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Abstract: Artificial intelligence (AI) methods applied to healthcare problems have shown enormous
potential to alleviate the burden of health services worldwide and to improve the accuracy and
reproducibility of predictions. In particular, developments in computer vision are creating a paradigm
shift in the analysis of radiological images, where AI tools are already capable of automatically
detecting and precisely delineating tumours. However, such tools are generally developed in
technical departments that continue to be siloed from where the real benefit would be achieved with
their usage. Significant effort still needs to be made to make these advancements available, first
in academic clinical research and ultimately in the clinical setting. In this paper, we demonstrate
a prototype pipeline based entirely on open-source software and free of cost to bridge this gap,
simplifying the integration of tools and models developed within the AI community into the clinical
research setting, ensuring an accessible platform with visualisation applications that allow end-users
such as radiologists to view and interact with the outcome of these AI tools.
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1. Introduction

Medical imaging is routinely used in clinical centres to detect and monitor vari-
ous diseases. In particular, it is one of the pillars for the diagnosis and treatment mon-
itoring of cancer, with computed tomography (CT) being one of the standard-of-care
imaging methodologies.

The field of medical imaging has undergone a rapid evolution following the devel-
opment of new instrumentation over the last several decades. But although imaging is
one of the core components of patient care, and despite the multitude of related advance-
ments in mathematical and computation methods for image analysis, in practice, the
analysis of radiological images in the clinical setting is still often limited to a manual and
semi-quantitative assessment.

Quantitative analysis of radiological images can support decision making and improve
patient care. One example of this is the radiomics approach, which extracts features from
image pixel data, conveying information not identifiable by eye about their distribution of
grey levels, intensity or heterogeneity [1–3]. Multiple studies have focused on assessing the
clinical relevance of such features and using them in the training of machine learning (ML)
models for disease classification or prediction of tumour evolution or treatment response,
with promising results [4].

Computational methods play a key role in both image reconstruction and image analysis.
Image reconstruction refers to theory and algorithms for computationally recovering the
(medical) image from measured sensor data. For example, a magnetic resonance imaging
(MRI) reconstruction will turn data collected from a radiofrequency head coil of an MR
scanner into the image of a head that can be readily interpreted by a human observer. Image
reconstruction often takes place on the scanner itself, but offline reconstruction can be very
important for specialist research applications. Image analysis refers to computational
methods for the downstream processing of images that aims to extract clinically relevant
information from them. The last decade has seen an increased effort in developing artificial
intelligence (AI)-based methods for image analysis, and in particular methods that build on
deep neural networks (DNNs). These DNN-based models can, in specific settings, exhibit
excellent performance that rivals human performance [5].

The potential of the aforementioned research on AI models for image reconstruction
and image analysis is best realised if these are developed, tested and deployed in close
collaboration with health care professionals in a clinical setting [6]. However, most devel-
opments on mathematical and computational methods for medical images are still far from
being deployed in the clinical setting. Integrating AI-based support systems for cancer
detection and treatment into the clinical setting, creating an automated end-to-end pipeline
for the optimisation of image reconstruction and the extraction of clinically relevant infor-
mation, is the ultimate goal of our interdisciplinary team. Here, we present the first stage:
integrating deep learning (DL)-based automated tumour segmentation and ML-based
predictive models into the clinical research setting, using high grade serous ovarian cancer
(HGSOC) as a specific use case for which no tools are openly available yet. HGSOC is
the leading cause of mortality associated with gynaecologic malignancies; the five-year
survival rate for those with metastatic disease is under 30% [7].

Our aim is to establish a workflow for integrating AI-based inference models (which
can be for reconstruction, segmentation, prediction, etc.) into the clinical research setting,
to make such algorithms and models available to radiologists as end-users and to aid
AI developers to test, validate and improve them with real clinical data. In this paper,
we will describe the general elements of the pipeline first and then focus on the concrete
use case of HGSOC as an example, using the in-house methods we have developed,
namely a DL-based model for automated segmentation followed by an ML-based radiomics
prediction of chemotherapy treatment response.
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2. Materials and Methods

This section outlines how to set up a technical platform for creating and deploying
AI-based workflows for image-guided clinical research, which caters to both end-users (clin-
icians, in particular radiologists) and developers of AI models (mathematicians, computer
scientists and data analysts), with CT in oncology serving as the exemplary use case. Build-
ing such a platform is a huge task that requires vast software engineering resources, and
the strategy is therefore to build on existing initiatives for platforms that follow a similar
design philosophy. The desired properties required are:

• The seamless integration of AI models that allows for their agile development and
upgrading.

