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ABSTRACT

PURPOSE The surrogacy of biochemical recurrence (BCR) for overall survival (OS) in
localized prostate cancer remains controversial. Herein, we evaluate the sur-
rogacy of BCR using different surrogacy analytic methods.

MATERIALS
AND METHODS

Individual patient data from 11 trials evaluating radiotherapy dose escalation,
androgen deprivation therapy (ADT) use, and ADT prolongation were obtained.
Surrogate candidacy was assessed using the Prentice criteria (including land-
mark analyses) and the two-stage meta-analytic approach (estimating Ken-
dall’s tau and the R2). Biochemical recurrence-free survival (BCRFS, time from
random assignment to BCR or any death) and time to BCR (TTBCR, time from
random assignment to BCR or cancer-specific deaths censoring for noncancer-
related deaths) were assessed.

RESULTS Overall, 10,741 patients were included. Dose escalation, addition of short-term
ADT, and prolongation of ADT duration significantly improved BCR (hazard
ratio [HR], 0.71 [95% CI, 0.63 to 0.79]; HR, 0.53 [95% CI, 0.48 to 0.59]; and HR,
0.54 [95% CI, 0.48 to 0.61], respectively). Adding short-term ADT (HR, 0.91
[95% CI, 0.84 to 0.99]) and prolonging ADT (HR, 0.86 [95% CI, 0.78 to 0.94])
significantly improved OS, whereas dose escalation did not (HR, 0.98 [95% CI,
0.87 to 1.11]). BCR at 48 months was associated with inferior OS in all three
groups (HR, 2.46 [95% CI, 2.08 to 2.92]; HR, 1.51 [95% CI, 1.35 to 1.70]; and HR,
2.31 [95% CI, 2.04 to 2.61], respectively). However, after adjusting for BCR at
48 months, therewas no significant treatment effect on OS (HR, 1.10 [95%CI, 0.96
to 1.27]; HR, 0.96 [95% CI, 0.87 to 1.06] and 1.00 [95% CI, 0.90 to 1.12], respec-
tively). The patient-level correlation (Kendall’s tau) for BCRFS and OS ranged
between 0.59 and 0.69, and that for TTBCR and OS ranged between 0.23 and 0.41.
TheR2 values for trial-level correlationof the treatment effect onBCRFSandTTBCR
with that on OS were 0.563 and 0.160, respectively.

CONCLUSION BCRFS and TTBCR are prognostic but failed to satisfy all surrogacy criteria.
Strength of correlation was greater when noncancer-related deaths were
considered events.

INTRODUCTION

Because of the long natural history of prostate cancer (PCa),
clinical trials that investigate management strategies in
localized PCa need prolonged follow-up and large sample
sizes to show overall survival (OS) benefits. Thus, significant

efforts have been invested in exploring the utility of sur-
rogate end points. One such candidate end point is bio-
chemical recurrence (BCR), which is a prostate-specific
antigen (PSA)–based end point that occurs much earlier in
the natural history.1 Two meta-analyses have shown that
event-free survival, a composite PSA-based end point,
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failed to meet surrogacy criteria for OS. The first used the
two-stage meta-analytic approach with individual patient
data (IPD),2-4 and the second used the second condition of
the two-stage approach with trial-level data.5 Both dem-
onstrated that current PSA-based end pointswere not able to
serve as surrogate end points for randomized trials. By
contrast, a secondary analysis of Radiation Therapy On-
cology Group (RTOG) 9202 showed that the time interval to
BCR met the Prentice criteria for surrogacy.6,7

In addition to methodologic differences in surrogacy criteria,
the conflicting results could also be explained by the
difference in definition of censoring and events between the
two studies. In the ICECaPmeta-analysis, patients with death
without previous recurrence (ie, who experienced other-
cause mortality) were censored at the time of last PSA as-
sessment if the interval between the last PSA assessment and
death was >15 months. However, in the secondary analysis of
RTOG 9202, death of any cause was considered an event. The
handling of other-causemortality as a censoring event versus
an end point event is pivotal as this could influence the
surrogacy potential of a BCR-based end point given the high
risk of competingmortality. To further investigate the impact
of the specific surrogate criteria and censoring mechanism
chosen on the surrogacy candidacy of BCR, we performed an
IPD meta-analysis of patients with localized PCa from 11
randomized controlled trials from the Meta-Analysis of
Randomized trials in Cancer of the Prostate (MARCAP) con-
sortium, using both the Prentice criteria and the two-stage
meta-analytic approach and evaluating both biochemical

recurrence-free survival (BCRFS; other-cause mortality as an
event) and time to BCR (TTBCR; other-cause mortality as a
competing risk) as candidate surrogate end points.

