

4.12). Indeed, the “other” STS subtype group, made up of subtypes with fewer 

than 5 cases in the combined cohort, has significantly higher NKdim enrichment 

scores relative to the SFT subgroup (p=0.0009). 
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Figure 4.11: Single-sample gene set enrichment analysis (ssGSEA) of the immune cell gene 
set scores of the combined cohort (n=65), supervised by soft tissue sarcoma subtype. LMS 
– leiomyosarcoma; SFT – solitary fibrous tumour; SS – synovial sarcoma; ssGSEA.s – single 
sample gene set enrichment analysis score. *** p<0.001. 
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Figure 4.12: Dot and box plot of the combined cohort ssGSEA enrichment scores for natural 
killer dim cells, comparing different soft tissue sarcoma subtype groups. LMS – 
leiomyosarcoma, SFT – solitary fibrous tumours, SS – synovial sarcoma. *** p<0.001 

 

4.2.8 Analysing the association between patient age and the 

immune tumour microenvironment 

In the general population, with advancing age the incidence of cancer increases 

whilst general immunity declines. Indeed, multiple studies have suggested 

differential immune-related gene expression and immune cell infiltration to the 

tumour microenvironment based on patient age374–377. As such, this cohort of STS 

was analysed with the aim of identifying any changes in the tumour immune 

microenvironment associated with increased age. Initially, a heatmap of the entire 

Nanostring immune codeset supervised by patient age was generated with the 

aim of identifying any patterns in immune gene expression stratifying patients as 

either over or under the age of 55 years (Figure 4.13). This age was chosen as 

a number of recent studies analysing the tumour immune microenvironment have 

utilised age as a binary variable with 55 years of age the cut-off for high/low. For 
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example, the work by Xu et al. identifying prognostic immune scores in triple-

negative breast cancer, the work by Curran et al., identifying differential immune 

signatures in colon cancer, and the work by Wu et al. identifying stromal 

infiltration and immune gene expression in colon cancer378–380. From this 

heatmap, in addition to STS subtypes appearing evenly distributed between the 

two groups,  there are no obvious patterns of differential immune gene expression 

attributable to different patient ages. 

Figure 4.13: Heatmap of gene expression in the combined cohort (n=65) of all 730 immune 
genes included in the Nanostring codeset, supervised by patient age. LMS – 
leiomyosarcoma, SFT – solitary fibrous tumours, SS – synovial sarcoma. 
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In the absence of a clear pattern of differential gene expression, SAM analysis 

was undertaken to identify significantly differentially expressed genes between 

different strata based on age, which could then be described and plotted as a 

heatmap. However, output from the two-class unpaired SAM demonstrated a 

high false discovery rate when identifying a small number of differentially 

expressed genes. For example, a delta value of 0.34 would call 33 genes as 

significantly differentially expressed but with a median false discovery rate of 

18%. As such, this analysis was not able to confidently identify any genes 

significantly differentially expressed between these age-based strata. 

Analysis of ssGSEA of immune cell gene sets was also undertaken with the 

cohort stratified based on patient age. A heatmap of the ssGSEA enrichment 

scores supervised by patient age was generated with the aim of identifying 

patterns of differential enrichment for particular immune cells (Figure 4.14.A). 

Based on this heatmap, there is not a clear pattern of global differential 

enrichment between the two strata. Indeed statistical analysis employing multiple 

t-tests, with the Bonferroni correction employed to account for multiple tests, 

shows no significantly differentially enriched immune cells between the over and 

under-55 age groups (Figure 4.14.B). 
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Figure 4.14: A Heatmap of enrichment scores of single sample enrichment analysis of the combined cohort (n=65), supervised by patient age as a 
binary variable with patients classed as either over or under 55 years of age. B statistical results of multiple t-tests with the Bonferroni correction used 
to correct for multiple testing.  LMS – leiomyosarcoma, SFT – solitary fibrous tumours, SS – synovial sarcoma.
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4.2.9 Analysing the association between tumour grade and the 

immune tumour microenvironment 

Within other tumour types, previous studies have shown that high-grade tumours 

are often characterised by an immune-suppressive microenvironment, with 

higher levels of regulatory T-cells and myeloid-derived suppressor cells acting to 

inhibit the activity of anti-tumourigenic immune cells of both the innate and 

adaptive immune systems381–384. As such, this cohort was analysed to assess the 

association between tumour grade and the immune microenvironment in STS, 

with cases classed as either grade 3 or “other” based on histology reports. As 

with previous analyses, the initial analytical step involved plotting the immune 

gene expression data of all 730 genes included in the Nanostring codeset as a 

heatmap, in this case supervised by tumour grade (Figure 4.15). Based on the 

heatmap, it appears that the grade 3 tumours appear to be more immune cold 

relative to the non-grade 3 tumours. In addition, although subtype distribution is 

reasonably even, there are more spindle cell sarcomas in the grade 3 subgroup. 
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Figure 4.15: Heatmap of gene expression in the combined cohort (n=65) of all 730 immune 
genes included in the Nanostring codeset, supervised by tumour grade as a binary measure, 
either as high-grade or “other”. LMS – leiomyosarcoma, SFT – solitary fibrous tumours, SS 
– synovial sarcoma. 
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Given the observation of potentially comparatively low immune gene expression 

in the grade 3 subgroup, two-class unpaired SAM analysis was performed to 

identify significantly differentially expressed genes between the grade 3 and non-

grade 3 tumours. However, as with patient age, the SAM analysis output revealed 

that selecting any delta value would lead to an unacceptably high false discovery 

rate, indicating that no genes are robustly differentially expressed between the 

grade 3 and non-grade 3 subgroups.  

Although no individual genes were differentially expressed between the different 

grade subgroups, it is feasible that immune cell gene sets may be differentially 

enriched, and as such ssGSEA using the same immune cell gene sets as 

previously described was undertaken. Initially, a heatmap of the ssGSEA 

enrichment scores supervised by tumour grade was plotted to assess for any 

obvious patterns of differential enrichment (Figure 4.16.A). However, again no 

clear pattern of the enrichment scores is visualised to differentiate the grade 3 

subgroup from the non-grade 3 subgroup. And indeed, upon multiple t-testing to 

assess for statistically significant differences, following Bonferroni correction to 

account for multiple testing, there were no significant differences in any of the 

immune cell enrichment scores between subgroups (Figure 4.16.B). 
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Figure 4.16: A Heatmap of enrichment scores of single sample enrichment analysis of the combined cohort (n=65), supervised by tumour grade as a 
binary variable with patients classed as either over or under 55 years of age. B statistical results of multiple t-tests with the Bonferroni correction used 
to correct for multiple testing.  LMS – leiomyosarcoma, SFT – solitary fibrous tumours, SS – synovial sarcoma. 
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4.2.10 Summary of results 

In this chapter, I set out to undertake immune-based gene expression analysis of 

pre-treatment tissue on a cohort of patients treated with pazopanib. The ultimate 

aim was to undertake detailed characterisation and identify differential immune 

gene expression within the cohort, and associated with clinicopathological 

variables. Hierarchical clustering was employed to group samples together based 

on their immune-gene expression, and 3 distinct immune subgroups were 

identified. These subgroups could broadly be characterised as having an immune 

hot microenvironment (ISS1), an intermediate immune microenvironment (ISS2) 

and an immune cold microenvironment (ISS3). Through ssGSEA, these 

subgroups were then demonstrated to show contrasting enrichment for key cells 

of both the adaptive and innate immune systems, adding additional granularity to 

the characterisation of the immune microenvironments associated with each 

subgroup. Further analysis investigating the association between STS subtype 

and tumour microenvironment did not yield such significant differential patterns 

of immune expression, suggesting that the immune microenvironment in STS 

shows great heterogeneity which is independent of the histological diagnosis. 

Finally, the association between immune-gene expression and patient age and 

tumour grade was assessed, but significant differences in the immune 

microenvironment were not observed.  
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4.3 Discussion 

4.3.1 Immune gene expression defines three groups of patients 

in the pazopanib-treated combined cohort 

In order to describe the immune microenvironment in STS with more depth and 

granularity, in this chapter I undertook immune-based gene expression analysis 

on pre-pazopanib tissue from the combined cohort.  

Hierarchical clustering of the immune gene expression data for the combined 

cohort, including all 730 genes in the Nanostring immune gene set, was employed 

to group samples together based on the similarity of their gene expression 

profiles. This identified three distinct subgroups within the cohort, with different 

patterns of immune gene expression, and named ISS1, ISS2 and ISS3. From the 

heatmap, ISS1 was seen to be characterised by an immune hot tumour 

microenvironment, with high immune gene expression levels, ISS2 was 

characterised by an intermediate level of gene expression, whilst ISS3 was 

characterised as having an immune cold microenvironment with low immune 

gene expression. Indeed, SAM analysis was undertaken to identify immune 

genes with significantly differential expression within each of the ISS subgroups. 

This confirmed that ISS1 demonstrates evidence of being characterised by an 

anti-tumourigenic immune microenvironment, with significantly higher levels of 

expression for genes associated with pro-inflammatory cytokines, members of 

the complement cascade, and anti-tumourigenic immune cells including CD8+ 

cells, antigen-presenting cells and mature B-cells. Conversely, ISS3 had 

significantly lower expression levels of genes associated with anti-tumourigenic 

immune cells, such as modulators of NK and T-cells, and immune system 

mediators, such as IL-6 and TNF. 

When considering the previously published attempts at undertaking descriptive 

characterisation of STS samples, several similarities with my presented data are 

noted. The immune-based molecular phenotyping of 206 sarcoma samples 

carried out by The Cancer Genome Atlas (TCGA) consortium demonstrated 

heterogenous immune gene expression in their cohort290. This is in keeping with 

the results and patterns I observed in my analysis (Figure 4.4). In addition, 
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Petitprez et al.’293 used publicly available gene expression datasets for a total 

cohort of 608 samples and developed an immune-based classification assigning 

STS samples into one of 5 sarcoma immune classes (SIC) denoted as A to E. 

The SIC A group in this study was characterised as being an ‘immune desert’ 

with the lowest expression of immune cell-related genes, whilst SIC E had the 

highest expression of immune cell-related genes. The remaining SIC subgroups 

B-D were characterised as having a more bland immune-gene expression profile. 

Interestingly, looking at the ISS subgroups derived from the combined cohort, 

similar trends can be observed. ISS1 is characterised by upregulation of immune-

related genes and conversely ISS3 by downregulation of these genes. It should 

be noted however, that the TCGA work is based on primary sarcoma tissue 

exclusively, whilst Petitprez et al. also developed their immune-based classifier 

on publicly available datasets derived from primary STS tissue. Therefore, direct 

comparison is not possible given the heterogenous nature of the tissue included 

in my cohorts. Nonetheless, consistent patterns between previous works and my 

own confirm that immune gene expression between samples is heterogeneous, 

and also the ability to identify biological subgroups based upon immune 

genotyping.  

