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Facts and Hopes on RAS Inhibitors and Cancer

Immunotherapy
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Although the past decade has seen great strides in the develop-
ment of immunotherapies that reactivate the immune system
against tumors, there have also been major advances in the dis-
covery of drugs blocking oncogenic drivers of cancer growth.
However, there has been very little progress in combining immu-
notherapies with drugs that target oncogenic driver pathways. Some
of the most important oncogenes in human cancer encode RAS
family proteins, although these have proven challenging to target.
Recently drugs have been approved that inhibit a specific mutant
form of KRAS: G12C. These have improved the treatment of
patients with lung cancer harboring this mutation, but development
of acquired drug resistance after initial responses has limited the
impact on overall survival. Because of the immunosuppressive

Introduction

The RAS family of genes are among the most frequently mutated
genes in human tumors, being altered in up to 20% of all cancers (1). Of
the three main isoforms that are found to be mutated in cancer—
KRAS, HRAS, and NRAS—KRAS is the most commonly mutated
isoform, present in up to 90% of pancreatic cancer (PDAC), 50% of
colorectal cancer, and 30% of lung cancer (LUAD). RAS proteins are
small guanine nucleotide binding proteins (GTPases) that act as
signaling hubs coordinating the activity of multiple downstream
signaling pathways (2) including those involved in cell proliferation,
migration, survival, and metabolism. In response to mitogens, RAS
proteins cycle between an inactive GDP-bound state and an active
GTP-bound state, which can bind downstream effector proteins.
Oncogenic RAS mutations impair GTP hydrolysis, which stabilizes
the protein in the active GTP-bound form, resulting in constitutive
mitogen-independent downstream effector signaling. These muta-
tions principally arise as single amino acid substitutions in codons
G12, G13, or Q61 (1).

Given the high frequency of RAS mutations in human cancer,
there has been an extensive effort over the past three decades to
pharmacologically target the RAS signaling pathway, which until
recently has proved largely unsuccessful. Unlike protein kinases
which have come to be seen as mostly successfully druggable, RAS
proteins lack deep hydrophobic pockets and also bind GTP at
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nature of the signaling network controlled by oncogenic KRAS,
targeted KRAS G12C inhibition can indirectly affect antitumor
immunity, and does so without compromising the critical role of
normal RAS proteins in immune cells. This serves as a rationale for
combination with immune checkpoint blockade, which can provide
additional combinatorial therapeutic benefit in some preclinical
cancer models. However, in clinical trials, combination of KRAS
G12C inhibitors with PD-(L)1 blockade has yet to show improved
outcome, in part due to treatment toxicities. A greater understand-
ing of how oncogenic KRAS drives immune evasion and how
mutant-specific KRAS inhibition impacts the tumor microenviron-
ment can lead to novel approaches to combining RAS inhibition
with immunotherapies.

picomolar affinity. Initial approaches to target RAS therefore
focused on inhibiting the posttranslational modifications required
to localize RAS to the plasma membrane, which is required for its
biological activity. Farnesyltransferase inhibitors (FTI) were devel-
oped that prevent addition of a farnesyl lipid to the C-terminus of
RAS, which is required for association with the plasma membrane.
However, these inhibitors failed to show any benefits in clinical
trials involving KRAS-mutant cancers (3). Although efficient at
preventing the localization of HRAS to the plasma membrane, it
was later shown that KRAS and NRAS can be alternatively pre-
nylated by geranylgeranyltransferases. However, FTIs have recently
been shown to have promising clinical activity in HRAS-driven
head and neck squamous carcinoma (4).

Subsequent efforts have involved targeting RAS effector pro-
teins, which have been shown using elegant genetic mouse models
to be required for the maintenance of RAS-mutant cancer (5, 6). A
plethora of inhibitors have been successfully developed targeting
numerous RAS effector proteins, primarily kinases within the
RAF/MEK/ERK and PI3K/AKT/mTOR pathways. Such drugs often
have potent therapeutic activity in preclinical models; however,
they have since been shown to have limited activity in clinical trials
(7, 8). This has been attributed to the extensive signaling redun-
dancy that exists in the RAS signaling pathway, multiple feedback
mechanisms which causes pathway reactivation, and also narrow
therapeutic window as the pathways are required in normal tissue.
Combinations of therapies designed to address pathway redundan-
cy and feedback mechanisms have been seriously hampered by high
toxicities observed in clinical trials (9, 10).