• Being based on open-source software to (i) enable academic reproducibility of clinical
AI research, (ii) reduce the cost of research and (iii) ensure that continued research
in the area is not contingent on collaborations with specific commercial partners or
vendors.

• Zero footprint, to avoid version mismatches and incompatibilities, and the need to
install software locally.

• Being built on a user-friendly and intuitive application that allows the end-user to
view and interact with the radiological images.

2.1. AI Integration for Developers

A key functionality aimed at developers is to offer scalable application programming
interfaces (APIs) for integrating bespoke AI models into existing workflows. Some openly
available platforms are the https://www.nvidia.com/en-gb/clara/ (accessed on 23 June
2023) Clara Medical Imaging Platform by NVIDIA, https://github.com/microsoft/
InnerEye-DeepLearning (accessed on 23 June 2023) InnerEye-DeepLearning by Microsoft
or GaNDLF [8]. We used the Clara Medical Imaging Platform, which is highly flexible
and includes an open-source image-processing framework suited for AI models in medical
imaging (https://docs.nvidia.com/monai/ (accessed on 23 June 2023) Medical Open
Network for AI (MONAI)) along with software development kits (SDKs) for training (Clara
Train SDK) and deployment (Clara Deploy SDK).

In addition, thanks to its integration with XNAT and the user interface provided by
the OHIF viewer plugin, it also offers means to make such algorithms and models available
to radiologists as end-users, as we will describe.

2.1.1. Imaging Database and Visualisation

The first element necessary for such a pipeline is a safe and robust framework to store
the necessary clinical files in an accessible manner. For images, these are files in the digital
imaging and communications in medicine (DICOM) http://medical.nema.org/ (accessed on
23 June 2023) format, but the framework should also be able to include other formats. We
chose the Extensible Neuroimaging Archive Toolkit (XNAT) [9] as our framework. It is a
widely used open-source framework that provides a web-based interface to an underlying
database that is especially suitable for imaging research in clinical multi-centre projects.
XNAT provides a user interface that allows users to access data simply via a web browser,
an Internet connection and personal login details. The desired platform built on XNAT
ensures the import, archiving, processing and secure data distribution required for the study
of clinical data, the aim of our pipeline. Detailed instructions to install and set up an XNAT
server are available in the https://wiki.xnat.org/documentation/xnat-administration
(accessed on 23 June 2023) official XNAT documentation, which was followed for the work
presented here.

One of the most popular XNAT plugins integrates the Open Health Imaging Foun-
dation (OHIF) viewer [10], creating a DICOM visualisation environment directly within
the web browser used by the end-user. This requires only the plugin to be installed in
the repository server where XNAT is deployed, giving access to the viewer to all users
without them having to install any software (zero footprint). The installation of the OHIF

https://www.nvidia.com/en-gb/clara/
https://github.com/microsoft/InnerEye-DeepLearning
https://github.com/microsoft/InnerEye-DeepLearning
https://github.com/mlcommons/GaNDLF
https://docs.nvidia.com/monai/
http://medical.nema.org/
https://wiki.xnat.org/documentation/xnat-administration
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viewer plugin to XNAT is extremely easy, as it only requires copying the plugin .jar file in
the appropriate folder (e.g., /data/xnat/home/plugins) and restarting the tomcat service.
More details can be found in the https://wiki.xnat.org/documentation/xnat-ohif-viewer
(accessed on 23 June 2023) official documentation followed.

2.1.2. AI Inference and Training

There are different ways in which we can interact with our pipeline, which vary in
terms of the level of user interface availability. On one extreme, we have the possibility
to incorporate and run AI models directly from the visualisation framework created by
the OHIF viewer plugin, which allows end-users to interact with the input and output
of the model inference without any knowledge of the specifics of the code running in the
background. This will be demonstrated in the final part of this paper.

On the other extreme, the https://xnat.readthedocs.io (accessed on 23 June 2023)
XNATPy Python interface provides a client that exposes XNAT objects and functions as
Python objects and functions. Through this method, it is very easy to establish with only
a few lines a connection to XNAT to read existing files in the database, and to create and
upload new files, imaging sessions, subjects, etc. An example script that simply establishes
a connection with the XNAT database, opens stored DICOM files and performs an action
on them can be found in Figure 1.

Optional, example

Optional, example

Establish 
connection to 
XNAT using 

XNATPy

XNATPy

Navigate XNAT’s  
project > subject > experiment 
structure and open DICOM files

Figure 1. Example script using XNATPy to establish a connection with the XNAT database, open
stored DICOM files and perform an action on them.