4.3.2 ssGSEA demonstrates contrasting enrichment scores of 

immune cell gene sets between different immune sarcoma 

subgroups 

To further characterise the immune microenvironment in the ISS subgroups 

derived from hierarchical clustering, ssGSEA was performed to assess the 

enrichment of specific gene sets between the subgroups. The heatmap of all of 

the immune cell gene sets confirmed that ISS1 had a trend for generally higher 

immune cell enrichment scores compared to the rest of the cohort. However, the 

heatmap did show that for memory T-cells, NK cells, and NK bright cells, ISS3 

had higher enrichment scores, demonstrating the value in undertaking ssGSEA 

as a complimentary analysis to yield more granularity when compared to single 

gene analysis alone. Focusing on the gene sets for which there was significantly 

differential enrichment for specific immune cells, it was observed that ISS1 had 

significantly higher enrichment scores compared to both ISS2 and ISS3 for CD8+ 
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T-cells and T-helper1 cells (Figure 4.7). Given the role of T-helper1 cells to 

promote the cytotoxic activity of CD8+ cells, the high enrichment scores I 

observed for ISS1 suggest an immune microenvironment conducive to 

cytotoxicity and promotion of anti-tumour immune responses385. In addition, ISS3 

had significantly lower enrichment scores for the global T-cell gene set compared 

to both ISS1 and ISS2 suggestive of a poorly infiltrated immune 

microenvironment. It was also observed that ISS1 had significantly higher B-cell 

ssGSEA scores compared to ISS2. Being responsible for antibody production, B-

cells play a key role in the adaptive immune response, including anti-cancer 

activity386. Given the high levels of other effector cells of the immune system 

which are known to interact and promote B-cell activity, including T-helper1 cells 

and dendritic cells, this demonstrates further evidence for enrichment of ISS1 

with anti-cancer immune cells269.  

For NK cells, I observed that the global NK ssGSEA score was significantly lower 

in ISS1 compared to ISS3, and this association was also observed when 

considering NKbright cells (Figure 4.8). However, for NKdim cells, there was no 

significant difference between the ISS subgroups. As such, when considering the 

composition of the NK population within the ISS subgroups, ISS3 is characterised 

more predominantly by NKbright cells. NKbright cells are known to function 

predominantly in the secretion of cytokines, and have previously been shown to 

contain much lower concentrations of perforin and cytolytic granules compared 

to NKdim cells387. As such, NKbright cells are less actively involved in direct anti-

tumour cytotoxic activity and are able to function in both a pro- and anti-

immunogenic fashion through either the secretion of cytokines that drive immune 

response, such as IFN-γ, or immune-regulatory cytokines, such as IL-10387. 

However, given the low expression levels of effector cells of the immune system 

as described above, T-cells and B-cells, it is more likely that NKbright cells in ISS3 

are acting in an immune-modulating role rather than immune-stimulating.  
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4.3.3 Heterogeneity of the tumour immune microenvironment 

exists independent of clinicopathological variables  

Analysis of the combined cohort was performed to identify any subtype-specific 

differences in immune gene expression. From the initial heatmap of the 730 

genes included in the Nanostring immune gene set, there was no clear pattern of 

immune gene expression across the 5 subtype categories included for analysis. 

Although SAM analysis identified differentially expressed immune genes when 

comparing each subtype to the rest of the cohort, the number of differentially 

expressed genes for each subtype was small. In addition, insight into the 

immune-based biology of each subtype was further limited by the contrasting 

functions of the differentially expressed genes. For example, in the SFT 

subgroup,  CD207 and CD40 both had comparatively high expression and are 

associated with antigen-presenting cells and effector immune cells suggestive of 

an immune-active microenvironment295. In addition, PRKCD, associated with TIL 

infiltration, and IL-11, secreted by tumour-associated macrophages and T-cells, 

also had higher relative expression368. These results would suggest a pro-

inflammatory anti-tumourigenic immune microenvironment in SFTs. However, 

the comparatively high expression of the immune checkpoint LAG3, and the low 

expression of receptors for pro-inflammatory cytokines IL-6 and IL-4 are more 

suggestive of an immune-suppressed environment. In the LMS subgroup, a 

similar result is observed with comparatively high expression of genes associated 

with both pro-inflammatory activity (CXCL2, IL24, C5 and A2M) but also genes 

associated with immune-suppressive activity (CDH1, MFGE3). As such, subtype-

specific single gene expression analyses did not clearly define the immune 

phenotypes of these subtypes within my cohort. In addition, ssGSEA of immune 

cells did not show clear differential enrichment between subtypes, and upon 

statistical testing, only NKdim cells had significantly different enrichment scores 

between different subtypes, with “other” subtypes having higher enrichment 

scores compared to SFTs.  

These results would suggest that within our cohort, there is intra-subtype 

heterogeneity in immune gene expression and immune cell infiltration. And 

indeed, these findings are in keeping with a number of published works 
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demonstrating that many STS subtypes display intra-subtype heterogeneity of 

the immune microenvironment. For example, work by Toulmonde et al. 

demonstrated that undifferentiated pleomorphic sarcoma can be categorised into 

immune high/low, with distinct immune gene expression profiles, immune cell 

infiltration and radiological findings388. Indeed a number of studies have 

demonstrated that subtype-specific expression of putative immune-based 

biomarkers demonstrates extensive intra-subtype heterogeneity389. Furthermore, 

studies which have leveraged publicly available genomic data sets of a range of 

STS subtypes to generate immune gene-based molecular subgroups have 

shown inconsistent subgroup classification of various histological STS 

subtypes293,390,391. As such, although further characterisation of subtype-specific 

immune microenvironment features may yield markers for clinical course and 

treatment response, evidence suggests that significant intra-subtype 

heterogeneity may limit progress. 

Given previously reported work suggesting that both tumour grade and patient 

age are associated with differential immune gene expression and tumour immune 

microenvironments, the association between tumour grade and age and immune 

gene expression in the combined cohort was undertaken374–377,381–384. However, 

plotting a heatmap of the immune gene expression data did not show any 

significant patterns attributable to either factor. In addition, ssGSEA did not show 

any significantly enriched immune cells based on patient age and tumour grade. 

As such, within the combined cohort, differences in immune gene expression 

could not be attributable to either tumour grade or patient age. 

4.3.4 Critical assessment of the methods employed and 

limitations 

As previously mentioned, one of the considerations that had to be made when 

deciding upon analytical techniques in this study was the quantity and quality of 

tumour material available. Indeed, all of the material was FFPE with many of the 

samples stored for a number of years prior to extraction of nucleic acid for the 

purposes of this study. The impact of this preservation and storage method is that 

it is associated with a significant degree of nucleic acid degradation when 
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compared to alternative storage methods, such as fresh frozen392,393. As such, 

the platform selected for gene expression analysis had to be capable of 

generating reliable and robust data for fragmented nucleic acid material, and a 

number of studies had confirmed Nanostring’s ability to achieve that350–353. 

Furthermore, as the goal of this chapter was to focus specifically on the 

expression of immune-related genes to allow a detailed characterisation of the 

immune-based biology of STS, the nCounter PanCancer immune profiling panel 

was ideal for this role. Alternative gene sequencing techniques could have been 

considered if the quality of extracted nucleic acid had been less problematic. 

Indeed, complimentary analyses would have provided additional information and 

granularity to the description of the immune microenvironment in this cohort. For 

example, whole exome sequencing (WES) could be used to quantify the tumour 

mutational burden of the samples, whilst RNA-Seq could be used to predict 

neoantigen immunogenicity or characterise the T-cell receptor repertoire394–397. 

Indeed, any one modality in isolation is insufficient in wholly describing the tumour 

microenvironment, however, the more information that is acquired and available 

will help provide a more complete picture. As such, additional next-generation 

sequencing analyses in the future, such as WES or RNA-Seq would add value to 

this study in helping to further characterise the immune microenvironment in STS.  

4.3.5 Conclusion 

In this chapter, analysis of immune gene expression in the combined cohort 

identified 3 immune subtypes with distinct immune gene expression. I have 

shown that within the combined cohort, one immune subgroup is characterised 

by high immune gene expression, one by low immune gene expression, and the 

final subgroup by intermediate gene expression. Undertaking analysis to identify 

genes significantly differentially expressed between the subgroups confirmed this 

finding, whilst ssGSEA identified a number of immune cells which demonstrated 

significant enrichment based upon ISS category. Analysis of the association 

between immune gene expression and clinicopathological variables identified 

genes with differential expression based upon STS subtype. Given the findings 

in this chapter of distinct immune subgroups, evidence of intra-subtype 

heterogeneity, and a lack of association between immune gene expression and 
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both tumour grade and patient age, the next chapter will investigate the potential 

for an immune-based biomarker to be associated with contrasting survival in the 

pazopanib-treated combined cohort. 
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Chapter 5  - Development of a prognostic 

model in a pazopanib-treated cohort   
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5.1 Background and objectives 

Despite numerous efforts to improve clinical outcomes of patients with advanced 

soft tissue sarcoma (STS), following failure of first-line therapy, efficacious 

treatment options are limited and prognosis is generally poor (Section 1.3.4)55,58–

63,69. Pazopanib showed promising results in advanced STS during early clinical 

trials, and in the PALETTE phase III trial demonstrated improved progression-

free survival (PFS) compared to placebo in non-adipocytic STS128,130,132. 

However, the failure to demonstrate a significant overall survival (OS) benefit 

relative to placebo significantly impacted cost-effectiveness analysis128,130,132. 

Nevertheless, subsequent post-hoc analyses of clinical trial data, as well as 

published real-word experience, have confirmed that a subset of patients do 

experience robust and durable clinical benefit following pazopanib therapy135,140–

146.  Indeed, Kasper et al.’s analysis of the combined phase II and phase III clinical 

trial cohorts investigating pazopanib reported 36% of patients having a PFS of 

greater than 6 months, and 34% having an OS greater than 18 months following 

initiation of pazopanib135. Therefore, one of the greatest challenges in the clinical 

setting is the lack of clinically relevant biomarkers which are able to stratify 

patients into those most likely to gain benefit from pazopanib. 

In Chapter 3, I observed notable survival trends in the pazopanib-treated 

combined cohort based on stratification by immunohistochemistry (IHC) of 

tumour infiltrating CD4+ lymphocytes (TILs). In Chapter 4, I built on this by 

undertaking targeted immune gene expression analysis of the combined cohort 

to better describe the immune tumour microenvironment. This identified that the 

combined cohort could be split into three immune sarcoma subgroups (ISS) with 

differential gene expression, and variable immune cell infiltration. Furthermore, 

different soft tissue sarcoma subtypes also demonstrated differential immune 

gene expression. 