Development of Clinical RAS Inhibitors

Given the failures associated with targeting downstream effec-
tors of RAS, developing direct inhibitors of RAS remains an attrac-
tive approach. Efforts led by Kevan Shokat resulted in a remarkable
breakthrough in 2013 with the development of covalent allele-
specific inhibitors targeting KRAS G12C (11). This approach
exploited the reactivity of the cysteine substitution, which can be
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irreversibly targeted by a thiol-reactive warhead. These inhibitors
specifically bind to GDP-bound KRAS G12C, trapping the protein
in an inactive state and preventing downstream effector interaction.
This is effective as, unlike other KRAS mutants, KRAS G12C has
similar intrinsic GTPase activity compared with wild-type KRAS
and therefore spends a significant proportion of its life cycle in a
GDP-bound state. Importantly, the mutant-specific nature of these
inhibitors enables inhibition of KRAS signaling in KRAS G12C
mutant cancer cells while sparing signaling in normal cells, thereby
widening the therapeutic window compared with nonmutant selec-
tive inhibitors (12, 13).

KRAS G12C mutations occur most often in lung cancer, accoun-
ting for nearly 50% of KRAS-mutant LUAD. Accordingly, clinical
assessment of KRAS GI12C inhibitors has focused initially on
patients with metastatic lung cancer. Two clinical compounds,
sotorasib (AMG 510) and adagrasib (MRTX849) have recently
been approved by the Federal Drug Administration for the treat-
ment of patients with previously-treated advanced non-small cell
lung cancer (NSCLC). Both drugs achieved a favorable objective
response rate (ORR) of 37% to 45% with moderate toxicities
(20%-45% grade 3 or higher) in phase II clinical trials (14, 15).
Similarly, both sotorasib and adagrasib have shown promising
clinical activity in KRAS G12C PDAC (16), although these muta-
tions are rare in this tumor type. Single-agent activity is much
reduced in colorectal cancer, but this has recently been improved
by combining with the EGFR inhibitor cetuximab (17).

Although KRAS GI12C inhibitors have demonstrated impressive
clinical activity, as seen with other targeted therapies, responses are
often short-lived as resistance invariably arises in the majority of
patients. Indeed, results from the recent phase III clinical trial com-
paring the efficacy of sotorasib with docetaxel, while demonstrating
increased progression-free survival, failed to improve the overall
survival of patients with lung cancer (18). Numerous preclinical and
clinical studies have begun shedding light upon mechanisms under-
lying resistance to KRAS G12C inhibitors, which include mutations in
KRAS that inhibit drug binding (19), activating mutations in down-
stream signaling components (20) and resynthesis of new KRAS G12C,
which is maintained in a GTP-bound state by upstream receptor
tyrosine kinase signaling (21). A number of clinical trials combining
KRAS G12C inhibitors with other therapies, including chemotherapy
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and targeted therapy, are currently underway. However, genetic
profiling of resistant tumors has demonstrated that patients often
contain multiple resistant-conferring mutations (19) and therefore the
feasibility of any single combination strategy to overcome acquired
resistance remains unclear.

Because the identification of the druggable allosteric pocket of
KRAS G12C 10 years ago, impressive progress has been made in the
identification of other KRAS inhibitors besides the initial drugs
targeting the inactive form of KRAS G12C. These include inhibitors
targeting the active form of KRAS G12C or against other KRAS mutant
proteins such as G12D, G12S, and G12R (22-24). The KRAS G12D
inhibitor from Mirati Therapeutics MRTX1133 recently entered clin-
ical trials. This noncovalent compound targets both the inactive and
active form of KRAS G12D, the most common KRAS mutation in
PDAC and colorectal cancer. Revolution Medicines have taken a
different approach, developing covalent tri-complex inhibitors that
target the active form of RAS, with their multi-RAS and KRAS G12C
inhibitor already in clinical trials. More recently, Boehringer Ingelheim
has reported the development of a noncovalent KRAS inhibitors,
which binds preferentially to the inactive form and targets both
wild-type KRAS and a broad range of KRAS mutant forms (25).