MATERIALS AND METHODS

This IPD meta-analysis was performed using trial data from
the MARCAP consortium, which has been described previ-
ously.8 Briefly, it contains IPD from randomized clinical
trials run through multiple collaborative groups including
the European Organization for Research and Treatment of
Cancer (EORTC), RTOG (now National Surgical Adjuvant
Breast and Bowel Project, Radiation Therapy and Oncology
Group, and Gynecologic Oncology Group [NRG] Oncology;
NRG/RTOG), Medical Research Council (MRC), Institute
of Cancer Research, Prostate Cancer Study group (PCS), the
Grupo de Investigación Clı́nica en Oncologı́a Radioterápica
(GICOR), and the Ottawa Hospital Research Institute.

Trial Selection

As our goal was to evaluate the surrogacy potential of
BCR-based end points, we chose to focus on interventions
that have been tested inmultiple randomized trials and been
shown to improve BCR-based outcomes. This led to focusing
on three forms of intensification: radiation therapy (RT)
dose escalation, the addition of short-term androgen dep-
rivation therapy (ADT), and the prolongation of short-term
ADT to long-term ADT. We included 11 randomized con-
trolled trials that investigated treatment intensification

CONTEXT

Key Objective
Biochemical recurrence (BCR) is an early event in the natural history of prostate cancer (PCa), and it is therefore of great
interest as a potential surrogate end point for overall survival (OS). Previous surrogacy analyses have yielded conflicting
conclusions about the surrogacy potential of BCR. Herein, we performed an individual patient data meta-analysis of 11
randomized controlled trials that used treatment intensification strategies with definitive radiotherapy known to reduce
BCR to evaluate its surrogacy. We used both the Prentice criteria and the two-stage meta-analytic approach to evaluate the
surrogacy of BCR-free survival (other-cause mortality as an event) and time to BCR (other-cause mortality as a competing
risk).

Knowledge Generated
Overall, there was a poor to modest correlation between these BCR-based surrogate end points and OS, suggesting that
BCR-based end points are not appropriate surrogate end points. The strength of its surrogacy potential appears to be
related to the censoring mechanism used, and in addition, the magnitude of improvement in BCR-based end points to
suggest an ultimate nonzero effect on OS varies between intensification strategies.

Relevance (M.A. Carducci)
Despite attempt to show potential surrogacy for OS using BCR as a potential marker, these results strongly suggest that
BCR-based endpoints should not be the primary endpoint in randomized trials conducted for localized PCa. Metastasis-free
survival remains an appropriate endpoint for prospective trials related to radiation therapy in localized disease.*

*Relevance section written by JCO Associate Editor Michael A. Carducci, MD, FACP, FASCO.
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using (1) RT dose escalation (MRC RT01, CKTO 9610, PCS III,
and RTOG 0126), (2) addition of ADT to RT (RTOG 9408, PCS
III, EORTC 22991, Trans-Tasman Radiation Oncology Group
[TROG] 96.01), and (3) prolongation of short-term ADT to
long-term ADT (RTOG 9202, EORTC 22961, DART/GICOR 01/
05, and TROG Randomised Androgen Deprivation and Ra-
diotherapy [RADAR]), respectively.9-18 The PCS III trial con-
tributed patients to trial groups 1 and 2. Details regarding
individual trials are given in the Data Supplement (Table A1,
online only).

Statistical Considerations

The primary objective of this study was to determine if
TTBCR is a surrogate intermediate clinical end point (ICE) for
OS in patients with localized PCa treated with RT with or
without ADT. In addition, we also investigated if changing the
underlying censoring mechanism causes any differential
impact on the surrogacy results by evaluating the surrogacy of
BCRFS. We applied both the Prentice criteria and the two-
stage meta-analytic approach to evaluate surrogacy of BCR
for OS, which was defined as the time from random assign-
ment to death from any cause or date of last follow-up.7,19