There has been a growing appreciation of the potential for molecular 

characterisation of tumours to yield clinically meaningful biomarkers able to direct 

patient care in oncology. Indeed, the Prosigna score in breast cancer is an 

example of a molecularly-based risk score which is now showing utility in aiding 
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clinical decision making199–202. Furthermore, Beuselinck et al. developed a 

molecular classifier for metastatic clear cell renal cell carcinoma able to predict 

clinical benefit from the anti-angiogenic tyrosine kinase inhibitors (TKI) sunitinib 

and pazopanib311.  

However, in STS similar progress has not been made and robust prognostic 

molecular biomarkers for treatment outcomes are lacking. In addition, given my 

findings in Chapter 4 which identified differential immune gene expression in the 

combined cohort, there is a rationale for investigating the potential for an immune-

based prognostic model to be built. My hypothesis was that the exploration of a 

multivariable survival model incorporating immune gene expression data would 

generate a clinically relevant prognostic model in my pazopanib-treated cohort. 

As such, the aims of this chapter are: 

1. to analyse the discovery cohort data to assess the significance of immune-

gene expression, as well as clinicopathological variables, on survival, and to 

build a prognostic model based on the discovery cohort 

2. to assess the prognostic models built using the discovery cohort data on the 

independent validation cohort 

3. to refine the prognostic model on the combined (discovery plus validation) 

cohort for a more confident model with better estimates of the risk coefficients. 

5.1.1 Contributions 

Work of the candidate included: 

• Study conception and design in conjunction with the supervisory team. 

• Normalisation of discovery and validation cohorts. 

• Principal component analysis. 

• Cox proportional hazards modelling. 

• Forest plot generation. 
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Advanced statistical analyses were undertaken under the supervision of Dr. 

Maggie Cheang, team leader at the Institute of Cancer Research’s (ICR) Clinical 

Trials and Statistics Unit. 

RNA extraction, quality control, and aliquoting of RNA for subsequent Nanostring 

analysis of the validation and comparator cohorts was performed by higher 

scientific officer Nafia Guljar. 

Running of the Nanostring assay was performed by Richard Buus, senior 

scientific officer at the ICR’s Ralph Lauren centre. 
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5.2 Results 

5.2.1 Workflow for data analysis 

I employed a workflow to incorporate immune gene expression data and 

clinicopathological variables into a prognostic model initially built from the 

discovery cohort, before testing against the independent validation cohort, and 

finally refining the model on the combined discovery plus validation cohort 

(Figure 5.1). 

 

Figure 5.1: Planned workflow for data processing and generation of prognostic models for 
the combined cohort. 

Processing of Validation cohort gene 
expression data

Processing of Discovery cohort gene 
expression data

Comparison of separate Discovery and 
Validation clinicopathological variables

Build Cox regression models for OS and PFS and 
determine the prognostic value of these models 

using the discovery cohort

Build Cox regression models for OS and PFS 
and determine the prognostic value of the 

models built using the validation cohort

Refine Cox models for OS and PFS on the 
combined cohort



 
236 

5.2.2 Assessing comparability of the discovery and validation 

cohorts 

The power calculation previously shown in the materials and methods chapter 

(Section 2.2.4) had demonstrated that a minimum of 65 cases would be required 

for an adequately powered study assessing a single parameter for PFS. As such, 

the experimental design was to fit Cox regression models initially on a discovery 

cohort, before then fitting Cox regression models utilising the independent 

validation cohort. The final prognostic model would then be fit on the combined 

cohort, because given the larger size this would be more robust, with greater 

confidence and more accurate estimations of Cox coefficients, and this would be 

the prognostic model to take forward in future work.  

The first stage of analysis to be undertaken involved assessing the comparability 

of the discovery and validation cohort in terms of clinicopathological variables. 

Given the aim of building a prognostic model on the discovery cohort, and 

subsequently testing the model on the independent validation cohort, it was 

desirable to assess for any biases in variables to ensure comparability. However, 

given the small cohort sizes, and the heterogeneous nature of the cohorts, some 

biases were inevitable, but combining them into the combined cohort for the final 

analyses would negate the biases in these initial cohorts. 

Clinicopathological variables of the discovery and validation cohorts were 

determined (Tables 5.1 and 5.2). Between the discovery and validation cohorts, 

there were no obvious differences in any of the patient or tumour characteristics 

assessed, including tumour grade, and patient age and performance status at the 

start of pazopanib therapy.  

For data processing, the immune gene data for the discovery cohort were 

normalised utilising the ‘NanostringNorm’ R package325. Following normalisation, 

a gene-filtering process was performed in which genes for which 25% or greater 

of the samples had a value of 0 were removed for subsequent analysis. Following 

normalisation and filtering, the median immune gene value of the 573 genes for 

each sample was identified, termed the median gene expression signature 

(MGES).  
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In addition, a distribution plot of the MGES values to be employed in the 

regression models was also plotted (Figure 5.2). This demonstrated no obvious 

differences in the distribution of the MGES values.  
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Table 5.1:  Baseline clinicopathological variables for the discovery and validation cohorts 
generated for this study. LMS – leiomyosarcoma; LPS  - liposarcoma; MPNST – malignant 
peripheral nerve sheath tumour; NOS – not otherwise specified; SFT – solitary fibrous 
tumour; UPS – undifferentiated pleomorphic sarcoma. 

Discovery Validation

n 37 (%) 28 (%)

Sex

M 13 (35%) 13 (46%)

F 24 (65%) 15 (54%)

Age (years)

Median 57.1 54

Range 19.8 - 81.2 18 - 77

Grade

1 2 (5%) 2 (7%)

2 17 (46%) 4 (14%)

3 18 (49%) 17 (61%)

UNK 0 (0%) 5 (18%)

Performance Status

0 7 (19%) 12 (43%)

1 17 (46%) 15 (54%)

2 7 (19%) 0 (0%)

UNK 6 (16%) 1 (3%)

Sarcoma Subtype

LMS 10 (27%) 8 (28%)

SFT 7 (19%) 2 (7%)

UPS 2 (5.5%) 1 (4%)

Chondrosarcoma 2 (5.5%) 0 (0%)

Myxofibrosarcoma 2 (5.5%) 0 (0%)

Myxoid LPS 2 (5.5%) 0 (0%)

Synovial Sarcoma 0 (0%) 5 (18%)

Sarcoma NOS 0 (0%) 5 (18%)

Spindle Cell Sarcoma 3 (8%) 4 (14%)

Other* 9 (24%) 3 (11%)

Prior lines systemic 

therapy

0 9 (24%) 3 (11%)

1 8 (22%) 16 (57%)

2 11 (30%) 4 (14%)

3+ 9 (24%) 5 (18%)

Cohort
Combined split ino

* other cases include; in the discovery cohort, single cases of 

alvolear soft part sarcoma, angiosarcoma, clear cell sarcoma, 

fibromyxoid sarcoma, fibrosarcoma, granular cell tumour,  

malignant haemangioendothelioma, malignant peripheral nerve 

sheath tumour, and PEComa; in the validation cohort atypical 

Ewings, dedifferentiatied liposarcoma and fibromyxoid sarcoma
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Table 5.2: Clinicopathological variables including response to therapy and survival data at 
18-month censor. Response to therapy was assessed on cross-sectional imaging by 
response evaluation criteria in solid tumours (RECIST 1.1)336. CR – complete response; IQR 
– interquartile range; OS – overall survival; PD – progressive disease; PFS – progression-
free survival; PR – partial response; SD – stable disease; UNK – unknown. 

 

Figure 5.2: Distribution plot of the median gene expression signature (MGES) for the 
discovery and validation cohorts, showing no obvious differences in distribution.    

Discovery Validation

n 37 (%) 28 (%)

Sample Type

Primary 19 (51%) 16 (57%)

Metastasis 11 (30%) 6 (21%)

Local Recurrence 7 (19%) 3 (11%)

UNK 0 (0%) 3 (11%)

Best Response

PD 7 (19%) 7  (25%)

SD 15 (40.5%) 11 (39%)

PR 5 (13.5%) 7 (25%)

CR 0 (0%) 0 (0%)

UNK 10 (27%) 3 (11%)

PFS (months)

Median 3.7 4.15

Range 0.27 - 18 0.43 - 18

IQR 1.93 - 7.13 1.96 - 9.14

OS (months)

Median 9.17 6.48

Range 0.27 - 18 0.43 - 18

IQR 4.07 - 18 3.39 - 13.55

Combined split ino
Cohort
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5.2.3 Fitting Cox regression models to the discovery cohort 

5.2.3.1 Overall Survival 

Cox regression models incorporating different variables for OS were built using 

the discovery cohort. Firstly, a univariable Cox regression model for OS was built 

incorporating the MGES for each sample as the variable of interest. This 

univariable model was significantly associated with OS (hazard ratio (HR) 2.52, 

95% confidence interval (CI) 1.25-5.10; p=0.011), with higher MGES associated 

with an increased HR and therefore inferior OS. 

Subsequently, in order to estimate the prognostic value of the MGES adjusting 

for other clinicopathological variables, two Cox multivariable regression models 

for OS were built using the discovery cohort, a full model and a nested model 

(Table 5.3 and Figure 5.3). For the full model,  the clinicopathological features of 

patient age at the start of pazopanib therapy, patient performance status at the 

start of pazopanib therapy, tumour grade and MGES were included as co-

variables. The nested model included only the standard clinicopathological 

variables (i.e. without MGES). The aim of this was to determine whether the 

addition of MGES adds prognostic information when compared to a survival 

model including only the clinicopathological variables currently used in the clinical 

setting. 

The results of the Cox regression model of the full model for OS show that both 

higher MGES (p=0.026) and having a high-grade tumour (p=0.027) are 

significantly associated with inferior OS. Furthermore, the full model itself is 

statistically significantly associated with OS (p=0.004). In the nested model, a 

patient performance status of 2 compared to 0, and a high-grade tumour were 

significantly associated with inferior OS (p=0.034 and 0.023 respectively). The 

nested model was also significantly associated with OS (p=0.02), however as 

evidenced by the difference in chi-square between the full and nested models, 

the full model fits the data significantly better than the nested model (p=0.020). 
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Therefore, in the discovery cohort, the significant association between higher 

expression of MGES and inferior survival was observed adjusting for other factors 

suggesting that MGES could potentially be a prognostic marker. 

 

 

 

 

Table 5.3: Summary of Cox multivariable regression models for overall survival (OS) in the 
discovery cohort (n=37). The full model was built including the clinicopathological features of 
tumour grade, patient age and performance, and the median gene expression signature. The 
nested model excluded MGES as a co-variable. For tumour grade, this was stratified into a 
binary measure, with category 2 equating to high-grade tumours and category 1 to other 
grades.  