Oncogenic KRAS Signaling Suppresses
Antitumor Immunity

Decades of research have focused on how oncogenic mutations
drive cell-autonomous processes that contribute to tumorigenesis,
which has led to the development of a plethora of targeted therapy
agents. However, it has become increasingly apparent that oncogenic
signaling can extend beyond the cancer cell-intrinsic compartment
and engage with the host immune system (26). Oncogenic KRAS has
long been known to drive the expression of numerous cytokines and
chemokines that promote an immunosuppressive tumor microenvi-
ronment (TME; Fig. 1). This was first demonstrated in a study, which
identified IL8 as a direct transcriptional target of KRAS that promoted
tumor-associated inflammation and tumor progression (27). Numer-
ous other CXCR2 ligands have since been shown to be highly expressed
in preclinical models of KRAS-mutant cancer, including CXCLI,
CXCL2, CXCL3, and CXCL5 (28-30). The expression of CXCR2
ligands leads to the recruitment of immunosuppressive neutrophils

Figure 1.

Mechanisms by which oncogenic KRAS
drives immune evasion. Oncogenic
KRAS can modulate the response of
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and monocytes, which can suppress antitumor immunity. Indeed,
either genetic or pharmacologic inhibition of CXCR2 has been shown
to reverse immunosuppression and hinder tumor progression in
KRAS-mutant mouse models (28, 30). Beyond CXCR2 ligands, onco-
genic KRAS promotes the secretion of other myeloid chemoattractants
such as CCL2, which promotes the migration of monocytes from the
bone marrow into the TME (31). Oncogenic KRAS has also been
shown to induce GM-CSF in pancreatic cancer, resulting in the
expansion of immunosuppressive Grl1*CD11b* myeloid cells and
inhibition of T-cell-mediated tumor control (32). Furthermore, KRAS
can directly inhibit the phagocytic capacity of antitumorigenic macro-
phages by driving tumor cell expression of the “do not eat me” myeloid
checkpoint molecule CD47 (33). PI3K pathway signaling represses the
expression of the CD47-targeting miRNA, miR-34a, resulting in
increased CD47 expression and impaired macrophage phagocytosis.
Indeed, KRAS-mutant LUAD tumors have increased expression of
CD47.

KRAS signaling also dampens the function of tumor-infiltrating
T cells via numerous mechanisms. The MAPK pathway has been
shown to directly induce the expression and secretion of IL10 and
TGFf, which promote the conversion of conventional Th1 CD4*
T cells into immunosuppressive regulatory T cells (Tregs; ref. 34).
Numerous studies have demonstrated the importance of Tregs in
preclinical models of KRAS-mutant lung cancer as depletion of these
immunosuppressive cells stimulates antitumor immunity and reduces
tumor growth (35). Oncogenic KRAS can also directly inhibit cyto-
toxic T-cell responses by promoting tumor cell expression of the
immune checkpoint ligand PD-L1 (36). PD-L1 mRNA contains
AU-rich elements in the 3 UTR, which promote transcript degrada-
tion via the RNA-binding protein tristetraprolin (TTP). MAPK path-
way signaling results in phosphorylation and inhibition of TTP
resulting in stabilization of PD-L1 mRNA. These support clinical
observations that demonstrate increased PD-L1 expression in KRAS-
mutant NSCLC tumors (37). KRAS signaling can reprogram tumor
cell metabolism to support tumor growth, however this can also
influence the composition of metabolites in the TME, which has a
major influence on immune cell function. In colorectal cancer, onco-
genic KRAS drives the production of lactic acid, leading to its
accumulation in the TME whereby it promotes activation-induced
cell death of tumor-specific CD8" T cells (38).

Numerous immunosuppressive pathways have been shown to be
induced downstream of the MAPK or PI3K signaling pathways,
however oncogenic KRAS also activates the pro-inflammatory NF-xB
pathway which induces the expression of numerous cytokines and
chemokines. Downstream of KRAS, RAL proteins directly activate the
kinase TBK1 (39), which in complex with IKKe drives the activation of
NF-kB. This pathway can drive the secretion of IL6 in KRAS-mutant
lung cancer (40). Indeed, pharmacologic blockade of IL6 in a mouse
model of KRAS-mutant lung cancer results in a reduction in protu-
morigenic macrophages and Tregs with concomitant activation of
CD8™" T cells (41).