Between these two levels of interface, tools can also be developed and deployed
with (i) with the https://developer.nvidia.com/industries/healthcare (accessed on 23

https://wiki.xnat.org/documentation/xnat-ohif-viewer
https://xnat.readthedocs.io
https://developer.nvidia.com/industries/healthcare
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June 2023) NVIDIA Clara Application Framework and (ii) XNAT’s capability of running
containerised software. For the latter, XNAT has a dedicated plugin for controlling and
running containers using Docker [11] and Docker Swarm. Instructions to build, set up
and launch containers within the XNAT platform can be found in the https://wiki.xnat.
org/container-service/ (accessed on 23 June 2023) XNAT container service documentation,
with illustrative examples showing how containers can be run from specific projects and
imaging sessions within the database. This method provides APIs to easily interact with
the container service, managing containers, configurations and commands.

In general, XNAT provides an ideal environment for image processing, but it is
important to highlight that it is not limited to DICOM files, as it provides a structured
storage system for any type of files, which can in turn be used as the input to AI models, and
also stored back to the database with the output of the model. In particular, we stored raw
files containing sinograms extracted from the CT scanner together with the reconstructed
images, which could themselves be used for AI-based image reconstruction, using different
containerised reconstruction models.

2.1.3. Automated Segmentation Tools

In order to integrate automated segmentation methods, we selected tools devel-
oped by NVIDIA that are publicly available and provide client APIs compatible with
a range of viewers, including Slicer [12] and OHIF, that facilitate the interaction with the
platform for AI developers and the integration and testing of models. Originally, our
pipeline was developed using the AI-assisted annotation (AIAA) SDK described in the
https://docs.nvidia.com/clara/clara-train-sdk/aiaa/index.html (accessed on 23 June 2023)
AIAA documentation, which is part of the Clara framework.

AIAA runs easily as a Docker container, and once the AIAA server is deployed and
connected to XNAT, models are automatically available for end-users in general or on
a project-level basis, as selected by the XNAT administrator. Crucially, this AIAA frame-
work allows XNAT administrators to easily add new models, which is a key advantage
of our pipeline. The mask containing the semantic segmentation created by the DL-based
model inference is seamlessly returned to the viewer and immediately overlaid on the input
radiological images. Control then passes back to the OHIF viewer, which allows end-users
to interact with the segmentations, scrolling, editing or deleting them as appropriate, and
saving them directly into XNAT, where they become searchable data objects. Detailed
instructions on how to install the AIAA server version used in this paper, and how to
upload models, have been added to the https://wiki.xnat.org/documentation/xnat-ohif-
viewer/xnat-ohif-plugin-installation-and-administration-124813344.html (accessed on
23 June 2023) XNAT’s online documentation library.

Subsequent work by our team has added compatibility of the inference functional-
ity of the https://github.com/Project-MONAI/MONAILabel (accessed on 23 June 2023)
MONAILabel project to the XNAT-OHIF plugin. This follows upgrades by NVIDIA on
their AIAA tools, replacing the original, closed-source commercial library with the PyTorch-
based open-source framework for healthcare imaging MONAI [13]. This holds out the
potential of training and re-training models in response to real-time inputs by end-users
directly through their interface with OHIF viewer. However, this aspect of the workflow
remains as a work in progress.

New models can be incorporated to the pipeline through the AIAA server API web-
page, or with the command line via a https://curl.se/ (accessed on 23 June 2023) curl
command. In our case, we incorporated our pre-trained models using the latter, for which
the following elements are necessary:

(i) A self-contained library of the new model. It must include pre-trained weights
and any additional parameters needed at runtime. Depending on the AIAA version used,
a .ts (PyTorch TorchScript) file containing the model library might be necessary during
the upload to AIAA. However, once the library is installed and available for the Docker
container in the library path, changes can be carried out directly in the installed library. For

https://wiki.xnat.org/container-service/
https://wiki.xnat.org/container-service/
https://docs.nvidia.com/clara/clara-train-sdk/aiaa/index.html
 https://wiki.xnat.org/documentation/xnat-ohif-viewer/xnat-ohif-plugin-installation-and-administration-124813344.html
 https://wiki.xnat.org/documentation/xnat-ohif-viewer/xnat-ohif-plugin-installation-and-administration-124813344.html
https://github.com/Project-MONAI/MONAILabel
https://curl.se/
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those models that cannot be exported as .ts due to their characteristics, we tested uploading
a simplified or even dummy .ts file with curl, which informs AIAA that a new model exists.