The Prentice criteria include the following: (1) treatment
should have significant effect on the true end point and (2)
the ICE; (3) there is a significant association between the ICE
and the true end point; and (4) the effect of the treatment
on the true end point is mediated by the effect of treatment
on the ICE.7 To investigate thefirst two criteria, we evaluated
the treatment effect on BCR and OS by computing the cause-
specific hazard ratio (HR) in the three different groups of
intensification trials, whereas for the third and fourth criteria,
we used landmark analyses. For determining the cause-
specific HR of BCR, BCR (as defined in individual trials,
Data Supplement, Table A2) was considered as events,
whereas patients without BCR were censored. HRs were es-
timated using multilevel multivariable Cox proportional
hazard models. The models included other prognostic cova-
riates because of their prognostic association as reported in
the previous literature to adjust for any imbalance induced by
defining the relevant cohorts for the landmark analyses.20

Additional details are provided in the Data Supplement.

The two-stage meta-analytic approach to evaluating sur-
rogacy is based on two conditions.19 Condition 1 requires the
surrogate and the true end point to be correlated, whereas
condition 2 requires the treatment effects on the surrogate
and the true end points to be correlated. Here, we evaluated
BCRFS and TTBCR separately. BCRFS was defined as the time
from random assignment to biochemical or clinical recur-
rence or the start of salvage ADT in the absence of recurrence
or deaths fromany cause, with censoring if patientswere lost
to follow-up or survived to the end of the follow-up period.
TTBCR was defined as the time from random assignment to
biochemical or clinical recurrence or the start of salvage ADT
in the absence of recurrence or cancer-specific deaths, with
patients censored if they were lost to follow-up or died of

other causes or survived to the end of the follow-up period.
OS was defined as the time from random assignment to
death. The validity of the surrogate is reflected by the
strength of both correlations. Condition 1 was examined at
both the patient and trial levels. At the patient level, we
applied a bivariate Copula model, modeling both the time to
surrogate end point and true end point to evaluate Kendall’s
t, measuring the rank correlation between the end points,
with bootstrapped 95% confidence intervals (CIs). At the
trial level, the correlation of the treatment effect on the
surrogate and true end point was determined using a
weighted linear regression model (additional details are
provided in the Data Supplement). To be consistent with
previous work and other surrogacy assessments in oncology,
we defined the a priori threshold of clinically relevant sur-
rogacy as R2 ≥ 0.7 and Kendall’s tau ≥0.7.4,21 All analyses were
performed using SAS 15.1 by SAS Institute Inc, Cary, NC, and
R version 4.1.0 (2021-05-18, The R Foundation for Statistical
Computing, Vienna, Austria) with its packages for statistical
analysis.

RESULTS

A total of 10,741 patients from 11 randomized trials were
included. Overall, 3,639 were treated on trials evaluating RT
dose escalation, 3,930 on trials evaluating ADT use, and 3,772
on trials of ADT prolongation (Data Supplement, Table A3).
Individual trial treatment effects and funnel plots for all end
points of interest are shown in the Data Supplement. The
median follow-upwas9.2 years (IQR,6.1-11.5) overall andwas
8.8 years (IQR, 6.7-10.5) for the RT dose-escalation group,
10.6 years (IQR, 6.6-13.4) for the ADT use group, and 8.6 years
(IQR, 5.6-11.2) for the ADT prolongation group. In the overall
cohort, the median age was 70 years (IQR, 65-74); 73% had
cT1/T2 disease, 85% had Gleason ≤7 disease, and the median
baseline PSA was 11.1 ng/mL (IQR, 7.1-18.0).

The results for multivariable Cox regression for treatment
effects on BCR and OS are shown in Table 1. In trials that
investigated the utility of RT dose escalation, there was a
29% reduction in the hazard of BCR with dose-escalated RT
(HR, 0.71; 95% CI, 0.63 to 0.79). However, RT dose escalation
hadno significant effect onOS (HR, 0.98; 95%CI, 0.87 to 1.11),
failing to meet the second Prentice criterion. Addition of
short-term ADT to RT was associated with a significant re-
duction in the hazard of BCR (HR, 0.53; 95% CI, 0.48 to 0.59)
and death (HR, 0.91; 95% CI, 0.84 to 0.99). Prolongation of
ADT was associated with a significant reduction in the hazard
of BCR (HR, 0.54; 95% CI, 0.48 to 0.61) and death (HR, 0.86;
95% CI, 0.78 to 0.94).

