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Abstract: Schizophrenia is a complex psychiatric condition that may involve immune system dysreg-
ulation. Since most putative disease mechanisms in schizophrenia have been derived from genetic
association studies and fluid-based molecular analyses, this review aims to summarize the emerging
evidence on clinical correlates to immune system dysfunction in this psychiatric disorder. We con-
clude this review by attempting to develop a unifying hypothesis regarding the relative contributions
of microglia and various immune cell populations to the development of schizophrenia. This may
provide important translational insights that can become useful for addressing the multifaceted
clinical presentation of schizophrenia.

Keywords: schizophrenia; microglia; neuroinflammation; immunological dysfunction; clinical
correlates

1. Introduction

Schizophrenia (SCZ), a chronic psychiatric illness that affects approximately 24 million
people worldwide, is characterized by the hallmark “positive” symptoms of hallucinations
and delusions and “negative” symptoms of apathy, anhedonia, avolition, and emotional
and cognitive impoverishment [1]. This debilitating disorder imposes a significant risk of
physical and mental health complications, ranging from coronary heart disease to suicidal
behavior (SB), highlighting reciprocal relationships between somatic psychic implications
in neuro-psychiatric conditions [2]. SCZ diagnosis is difficult due to the spectral nature of
the illness and the complex progression of its clinical manifestation. Patients with SCZ often
present with subtle irritation/behavioral changes in the prodromal phase, followed by the
onset of psychosis. Before 2013, SCZ was categorized into various subtypes (paranoid, dis-
organized, catatonic, undifferentiated, and residual) based on specific clinical presentations.
However, this discrete division of the illness was supplemented by the concept of SCZ
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being a spectral disease that includes schizoaffective, schizophreniform, and schizotypal
personality disorders [3].

Various environmental and genetic risk factors have been implicated in the etiology of
SCZ, with exposure to toxins/infectious agents, urban lifestyle, pregnancy complications,
substance abuse, family history, and male sex reportedly associated with an increase in SCZ
risk [4]. However, despite the discovery of many SCZ-associated genetic variants, to date,
no single gene has been identified as the dominant causative factor of SCZ development.
Currently, there are no effective treatments of SCZ as antipsychotics are only capable
of suppressing positive symptoms [5]. Therefore, further research into the cellular and
molecular pathology of SCZ is integral to the therapeutic development for this psychiatric
disorder.

Consistent with the neuropsychiatric nature of SCZ, various central nervous system
(CNS) abnormalities of affected individuals have been observed, including enlarged ven-
tricles, reduced gray matter volume, smaller hippocampus, decreased brain asymmetry,
and neurochemical disturbances [6]. Concurrently, accumulating evidence from neuroim-
munological studies is pointing to the immune system’s potential involvement in SCZ de-
velopment, an analogy to other major psychiatric conditions [7,8]. While several prominent
hypotheses, including immunocytokine-driven inflammation [9], innate immune-mediated
dysfunction in synaptic pruning [10], and antibody-mediated autoimmunity [11], have
been suggested, these hypotheses were predominantly derived by extrapolating SCZ-like
animal models and human genetic association studies/fluid-based molecular biomarker
analyses. Since evidence on cellular abnormalities in SCZ remains scarce and somewhat
scattered in the literature, this review aims to provide a comprehensive distillation of
clinical findings regarding the potential involvement of various immune cell types in SCZ
to facilitate the development of a unifying hypothesis of immune dysregulation in this
psychiatric illness.

2. Cellular Constituents of CNS Immunological Aberrations in SCZ

Following reports of elevated neuroinflammation in SCZ, an initial hypothesis stated
that CNS immune disturbance may be involved in SCZ pathogenesis. The subsequent
discovery of risk factors in genes associated with immune-mediated neurodevelopmental
processes and the identity of CNS immune cells provided further support for the im-
munological origin of SCZ (Figure 1). This section highlights important evidence of CNS
immune-related cell-based changes in SCZ and provides a discussion of potential caveats
in the interpretation of these findings.

2.1. Microglia

Microglia are the resident brain innate immune cells that have been implicated in
host defense against neurotropic pathogens, brain development, and neurodegenerative
disorders [12]. The growing importance of these cells in behavioral illnesses is also high-
lighted by the growing attention they have received in neuroimmunological investigations
studying possible alterations in their distribution and function in SCZ. Given the diffi-
culty of sampling live human microglia, cell characterization in SCZ has been mostly
conducted in post mortem brain samples. One of the earliest studies of microglia in SCZ
was an analysis of embryonic microglia derived from female patients with SCZ in whom
these cells displayed a highly phagocytic phenotype compared to healthy controls (HCs)
with no psychiatric illnesses [13]. Subsequently, morphologically activated microglia have
been observed in the prefrontal cortex (PFC) and visual cortex of paranoid and chronic
patients with SCZ in close proximity to dystrophic oligodendrocytes [14–16]. Further
subcategorization of patients with SCZ revealed that this abnormal microglia activation
phenotype might contribute to oligodendrocyte dystrophy in schizophrenia patients with
positive symptoms [17,18], providing some of the first morphological evidence for the
possible involvement of microglial activation in the development of these SCZ-associated
pathologies.
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ing of various T cell populations (CD3/CD4/CD8); and (4) CD20+ B cell accumulation and altered B 
cell receptor (BCR) repertoire. Abbreviations: ACC: anterior cingulate cortex; CSF: cerebrospinal 
fluid; DPFC: dorsal prefrontal cortex; FC: frontal cortex; HP: hippocampus; SEZ: subependymal 
zone. Red font indicates discrepancies among studies. 
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markers on microglia by immunohistochemical analysis and found increases in HLA-DR+ 
activated microglia in the frontal/temporal cortex and the hippocampus in patients with 
SCZ [19,20]. Of note, these activated microglia exhibited some degenerating features [21] 
and were reportedly associated with interleukin IL1β expression in the PFC [22]. Micro-
glia activation was also observed in some of these brain regions in patients with Alz-
heimer�s disease (AD) and affective disorders [23,24], suggesting the possible existence of 
microglia reactivity against a common dysfunctional neuronal circuit among various CNS 
disorders. However, microglia activation in SCZ and affective disorders remains to be val-
idated as some studies failed to detect changes in HLA-DR+ microglia in various brain 
regions, including PFC, anterior cingulate cortex (ACC), and hippocampus, and/or attrib-
ute this microglia activation profile to death by suicide [25,26]. Besides HLA-DR expres-
sion, a unique microglial proteome might exist in SCZ. For example, S100 calcium-binding 
protein (S100) A8/A9 expression [27], an inflammatory marker, was found to be upregu-
lated in frontal cortex microglia, while quinolinic acid expression, a neuroprotective mol-
ecule, was suppressed in CA1 hippocampal microglia in patients with SCZ [28]. Further-
more, patterns of expression of the purinergic receptor (P2RY12) were not altered signifi-
cantly in SCZ microglia compared to HCs, while downregulation of this marker was a 
cardinal feature of microglia in multiple sclerosis and AD [29]. 