 

 

 

HR (95% CI) P-value HR (95% CI) P-value

Median Gene 

Expression 

Signature

Continuous (n=37)
2.27 (1.10 – 

4.68)
0.0265 *

Age Continuous (n=37)
1.00 (0.96 – 

1.04)
0.879 0.99 (0.96 – 1.03) 0.6579

0 (n=7) 1 - 1 -

1 (n=17)
1.43 (0.31 – 

6.56)
0.6433 2.74 (0.66 – 11.3) 0.1645

2 (n=7)
3.53 (0.68 – 

18.2)
0.1328 5.91 (1.15 – 30.4) 0.0335 *

-1 (n=6)
0.45 (0.06 – 

3.34)
0.4323 0.72 (0.10 – 5.06) 0.742

1 (n=19) 1 - 1 -

2 (n=18)
2.51 (1.11 – 

5.70)
0.0276 * 2.49 (1.13 – 5.49) 0.0233 *

Chi-square (against ClinPath only 

model)
5.3913 (p = 0.02024*)

Chi-square (Likelihood Ratio) 19.1 (df = 6, p = 0.004*) 13.71 (df = 5, p = 0.02*)

Feature Groups (#samples)

Full Model - OS Nested Model - OS

Performance 

Status

Grade
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Figure 5.3: Forest plots of Cox multivariable regression models built on the discovery cohort (n=37) for overall survival (OS). A Full model – patient age, 
patient performance status, tumour grade and median gene expression score all included as co-variables B Nested model – median gene expression 
signature excluded from the full mode.

A B
A B
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5.2.3.2 Progression-free survival 

Cox regression models incorporating different variables were then built to analyse 

PFS in the discovery cohort. A univariable Cox regression model for PFS, 

incorporating MGES as the variable of interest, was built. This did not show a 

significant association between MGES and PFS (HR 1.53, 95% CI 0.89-2.65; 

p=0.128), although the direction of risk was for increased HR with increased 

MGES. 

Multivariable Cox models were then built to analyse their association with PFS, a 

full model including MGES and standard clinicopathological features (tumour 

grade, patient age and performance status), and a nested model in which MGES 

was not included (Table 5.4 and Figure 5.4). For the full model, there was a 

significant association with PFS (p=0.03), with high-grade tumours the only co-

variable significantly associated with worse PFS (p=0.026). For the nested model, 

again high-grade tumours were significantly associated with PFS (p=0.033), and 

the regression model itself was significantly associated with PFS (p=0.03). 

When comparing the full model with the nested model for PFS in the discovery 

cohort, the addition of MGES as a co-variable in the full model adds prognostic 

value as evidenced by the difference in chi-square between the full and nested 

models. However, analysis revealed no significant differences between the 

models in terms of their fit (p=0.202). 
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Table 5.4: Summary of Cox multivariable regression models for progression-free survival 
(PFS) in the discovery cohort (n=37). The full model was built including the 
clinicopathological features of tumour grade, patient age and performance, and the median 
gene expression signature. The nested model excluded MGES as a co-variable. For tumour 
grade, this was stratified into a binary measure, with category 2 equating to high-grade 
tumours and category 1 to other grades. 

HR (95% CI) P-value HR (95% CI) P-value

Median Gene 

Expression 

Signature

Continuous (n=37)
1.43 (0.82 – 

2.50)
0.206

Age Continuous (n=37)
0.99 (0.96 – 

1.02)
0.364 0.98 (0.96 – 1.02) 0.3236

0 (n=7) 1 - 1 -

1 (n=17)
1.87 (0.50 – 

7.00)
0.352 2.76 (0.83 – 9.15) 0.0969

2 (n=7)
1.85 (0.44 – 

7.75)
0.399 2.63 (0.67 – 10.4) 0.1662

-1 (n=6)
0.41 (0.09 – 

1.83)
0.243 0.54 (0.13 – 2.24) 0.3928

1 (n=19) 1 - 1 -

2 (n=18)
2.34 (1.11 – 

4.96)
0.026 * 2.22 (1.07 – 4.61) 0.0327 *

Chi-square (against ClinPath only 1.6213 (p = 0.2029)

Performance 

Status

Grade

Chi-square (Likelihood Ratio) 13.72 (df = 6, p = 0.03*) 12.1 (df = 5, p = 0.03*)

Feature Groups (#samples)
Full Model - PFS Nested Model - PFS
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Figure 5.4: Forest plots of Cox multivariable regression models built on the discovery cohort (n=37) for progression-free survival (PFS). A Full model – 
patient age, patient performance status, tumour grade and median gene expression score all included as co-variables B Nested model – median gene 
expression signature excluded from the full model.  

A B
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5.2.4 Fitting regression models to the validation cohort 

After building the Cox regression models on the discovery cohort, samples from 

the validation cohort were used to validate the clinical prognostic model. 

The immune gene expression data generated from samples of the validation 

cohort were pre-processed with reference to the discovery cohort. Employing the 

‘NanostringNorm’ R package, validation data were normalised with normalisation 

factors for the geometric means of positive control and housekeeping genes of 

the discovery cohort used to dictate a normalisation target. Following 

normalisation, the same 573 genes as previously identified in the discovery 

cohort were selected to calculate the median gene expression score for each 

validation sample. Following data normalisation, and identification of the MGES 

for each sample, Cox regression models were built to assess their prognostic 

value in the validation cohort.  

5.2.4.1 Overall survival 

A univariable Cox model for OS was built using MGES alone in the validation 

cohort. This model demonstrated that higher MGES was associated with a non-

significant higher HR for OS (HR 1.21, 95% CI 0.66-2.19; p=0.536). The direction 

of the association between MGES and higher HR is consistent with findings from 

the discovery cohort, but not statistically significant likely due to the small sample 

size. 

A multivariable Cox model for OS was then built on the validation cohort including 

MGES and standard clinicopathological features as co-variables (Figure 5.5). 

Although high-grade tumours were significantly associated with inferior OS 

(p=0.032), the model itself was not significantly associated with OS (p=0.1). 
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Figure 5.5: A Summary of Cox multivariable regression models for overall survival (OS) in the validation cohort (n=28). The model was built including 
the clinicopathological features of tumour grade, patient age and performance, and the median gene expression signature. For tumour grade, this was 
stratified into a binary measure, with category 2 equating to high-grade tumours and category 1 to other grades. B Forest plot of the multivariable model 
for OS built on the validation cohort. 

A B
HR (95% CI) P-value

Median Gene 

Expression 

Signature

Continuous (n=28) 1.14 (0.59-2.21) 0.6933

Age Continuous (n=28)
1.00 (0.96 – 

1.03)
0.8495

0 (n=12) 1 -

1 (n=15) 3.69 (0.96 - 14.2) 0.0571

2 (n=0) - -

-1 (n=1)
48.5 (2.20 - 

1069)
0.0139 *

1 (n=11) 1 -

2 (n=17) 3.92 (1.13-13.7) 0.0319 *
Grade

Feature Groups (#samples)

Full Model - OS 

Performance 

Status

Chi-square (Likelihood Ratio) 8.68  (df = 5, p = 0.1)

Chi-square (against ClinPath only 

model)
0.1567 (p = 0.6922)
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5.2.4.2 Progression-free survival 

The validation cohort was then analysed by univariable Cox regression modelling 

for PFS with MGES the variable of interest. As with OS in the validation cohort, 

this univariable model confirmed a non-significant association between higher 

MGES and inferior survival in terms of PFS (HR 1.72, 95% CI 0.97-3.05; 

p=0.064). 

Subsequently, a multivariable Cox regression model was built for PFS of the 

validation cohort, with standard clinicopathological variables and MGES included 

as co-variables. This regression model was found to be significantly associated 

with PFS (p=0.05). In this multivariable model, higher MGES is again associated 

with a non-significant increase in the HR, and therefore inferior PFS. 

The association of higher expression of MGES with poor survival was observed 

adjusting for other factors suggesting that MGES could potentially be a prognostic 

marker. Furthermore, the direction of the association between MGES and higher 

HR is consistent with findings from the discovery cohort.
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Figure 5.6: A Summary of Cox multivariable regression models for progression-free survival (PFS) in the validation cohort (n=28). The model was built 
including the clinicopathological features of tumour grade, patient age and performance, and the median gene expression signature. For tumour grade, 
this was stratified into a binary measure, with category 2 equating to high-grade tumours and category 1 to other grades. B Forest plot of the multivariable 
model for PFS built on the validation cohort.

A B

HR (95% CI) P-value

Median Gene 

Expression 

Signature

Continuous (n=28) 1.72 (0.93 - 3.16) 0.0825

Age Continuous (n=28) 1.01 (0.98 - 1.04) 0.5987

0 (n=12) 1 -

1 (n=15) 2.47 (0.82 - 7.40) 0.1074

2 (n=0) - -

-1 (n=1) 27.5 (1.55 - 489) 0.0240 *

1 (n=11) 1 -

2 (n=17) 2.87 (0.98 - 8.44) 0.055

Feature Groups (#samples)
Full Model - PFS 

Chi-square (against ClinPath only 3.1335 (p = 0.0767)

Performance 

Status

Grade

Chi-square (Likelihood Ratio) 10.85 (df = 5, p = 0.05*)
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5.2.5 Refining Cox regression models through combined cohort 

analysis 

In this chapter so far, Cox regression models have been built on the discovery 

cohort which confirmed that a model including standard clinicopathological 

variables with the addition of the MGES was providing additional prognostic 

information when compared to one with just standard clinicopathological 

variables. In addition, analysis of the independent validation cohort confirmed that 

the direction of the association between MGES and higher HR is consistent 

between the discovery and validation cohorts. 

Therefore, the next step in the analysis was to build prognostic models on the 

combined cohort. The value of undertaking this step is that it allows refinement 

of the prognostic model with a better estimate of the coefficients for each variable 

due to the larger sample size. 

5.2.5.1 Overall survival 

A univariable Cox regression model was built for OS of the combined cohort, with 

the MGES value acting as the variable of interest. This demonstrated a significant 

association between MGES and OS (HR 1.66, 95% CI 1.07-2.58; p=0.024), with 

higher MGES associated with inferior OS. 

Given this result, and with the aim of estimating the prognostic value of the 

signature adjusting for clinicopathological variables, two multivariable Cox 

regression models for OS were built. These were a full model incorporating 

MGES and standard clinicopathological features, and a nested model which did 

not include MGES as a co-variable (Table 5.5 and Figure 5.7).  