(ii) An appropriate custom inference to communicate the model I/O within the
overall context of Clara/AIAA. Based on the simple examples provided by NVIDIA
in https://docs.nvidia.com/clara/clara-train-sdk/aiaa/byom/byoi.html (accessed on
23 June 2023) their documentation, we built the CustomInference needed for our ovar-
ian cancer example, simply stating the I/O and performing all the logic inside a wrapper
called OvarianPrediction defined within the custom library, as shown in Figure 2.

Initialisation

Access to 
input  

images

Example 
custom 

prediction

Output persistence 

Figure 2. Example custom inference implemented for the ovarian cancer segmentation to integrate in
the AIAA framework, showing the I/O logic necessary before and after running the algorithm.

(iii) A .json configuration file. Importantly, it should contain:

• Type: Segmentation, Annotation or Deep Grow (see 2.2 D).
• Labels: the output that will be retrieved from the model, in the expected order and

with the names to be displayed.
• Pre-transforms: must include at least the loading of images (via MONAI).
• Inference: including I/O (like Figure 2).

https://docs.nvidia.com/clara/clara-train-sdk/aiaa/byom/byoi.html
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• Post-transforms: must include at least a transformation to NumPy array (via MONAI)
needed for the final writing of the output.

• Writer: using the predefined AIAA method.

Hence, the simplest configuration file for our example ovarian cancer segmentation
that considers two possible outcomes (treatment response and non-response), and in which
all the logic (including specific pre- and postprocessing steps) happens within the inference
of our custom model (therefore with just the exception of the I/O elements necessary to
interface with AIAA/MONAI) would look like the one in Figure 3.

Figure 3. Simple configuration file showing the I/O elements necessary for a custom model with
two possible outcomes (treatment response and non-response) to interface with AIAA/MONAI,
keeping all the logic in the custom inference (CustomInference_om_crs.CustomInference).

Once these elements have been created, an example of the curl command to upload or
incorporate the new model into the AIAA server would look like:

curl -X PUT "http://$AIAA_SERVER_IP/admin/model/$model_name?native=true" \\
-F "config=@$model_path/model_config.json;type=application/json" \\
-F "data=@$model_path/model.ts”

2.2. AI Integration for End-Users

Usability is key to ensuring that end-users (e.g., radiologists and clinicians) can interact
with the AI models in an effective and simple way, without needing programming skills.



Diagnostics 2023, 13, 2813 8 of 22

The XNAT ecosystem offers such an interaction with tools and user interfaces that enable
running the AI models both interactively and automatically. Users can interact with the
output of the models, and ultimately take active part in the development of such and new
models at their own institutions, using their own patient data with a focus on their own
clinical questions. This section outlines a high-level overview of the main features provided
by the our platform in terms of AI integration and usability for end-users.

2.2.1. Imaging Database and Visualisation

Data within XNAT is organised into projects where each research study can be assigned
its own project. Access to a project’s data can be controlled by the administrator assigning
access permissions to authorised users. Within each project, the data are divided into
subjects (typically patients) that in turn are composed of one or multiple experiments
(equivalent to imaging sessions of a given modality, with all common DICOM modalities
supported such as CT, MRI, radiography, etc.). A schematic view of the display of a test
dummy project in XNAT can be found in Figure 4.

Figure 4. Schematic view of the display of a test project in XNAT.

For end-users, the XNAT-OHIF Viewer plugin provides, besides the standard features
for medical image viewing (such as windowing, scroll, multi-viewports, and a cine player),
other advanced features such as multi-modal image fusion and multi-planar reformatting. It
also supports different annotation tools, including mask segmentation, contour delineation
and measurements.

2.2.2. AI Inference and Training

The viewer allows end-users to run AI models, as it will be shown while viewing
images, as well as visualise the segmentation output overlaid on images and edit the
segmentation interactively to adjust or fine-tune the output. The end-user can then export



Diagnostics 2023, 13, 2813 9 of 22

the output in a DICOM-compliant format to be stored directly on XNAT, as well as import
the segmentation data of a previously stored run result. The inference can also be run in
batches using containerised software.

2.2.3. Automated Segmentation Tools

The platform created provides a pre-trained NVIDIA organ and image modality-
specific models available in their catalogue, for example, for CT images of the spleen, the
liver, or the pulmonary findings of COVID-19. Such models are able to return multiple
labels (e.g., different organs individually or a given organ + tumour) and they can be
classified in three different categories:

• Segmentation models, to produce segmentations in a fully automated manner, without
any user input.

• Annotation models, semi-automated models requiring user input (selected seed points
defining a bounding box).

• Deep Grow models, interactive models that follow the “clicks” by the user to define
and iteratively refine the region of interest (foreground vs. background).