Oncogenic KRAS has also been shown to repress tumor-intrinsic
IFN signaling in lung cancer (31), colorectal cancer (28), and pancre-
atic cancer (42). Tumor-intrinsic IFN signaling plays an important role
in immunosurveillance as it promotes MHC-I antigen presentation
and the secretion of T-cell chemoattractants. The molecular mecha-
nism underlying KRAS-mediated repression of IFN signaling has been
shown to be mediated by MYC (31), which can directly inhibit the
expression of numerous IFN pathway genes (42). This mechanism is
consistent with the well-established idea that KRAS and MYC co-
operate to drive tumorigenesis. Indeed, another study demonstrated
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that co-activation of MYC in KRAS-mutant lung tumors reshapes the
TME via secretion of CCL9 and IL23, which results in the exclusion of
T cells, B cells, and NK cells and infiltration of immunosuppressive M2
macrophages (43).

KRAS mutant lung cancer is frequently co-mutated with the tumor
suppressors LKB1 and KEAP1, which have both been shown to drive
immune evasion. LKB1 mutations are associated with an immune-
excluded TME (44) and loss of LKB1 in KRAS-mutant mouse models
drives immune evasion by promoting infiltration of neutrophils via
IL6 (45) and suppressing tumor-intrinsic STING signaling (46), type I
IEN signaling, and antigen presentation (47). Similarly, mutations in
KEAPI are associated with a T-cell excluded TME (48). KEAP1 loss
leads to the accumulation of EMSY, which directly represses tran-
scription of type I IFN response genes (49).

Prospects for Combining KRAS
Inhibition with Immunotherapy

The approval of immune checkpoint blockade (ICB) antibodies
targeting the immunosuppressive PD-L1/PD-1 axis has revolution-
ized the treatment landscape for patients with KRAS-mutant LUAD
(50, 51). These immunotherapies act to reinvigorate antitumor
immune responses and can achieve durable responses in a subset
of patients. KRAS G12C mutations are predominantly caused
by smoking and are associated with a high-tumor mutational
burden, which is predictive of response to ICB (52). However only
a minority of patients with lung cancer respond to ICB and other
KRAS-mutant cancers including PDAC and (MMR-proficient) colo-
rectal cancer have shown little benefit (53).

Given the established role of oncogenic KRAS in suppressing
antitumor immunity there exists a strong rationale for combining
KRAS inhibitors with immunotherapy. Indeed, numerous preclin-
ical studies have shown that KRAS G12C inhibitors can at least
partially reverse the KRAS-mediated immunosuppressive mechan-
isms described above and cause a profound remodeling of the
TME in KRAS G12C-mutant lung and colorectal cancer (Fig. 2;
refs. 12, 31, 54, 55). KRAS inhibition resulted in increased CD8"
T-cell influx and activation, polarization of the myeloid compart-
ment, increased antigen presentation, and upregulation of IFN
signaling transcriptional programs. The mechanisms underlying
some of these changes have been partly elucidated and reveal a
combination of direct tumor cell-intrinsic effects, such as decreased
secretion of monocyte and neutrophil chemoattractants, and indirect
effects, including stimulation of CXCL9 secretion by dendritic cells,
which promotes infiltration of activated T cells (31). Intriguingly,
KRAS GI2C inhibition has also been shown to expand tertiary
lymphoid structures (TLS; ref. 56), which are associated with immu-
notherapy response in multiple solid cancers (57), and boost the
production of protective tumor-binding antibodies. However, the
mechanism underlying this is still unknown. The novel KRAS
GI12D inhibitor, MRTX1133, has similarly been shown to enhance
antitumor immunity in mouse models of PDAC (58). The ability of
KRAS inhibition to stimulate antitumor immunity is also supported
by conditional genetic mouse models of KRAS-mutant colorectal
cancer (28) or PDAC (59) in which suppression of KRAS expression
increased influx of T cells. Although the changes in immune cell
populations and cytokine milieu in response to KRAS inhibition are
well described, it is still unclear whether the pro-inflammatory effects
are entirely due to the direct reversal of KRAS-mediated immuno-
suppression or also involves the induction of immunogenic cell death,
which is important for the priming of antitumor immunity.
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Strikingly, T cells and/or B cells are required for durable responses to
KRAS inhibitors in mouse models of lung cancer, colorectal cancer,
and PDAC (12, 54, 58), suggesting that the priming of an adaptive
immune response may efficiently eliminate drug resistant cells. This is
supported by preliminary clinical evidence that clinical resistance to
AMG 510 in refractory tumors is associated with immune evasion (60).
However, although KRAS inhibition as a monotherapy can generate
complete responses in some immunogenic mouse models, durable
responses have not been achieved in clinical settings. This inferior
response is, in part, due to the extensive tumor heterogeneity that exists
in late-stage human tumors and suggests further immunomodulatory
interventions will be needed. Indeed, numerous studies have demon-
strated the therapeutic benefits of combining KRAS inhibitors with
ICB in KRAS-mutant mouse cancer models. Combination treatment
with KRAS G12C inhibitor plus anti-PD-1 blockade cured the major-
ity of mice in the CT-26 syngeneic colorectal cancer subcutaneous
model (12, 55) and in a T-cell inflamed, TLS containing KRAS-mutant
orthotopic LUAD model (31, 54), and also caused sustained tumor
regression in  an  orthotopic PDAC model (bioRxiv.
2023.02.15.528757). Conversely, forced expression of oncogenic
KRAS in the ICB-responsive KRAS wild-type MC38 model abrogated
the activity of anti-PD-1 blockade (28). More preclinical models
should be assessed to gain better insight into the efficacy of this
combination across different cancer subtypes and baseline immune
profiles, with a specific focus on orthotopic models which most
accurately reflect the human disease and the tissue specific differences
in the TME. Indeed, numerous studies have shown that subcutaneous
and orthotopic tumors have different immune profiles and response to
immunotherapy (54).