Statistical analysis of the full model confirmed that the model was significantly 

associated with OS (p=0.003). For the co-variables included, higher MGES 

(p=0.050) and having a high-grade tumour (p=0.005) were significantly 

associated with inferior OS. In addition, performance status 2 (p=0.012) and 

performance status 1 (p=0.048) were significantly associated with worse OS.  
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From analysis of the nested model, again it was determined that there was a 

significant association between the model and OS (p=0.007). Of the variables 

included in the nested model, high-grade tumours were significantly associated 

with inferior OS (p=0.003), whilst patients with performance status 0 had 

significantly superior OS compared to patients with either performance status 1 

(p=0.033) or 2 (p=0.009). 

Importantly, when comparing the full model with the nested model, there is a 

significant difference in the chi-square between the two models for OS (p=0.046). 

This suggests that the full model fits the data significantly better than the nested 

model, and as such addition of MGES adds additional prognostic information 

compared to standard clinicopathological variables alone. 
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Table 5.5: Summary of Cox multivariable regression models for overall survival (OS) in the 
combined cohort (n=65). The full model was built including the clinicopathological features 
of tumour grade, patient age and performance, and the median gene expression signature. 
The nested model excluded MGES as a co-variable. For tumour grade, this was stratified 
into a binary measure, with category 2 equating to high-grade tumours and category 1 to 
other grades.  

 

 

 

 

 

 

 

HR (95% CI) P-value HR (95% CI) P-value

Median Gene 

Expression 

Signature

Continuous (n=65) 1.57 (1-2.47) 0.0498 *

Age Continuous (n=65) 1.00 (0.98-1.02) 0.8991 1.00 (0.98 - 1.02) 0.8967

0 (n=19) 1 - 1 -

1 (n=32) 2.34 (1.01-5.40) 0.0475 * 2.58 (1.08-6.18) 0.0327 *

2 (n=7) 4.17 (1.36-12.8) 0.0122 * 4.53 (1.45-14.2) 0.0093 *

-1 (n=7) 0.92 (0.24-3.61) 0.9064 0.92 (0.23-3.64) 0.9036

1 (n=30) 1 - 1 -

2 (n=35) 2.48 (1.33-4.64) 0.0045 * 2.60 (1.38-4.87) 0.0029 *

Chi-square (against ClinPath only 

model)
3.9726 (p = 0.04625*)

Chi-square (Likelihood Ratio) 19.96 (df = 6, p = 0.003*) 15.99 (df = 5, p = 0.007*)

Feature Groups (#samples)

Full Model - OS Nested Model - OS

Performance 

Status

Grade
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Figure 5.7: Forest plots of Cox multivariable regression models built on the combined cohort (n=65) for overall survival (OS). A Full model – patient 
age, patient performance status, tumour grade and median gene expression score all included as co-variables B Nested model – median gene 
expression signature excluded from the full model.

A B
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5.2.5.2 Progression-free survival 

A univariable Cox model of PFS was then built for the combined cohort, with 

MGES as the variable of interest. This demonstrated a significant association 

between increased MGES and inferior PFS (HR 1.63, 95% CI 1.1-2.42; p=0.016).  

Two Cox regression models were then built for PFS, a full model including MGES 

and clinicopathological features as co-variables, and a nested model which 

included only standard clinicopathological features as co-variables (Table 5.6 

and Figure 5.8). Statistical analysis confirmed that the full model was significantly 

associated with PFS (p=0.01). In terms of variables, higher MGES was 

significantly associated with inferior PFS (p=0.025), as was having a high-grade 

tumour (p=0.015).  

Analysis of the nested model also confirmed that the model itself was significantly 

associated with PFS (p=0.05). From the variables included, high-grade tumours 

(p=0.013), and performance status 1 compared to 0 (p=0.037) were significantly 

associated with inferior PFS. 

When comparing the full model with the nested model, the difference in chi-

square between the two models is significantly different (p=0.024), suggesting a 

significant improvement of the fit of the full model relative to the nested model. 

As such, the addition of MGES in the full model adds significant prognostic value 

compared to clinicopathological variables alone.  
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Table 5.6: Summary of Cox multivariable regression models for progression-free survival 
(PFS) in the combined cohort (n=65). The full model was built including the 
clinicopathological features of tumour grade, patient age and performance, and the median 
gene expression signature. The nested model excluded MGES as a co-variable. For tumour 
grade, this was stratified into a binary measure, with category 2 equating to high-grade 
tumours and category 1 to other grades.  

 

HR (95% CI) P-value HR (95% CI) P-value

Median Gene 

Expression 

Signature

Continuous (n=65) 1.57 (1.06-2.34) 0.0253 *

Age Continuous (n=65) 1.00 (0.98-1.02) 0.9736 1.00 (0.98-1.02) 0.8826

0 (n=19) 1 - 1 -

1 (n=32) 1.92 (0.92-3.99) 0.0815 2.26 (1.05-4.86) 0.0369 *

2 (n=7) 1.89 (0.681-5.22) 0.222 2.28 (0.81-6.42) 0.1194

-1 (n=7) 0.72 (0.24-2.12) 0.5459 0.79 (0.26-2.36) 0.67

1 (n=30) 1 - 1 -

2 (n=35) 2.04 (1.15-3.64) 0.0154 * 2.09 (1.17-3.75) 0.0130 *

Chi-square (against ClinPath only 5.1133 (p = 0.02374*)

Performance 

Status

Grade

Chi-square (Likelihood Ratio) 16.11 (df = 6, p = 0.01*) 11 (df =5, p = 0.05*)

Feature Groups (#samples)
Full Model - PFS Nested Model - PFS
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Figure 5.8: Forest plots of Cox multivariable regression models built on the combined cohort (n=65) for progression-free survival (PFS). A Full model – 
patient age, patient performance status, tumour grade and median gene expression score all included as co-variables B Nested model – median gene 
expression signature excluded from the full model.

A B
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The final analysis undertaken as part of the development of a prognostic model 

in the combined cohort was to analyse if STS subtype significantly impacted the 

prognostic value of the model. As such, STS subtype was added as a co-variable 

in a multivariable Cox regression model for OS and PFS (Table 5.7 and Figure 

5.9). Given the range of STS subtypes, distinct subtype categories were limited 

to STS subtypes with at least 5 cases, with the remaining STS subtypes 

categorised as “other”. In this way, 5 categories of STS subtype were included; 

leiomyosarcoma (LMS), solitary fibrous tumour (SFT), spindle cell sarcoma, 

synovial sarcoma (SS) and “other” subtypes. 

The multivariable Cox regression model built for OS was shown to be significantly 

associated with OS (p=0.004). For the variables included in building the model,  

performance status 1 and 2 were significantly associated with inferior OS 

compared to performance status 0 (p=0.048 and p=0.012 respectively). In 

addition, high-grade tumours (p=0.005)  and increasing MGES (p=0.050) were 

significantly associated with inferior OS (p=0.050). For STS subtypes, it was 

noted that spindle cell sarcomas were significantly associated with inferior OS 

when compared to the “other” STS subtype group (p=0.022). When compared to 

the model built with clinicopathological variables plus MGES, the addition of STS 

subtype did increase the prognostic value of the model as evidenced by the 

increase in chi-square. However, this was not statistically significant, indicating 

that the addition of STS subtype does not significantly improve the fit of the model 

(p=0.193). 

For PFS, again the multivariable Cox regression model built with 

clinicopathological variables, MGES and STS subtype, reported a significant 

association with PFS (p=0.02). For the co-variates included, only high-grade 

tumours (p=0.015) and increasing MGES (p=0.025) were significantly associated 

with inferior PFS. As with OS, the addition of STS subtype to the PFS regression 

model did increase the prognostic value of the model, but this was not a 

statistically significant increase and therefore addition of STS subtype does not 

significantly improve the fit of the model (p=0.277).  
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Table 5.7: Summary of Cox multivariable regression models for overall survival (OS) and 
progression-free survival (PFS), built using clinicopathological features, median gene 
expression score and STS subtype of the combined cohort (n=65). The difference in chi-
square is relative to the full Cox regression model built on clinicopathological features plus 
the median gene expression signature. For tumour grade, this was stratified into a b binary 
measure, with category 2 equating to high-grade tumours and category 1 to other grades. 

 

 

HR (95% CI) P-value HR (95% CI) P-value

Median 

Immune Score
Continuous (n=65) 2.04 (1.19 - 3.51) 0.0099 * 1.78 (1.13 - 2.79) 0.0121 *

Age Continuous (n=65) 1.00 (0.97 - 1.02) 0.8874 0.99 (0.97 - 1.02) 0.6312

0 (n=19) 1 - 1 -

1 (n=32) 2.59 (0.97 - 6.93) 0.0584 1.48 (0.68 - 3.22) 0.3232

2 (n=7) 5.84 (1.71 - 20.0) 0.0050 * 1.73 (0.62 - 4.85) 0.2985

-1 (n=7) 1.28 (0.30 - 5.43) 0.7363 0.67 (0.22 - 2.07) 0.4901

1 (n=30) 1 - 1 -

2 (n=35) 2.12 (1.05 - 4.28) 0.0355 * 1.92 (1.00 - 3.70) 0.0504 *

Other (n=30) 1 - 1 -

LMS (n=14) 1.34 (0.50 - 3.58) 0.5558 1.27 (0.53 - 3.04) 0.5936

SFT (n=9) 1.10 (0.36 - 3.36) 0.8669 1.07 (0.42 - 2.68) 0.8927

Spindle cell (n=7) 3.75 (1.21 - 11.6) 0.0223 * 2.71 (0.98 - 7.53) 0.0556

SS (n=5) 2.71 (0.71 - 10.4) 0.1458 0.52 (0.14 - 1.99) 0.3401

Feature Groups (#samples)
OS PFS

Chi-square (against ClinPath plus 

immune model)
6.0863 (p = 0.1928) 5.1055 (p = 0.2766)

Subtype

Performance 

Status

Grade

Chi-square (Likelihood Ratio) 26.05 (df = 10, p = 0.004*) 21.22 (df = 10, p = 0.02*)
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Figure 5.9: Forest plots of Cox multivariable regression models built using clinicopathological features, median gene expression signature and soft 
tissue sarcoma subtype of the combined cohort (n=65) for A overall survival and B progression-free survival. 