Microgliosis, marked by increased ionized calcium-binding adapter molecule 1 (IBA-
1) staining density [30], has also been linked to the characteristic anatomical lateralization 
in the ACC of patients with SCZ, as well as patients with bipolar disorder (BD). However, 

Figure 1. Immunological disturbances in the central nervous system (CNS) of patients with
schizophrenia (SCZ). Region-specific immunological changes in CNS tissues of SCZ patients are char-
acterized by (1) elevated expression of various activation markers of microglia (S100/A8, HLA-DR),
decreased expression of neuroprotective quinolinic acid (QA), and increased microgliosis (IBA-1
density); (2) increased expression of macrophage markers (CD14 and CD163); (3) dynamic trafficking
of various T cell populations (CD3/CD4/CD8); and (4) CD20+ B cell accumulation and altered B cell
receptor (BCR) repertoire. Abbreviations: ACC: anterior cingulate cortex; CSF: cerebrospinal fluid;
DPFC: dorsal prefrontal cortex; FC: frontal cortex; HP: hippocampus; SEZ: subependymal zone. Red
font indicates discrepancies among studies.

In addition to these morphometric studies, others attempted to localize activation
markers on microglia by immunohistochemical analysis and found increases in HLA-DR+
activated microglia in the frontal/temporal cortex and the hippocampus in patients with
SCZ [19,20]. Of note, these activated microglia exhibited some degenerating features [21]
and were reportedly associated with interleukin IL1β expression in the PFC [22]. Microglia
activation was also observed in some of these brain regions in patients with Alzheimer’s
disease (AD) and affective disorders [23,24], suggesting the possible existence of microglia
reactivity against a common dysfunctional neuronal circuit among various CNS disorders.
However, microglia activation in SCZ and affective disorders remains to be validated as
some studies failed to detect changes in HLA-DR+ microglia in various brain regions,
including PFC, anterior cingulate cortex (ACC), and hippocampus, and/or attribute this
microglia activation profile to death by suicide [25,26]. Besides HLA-DR expression, a
unique microglial proteome might exist in SCZ. For example, S100 calcium-binding protein
(S100) A8/A9 expression [27], an inflammatory marker, was found to be upregulated in
frontal cortex microglia, while quinolinic acid expression, a neuroprotective molecule, was
suppressed in CA1 hippocampal microglia in patients with SCZ [28]. Furthermore, patterns
of expression of the purinergic receptor (P2RY12) were not altered significantly in SCZ
microglia compared to HCs, while downregulation of this marker was a cardinal feature of
microglia in multiple sclerosis and AD [29].

Microgliosis, marked by increased ionized calcium-binding adapter molecule 1 (IBA-1)
staining density [30], has also been linked to the characteristic anatomical lateralization in
the ACC of patients with SCZ, as well as patients with bipolar disorder (BD). However,
this abnormality was not observed in the PFC of SCZ patients [31], in which microglia
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showed synaptic pruning activity comparable to HC counterparts. This discrepancy may
be attributed to region-specific alterations in microgliosis in SCZ as a significant increase in
microgliosis was confirmed in the frontal and temporal cortex, but in no other regions [32].
Alternatively, age-dependent microgliosis may account for the discrepancy between the
aforementioned studies [33,34].

To circumvent several methodological shortcomings of post mortem studies, several
studies conducted microglia imaging in living patients with SCZ using translocator protein
(TSPO) tracer analysis. TSPO is a receptor mainly found on the outer mitochondrial mem-
brane that is expressed throughout the body and brain [35,36]. Among other functions,
TSPO can modulate the immune system through modulation of oxidative bursts by neu-
trophils and macrophages, inhibition of the proliferation of lymphoid cells, and secretion of
cytokines by macrophages [37]. Expression of TSPO has also been linked to inflammatory
responses that occur after vascular brain injury and in some neurodegenerative or mixed
neurodegenerative/vascular diseases, in which interesting links with neuropsychiatric
disorders are currently being investigated [24,38]. There are significant inconsistencies
among studies using TSPO tracer analysis to investigate possible alterations in the TSPO
signal [39–45], and even studies conducting systematic analyses of single-patient data could
not reach a consensus on changes in TSPO signal in SCZ brains [46,47]. This discrepancy
may be due to the lack of specificity of TSPO to microglia, as various cell subsets, including
astrocytes and endothelial cells, also showed this signal [48].