The results of landmark analyses are shown in Table 2, which
shows that the third Prentice criterion was satisfied for all
three groups of trials. In the first set of trials (low- v high-
dose RT), BCR events by 48 months (HR, 2.46 [95% CI, 2.08
to 2.92]) after random assignment were associated with
significantly increased hazard of deaths. Similar findings
were seen in the second set of trials (RT alone v RT plus ADT)
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where BCR events by 48 months (HR, 1.51 [95% CI, 1.35 to
1.70]) after random assignment were associated with sig-
nificantly inferior OS. Finally, in the third set of trials
comparing effects of long-term versus short-term ADTwith
RT, BCR events by 48 months (HR, 2.31 [95% CI, 2.04 to
2.61]) were also associated with significantly inferior OS.
Similar associations were found between BCR and distant
metastasis-free survival (DMFS) and prostate cancer–spe-
cific mortality (PCSM) for all three groups of trials, re-
spectively (Data Supplement, Table A4).

After adjusting for BCR at landmark time points, we did not
find any consistent treatment effect from RT dose escalation
on OS (Table 2). For trials investigating the effect of short-
term ADT to RT, there was a small and nonsignificant evi-
dence of beneficial treatment effects from the combination of
RT plus short-term ADT on OS after adjustment for BCR by
48months after random assignment (HR, 0.96 [95% CI, 0.87
to 1.06]). Finally, in trials evaluating the benefit of prolon-
gation of ADT duration with RT, there was some evidence of
beneficial treatment effects from ADT prolongation on OS
after adjustment for BCR by 36 months (HR, 0.94 [95% CI,
0.85 to 1.05]) after random assignment, whereas no effect
was seen at 48 months (HR, 1.00 [95% CI, 0.90 to 1.12]).
Overall, the fourthPrentice criterionwasnotmet consistently
across the three trial groups. The treatment effects on DMFS
and PCSM after adjustment for BCR at the landmark time
points are summarized in the Data Supplement (Table A4).

Meta-Analytic Approach

The patient-level correlation between TTBCR (non-PCa
deaths censored) and OS was low with Kendall’s t values of
0.371 (95%CI, 0.364 to 0.373), 0.233 (95%CI, 0.227 to 0.235),
and 0.414 (95% CI, 0.408 to 0.415), respectively, in the three
groups of trials. However, the correlation between BCRFS
and OS ranged from low to moderate. In the three groups of
trials, Kendall’s t for patient-level correlation between
BCRFS and OS was 0.693 (95% CI, 0.690 to 0.694), 0.589
(95% CI, 0.587 to 0.591), and 0.651 (95% CI, 0.648 to 0.652),
respectively. At the trial level, trial-specific treatment effects
on surrogate and true end points, measured by log HR for
each end point, are shown in forest plots in the Data Sup-
plement (Figs A1-A9).

The R2 value from the weighted linear regression of log HR
for OS and log HR for TTBCR was 0.162 (95% CI, 0 to 0.448;
Fig 1A). For BCRFS, the R2 value from the weighted linear
regression of log HR for OS and log HR for the surrogate
event was 0.563 (95% CI, 0.286 to 0.841; Fig 1B). The R2

value between the Kaplan-Meier estimate of 5-year TTBCR
and 8-year OS was 0.553 (95% CI, 0.323 to 0.783; Fig 2A),
whereas that between 5-year BCRFS and 8-year OS was
0.641 (95% CI, 0.442 to 0.840; Fig 2B). None of these R2

values met the predefined threshold of strong trial-level
correlation of the treatment effect on surrogate and true
end points. We estimated the surrogate threshold effect
(STE), defined as the maximum value of the HR for BCRFS
(HRBCRFS) or TTBCR (HRTTBCR) that needed to be observed in
a trial to ensure the possibility of a nonzero effect on OS.
The STE in terms of maximum HRTTBCR could not be de-
termined for RT dose escalation and ADT use trials. The STE
in terms of maximum HRTTBCR was 0.20 for ADT prolon-
gation trials. Similarly, for RT dose-escalation trials, STE in
terms of maximum HRBCRFS could not be determined.
However, for ADT use trials and ADT prolongation trials,
the STEs in terms of maximumHRBCRFS were 0.69 and 0.29,
respectively.