Studies with KRAS inhibitors mirror earlier work, which demon-
strated the ability of BRAF and MEK inhibitors to enhance the
therapeutic activity of ICB in LUAD, colorectal cancer, and melanoma
mouse models (61-63). The combination of vemurafenib, cobimeti-
nib, and atezolizumab has recently been approved by the FDA for the
treatment of BRAF-mutant melanoma, which was shown in a phase I1I
clinical trial to improve progression-free survival (64). However, the
clinical utility of this combination is currently limited as the benefits
are moderate and come at the cost of high toxicities. In fact, two other
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phase III trials of combination inhibition of BRAF, MEK, and PD-1
failed to show benefit in melanoma.

With regard to MEK inhibitors, along with other generalized
blockers of MAPK signaling including ERK and pan RAS inhibitors,
it should be noted that the RAS/MAPK pathway plays a critical and
often multifaceted role in the regulation of most immune cells, for
example being activated very rapidly upon both T-cell receptor and
B-cell receptor stimulation. Any generalized inhibition of this path-
way runs the risk of impairing immune cell function and hence
compromising possible combination benefits between RAS pathway
blockade and immunotherapy. For this reason, mutant selective KRAS
inhibitors, which target KRAS only in the tumor cells and not the
immune system, are expected to be more promising candidates for
combination with immunotherapy than pan RAS, MEK, or ERK
inhibitors. Alternatively, intermittent dosing of RAS pathway inhibi-
tors may enable sufficient pathway inhibition in tumor cells, while
maintaining immune cell activity as has been shown with the MEK
inhibitor selumetinib (65).

Several clinical trials are currently testing the combination of KRAS
inhibitors with ICB (Table 1). Whether this combination will prove
more efficacious than either therapy alone remains unclear. However,
more urgently, it is clear from Amgen’s Codebreak 100/101 clinical
trial that combining sotorasib and anti-PD-(L)1 antibodies result in
greatly increased incidence of grade 3 to 4 liver toxicities (66).
Increased liver toxicities have also been described in patients that
received sotorasib after a previous treatment with anti-PD-1 therapies,
probably reflecting the long half-life of anti-PD-1 antibodies (67, 68).
This mirrors previous experiences in clinical trials combining target-
ed therapies with ICB including EGFR inhibitors (69)and ALK
inhibitors in NSCLC (70).