To date, cell-based evidence of the involvement of microglia in SCZ pathogenesis
remains inconclusive. While we cannot discuss this in detail here, numerous association
studies also suggested the presence of an increase in SCZ risk in various genes involved in
microglia-mediated neuroinflammation [49] and synaptic pruning [50], as well as microglia
homeostasis [51]. Of note, many of these molecules are not exclusively related to microglia
function and identity, which highlights the urgent need for more accurate characteriza-
tions/confirmation of possible changes in various aspects of microglia in this psychiatric
illness. Further studies with induced pluripotent stem-cell-derived microglia-like cells may
shed some additional light on the role played by microglia genetics in SCZ. Additionally,
the development of a rapid, efficient, and reliable method to isolate microglia from post
mortem brain tissues for high-throughput proteomic and transcriptomic analyses is ex-
pected to provide additional clarification regarding the involvement of this innate immune
cell type in SCZ.

2.2. Other Immune Cell Types

Besides microglia, abnormalities in other immune cells have also been detected in CNS
samples of SCZ patients(). For example, dynamic trafficking of adaptive immune cells in
the CNS has been linked to SCZ. Whole brain immunohistochemical quantitation of T cell
and B cell frequencies showed marked increases in these lymphocytes in patients with SCZ
and affective disorders compared to HCs [52]. Spatial analyses also revealed region-specific
alterations of these lymphocytes in SCZ brain tissues. In this regard, immunohistochemical
analysis in the dorsal PFC (DPFC) revealed a reduction in CD3+ T cell density in the
leptomeningeal space of subjects with SCZ compared to HCs and no significant difference
in the frequencies of these lymphocytes in the gray matter of both groups. Furthermore,
analysis of hippocampal T cell (CD3) and B cell (CD20) mRNA transcripts revealed a
significant increase in CD20 and CD3 expression in residual SCZ (characterized by negative
symptoms) compared to paranoid SCZ (characterized by positive symptoms) and HCs,
suggesting that adaptive immune cell trafficking to the hippocampus might be associated
with negative symptoms of SCZ [19].

Monophagocyte-related alterations have also been reported in SCZ brains. In the
neurogenic subependymal zone (SEZ), an SCZ subgroup with high inflammation (HC)
(defined by elevated expression of IL-1β, IL-1R1, serine protease inhibitor member 3
[SERPINA3], and c-x-c motif chemokine ligand 8 [CXCL8] mRNA transcripts) showed
higher expression of the identity markers of macrophages (CD163) and monocytes (CD14)
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than high-inflammation HCs [53]. Notably, increased infiltration of monophagocytes into
the SEZ appeared to be a shared pathological feature between patients with SCZ and
patients with BD [54]. In the mid brain, immunostaining revealed that CD163+ macrophage
density was elevated in high-inflammation SCZ compared to HCs [55]. Along with the close
association between these cells and dopaminergic neurons in the substantia nigra, a positive
correlation between CD163 and the complement C1 subcomponent A (C1qA) mRNA
transcripts was detected in high-inflammation SCZ, suggesting a possible involvement of
dysregulated complement-mediated phagocytic activity of these cells in the development
of inflammatory pathology in SCZ.

Nevertheless, the exact role played by these brain immune cells in SCZ remains
contentious. For instance, immunohistochemical analysis in the DPFC of SCZ patients
yielded no evidence of CD163+CD206+ perivascular macrophage infiltration into the brain
parenchyma [33]. In contrast, a different study that transcriptionally quantified CD163
mRNA expression in the DPFC showed that macrophage accumulation in this brain region
was a signature of high-inflammation SCZ [56]. These discrepancies might be attributed to
different analytical approaches employed by these studies (mRNA vs. protein expression),
as well as the heterogeneity of the SCZ cohort (i.e., the presence of high inflammation
or acute psychosis). Alternatively, procedural differences in tissue collection and storage
might also affect the detection of the macrophage marker of interest.

Besides post mortem brain studies, cerebrospinal fluid (CSF) analysis of adaptive
and innate immune cells in SCZ is another approach that has been investigated. For
example, acute psychotic symptomatology in SCZ patients [57] was associated with an
accumulation of monophagocytes in CSF samples. Further analysis revealed that this
signature of innate immune alteration was accompanied by an increase in the frequency of
lymphocytes with an activated phenotype during psychosis onset in SCZ [58]. Interestingly,
this abnormality was responsive to conventional neuroleptic medication, which led to post-
treatment normalization of monophagocyte counts in several subjects with SCZ. Alterations
in CD4+ and CD8+ T cells have also been reported in acutely psychotic SCZ [59]. Lastly, B
cells in the CSF of SCZ patients showed marked differences in their antibody repertoire
compared to HCs [60], hinting at a potential involvement of distinct pathogenic B cell
subsets in autoimmune-like symptoms of SCZ.

Collectively, these aforementioned studies highlighted the potential involvement of
CNS adaptive and innate immune cells in distinct SCZ-associated pathologies. While exces-
sive neuroinflammation may be uniquely linked to changes in monophagocytes, negative
symptoms of SCZ may be related to alterations in adaptive lymphocytes. Importantly, per-
turbations in both cell types might be associated with the onset of psychosis and have been
responsive to antipsychotic treatments. Some of these CNS immunological disturbances
could also represent an overlapping pathological feature among different neuropsychiatric
illnesses.