A B
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5.2.6 Summary 

In this study exploring the potential impact of the immune microenvironment on 

survival in a cohort of patients with STS treated with pazopanib, I have 

successfully built a prognostic Cox regression model incorporating a MGES, 

which is significantly associated with both OS and PFS following pazopanib 

initiation. Furthermore, the prognostic value of this model was significantly 

greater when compared to a model which included only the clinicopathological 

variables of tumour grade, patient age and patient  performance status. In 

addition, including STS subtype as a variable did not significantly improve the 

prognostic value of the model.  
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5.3 Discussion 

5.3.1 Building a prognostic model associated with clinical 

outcome following pazopanib therapy 

In this study of a heterogenous and retrospectively identified cohort of patients 

with advanced STS, I have developed, validated and refined a regression model 

significantly associated with OS and PFS following the initiation of pazopanib 

therapy. The model incorporates standard clinicopathological variables, in 

addition to a median gene expression signature. The value of this model is that it 

would allow clinicians to identify patients most likely to gain benefit from 

pazopanib therapy. In this way, clinicians will be able to tailor management plans 

and personalise therapy choices to ensure only patients most likely to gain benefit 

from pazopanib receive it. Conversely, patients less likely to gain benefit from 

pazopanib can be managed with alternative therapies which may offer greater 

clinical benefit for that patient, whilst avoiding the potential side-effects of 

pazopanib treatment. At present, clinicians will make management decisions on 

management based on clinicopathological variables, but this study has 

demonstrated that the addition of the MGES significantly improves the fit of the 

survival model. As such, incorporation of MGES into clinical decision-making has 

the potential of improving the identification of patients most likely to gain clinical 

benefit from pazopanib. 

This prognostic model incorporates clinicopathological variables, in addition to 

MGES, the median immune-gene score from 573 genes included in the nCounter 

PanCancer immune profiling panel. The association between increased MGES 

and inferior OS and PFS was confirmed in the univariable analysis of the 

discovery cohort. Comparing multivariable Cox models including 

clinicopathological variables with and without MGES demonstrated that the 

addition of this immune signature significantly increased the fit of the prognostic 

model, in terms of both OS and PFS, from the start of pazopanib therapy. 

Subsequent analysis of the independent validation cohort demonstrated that the 

direction of the association between MGES and higher HR was consistent with 
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findings from the discovery cohort. In order to refine the model to take forward, 

the two cohorts were then merged into a single combined cohort of pazopanib-

treated patients. From this larger combined cohort, the univariable analysis 

demonstrated that higher MGES was significantly associated with inferior OS and 

PFS. Furthermore, upon multivariable analysis, addition of MGES significantly 

improved the fit of the survival model compared to a model built with 

clinicopathological variables alone. 

Within the field of STS, molecularly defined biomarkers are lacking relative to 

other cancer types. The aim of prognostic biomarkers in the context of therapy is 

to allow the identification of patients at increased risk of inferior survival 

outcomes. In the clinical setting, biomarkers have the power to personalise 

therapy by identifying those high-risk patients most likely to benefit from a 

particular treatment. The potential for clinicopathological variables to act as 

prognostic biomarkers in STS has previously been described, however, immune-

based molecular biomarkers are less well developed398,399.  

5.3.2 Critical appraisal of methods employed and limitations of 

the study 

This study has some limitations including the fact these are retrospective cohorts, 

with a number of variables which are unable to be controlled for. These include 

the inclusion of tissue from primary lesions, local recurrences and metastatic 

lesions and a variety of STS subtypes with varying lengths of time from sampling 

to treatment initiation. In addition, some samples included in both the discovery 

and validation cohorts were exposed to variable pre-pazopanib therapies. 

However, this is the scenario facing clinicians in the real world, with pazopanib 

used in the management of all non-adipocytic STS in the post-first line setting. 

Therefore, having a biomarker which is robust to this variability is a positive 

consideration.  Furthermore, by building a model on the combined cohort which 

included STS subtypes, it was demonstrated that the addition of STS subtypes 

did not significantly increase the prognostic value of the model, suggesting the 

model was valid across a range of STS subtypes.  
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In addition, working on a cohort of patients who have received a specific therapy 

for a group of rare cancers has resulted in a relatively small sample size. Although 

the power calculation reported this cohort of 65 cases was sufficiently powered 

for PFS, this would only be for 1 parameter, for example, a continuous variable 

such as MGES. With this in mind, the analyses in this chapter were designed to 

generate a prognostic model which could be built upon with additional samples 

and data in the future, hence the refinement of the model by combining the 

discovery and validation cohorts into a single combined cohort for the final 

models. 

In terms of the analyses selected for the generation of a prognostic model, 

alternative approaches could have been employed400. For example, splitting the 

combined cohort based on their survival and employing supervised machine 

learning techniques would have been one potential strategy to identify a 

prognostic biomarker401. This approach does have limitations in that there is a 

risk of overfitting and inaccurate biomarker discovery due to inherent biases 

within the training dataset when stratified by survival outcomes. Indeed, given the 

small size of this cohort, this increases the chance of these errors occurring. 

Furthermore, the intention of the study was to define a biomarker in a real-world, 

unselected cohort, which has been achieved through Cox modelling. 

Unsupervised or consensus clustering could also have been employed, with 

analysis of clinical outcomes based on differential gene expression profiles 

between the subgroups used to drive the identification of gene signatures 

associated with survival402. The potential disadvantage of this approach would be 

that the biomarker identified is reliant on the subgroups defined in the clustering 

algorithm, and therefore inaccuracies in subgroup assignment would be 

propagated to the resultant biomarker signature potentially limiting translatability 

to the real-world setting. Deep learning techniques could also have been 

employed, but these methods usually require large volumes of labelled training 

data and given the size of the cohorts in this study was deemed to be not a 

feasible approach403. 
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5.3.3 Conclusion 

In this chapter, our study exploring the immune microenvironment of STS and its 

relation to clinical outcomes following pazopanib therapy has yielded a prognostic 

model which includes a median gene expression signature. The model has been 

shown to fit the survival data significantly better than a model based solely on 

clinicopathological variables. In addition, STS subtype did not significantly impact 

the prognostic value, suggesting the utility of the model across a range of 

subtypes. Moving forward, the final version of the prognostic model can be further 

validated through the prospective assessment of a new cohort, or as an integral 

biomarker in a clinical trial.  
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Chapter 6 - Future directions and conclusions 
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6.1 Introduction 

The current means of classifying soft tissue sarcomas (STS) based on 

histological subtype inadequately accounts for the heterogeneity of clinical 

behaviours. Furthermore, the “one size fits all” approach in directing strategies 

for systemic therapy in patients with advanced STS is no longer appropriate. As 

technological advances in molecular characterisation techniques become more 

widespread, and as a community our appreciation of drivers of disease in STS 

grows, a paradigm shift must occur. As the arsenal of targeted therapies 

increases, it must be possible to identify those patients most likely to gain benefit 

from these treatments. This will ensure that each patient only receives a 

treatment known to be efficacious. To this end, the development of novel 

predictive biomarkers able to robustly stratify patients into those most likely to 

acquire clinical benefit from specific therapies, is essential for the advancement 

of the treatment of patients with advanced STS. 

6.2 Summary of key findings 

My thesis project has undertaken the characterisation of the immune 

microenvironment in pre-pazopanib STS tumour samples and developed a  

prognostic model on a cohort of patients who received pazopanib. Indeed, 

although a small number of published studies have explored immune-based 

molecular characterisation in STS, these have sought prognostic biomarkers for 

clinical utility in the primary setting. As a result, the design and curation of the 

cohorts described in Chapter 3 was in itself innovative in the field of STS, in that 

they were designed to investigate a cohort of patients managed with a specific 

targeted therapy. As a rare cancer, identification of patients for the curation of 

clinical cohorts can be challenging. Availability and quality of tumour tissue is also 

an obstacle, given the degradation bought about by formalin-fixation and paraffin 

embedding on ribonucleic acid (RNA). Although the Royal Marsden is a leading 

specialist STS referral centre, and has an extensive archive of tumour tissue from 

previously treated patients, in order to accumulate a sufficient number of cases 

for our cohorts, I relied on collaborators from Glasgow and Singapore to increase 
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the size of the combined cohort. In addition, the curation of a comparator cohort 

treated with alternative second-line therapies allowed assessment of whether 

associations of IHC scores with survival in the pazopanib-treated combined 

cohort were also seen in the comparator cohort.  

My initial characterisation of the immune microenvironment employed 

immunohistochemistry (IHC) of tissue microarrays (TMAs) as a high-throughput 

and low-cost investigation method. In addition, TMAs containing cores in triplicate 

offer robust granularity to characterisation of the tumour immune 

microenvironment, whilst importantly being minimally consumptive of precious 

tumour tissue317. Through a pilot study, I identified that ImageJ was the most 

robust method for automated cell counting of immune cells. Employing this 

software, I then quantified the number of tumour infiltrating lymphocytes (TILs) 

expressing CD3, CD4 and CD8 across the cohorts and analysed the clinical 

outcomes following stratification based on TIL count and by Cox univariate and 

multivariable proportional hazards analysis (Figures 3.9-20). From these results, 

I identified a significant association between increased CD4+ counts and inferior 

OS and PFS. Conversely, in the comparator cohort increased CD4+ count was 

significantly associated with superior PFS. 

To generate more in-depth immune profiles of my discovery cohort, I then 

analysed the expression of immune-related genes employing the Nanostring 

nCounter PanCancer immune profiling panel (Chapter 4). Following data 

normalisation and median-centring, a heatmap of the immune gene expression 

data for the combined cohort was plotted using unsupervised hierarchical 

clustering to group tumours based on similarities in their expression data. This 

identified three distinct immune sarcoma subgroups (ISS)(Figure 4.4). 

Significance analysis of microarrays (SAM) identified a number of genes with 

differential expression between ISS subgroups, with ISS1 characterised as 

immune ‘hot’ with higher expression of genes associated with inflammation, 

cytotoxicity and anti-tumourigenic activity. Conversely, ISS3 was characterised 

by lower expression of genes associated with anti-tumourigenic activity and could 

be considered immune ‘cold’. ISS2 was characterised by an intermediate pattern 

of gene expression, with very few differentially expressed genes compared to 
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ISS1 and 3. Furthermore, single sample gene set enrichment (ssGSEA) 

demonstrated significant enrichment in ISS1 for CD8 T-cells, T-helper1 cells and 

dendritic cells, all involved in pro-inflammatory immune responses (Figure 4.7). 

Conversely, ISS3 had significant enrichment for natural killer (NK) cells, 

predominated by enrichment for NKbright cells which have been shown to be less 

cytotoxic relative to NKdim cells, and involved in the secretion of both pro- and 

anti-inflammatory immune modulators365 (Figure 4.8).  I also assessed if STS 

subtype was associated with alterations in the tumour immune microenvironment. 

This analysis showed that there is substantial intra-subtype heterogeneity in 

immune profiles in this cohort..  