The mechanism underlying these toxicities is still unclear and will
require further investigation. One hypothesis is that the immune-
modulatory effects caused by targeted therapies may enhance
immune-mediate toxicities driven by immunotherapy. In this case,
similar toxicities might be observed with other KRAS inhibitors.
Another hypothesis is that the maximal dosing of sotorasib is causing
off-target covalent protein—drug conjugates leading to liver damage,
which is exacerbated by systemic immune activation due to ICB.
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Table 1. Clinical trials evaluating the combination of KRAS-G12C inhibitors with immune checkpoint inhibitors.

Drug Combination Clinical trial Company Phase Disease setting Comments
Sotorasib  Anti-PD-1/PD-L1 CodeBreak 100 (NCT03600883) Amgen Phase I/l Advanced solid tumors
Sotorasib  Pembrolizumab (PD-1)  CodeBreak 101 (NCT04185883) Amgen Phase I/l Advanced solid tumors
Atezolizumab (PD-L1)
Adagrasib  Pembrolizumab (PD-1)  KRYSTAL-1 (NCT03785249) Mirati Therapeutics Phase 1/2  Advanced solid tumors
Adagrasib  Pembrolizumab (PD-1)  KRYSTAL-7 (NCT04613596) Mirati Therapeutics Phase II/lll Advanced NSCLC, any  Includes phase IIl
PD-L1 TPS, candidate comparison with
for first-line pembrolizumab plus
treatment chemotherapy
Adagrasib  Nivolumab (PD-1) Neo-Kan (NCT05472623) Mirati Therapeutics Phase Il Resectable NSCLC Neoadjuvant treatment
for 6 weeks prior to
surgery
Adagrasib  Pembrolizumab (PD-1)  NCT05609578 Mirati Therapeutics Phase Il Advanced NSCLC with  Two cycles of adagrasib
PD-L1 TPS >1% followed by
combination
GDC-6036 Atezolizumab (PD-L1) NCT04449874 Genentech Phase | Advanced solid tumors
JDQ443 Tislelizumab (PD-1)-/+  KontRASt-01 (NCT04699188) Novartis Phase I/l Advanced solid tumors
TNO155 (SHP2i)
MK-1084 Pembrolizumab (PD-1)  NCT05067283 Merck Phase | Advanced NSCLC
LY3537982 Pembrolizumab (PD-1)  NCT04956640 Eli Lilly Phase | Advanced solid tumors
IBI351 Sintilimab (PD-1) + NCT05504278 Innovent Biologics  Phase | Advanced

chemotherapy

nonsquamous NSCLC

Note: All trials recruited patients harboring KRAS-G12C mutations.

Indeed, Genentech’s KRAS GI12C inhibitor GDC-6036, which is
administered at lower doses, has shown less liver toxicities in phase
I clinical testing (71). If this is the reason of the difference between both
compounds, more potent inhibitors which require even lower doses
could reduce the toxicities. In addition, patients receiving a lead-in
dosing strategy or lower doses of sotorasib with ICB have shown less
toxicities (66). Given this, Mirati has started a recent clinical trial
(NCT05609578) based on a lead-in strategy which tests two different
doses. Indeed, similar approaches have been used over the past decade
in search of the optimal sequencing regiment for combining MAPK
inhibitors with ICB in melanoma. Similar clinical trials assessing
different treatment sequences of KRAS inhibitors and ICB, including
intermittent scheduling or sequencing of combinations, may be
required to maximize the therapeutic effect of combinations while
minimizing toxicities. Furthermore, it is still unclear whether the
observed increase in toxicities is specific to sotorasib or due to the
covalent chemistry shared by other KRAS inhibitors. If this is the case,
it is possible that such toxicities will not be observed with the recently
developed KRAS G12D inhibitor MRTX1133, which is noncovalent.
There is hope with the recent early reports from Mirati’s KRYSTAL-7
clinical trial combining adagrasib with pembrolizumab which did not
result in substantial high-grade liver toxicities, although patient num-
bers as yet remain small (72).