3. Alterations in Circulating Immune Cells in SCZ

While most studies of CNS immunity have focused on microglia, some also attempted
a more diverse characterization of the potential contribution of different peripheral immune
cell subsets in SCZ (Table 1). Findings on changes in innate immune cells, including mono-
cytes and neutrophils, along with those related to autoantibodies, presumably produced by
specific pathogenic B cell clones, appear to be the most consistent and/or have the lowest
risks of bias [61], thus supporting the inflammatory and autoimmune hypotheses of SCZ
pathophysiology. Various reports also suggested that natural killer (NK) cells and different
T cell populations in SCZ were dysregulated. In this context, this section summarizes
the major findings on peripheral immunological changes, including the proposed clinical
implications and associated mechanistic insights.
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3.1. Monocytes

In the innate immune system, monocytes represent the counterparts in the circulatory
system of microglia and are known for their plasticity in responding to environmental
changes. There is a growing body of clinical evidence of monocyte alterations in SCZ blood
samples [62] (Figure 2), including higher total monocyte counts in SCZ during the first
episode of psychosis, although some discrepancies remain as to whether these alterations
are linked to disease severity [63,64]. A similar increase in total monocyte number was also
observed in patients with non-affective psychosis [65], while elevated counts of classical
monocytes and proinflammatory monocytes have been linked to clozapine-treated and
recent-onset SCZ, respectively [66,67]. Several studies found higher monocyte-related
indices in SCZ. For example, a large study involving over 6000 patients with SCZ revealed
that the monocyte to lymphocyte ratio (MLR) was significantly increased in SCZ compared
to HCs [68]. Notably, this ratio could be used to distinguish SCZ (during the first episode
of psychosis) from HCs or patients during the first episode of depression [69]. Furthermore,
while elevated MLR may represent a shared pathological hallmark of SCZ and BD compared
to HCs, some discrepancies remain, possibly related to methodological variations and
differing patient inclusion criteria [70,71]. Similar relationships were observed between
monocyte counts and other metabolic markers, such as the cardioprotective HDL (monocyte
to HDL ratio, MHR), hinting at a possible involvement of these cells with the onset of
cardiometabolic comorbidities in SCZ and BD [72–75].
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Figure 2. Peripheral immune alterations in patients with schizophrenia (SCZ). Major changes in
immune cell types in blood samples of SCZ patients included: (1) Alterations in monocytes such as
increased monocyte-to-lymphocyte and monocyte to HDL ratios (MLR and MHR), changes in expres-
sion of various immunometabolic markers (TREM1/2, HLA-DR, CD36, reactive oxygen species [ROS],
GLUT1), and abnormalities in phagocytosis and cytokine production; (2) elevated expression of
various neutrophil-associated markers such as neutrophil to lymphocyte ratio (NLR), oxidative stress,
and phagocytosis; (3) presence of various autoantibody-producing pathogenic B cell clones, as well
as increased numbers of different B cell subsets; and (4) increased activation profile of T cells (CD25),
alterations in oxidative stress and T cell receptor [76] repertoire, and accumulation of immunoregu-
latory T lymphocyte populations, such as regulatory T (Treg), IL17-producing T-helper (Th17), and
mucosal-associated invariant T (MAIT) cells. Red font indicates discrepancies among studies.
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These observations of alterations in various monocyte features represent a significant
breakthrough in SCZ research. While many studies inferred a monocyte-associated gene
set from bulk immune cell transcriptome profiling, the studies mentioned above typically
focused on a phenotypic and functional characterization of the monocytes themselves. For
example, an interferon gene signature in isolated monocytes was observed in SCZ, with
dynamic changes over the disease course [77]. Interestingly, unique alterations in protein
tyrosine phosphatase non-receptor type 7 (PTPN7)/NGFI-A-binding protein 2 (NAB2) were
observed between SCZ and BD, while some overlapping gene signatures, characterized
by elevations in activating transcription factor 3 (ATF3)/dual specificity phosphatase 2
(DUSP2) and early-growth-response protein 3 (EGR3)/mad-max dimerization protein
(MXD1) [78], were shared between both illnesses. Regarding the activation phenotype, a
higher expression of triggering receptor expressed on myeloid cell (TREM) 1 and 2 was
documented in monocytes from patients with SCZ, with the former having been linked to
transcriptional changes in ATF3 and EGR3 [79,80]. Importantly, these changes were specific
to SCZ but not patients with major depressive disorder (MDD), thus providing further
evidence of the utility of monocyte-related markers as a distinguishing feature between
these two neuropsychiatric conditions. Increased expression of a canonical activation
marker, HLA-DR, was also observed in SCZ monocytes, along with changes in their
phagocytic activity during acute psychotic onset [81,82]. Alterations in cytokine production
were also observed in inflammatory mediators, such as the production of IL-1, IL-6, and
tumor necrosis factor (TNF-α) [83] from SCZ monocytes, which was accompanied by a
higher response to lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) stimulation [84].
Additionally, concanavalin (Con-A) stimulated IL1 secretion from monocytes in peripheral
mononuclear cells from drug-naïve SCZ patients was elevated [85], while polyinosinic-
polycytylic acid (poli I:C)/toll-like receptor 3 (TLR3)-stimulated intracellular production of
IL1 from monocytes was reduced compared to HCs [86]. Other changes in baseline TLR4
expression and TLR4 downregulation in response to LPS were also observed in monocytes
from SCZ with tardive dyskinesia [87] and in those from patients with first episode of
psychosis [88].