As detailed in Chapter 5, I then expanded on this work by building Cox models 

to identify a model which was prognostic in the pazopanib-treated combined 

cohort. To achieve this, the combined cohort was initially split into discovery and 

validation cohorts, to allow training of the model and subsequent validation in an 

independent cohort. Following normalisation and gene filtering, the median gene 

score was determined for each sample, called the median gene expression 

signature (MGES). Univariate analysis of MGES showed a significant association 

between higher MGES and inferior OS in the discovery cohort, and the prognostic 

value of the model was improved by the inclusion of other clinicopathological 

variables. My analysis showed that the positive association between high 

expression of MGES and inferior OS and PFS was consistent in both the 

discovery and validation cohorts. Given the small sample sizes in each of the two 

cohorts, they were then merged into a single combined cohort for refinement into 

a final prognostic model.  
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6.3 Further development of the MGES prognostic model 

6.3.1 Prospective evaluation of the prognostic value of the MGES 

model 

6.3.1.1 Evaluation in a prospective randomised clinical trial 

Following the development of the refined MIS prognostic model, built using the 

multicentre combined cohort, the next steps in biomarker discovery involve 

validation within the context of a prospective clinical trial. Updated guidance for 

the American Society of Clinical Oncology (ASCO) levels of evidence (LOEs) 

scale related to biomarker evaluation allows for multiple routes to generate level 

I evidence of clinical utility177.  

Scientifically, the gold standard for assessment of the clinical utility of a biomarker 

for a particular scenario is considered to be a prospective randomised clinical trial 

and is considered category A evidence per ASCO guidelines. Such a trial is 

specifically designed to address the question of tumour marker validity and 

involves the prospective recruitment of patients, according to a prewritten 

protocol, and the collection, processing and quantification of the biomarker assay 

in question in real-time. These studies are prospectively powered to ensure 

sufficient analytical certainty following the assessment of the results. The benefits 

of a prospective randomised trial include: 

• Tight control on the recruitment of patients suitable for assessment of the 

biomarker in question. 

• Fixed standard operating procedures for the collection, processing and 

storage of clinical samples. 

• Pre-determined protocols related to assessment of the biomarker assay. 

• Tight controls of the patient data and clinical end-point data collected for the 

assessment of biomarker utility.  

However, the design and completion of a prospective randomised trial is 

associated with unavoidable challenges, including the costs and logistics of such 

an endeavour. These potential obstacles are compounded by the rarity of STS 
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relative to other tumours, however given the MGES model developed in this 

thesis was demonstrated to be prognostic across a range of STS subtypes, the 

inclusion criteria for a trial would be less restrictive than if only specific subtypes 

were included. The major advantage of the prospective randomised trial is that 

compelling evidence would be considered definitive, and no further validation of 

clinical utility would be necessary. 

6.3.1.2 Evaluation of archival tissue from a prospective clinical trial 

In the original ASCO biomarker guidelines, a prospective randomised trial was 

the only route for the acquisition of level I data in biomarker discovery. However, 

the revised guidelines accommodate for the analysis of archived tumour samples 

collected as part of a prospective clinical trial designed to answer another 

therapeutic or biomarker question. The study should allow assessment of the 

current biomarker under consideration, and this is considered a category B 

study. Analytical robustness states that the biomarker hypothesis in question 

should be generated independently from any trial results, any trial-associated 

tissue and data should not be assessed until a new biomarker-specific protocol 

has been developed. The benefits of adopting this approach over a biomarker-

specific randomised clinical trial include: 

• Permits the use of previously archived tumour specimens not specifically 

designed for biomarker validation. 

• Use of a pre-determined statistical analysis plan ensures unbiased validity of 

subsequent biomarker results. 

• Patient recruitment, sample standard operating procedures and clinical data 

curation will adhere to strict procedures ensuring good quality data for 

analysis. 

• Cost and logistics of performing the biomarker arm of a study are reduced 

relative to a biomarker-specific randomised controlled trial. 

A potential limitation of such an approach is the requirement that in order for it to 

be considered level I evidence, confirmation of clinical utility of a biomarker 

requires similarly compelling positive results from two category B studies. In 
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terms of identifying a pazopanib-treated cohort in the management of STS, the 

PALETTE phase III trial would have been the ideal source on which to undertake 

the characterisation of the immune microenvironment in STS and the 

development of survival models in this cohort. Indeed, the analysis of 

prospective trial material will always be stronger than analyses undertaken on a 

retrospective cohort. This is due to the controlled nature of a prospective trial, 

particularly related to the collection, storage and curation of high quality tumour 

material and clinical data. However, tissue samples for translational research 

were not collected as part of the PALETTE phase III clinical study, and this 

represents a missed opportunity to generate a well-curated bank of high-quality 

tumour material from a large cohort of STS patients. Indeed, following the 

PALETTE phase III trial, subsequent controlled clinical trials have been 

infrequent. Therefore, there is limited availability of valuable well-curated tumour 

specimens from controlled trials of pazopanib in STS. 

6.3.2 The role and challenges of retrospective cohort analysis 

Although prospective clinical trial material does represent a higher quality basis 

on which to base translational research, there is still great value in analysing 

real-world tumour samples. These studies are able to grow the field of knowledge 

of a particular tumour type or treatment on more readily available tumour 

samples and in this way direct future research on the precious trial material when 

it does become available. This maximises the potential clinically relevant yield of 

limited, well-curated, high-quality trial material.  

Indeed, some of the major challenges in undertaking translational research on 

retrospective cohorts are related to the lack of consistent tissue sampling and 

storage controls and clinical data which is not prospectively maintained to 

answer a particular study question. For this thesis, the RM electronic patient 

record system allowed access to the detailed medical records of patients who 

met the inclusion criteria for this study. This included histology reports to confirm 

the histological diagnosis and tumour grade, clinic letters and radiology reports 

to confirm the date of tumour progression and drug prescription charts to confirm 
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the start dates of therapies. As such, building well-curated clinical data sets for 

this study was feasible. 

The biggest challenges in this thesis related to cohort size and the quality of 

tumour material available. Despite engaging collaborators overseas, only 65 

patients who met the inclusion and exclusion criteria, and had available pre-

treatment tissue of adequate RNA quality to be included for analysis were 

identified. Indeed, a number of potential samples were lost due to the degree of 

degradation of RNA following extraction. In terms of improving the quality of the 

tumour material used as input for translational studies, fresh frozen tissue has 

been shown to yield significantly higher quality nucleic acids when compared to 

formalin-fixed paraffin-embedded samples (FFPE)392,404,405. Therefore, if fresh 

frozen tissue was more readily available, that would increase the likelihood that 

sufficient quality nucleic acids would be extracted to act as input for genotype 

analysis. The main issue related to fresh frozen tissue is the cost of storage, as 

samples need to be kept at ultra-low temperatures, whilst FFPE samples, once 

prepared can be kept at room temperature.  

In terms of expanding the cohort sizes, a number of potential solutions could be 

explored to increase the sample size. Further external collaborators could be 

sought with the aim of identifying appropriate patients with suitable tumour 

samples available. Additionally, any future trials of pazopanib in the 

management of soft tissue sarcoma could present excellent opportunities to 

prospectively test the prognostic value of the MGES model. Finally, publicly 

available data sets with matched clinical data could be analysed to generate a 

cohort of cases on which to prospectively validate the model. 

6.3.3 Assessing the value of a predictive test for the clinical 

setting 

Following the development of a predictive test, a number of considerations are 

required to assess its suitability and utility in the clinical setting. One of the key 

statistical considerations is the positive predictive value (PPV) of a test – a 

measure of the probability that a positive test result corresponds to a true positive 
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outcome calculated as the number of true positives divided by the sum of the 

true positive and false positives.  

In order to be useful to a clinician, a predictive test must have an acceptable PPV 

to ensure that the treatment the patient is receiving has a good chance of 

success, and to prevent the administration of a potentially harmful therapy in 

patients less likely to gain benefit. Therefore, the PPV itself is a balance between 

the sensitivity of a test, the proportion of true positives successfully identified, 

and the specificity of a test, the proportion of true negatives a test successfully 

identifies. An ideal predictive test should have a high sensitivity in identifying 

patients most likely to gain benefit, whilst maintaining a reasonable level of 

specificity to ensure people unlikely to benefit are not falsely classified. 

In addition, for a predictive test to be of use in the clinical setting, it must be both 

robust and reproducible. As such, the PPV should ideally remain constant and 

independent of factors such as clinicopathological features not included as 

variables within the test. Within the field of STS, this would include STS subtype 

and it would be important to note if a test was subtype-specific or more 

generalisable and subtype-agnostic. Furthermore, the test should be 

reproducible across different research cohorts, to confirm it has practical 

applicability in the real-world clinical environment. An aspect of this 

reproducibility is ensuring a predictive test has a robust, tested and finalised 

standard operating procedure in place to ensure any test results are 

standardised irrespective of the site at which the test was performed 

A further aspect of the clinical utility of a predictive test is that there should be 

clear and well-communicated guidance on how to interpret and act on results 

from a predictive test used in the clinic177. In addition the predictive test should 

be well supported through vigorous research and validation to provide clinicians 

with confidence to employ the test and act upon the result that is formulated. And 

finally, given the dynamic nature of medical research, the test should be 

frequently revaluated and refined to ensure it remains up-to-date with new 

research advances, and can be recalibrated to maximise the PPV of the test.   
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6.3.4 Quantifying dynamic changes in the immune 

microenvironment in relation to pazopanib therapy 

An additional interesting avenue of translation research to explore is the 

characterisation of the dynamic changes in the immune microenvironment 

following treatment with pazopanib. As the cohorts I have curated in the thesis 

contain exclusively pre-pazopanib tissue, it is not possible to identify changes 

and trends in immune gene expression associated with pazopanib therapy. At 

present characterisation of the pre-treatment immune microenvironment has 

identified interesting trends in terms of enrichment of particular immune cells 

within the ISS subgroups. However, the characterisation of dynamic changes has 

the added benefit of allowing a more robust assessment of the influence 

pazopanib has on the immune microenvironment and may shed light on immune 

features which increase sensitivity to pazopanib. Furthermore, dynamic immune 

microenvironmental changes may drive secondary resistance to pazopanib, and 

there characterising these changes may yield potential treatment strategies when 

the tumour shows signs of progression. To this end, work has begun within the 

lab to compile a pilot cohort of patients for whom both pre- and post-pazopanib 

tumour tissue is available. 

6.4 Future perspectives of immunomodulating therapies 

Driven by a growing appreciation of the crucial role the immune system plays in 

cancer development, as well as treatment responses, a number of novel 

therapies have been developed which aim to enhance anti-cancer immunity to 

treat cancer. 

6.4.1 Immune checkpoint inhibitor monotherapy 

The most advanced class of immunomodulating anti-cancer therapies at present 

are immune checkpoint inhibitors (ICI), monoclonal antibodies which act to block 

the inhibitory effect of immune checkpoints on the patient’s immune system. 