DISCUSSION

In this meta-analysis, we applied both Prentice criteria and
the two-stage meta-analytic approach to determine the
surrogacy of BCR for OS in men with localized PCa who
received RT with or without ADT. Overall, we found that
although BCRwas associated with increased risk of deaths, it
did not meet the criteria to be a surrogate for OS. One of the
potential reasons for this lack of surrogacy could be the
preponderance of non–cancer-specific deaths in this patient
population,22 which was reflected in the varying strength of
patient-level and trial-level correlations between the sur-
rogate end point and OS depending on the censoring of
noncancer-related deaths. Most notably, Kendall’s t at the
patient level for correlation between BCRFS and OS ranged
from 0.59 to 0.69, whereas for TTBCR, Kendall’s t values
ranged from 0.23 to 0.41. Similarly, the R2 value for the
correlation between log HR of OS and log HR of BCRFS was
0.56, whereas it was only 0.16 for the correlation between log
HR of OS and log HR of TTBCR.

TABLE 1. Summary of the Treatment Effect (cause-specific HR with 95% CI) on the Surrogate End Point (BCR) and True End Points

Trial Group

Treatment Effect on BCR, Cause-Specific
HR (95% CI)

Treatment Effect on True End Points,
Cause-Specific HR (95% CI)

Overall Follow-Up PCSM DMFS OS

High-dose RT v conventional dose RT 0.71 (0.63 to 0.79) 1.02 (0.78 to 1.32) 0.99 (0.88 to 1.11) 0.98 (0.87 to 1.11)

RT plus short-term ADT v RT alone 0.53 (0.48 to 0.59) 0.50 (0.40 to 0.62) 0.89 (0.82 to 0.97) 0.91 (0.84 to 0.99)

RT plus long-term ADT v RT plus short-
term ADT

0.54 (0.48 to 0.60) 0.66 (0.54 to 0.80) 0.80 (0.73 to 0.88) 0.86 (0.78 to 0.94)

Abbreviations: ADT, androgen deprivation therapy; BCR, biochemical recurrence; DMFS, distant metastasis-free survival; HR, hazard ratio; OS,
overall survival; PCSM, prostate cancer–specific mortality; RT, radiation therapy.
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Our findings help clarify the conflicting results reported by
the ICECaP group, which used the two-stage meta-analytic
approach to determine surrogacy of a composite PSA-based
end point (of which approximately 2/3 of events were BCR),
and the findings of Dignam et al who used the Prentice
criteria to demonstrate surrogacy between the time interval
to BCR and OS.4,6 Our findings largely agree with the con-
clusions of the ICECaP group (which included seven of the
trials evaluated in the present analysis) and a second, trial-
level meta-analysis,5 both of which found that a largely
PSA-based end point was not a valid surrogate for OS. The
present analysis adds to these by using the two-stage meta-
analytic approach and analyzing the Prentice criteria for the
surrogacy of BCR specifically, using IPD and harmonizing
the investigated intensification strategies of the trials. On
the basis of the present meta-analysis, ADT prolongation
should reduce the hazard of BCR or death by at least 71% to
have a nonzero effect on OS, whereas addition of ADT to RT
should reduce the hazard of BCR or death by at least 31% to
have a nonzero effect on OS. However, previous IPD analyses
from the MARCAP group suggest that the upper bounds of
the 95% CI for BCRFS is 0.95 for pure dose escalation, 0.79
for adding short-term ADT to low-dose RT, and 0.64 for
adding short-term ADT to high-dose RT, suggesting that
BCRFS would not be a reliable surrogate for OS in the context
of these interventions.23 In fact, in the context of dose es-
calation, there was a slight inverse correlation between
BCRFS and TTBCR and OS. Although the upper bounds of the
95% CI for BCRFS for prolonging ADT were 0.52 in the
context of low-dose RT and 0.46 in the context of high-dose
RT,23 we were not able to identify a STE for this intervention
in our present analysis. Thus, while BCRFS may, in theory,
function as a surrogate in certain contexts, it does not re-
liably do so across these rigorously studied intensification
strategies. The observed differences in patient-level corre-
lation of BCRFS (or TTBCR) with OS between the three groups
of trials may be affected by differential durations of gonadal
suppression and post-testosterone recovery subsequent
PSA kinetics.24-26 When TTBCR was used rather than BCRFS
(meaning that other-cause mortality was censored), corre-
lations eroded significantly at both the patient and trial
level. Overall, these findings suggest that the strength of
association between BCR and OS varies on the basis of the
underlyingcensoringmechanismused todefine theBCR-based
end point. Thus, while BCR is indeed of important prognostic
significance, its use as a surrogate end point should be
discouraged. More broadly, the findings underscore the im-
portance of understanding censoring, particularly in situa-
tions where other-cause mortality can potentially outweigh
cancer-specific mortality.