Of potential clinical utility is the presence of various monocyte-specific markers for
treatment response monitoring and differential diagnosis of SCZ. Specifically, reduced
glucose transporter (GLUT1) expression in monocytes has been proposed as a key diag-
nostic feature to distinguish SCZ from BD, MDD, and autistic spectrum disorder [89],
while soluble CD14, an identity marker of circulating monocytes, could accurately predict
subsequent SCZ diagnosis [90]. A monocytic transcription signature was also proposed as a
candidate marker for monitoring beneficial simvastatin response in patients with SCZ [91].
The effectiveness of other antipsychotics, such as haloperidol/perazin and clozapine, can
also be predicted by a reduced monocyte production of I-1/TNF-α and reactive oxygen
species (ROS), respectively, while the effectiveness of olanzapine could be monitored by
pre-treatment monocytic expression of the fatty acid receptor CD36 [83,92,93]. Altogether,
these findings on distributional, phenotypic, and functional alterations in monocytes are of
high clinical relevance to provide an improved understanding of the cellular mechanisms
of SCZ initiation/progression, as well as the regression of its clinical symptoms by currently
available pharmacologic agents.

3.2. Granulocytes

Circulating granulocytes consist of three major myeloid cell subsets, namely basophils,
eosinophils, and neutrophils. While the first two are rarely discussed in the context of neu-
ropsychiatric illnesses, an increase in neutrophil-related parameters represents one of the
most consistent findings regarding changes in peripheral immune cells in SCZ (Figure 2).
Several studies involving over 6000 patients found a marked increase in the total number
of circulating neutrophils during acute psychotic symptomatology in SCZ patients [68] and
in patients with a first episode of psychosis [94–96]. Notably, in the latter, the increase in
neutrophil count was associated with various CNS anatomical pathologies often observed
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in SCZ [97], including enlarged ventricles and reduced gray matter volumes, as well as
hallmark symptoms of this illnesses, such as hallucination and avolition. Comparable
increases in neutrophil count were also noted in other subtypes of SCZ, including para-
noid, residual, and non-affective psychotic patients [98,99]. Similarly, the neutrophil to
lymphocyte ratio (NLR), an index commonly used for clinical assessment of inflammation,
was higher in SCZ patients, with some sex-specific differences [100,101], and in patients
affected by MDD and BD [102–105]. Of note, NLR might represent a common feature of
immunological disturbance among various types of neuropsychiatric illnesses, ranging
from bipolar disorder and major depression to SCZ, although it remains unclear how the
actual magnitudes in NLR change should be interpreted to differentiate SCZ from manic
episodes of BD [70,106]. Furthermore, despite the consensus on increased NLR in SCZ,
conflicting findings exist regarding its potential association with various symptoms and
disease stages of SCZ. For instance, while increased NLR yielded no correlation with SCZ
severity and symptoms as assessed by the Brief Psychiatric Rating Scale (BPRS) [107],
the correlation became significant once different scales were used, e.g., the Positive and
Negative Syndrome Scale (PANSS) [64,108], the Clinical Global Impression-Severity Scale
(CGI-S) [109], and the Brief Negative Symptom Scale [100,110]. More specifically, a recent
large-scale analysis based on BPRS and CGI-S involving over 1000 SCZ patients demon-
strated a significant association between symptoms and NLR. Longitudinal changes in
NLR between disease relapse (increased NLR) and remission (reduced NLR) have also
been reported [111–113]; however, a large-scale study involving 618 patients found no dif-
ferences between these two disease stages [114]. Collectively, these conflicting results might
be attributed to the complexity of the progression of clinical symptoms in SCZ, which is
often compounded by the impact of various demographic factors (age/sex) and medication
status on neutrophil numbers. In fact, the agranulocytosis effect of clozapine [115] might
account for the observed reduction in NLR after treatment in SCZ [109,116], indicating
the potential clinical utility of this immunological marker for efficacy monitoring of this
atypical antipsychotics.

Besides changes in cell abundance, studies also reported various functional and phe-
notypic alterations of neutrophils in SCZ [116–121], including oxidative stress [108], which
showed a positive association with NLR counts in SCZ. Consistent with this finding, some
authors observed that SCZ neutrophils exhibited an increased expression of various mark-
ers of oxidative stress, such as malonaldehyde [122] and superoxide anion [123,124]. While
several studies reported increased phagocytic activity of SCZ neutrophils, the magnitude
of the observed increase differed significantly [81,124]. In summary, while certain details
regarding the mechanistic involvement of neutrophils in various clinical aspects of SCZ
pathogenesis remain to be confirmed in large-scale studies, most of the evidence suggests
that these sentinel innate immune cells play an important role in peripheral immune
dysfunction/inflammation in SCZ.