Although the reported expression levels of immune checkpoints in sarcoma vary 

in the literature, ICI monotherapy has been investigated in the treatment of STS. 
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The best described immune checkpoints at present are: 

• Programmed cell death receptor-1 (PD-1) and programmed cell death 

receptor-1 ligand (PD-L1). PD-1 binds to PD-L1 and is upregulated on active 

T cells, it limits T cell activation via negative costimulatory signals. 

• Cytotoxic T lymphocyte-associated protein-4 (CTLA-4) which is upregulated 

on the surface of active T cells, preventing over stimulation by the T-cell 

receptor. 

To date, the most advanced clinical trial exploring ICI therapy in STS was the 

multicentre, single-arm, open-label, phase II trial of the anti-PD-1 monoclonal 

antibody pembrolizumab (Sarcoma Alliance for Research through Collaboration 

(SARC)028, NCT02301039)294. A total of 40 patients with advanced STS were 

included, with the cohort evenly made up of leiomyosarcoma (LMS), 

undifferentiated pleomorphic sarcoma (UPS), liposarcoma (LPS) and synovial 

sarcoma (SS). Disappointingly, the objective response rate (ORR) across the 

cohort was only 18% (1 complete response and 6 partial responses out of 40 

patients). However, high rates of response were observed for UPS and LPS (40% 

and 10% respectively), and these subtypes were therefore included in an 

expansion cohort406. Following the recruitment of an additional 30 patients to 

each subtype arm, the final ORR was 23% for UPS (9 out of 40 patients) but only 

10% (4 out of 40 patients) for the LPS arm.  

Endeavours to correlate PD-L1 with response to pembrolizumab have so far 

failed to elucidate a robust predictive biomarker. Indeed, analysis of a subset of 

patients from the SARC208 trial reported PD-L1 positivity in only 4% of cases, all 

from the UPS strata. However, the work by Petitprez et al. is of note293. Utilising 

publicly available gene expression datasets of primary STS, they classified 

tumours into one of five subgroups based upon immune gene expression. As part 

of their work, they analysed 47 pre-treatment metastatic samples from the 

SARC028 trial and assigned them to one of the five immune subgroups they had 

derived. Notably, their subgroup characterised by immune upregulation, and 

most characteristically by a high B-cell signature, had the highest ORR to 
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pembrolizumab of 50%. Conversely their subgroup most associated with reduced 

immune gene expression had no responses to ICI.  

In addition, nivolumab monotherapy is another anti PD-1 monoclonal antibody 

which has been assessed in STS in the clinical setting. However, clinical trial 

results have been generally disappointing, with no objective responses to therapy 

in cohorts of patients with uterine LMS and paediatric solid tumours including 

STS407,408. As a result, further evaluation as a monotherapy in STS is not 

warranted. 

6.4.2 Immune checkpoint inhibitor combination therapies 

Following the relatively disappointing results in the limited trials of ICI 

monotherapy, a number of combinatorial approaches have been adopted and 

investigated in STS. Given the role for vascular endothelial growth factor (VEGF) 

to induce an immune suppressive microenvironment (Section 1.5.2), there is a 

rationale for exploring potential synergism in targeting VEGF and the immune 

checkpoint axis in STS. Indeed a phase II trial of pembrolizumab in combination 

with the tyrosine kinase inhibitor (TKI) axitinib, which has anti-VEGF activity has 

been reported (NCT02636725)409. A total of 33 patients with advanced STS of 

multiple subtypes, enriched for cases of alveolar soft part sarcoma (ASPS), were 

enrolled. Encouraging clinical benefit was reported, with 3-month PFS rate 

reported to be 65.6%, and highest in cases of ASPS (72.7%).  

Additional studies exploring combination approaches involving pembrolizumab 

have included cytotoxic chemotherapy as the second agent. The rationale behind 

this being that cytotoxic chemotherapy is postulated to enhance anti-tumour 

immune responses, through the depletion of suppressive immune cells and 

increased antigen presentation through tumour cell death. A recent phase II study 

assessed the combination doxorubicin and pembrolizumab in 37 anthracycline-

naïve patients with advanced STS (NCT02888665)410. The ORR was 

disappointing, with only 7 (19%) PRs reported. However, survival outcomes were 

promising with the study reporting a mPFS of 8.1 months, and a mOS of 27.6 

months. However, it should be noted that this cohort was not heavily pre-treated, 
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with combination doxorubicin plus pembrolizumab representing the first-line of 

therapy for 28 (76%) patients. As such, although the survival outcomes are 

reasonable, they are not grossly different from previously published studies of 

doxorubicin first-line therapy, and the lack of objective results is concerning 

(Table 1.3).  Additionally, pembrolizumab has been assessed in combination with 

metronomic cyclophosphamide, with a phase II study reported by the French 

Sarcoma Group (FSG) (NCT02406781)411. On the whole, the reported efficacy of 

this combination were disappointing, with a 6-month PFS rate of 0% for the LMS 

and UPS subgroup, and only 14.3% in the “other” STS subgroup.  

Although showing minimal anti-tumour activity in previous studies in STS, 

nivolumab has been recently explored in an open-label phase II trial comparing 

nivolumab alone or in combination with the anti-CTLA-4 monoclonal antibody 

ipilimumab (NCT02500797)412. A total of 85 patients with advanced STS of 

various subtypes following failure of at least 1 line of therapy were eligible. A total 

of 38 patients were assigned to the nivolumab monotherapy arm, and as with 

previous studies ORR was poor, with only 2 (5%) confirmed PRs reported. 

However, in combination with ipilimumab the ORR was 16%, with 6 confirmed 

responses observed across a range of STS subtypes. 

Additional clinical trials exploring combinations of ICIs are ongoing as the STS 

community attempts to harness the potential for ICIs to improve clinical 

outcomes, as they have in a number of other solid tumours. However, at the 

present time the current immune checkpoint targets appear to lack efficacy in 

STS. 

6.4.3 Emerging immune checkpoint targets 

Since the emergence of these inhibitory targets, newer immune checkpoints have 

started to be characterised and explored as potential avenues for anti-cancer 

therapy. 
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6.4.3.1 Lymphocyte activation gene-3 (LAG-3) 

LAG-3 interacts with major histocompatibility (MHC) class II and is present on 

activated T cells, leading to downregulation of T-cell cytokine production and T-

cell expansion. In addition LAG-3 is over expressed on TILs, and have been 

associated with tumour growth via the promotion of cellular dysfunction and 

immune cell exhaustion. Blockage of LAG-3 is therefore hypothesised to drive an 

anti-tumour immune response. 

Several molecular targets for LAG-3 have been developed. LAG525 is a 

monoclonal antibody that targets LAG-3 and has been investigated in a phase I/II 

clinical trial in patients with advanced malignancies (NCT02460224)413. A total of 

240 patients were recruited in the trial, the study arm was either monotherapy 

LAG525 therapy or combination therapy with the anti-PD-1 monoclonal antibody 

spartalizumab. Of those receiving LAG525 monotherapy, 79% discontinued due 

to disease progression versus 67% who discontinued treatment due to disease 

progression in the combined arm. Early results demonstrated a 10% ORR in the 

combined group, although it is unclear if this is due to the efficacy of 

spartalizumab and further evaluation is ongoing. The therapy was reportedly well 

tolerated, with dose limiting toxicities in 8 patients (4 in each arm), these included 

pneumonitis, AKI and hepatitis. Although this study did not include patients with 

STS, a newer phase II open label study of combination spartalizumab and 

LAG525 is currently recruiting, and includes STS as a cohort to be explored 

(NCT03365791)414. As such, these trial results are awaiting and will hopefully 

shed light on the potential utility of this combination in patients with advanced 

STS. 

Preclinical models provided anti-tumour evidence for the synergistic activity of 

LAG-3 and PD-1 molecular blockade. This led to the phase I, first in human study 

using anti-LAG-3 therapy (REGN3767) with or without the anti-PD-1 monoclonal 

antibody cemiplimab (REGN2810) in advanced cancers is ongoing 

(NCT03005782)415. Sixty-seven patients with solid organ and haematological 

malignancies have been recruited. Early results demonstrate combination 

therapy is superior to monotherapy; 12 patients in the monotherapy group 
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achieved stable disease and in the combined group 2 patients achieved a PR 

and 11 had stable disease. Overall the therapy was well tolerated, with 1 patient 

reaching dose limiting toxicity. At present, patients with STS are not being 

considered in this trial of this therapeutic combination, but compelling final result 

data might raise interest in its potential utility. Further evidence is required to 

establish which immunotherapy agents are best used in combination to achieve 

best overall outcomes.  

Identification of monoclonal antibodies with dual-specificity for anti-PD-1 and anti-

LAG-3 blockade have also been developed and are being explored in phase I 

studies. One example is the phase I study enrolling patients with advanced 

malignancies to be treated with the bi-specific monoclonal antibody (tebotelimab) 

alone or with margetuximab (anti HER2 therapy), if they demonstrated HER-2 

tumour expression (NCT032198268)416. From 207 patients divided into a dose 

escalation and expansion group, 7 achieved a partial response and 34 achieved 

stable disease. Although 146 patients (70.5%) reported adverse effects, just 

23.2% were grade 3 or greater. Again, recruitment of patients with STS was 

limited, but depending on trial data may be considered as potential beneficiaries 

to be considered in future trials. 

6.4.3.2 T-cell immunoglobulin-3 (TIM-3) 

TIM-3 also represents an interesting immune checkpoint target for drug 

development. It is expressed on numerous cells, including effector T-cells, B-

cells, macrophages, dendritic cells and natural killer (NK) cells. TIM-3 stimulation 

contributes to T-cell exhaustion and promotes myeloid derived suppressor cell 

expansion. Both of these factors lead to tumour growth and high levels of TIM-3 

have been correlated with poor prognosis across a number of malignancies, 

including renal cell, colon, cervical cancer417. Initial trials suggest that anti-TIM-3 

agents may be beneficial when used as adjuvant therapy. A recent a phase I/II 

clinical trial recruited 173 patients with metastatic solid organ malignancies to 

receive MBG453, a monoclonal antibody against TIM-3, alone or in combination 

with spartalizumab (NCT02608268)418. Those who received combination therapy 
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were demonstrated to have improved outcomes and treatment was well tolerated 

with no grade 3 or 4 toxicities.  

6.4 Concluding remarks 

In conclusion, this work has characterised the immune microenvironment in 

patients treated with pazopanib. A multivariable prognostic model has been built 

on a cohort of pazopanib-treated patients which incorporates both an immune 

gene-based score and clinicopathological variables. Looking to the future, the era 

of personalised medicine will rely heavily on molecular tests able to identify 

patients most likely to gain clinical benefit from specific therapy and the 

prognostic model presented here is one such example. 
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