As with any study, this meta-analysis is not without limi-
tations. First, while the MARCAP consortium was able to
provide data for most of the relevant phase III clinical trials
of each treatment intensification strategy, the analysis does
not include all such trials ever conducted. The definition of
BCR varied between trials, ranging from the older ASTRO
definition to the more recent Phoenix criteria, which could

TABLE 2. Summary of the Effect of Treatment Intensification on True
End Points After Adjustment for the Surrogate Event (BCR) at Landmark
Time Points

Treatment Intensification Effect

Overall Survival

HR (95% CI)

Trials comparing high-dose v low-dose RT

Adjusted for BCR ≤12 months from
random assignment

BCR event 4.00 (3.08 to 5.19)

High- v low-dose RT 0.98 (0.87 to 1.11)

Adjusted for BCR ≤24 months from
random assignment

BCR event 3.40 (2.82 to 4.11)

High- v low-dose RT 1.00 (0.88 to 1.13)

Adjusted for BCR ≤36 months from
random assignment

BCR event 2.69 (2.26 to 3.20)

High- v low-dose RT 1.07 (0.93 to 1.22)

Adjusted for BCR ≤48 months from
random assignment

BCR event 2.46 (2.08 to 2.92)

High- v low-dose RT 1.10 (0.96 to 1.27)

Trials comparing RT plus short-term ADT v RT alone

Adjusted for BCR ≤12 months from
random assignment

BCR event 1.88 (1.52 to 2.32)

RT 1 ADT v RT alone 0.93 (0.85 to 1.02)

Adjusted for BCR ≤24 months from
random assignment

BCR event 1.80 (1.55 to 2.08)

RT 1 ADT v RT alone 0.93 (0.85 to 1.02)

Adjusted for BCR ≤36 months from
random assignment

BCR event 1.63 (1.44 to 1.85)

RT 1 ADT v RT alone 0.92 (0.84 to 1.00)

Adjusted for BCR ≤48 months from
random assignment

BCR event 1.51 (1.35 to 1.70)

RT 1 ADT v RT alone 0.96 (0.87 to 1.06)

Trials comparing RT plus long-term ADT v RT plus short-term ADT

Adjusted for BCR ≤12 months from
random assignment

BCR event 1.79 (1.44 to 2.22)

Long-term ADT v short-term ADT 0.87 (0.79 to 0.96)

Adjusted for BCR ≤24 months from
random assignment

BCR event 2.07 (1.80 to 2.39)

Long-term ADT v short-term ADT 0.91 (0.82 to 1.01)

Adjusted for BCR ≤36 months from
random assignment

BCR event 2.20 (1.95 to 2.48)

Long-term ADT v short-term ADT 0.94 (0.85 to 1.05)

Adjusted for BCR ≤48 months from
random assignment

BCR event 2.31 (2.04 to 2.61)

Long-term ADT v short-term ADT 1.00 (0.90 to 1.12)

Abbreviations: ADT, androgen deprivation therapy; BCR, biochemical
recurrence; HR, hazard ratio; RT, radiation therapy.
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affect the threshold at which salvage therapy was instituted.1

This could potentially bias the correlation between BCR and
subsequent longevity. A small proportion of patients had
low-risk disease, which might have further downplayed the
strength of correlation between BCRFS or TTBCR and OS.
Furthermore, the study included trials that were conducted
approximately over more than two decades during which
patient selection, staging, diagnostic criteria including grade
grouping, and therapeutic approaches including RT and ADT