3.3. Natural Killer Cells

NK cells are a type of immune cell with both adaptive and innate features. They
have been implicated in a wide range of human diseases, ranging from infection and
cancer to CNS disorders. Potential abnormalities in both NK cell count and function have
been documented in SCZ, although with significant discrepancies among studies. Flow
cytometric analysis showed increased counts of NK cells in clozapine-treated chronic SCZ
blood samples compared to HCs [67]. In contrast, computational deconvolution based
on gene expression yielded lower NK cell numbers in both drug-naïve and medicated
SCZ patients [125,126], and this decrease was uncorrelated to psychotic relapse/remission.
A different flow cytometric study confirmed these lower NK cell counts in chronic SCZ;
however, medication appeared to increase NK cell numbers [127]. These differences could
be due to the different quantification methods used (flow cytometry vs. gene expression,
whole blood vs. peripheral mononuclear cells). Chronic SCZ subpopulations who received
differing regimens of antipsychotic drugs may exhibit distinct NK cell profiles. In fact, an
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earlier study involving a heterogenous SCZ cohort (more than four subtypes and treatment
modalities) failed to detect any abnormalities in immune cell counts in blood samples [128].
Regarding the function of NK cells in SCZ, there have been conflicting reports on NK cell
cytolytic activity, possibly related to significant variations in general NK cell lytic function,
medication regimes, and SCZ subtypes [129–132]. With regard to phenotypes, some studies
suggested that an elevated expression of NK-cell-activation markers, such as HLA-DR and
natural killer group 2C (NKG2C), might be associated with the first episode of psychosis
in SCZ patients compared to HCs. However, these features were also observed during
the first psychosis of patients with BD [133]. Another inflammatory marker of blood–
brain barrier (BBB) disruption, S100B, was reportedly elevated in NK cells of SCZ patients
during acute psychotic symptomatology compared to HCs, possibly associated with the
activation of stress signaling pathways [134]. In contrast, in medicated SCZ patients, disease
remission was linked to a higher NK cell production of IL17 [135]. Given these numerous
discrepancies, the involvement of NK cells in SCZ requires further validation studies with
a comprehensive analysis of all parameters of NK cell phenotype and function among
well-categorized SCZ and appropriately matched HC cohorts.

3.4. B Lymphocytes

Considering that various autoantibody types have been found to be elevated in serum
and CSF samples of SCZ patients, B cells, as producers of antibodies, have long been impli-
cated in the autoimmune hypothesis of SCZ (Figure 2). For instance, several small-cohort
studies suggested that autoantibodies may act against anti-glutamic acid decarboxylase
(GAD), γ-aminobutyric acid A receptor 1 (GABAR1), anti-acetylcholine receptor (A7ChR),
and N-metil-D-aspartato receptor (NMDAR) in SCZ pathogenesis [136–139]. However,
large-scale studies (n > 150) failed to confirm the biological significance of these autoan-
tibodies in this disorder [140–142], or they detected only a small range of autoantibodies
in low concentrations in certain SCZ subsets, such as clinically high-risk SCZ, SCZ with
the first episode of psychosis, and SCZ with tardive dyskinesia. Another set of small-
cohort studies found a high proportion (>20%) of autoantibodies against various classes
of molecules, including DNA/RNA species [143,144], heat-shock proteins [145,146], and
neuronal/neurotransmitter targets [147–150], which currently await further independent
validation with larger sample sizes. Finally, several large-scale studies reported the elevated
expression of circulating antibodies against IL-1, IL-6, IL-8, CD25, and gliadin (which has
also been linked to peripheral inflammation) in SCZ patients, suggesting a possible mecha-
nistic involvement of dysregulated inflammation in the B-cell-driven antibody-mediated
autoimmune hypothesis of SCZ [151–155].

Besides autoantibody characterization, only few studies examined potential alterations
in circulating B cell subsets in SCZ. Of note, circulating CD19+ B cells were elevated in
paranoid SCZ patients during acute psychotic symptomatology, which could be suppressed
by treatment [156]. Blood samples of clozapine-treated patients with chronic SCZ showed
elevated levels of naive IgD+CD27-CD19+ B cells [67]. CD5+ B cell counts were also
elevated in patients with SCZ; however, this increase remained unaffected by antipsychotic
withdrawal [157,158]. Furthermore, the association between CD5+ B cells and SCZ was
disputed by a study that considered the confounding effect of race, finding that African
Americans, regardless of their disease status (SCZ or HC), appeared to have higher levels
of CD5+ B cells than Caucasians [159]. Taken together, these findings warrant further
multidimensional analyses of B cell repertoire and function in SCZ, which is pivotal to
elucidate the mechanistic underpinnings of the various autoimmune-like pathologies in
selected SCZ subgroups.
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3.5. T Lymphocytes

Numerous phenotypic studies of various circulating T cell subsets have been con-
ducted in SCZ (Figure 2). While the findings were inconsistent with regard to the distribu-
tion of total CD3+ T cells, CD4+ helper T cells, and CD8+ cytotoxic T cells [127,156,160–162],
they mostly agreed with regard to increased T cell activation [66,163,164]. Furthermore,
activated T cells in medicated SCZ patients appeared to have higher levels of CD25 than
drug-naïve patients. Along with this ex vivo-activated phenotype, several studies ob-
served a reduced responsiveness to in vitro stimulation of IL-2 production in T cells from
drug-naïve SCZ patients compared to HCs [165–167]. However, this decrease in IL-2 pro-
duction was not observed in a study of paranoid and residual SCZ [99], possibly due to
how patients were stratified in this study and/or the use of purified T cells/peripheral
blood mononuclear cells vs. whole blood for in vitro assays. Regarding T-helper (Th) cell
subtypes, an increase in Th2 cells was reportedly associated with the SCZ subtype with a
pro-inflammatory monocyte feature [66]; however, this alteration could not be confirmed
by a different study [99]. The same two studies also yielded inconsistent findings regarding
the role of Th1 cells. In contrast, consensus exists regarding the elevated numbers of
regulatory T cells (Treg) and IL-17-producing Th cells (Th17) in SCZ [66,135,163,168–170].
Of note, the Treg increase in medicated SCZ patients was associated with fewer negative
symptoms [169], while Th17 elevation might be linked to psychosis [168,171]. Interestingly,
the Th17 increase in SCZ with the first episode of psychosis was suppressed by risperidone
treatment [168], while haloperidol or risperidone-treated SCZ patients continued to show
elevated Th17 numbers during stable remission [135]. These paradoxical findings warrant
further investigations into the longitudinal effects of antipsychotics on Th17 cell counts in
SCZ. Mucosal-associated invariant T (MAIT) cells [170] were also elevated in patients with
SCZ, supporting the hypothesis of mucosal microbiome involvement in SCZ pathogenesis.