The ability of KRAS inhibition to enhance the efficacy of ICB is only
seen in immunogenic tumor models, which are already partially
responsive to immunotherapy and no such synergy is observed in
intrinsically “cold” tumor models, which are immunotherapy refrac-
tory to start with (31). This observation has important clinical impli-
cations as it suggests only KRAS-mutant patients with an inflamed
TME would benefit from the combination of KRAS inhibitors and ICB
and calls into question whether such a combination would be effective
in ICB nonresponsive cancer types such as colorectal cancer and
PDAC. Moreover, different immunologic characteristics can also be
observed across different KRAS mutations. For instance, in NSCLC,
KRAS GI12D mutations are associated with low or never smoking
status, lower PD-L1 expression, and worse outcomes to PD-(L)1
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blockade (73), which could suggest potential variations in response
among different mutant-specific inhibitors. Importantly, the majority
of clinical trials testing the combination of KRAS inhibition and ICB
include mostly patients that have previously progressed after immu-
notherapy treatment and therefore the potential benefits of this
combination may not be fully realized. KRYSTAL-7 is the only clinical
trial currently evaluating the combination in ICB-naive patients and
has demonstrated an impressive ORR (49%) with a subset of patients
experiencing durable responses.

Furthermore, it is currently unclear whether common immuno-
suppressive co-occurring mutations, including LKB1 and KEAP1, may
negatively impact the immunomodulatory effects of KRAS inhibition
and its ability to enhance the response to ICB. Numerous clinical
studies have demonstrated an association between co-mutations in
LKB1 and KEAP1 with poor response to ICB in KRAS-mutant
LUAD (74, 75). These patients may require additional targeted
therapies to restore sensitivity to ICB. Preclinical studies have sensi-
tized LKB1-mutant LUAD to ICB by inhibiting autophagy, which led
to increased proteasome activity and antigen presentation (47) or Axl
receptor tyrosine kinase inhibition, which enhanced type I interferon
secretion in dendritic cells resulting in the expansion of ICB-
responsive TCF1" stem-like CD8" T cells (76). Therefore, specific
therapeutic approaches will need to be designed for patients with
different comutations and baseline immune profiles.

Future Directions

Clinical efforts are currently focused on assessing the combination
of KRAS inhibition with anti-PD-L1/PD-1 antibodies. However, it is
still unclear whether the issues of toxicity will be overcome and the
extent of the clinical benefits. Therefore, novel strategies are also being
explored to combine KRAS targeting with immunotherapies. Onco-
genic mutations in KRAS generate clonal neoantigens that are pre-
sented by MHC-I, which can be recognized by cytotoxic T cells. The
clinical benefits of this recognition were first realized in a case of
metastatic colorectal cancer, which was successfully treated by
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adoptive T-cell therapy using ex vivo expanded tumor-derived lym-
phocytes that specifically recognized KRAS G12D (77). This observa-
tion paved the way for the development of therapeutic KRAS-specific
T-cell receptors that bind mutant forms of KRAS with high specificity
and affinity (78, 79), which are now being tested in clinical trials (80).
Beyond cell-based therapies, numerous vaccines have also been devel-
oped to target KRAS-mutant tumor antigens. Moderna have developed
a lipid nanoparticle-formulated mRNA vaccine (mRNA-5671/V941),
which targets four of the most common oncogenic KRAS mutations
(G12C, G12D, G12V, and G13D) and is currently being assessed in
early-phase clinical trials in combination with pembrolizumab. This is
a promising approach given the recent results of a phase I clinical trial
in PDAC, which demonstrated responses in patients treated with an
mRNA vaccine targeting personalized neoantigens (81). Alternatively,
these therapies could also be used in combination with KRAS inhibitors
to eliminate drug resistant or persister cancer cells.

Recent work has also demonstrated that covalent KRAS G12C
inhibitors can be used to generate novel MHC-restricted drug-
peptide neoantigens, which can be targeted by antibodies (82, 83).
T-cell engagers (BiTE) have been generated from these antibodies,
which can direct T-cell-mediated killing of KRAS G12C tumor cells.
Such an approach may benefit from the combination of oncogenic
KRAS signaling inhibition and immune recognition of tumor cells.
Furthermore, KRAS G12C targeting BiTEs can also recognize tumor
cells that are resistant to KRAS inhibition provided that drug engage-
ment is maintained and therefore could be used to overcome targeted
therapy resistance. Although great progress has been achieved in
targeting KRAS-mutant tumor antigens, this approach is limited to
a subset of patients as the mutant KRAS peptide is only presented on
specific HLA alleles.