have witnessed significant evolution.27,28 Analysis of indi-
vidual trial effects and funnel plots suggest that although
intertrial heterogeneity exists, as to be expected, the overall
effect sizes were relatively consistent, strengthening the
meta-analytic approach. The use of multiparametric mag-
netic resonance imaging has allowed for higher accuracy of
detecting clinically meaningful cancer, better patient se-
lection, and radiation dose escalation.27,29-31 Staging inves-
tigations evolved from the use of conventional imaging to
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FIG 1. Bubble plot and weighted linear regression for the treatment effect (log HR)
for ACM and the treatment effect (log HR) for (A) TTBCR and (B) BCRFS. Circle size
and regression were weighted by inverse variance of log hazard estimates for
surrogate events. BCRFS was defined as the time from random assignment to
biochemical or clinical recurrence or the start of salvage ADT in the absence of
recurrence or deaths from any cause, with censoring if patientswere lost to follow-up
or survived to the end of the follow-up period. TTBCR was defined as the time from
random assignment to biochemical or clinical recurrence or the start of salvage ADT
in the absence of recurrence or cancer-specific deaths, with patients censored if they
were lost to follow-up or died of other causes or survived to the end of the follow-up
period. ACM, all-cause mortality; ADT, androgen deprivation therapy; BCRFS, bio-
chemical recurrence-free survival; HR, hazard ratio; TTBCR, time to BCR.
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the use of prostate-specific membrane antigen (PSMA)–
based positron emission tomography (PET) scans.32 Similar
evolution has taken place in post-treatment response as-
sessment. Although PSA has continued to be an integral part
of the post-treatment evaluation process, use of PSMA-
based PET has ushered a new era by early detection of
metastatic disease.33 This can potentially alter treatment
decisions in several patients in the recurrent setting and
might confound the prognostic link between BCR and OS. In
addition, although it is shown that BCR is not a surrogate of

OS, it still has a significant impact in the evolving disease
course of patients with PCa. Patients who experience BCR
may receive salvage systemic therapies, particularly if dis-
tant metastases develop, and others may pursue local sal-
vage therapies that can cause other toxicities. These salvage
therapies might have immense ramifications on the overall
quality of life for those patients and their families. Finally,
from an oncologic efficacy standpoint, salvage treatment
options including systemic therapies have significantly
improved for men with recurrent metastatic castrate-
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FIG 2. Bubble plot and regression of ACM at 8 years and (A) TTBCR and (B) BCRFS
at 5 years. All estimates are Kaplan-Meier estimates by trial and treatment arm.
BCRFS was defined as the time from random assignment to biochemical or clinical
recurrence or the start of salvage ADT in the absence of recurrence or deaths from
any cause, with censoring if patients were lost to follow-up or survived to the end of
the follow-up period. TTBCR was defined as the time from random assignment to
biochemical or clinical recurrence or the start of salvage ADT in the absence of
recurrence or cancer-specific deaths, with patients censored if they were lost to
follow-up or died of other causes or survived to the end of the follow-up period. ACM,
all-cause mortality; ADT, androgen deprivation therapy; BCRFS, biochemical
recurrence-free survival; KM, Kaplan-Meier; TTBCR, time to BCR.
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sensitive or castrate-resistant PCa.34-40 The continuously
changing landscape of systemic therapy could have affected
our association given the wide spectrum of trials over the
past few decades. Further improvement in systemic therapy
over time could potentially nullify the strength of correlation
of the treatment effect on BCR with that on OS in these
patients.

Overall, these results strongly suggest that BCR-based end
points should not be the primary end point of any randomized
trial in localized PCa.Moreover, when designing confirmatory
randomized trials on the basis of phase II readouts of a BCR-
based benefit, the power calculation and feasibility analysis
must consider that an extremely large effect on a BCR-based
end pointwould be necessary to expect an ultimateOS benefit.
It should also be noted that the emergence of prognostic
and predictive biomarkers might affect the surrogacy of
BCR in different ways. Given that our findings demonstrate
the prognostic association between BCR and OS and the
relative importance of noncancer-related deaths and
cancer-specific deaths in nonmetastatic PCa, BCR is clearly
not an ideal end point for biomarker development or vali-
dation in general. Nonetheless, it is possible that a biomarker

might identify a select group of patients with extremely
aggressive disease, and the correlation between BCR-based
end points and OS may be stronger in these patients
compared with others.41 Still, such patients are likely to also
receive intensified salvage therapy including life-
prolonging systemic therapy that could erode the surro-
gacy of BCR for OS. Thus, only data from specifically
designed prospective trials can provide further clarity on
the potential surrogacy of BCR for such patients. At this
point, metastasis-free survival is a more appropriate end
point for prospective clinical trials investigating strategies
related to RT in localized PCa.

In conclusion, in this IPD-based meta-analysis, we noted
that BCR is prognostic for OS; however, neither BCRFS nor
TTBCR consistently met surrogacy criteria for OS. The
variability in the strength of association between the sur-
rogate and true end point with higher strength when BCRFS
was used as a surrogate could be attributed to relative
preponderance of non–cancer-specific deaths in this patient
population. These findings underscore the impact of varying
the censoring criteria used in the definition of surrogate end
points.
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