Several studies investigating the T cell phenotype examined the expression of dopamine
receptors, the presumed target of clozapine [172]. However, their findings on the expression
of dopamine receptors D (DRD) 2 and 4 were inconsistent, likely due to methodological
differences (mRNA expression vs. flow cytometry) [173,174]. T-cell-specific oxidative dam-
age in SCZ has also been quantified and showed an increase in mitochondrial dysfunction
across different T cell subsets from patients with acute relapse compared to HCs [175].
Furthermore, this cellular pathology appears to be associated with positive symptoms [175].
Lastly, T cell methylation profile and repertoire were reportedly associated with distinct SCZ
subtypes. Widespread methylation markers in T cells were observed in SCZ patients with
more severe symptoms and cognitive impairment [176]. Additionally, some cis-diagnostic
(SCZ specific) and trans-diagnostic (common among several psychiatric illnesses) genetic
variants also appeared to be epigenetically active in CD4+ T cells, but not innate immune
cells, from SCZ patients, indicating the potential utility of these T-cell-specific biomarkers
for individualized therapeutic development in SCZ [177].

Overall, studies examining the role of T cells in SCZ point to possible alterations in
the activation status of this lymphocyte subset in SCZ, typically consistent with an increase
in the expression of the canonical activation marker CD25 and elevated counts of Treg and
Th17. To obtain a more comprehensive understanding of the role of T cells in SCZ, future
studies should attempt more detailed characterizations of other T cell subsets, as well as
different immunometabolic markers of T cells across the entire spectrum of SCZ patients
with different symptoms and treatment statuses.
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Table 1. Major immunological dysfunctions in patients with schizophrenia (SCZ).

Central
Nervous System Features Anatomical

Location

Microglia Increased phagocytosis [13] Whole brain
No change in phagocytosis [31] PFC

Increased IBA-1 [30] ACC
No change in IBA-1 [31] PFC

Increased HLA-DR [19,20] Frontal/temporal cortex, hippocampus
No change in HLA-DR [25,26] PFC, ACC, hippocampus

Increased S100A8/9 [28] Frontal cortex
Activated morphology [14–16] PFC, visual cortex

Microgliosis [32] Frontal/temporal cortex
Decreased quinolinic acid [29] Hippocampus

T cells Increased CD3+ frequency [19,48] Whole brain, hippocampus
Decreased CD3+ frequency [19] Dorsal PFC
Increased CD4+ frequency [55] CSF
Increased CD8+ frequency [55] CSF

B cells Increased CD20+ frequency [19,52] Whole brain, hippocampus
BCR alterations [60] CSF

Macrophages Increased CD163 [53,55,56] Dorsal PFC, CSF, SEZ
No change in CD163 [33] Dorsal PFC

Increased CD14 [53] SEZ
Increased frequency [57] CSF

Peripheral Blood Features

Monocytes Increased total monocyte counts [62–64]
Increased classical monocyte counts [66]

Increased pro-inflammatory monocyte counts [67]
Increased monocyte to lymphocyte ratio [68]

Increased monocyte to HDL ratio [72,73]
Increased TREM1/2 [79,80]
Increased ATF3/EGR3 [78]

Increased HLA-DR [82]
Increased phagocytosis [81]

Increased IL-1, IL-6, TNF-α [83,85,86]
Increased CD36 [93]

Increased reactive oxygen species [92]
Alterations in TLR4 signaling [84,87,88]
Unique interferon gene signature [77]

Reduced GLUT1 [89]

Granulocytes Increased neutrophil counts [68,94–99]
Increased neutrophil to lymphocyte ratio [100,101]

Increased oxidative stress [108]
Increased malonaldehyde [122]

Increased superoxide anion [123,123]
Increased phagocytosis [81,124]

Natural killer cells Increased total counts [68]
Decreased total counts [125–127]
No change in total counts [128]

Increased cytotoxicity [132]
Decreased cytotoxicity [129,130]
No change in cytotoxicity [121]

Increased NKG2C [133]
Increased S100B [134]
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Table 1. Cont.

Peripheral Blood Features

T Cells Increased CD3+ and CD4+ T cell counts [153]
Reduced CD3+ T cell counts [150]

Reduced CD4+ T cell counts [146,152]
Increased activation [63,154,155]

Increased CD25 [156]
Reduced IL2 production [156–158]
No change in IL2 production [92]
Increased Treg [63,155,159–162]

Increased Th17 [63,154–162]
Increased mucosal-associated invariant T cells [162]

Increased oxidative stress [166]
Altered methylation profile [167]

Altered TCR repertoire [167]

B Cells Increased CD19+ B cell frequency [156]
Increased IgD+CD27-CD19+ naïve B cell frequency [67]

Increased CD5+ B cell frequency [157,158]
No change in CD5+ B cell frequency [159]

Increased GAD, GABAR1, A7ChR, NMDAR autoantibodies [136–139]
No changes in GAD, GABAR1, A7ChR, NMDAR autoantibodies [140–142]

Increased DNA/RNA autoantibodies [143,144]
Increased heat-shock protein autoantibodies [145,146]
Increased neuronal marker autoantibodies [147–150]