Preclinical studies exploring the response of tumors to KRAS G12C
inhibitors using spatial and multi-omic technologies have highlighted
the role of particular populations of immune cells in the TME in
impeding immune attack on the tumor, pointing the way to novel
approaches to combining RAS inhibition with immunotherapies. In
one study, imaging mass cytometry revealed a dramatic remodeling of
the TME in a “cold” model of lung cancer upon KRAS inhibition
involving expansion of a macrophage subset found exclusively within
the tumor domain, which interacted with fibroblasts and expressed
markers of antigen-presentation including CD86 and MHC-II (84).
Furthermore, this spatial analysis identified a distinct immune hub
within tumors comprising dendritic cells, Tregs, and activated CD8 T
cells. Another study employing deep profiling of preclinical models of
PDAC by single-cell RNA-sequencing demonstrated a shift in mac-
rophage phenotype upon KRAS inhibition characterized by depletion
of an Argl" cluster and enrichment of an MrcI™ cluster (bioRxiv.
2023.02.15.528757). Targeting specific immune populations, such as
macrophages or Tregs, could therefore potentiate the immunomod-
ulatory effects of KRAS inhibition, however it is currently unclear
whether similar changes in the TME occur in human patients. Deep
immune profiling of patients in response to KRAS inhibition, which
can be assessed in the neoadjuvant setting, would increase our
understanding of the mechanisms underlying therapy response and
identify novel rational combination therapies. Interestingly, both
Mirati and Amgen have started neoadjuvant trials in surgically resect-
able patients, providing a valuable opportunity to obtain tumor
material for conducting these types of studies.

An alternative approach could be to target KRAS-driven immune
evasion instead of KRAS. For example, oncogenic KRAS promotes
resistance to ICB by inducing the secretion of CXCR2 ligands, which
leads to the accumulation of myeloid-suppressor cells in the TME (28).
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Targeting CXCR2 has been shown to synergize with ICB in multiple
preclinical models of KRAS-mutant colorectal cancer and PDAC
(28,30, 85), providing a potential combination therapy for the treatment
of KRAS-mutant patients with cancer in the clinic. Similarly, the KRAS
effector protein TBK1 has been identified by CRISPR screening as a
mediator of immunotherapy resistance (86). A greater understanding of
how oncogenic KRAS drives immune evasion and immunotherapy
resistance will hopefully lead to additional rational ICB combination
strategies that can be tested in the clinic and may avoid the toxicities
currently associated with combining KRAS inhibitors with ICB.

Results from the recent phase ITI clinical trial assessing sotorasib in
KRAS-mutant NSCLC demonstrate that adaptive resistance is com-
mon and occurs rapidly. Targeted combination therapies may there-
fore be required to enhance the efficacy of KRAS inhibitors to achieve
more durable pathway inhibition. Such combinations may also prove
more effective in potentiating antitumor immune responses. Several
clinical trials are underway assessing the efficacy of KRAS inhibitors in
combination with other targeted therapies including CDK4/6 and
SHP-2 inhibitors. SHP-2 helps to mediate upstream activation of
KRAS, especially the G12C mutant form that cycles more rapidly
than most other mutants; however, it is also expressed in numerous
immune cell types and inhibition of SHP-2 has been shown in
preclinical tumor models to promote antitumor immunity and syner-
gize with ICB (87). CDK4/6 drive cell-cycle progression downstream
of the MAPK pathway and inhibition of CDK4/6 synergized with
KRAS inhibition in xenograft models. Furthermore, CDK4/6 inhibi-
tors have been shown to stimulate antitumor immunity by suppressing
the proliferation of Tregs (88). As with the combination of KRAS
inhibition and ICB, substantial effort will be required to understand
how best to combine these additional KRAS targeting therapies with
immunotherapy to minimize toxicities and maximize clinical benefits.

Although the initial excitement from the approval of sotorasib and
adagrasib has died down due to the realization of their limitations in
the clinic, there is a large body of evidence to support the hope that
combining KRAS inhibitors with immunotherapies may be able to
provide significantly improved outcomes in the treatment of KRAS
mutant cancers. Early negative experiences with sotorasib combina-
tions with PD-(L)1 blockade indicate that there will be many more
hurdles to overcome and much more to learn about the underlying
biology, but it is undeniable that there is huge potential in combining
the orthogonal approaches of targeting KRAS signaling together with
reactivating the immune system against the tumor. The next few years
should show whether this promise can be realized and deliver major
clinical benefit for patients.
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