Increased IL-1/IL-6/IL-8/gliadin autoantibodies [151–155]

4. Implications for Mechanistic Studies and Therapeutic Development

To explore disease mechanisms of SCZ, various in vitro and animal studies have
been established, with induced pluripotent stem cells derived from SCZ patients and
rodent strains based on human genetics as the most clinically relevant attempts to model
SCZ-associated pathology [178,179]. However, most immune-related studies to date have
focused exclusively on the role of microglia, but not other peripheral immune cell subsets,
in this psychiatric illness. For example, microglia from mice with an overexpression of C4,
a genetic risk factor of SCZ, exhibited increased synaptic pruning [180]. Similarly, microglia
derived from SCZ patient-derived induced pluripotent stem cells were reportedly more
activated and might cause neuronal metabolic disruption [181–183]. Building upon these
preclinical findings, our synthesis of clinical evidence pertaining to various alterations of
other immune cells in peripheral tissues, as well as the CNS, will provide an important
impetus for further mechanistic exploration of a potential dynamic interplay among these
cell types in different tissue landscapes during SCZ development.

Anomalies in various immune cell subsets and their trafficking patterns in SCZ also
suggest the potential utility of cell-type-specific immunotherapy as a novel pharmacological
approach for this psychiatric illness [184,185]. In this regard, immunomodulators aiming
to inhibit lymphocyte trafficking (fingolimod) and deplete B cells (anti-CD20 monoclonal
antibody, rituximab) could significantly improve negative symptoms and general psy-
chopathology of SCZ, respectively [186,187]. Furthermore, cytokine-based immunothera-
pies, including those aiming to inhibit IL-6 (tocilizumab) and TNF-α (adalimumab), showed
promising efficacy in some randomized controlled trials of SCZ [188,189]. Other immuno-
suppressants, such as azathioprine [190], prednisolone [191], and methotrexate [192], also
exhibited preliminary clinical benefits in SCZ patients.

Besides these classical immunotherapies, the potential clinical efficacy in SCZ of other
anti-inflammatory treatments, including aspirin, minocycline, N-acetylcysteine, estrogens,
telmisartan (an angiotensin receptor 1 antagonist), and pioglitazone (a PPAR-γ antago-
nist) [193–195], has been observed. Interestingly, other anti-inflammatory medications,
such as celecoxib, davunetide, dextromethorphan, fatty acids, pregnenolone, statins, and
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varenicline, did not have a significant impact on SCZ symptoms in a recent meta-analysis,
highlighting the presence of inflammatory-pathway-specific abnormalities in SCZ devel-
opment. Collectively, these findings support the emerging importance of immune-related
dysfunction as a targetable pathology of SCZ [196]. However, additional trials are required
to confirm these findings as the effectiveness of selected therapies, including anti-IL-6
and anti-CD20 antibodies as well as prednisolone, has been questioned in some clinical
studies [197–199].

5. Concluding Remarks

Our narrative synthesis of the literature on microglia and other cellular mediators of im-
munological dysfunction in schizophrenia points to the existence of several immunopatho-
logical hallmarks of SCZ in circulation, including major distributional abnormalities in
neutrophils, monocytes, immunoregulatory T cell populations, and autoantibody reper-
toire. In addition, there may be evidence of the occurrence of a dynamic trafficking pattern
of both adaptive (T and B cells) and innate (microglia and macrophages) immune cells in
various anatomical brain regions during different disease stages of SCZ. We also noted
numerous inconsistencies in the clinical evidence, which not only reflect the heterogenous
nature of this spectral disorder and other demographic and clinical confounders, but also
emphasize the urgent need for the development of high-throughput and high-resolution
methodological approaches to facilitate more comprehensive investigations of potential
abnormalities in the immune system’s cellular compartments. In this regard, cell-based
models of SCZ are of high mechanistic utility as the behavioral nature of this illness is likely
difficult to be faithfully recapitulated with animal modelling. Furthermore, such cell-based
models would yield a clearer delineation of the roles played by genetic vs. environmental
factors in SCZ pathogenesis and provide versatile platforms for therapeutic development
to address specific unmet needs in the clinical management of SCZ.

Author Contributions: Conceptualization, K.D.N., L.M. and A.C.; methodology, K.D.N. and L.M.;
writing—original draft preparation, K.D.N.; writing—review and editing, A.A. (Andrea Amerio),
A.A. (Andrea Aguglia), A.P. and B.C.; supervision, G.S., M.A. and A.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: KDN is the scientific founder of Tranquis Therapeutics, a biotechnology com-
pany that develops novel treatments for neuroinflammatory and neurodegenerative diseases. KDN
is also a scientific advisor for Tochikunda, a biotechnology company that develops SARS-CoV-2
diagnostic devices. All other authors declare no conflicts of interest and that they have no commercial
associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangement, etc.)
that might pose a conflict of interest in connection with the submitted article.

References
1. Faden, J.; Citrome, L. Schizophrenia: One name, many different manifestations. Med. Clin. N. Am. 2023, 107, 61–72. [CrossRef]
2. Costanza, A.; Baertschi, M.; Weber, K.; Canuto, A. Maladies neurologiques et suicide: De la neurobiology au manque d’éspoir

[neurological diseases and suicide: From neurobiology to hopelessness]. Rev. Med. Suisse 2015, 11, 402–405. [PubMed]
3. Lewine, R.; Hart, M. Schizophrenia spectrum and other psychotic disorders. In Handbook of Clinical Neurology; Elsevier: Amster-

dam, The Netherlands, 2020; pp. 315–333.
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