Models installed on the AIAA server by system administrators to the AIAA server
are available to end-users and displayed in a drop-down menu in the OHIF viewer plugin
when an imaging session is opened, as illustrated in Figure 5, divided in each of those
three categories.

Figure 5. View of a CT imaging session in the OHIF viewer plugin to XNAT with the mask menu on
the right-hand side presenting the connection to the AIAA server established and the drop-down
menu with the categories of available AI models.

2.3. Example Use Case: Ovarian Cancer Segmentation and Response Prediction

As a concrete example, this section describes the pipeline framework in the context of
ovarian cancer, integrating AI methods for automated tumour segmentation and prediction
of chemotherapy treatment response. In order to achieve the desired pipeline framework,
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we integrated different elements represented in the schematic overview of the pipeline that
can be found in Figure 6, highlighting its multiple components.

Figure 6. Overview of the pipeline created for the ovarian cancer segmentation and response
prediction use case, showing its multiple components that seamlessly integrate AI models into
visualisation tools.

High-grade serous ovarian cancer is typically diagnosed at a late stage, in which
the disease has spread across the whole abdomen and beyond. To distinguish between
lesions found in different locations, we introduced different disease classes for each location
and trained multiple models for the segmentation of those. A total of three models were
trained targeting different lesion locations, namely (i) pelvic/ovarian and omental lesions
(as suggested in [14]); (ii) abdominal lesions, namely lesions in the omentum, right- and left
upper quadrant, the mesentery and the left and right paracolic gutter; and (iii) lymph nodes,
namely infrarenal, suprarenal, supradiaphragmatic and inguinal lymph nodes. For each
one of these three models, a .json configuration file and a curl command, as explained in the
previous section, was created and used to upload each model independently, specifying the
different labels of the output mask(s). This, in practice, was very simple, as the same library
is shared by all of them, and the only additional code was in terms of a new CustomInference
for each one with the appropriate settings.

The DL-based model used was a modified version of the model suggested in [14]. The
model was created by extensive hyper-parameter tuning using a parametrisation suggested
by the nnU-Net framework [15] as a baseline to ensure state-of-the-art performance. The
architecture was chosen to be a four-stage U-Net with a ResNet [16] encoder of 1, 2, 6,
and 3 blocks and 32, 64, 128, and 256 filters per stage. Before training, all volumes were
first re-sized to an in-plane pixel spacing of 0.8 mm and 5 mm slice distance followed by
windowing and normalisation, as suggested by nnU-Net. The training was performed
using a batch size of 4, forcing one sample in each batch to be centred at a randomly
chosen foreground voxel. A linear ascent plus cosine decay was chosen as a learning rate
schedule with maximum 0.02. Standard stochastic gradient descent with a Nesterov’s
momentum [17] of 0.98 and weight decay of 10−4 was used as the optimiser. The data
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augmentation applied during training was left unchanged as suggested by nnU-Net. Dur-
ing inference, we prevented subsampling artifacts for scans with low slice thickness, by
re-sampling the volumes to 5/k instead of 5 mm slice distance. The obtained volume was
split in k subvolumes by picking every kth slice, each of which was evaluated individu-
ally. Next, the sliding window algorithm was applied on each subvolume to predict the
segmentation on the full subvolumes rather than patches. After this, the predictions of the
subvolumes were merged again to one volume with slices in the corresponding positions
of their image inputs. In contrast to [15], we did not apply extensive flipping as test time
augmentations to reduce the computational cost. Finally, an ensemble of three identical
models trained at random seeds were used as an ensemble at inference time by computing
the average over the softmax outputs of the network. The conversion to integer-valued
labels was performed by applying the channel-wise argmax-function. The implementation
was performed using PyTorch 1.9 and is available at LINK BLINDED. It is recommended to
perform the inference using a GPU compatible with CUDA 10 and at least 6 GB of VRAM.

For the present pipeline and as a proof of concept, we created an additional segmen-
tation model using the network described previously, which outputs the segmentation
of specifically the omental lesions to afterwards run an ML-based prediction of treat-
ment response on the segmented area. Once the segmentation inference finishes and the
output mask is obtained, this prediction is used to extract radiomic features using the
https://pyradiomics.readthedocs.io/en/latest/ (accessed on 23 June 2023) PyRadiomics
python library. The aim is to use these radiomics measurements to predict the response of
the patient to neoadjuvant chemotherapy treatment (NACT) according to chemotherapy
response score (CRS). CRS is the most validated early surrogate biomarker of response
in HGSOC [18]; however, its primary drawback is that it can only be calculated on an
omental tissue specimen after surgery. A previously validated radiomics-based method
has shown to predict CRS from pre- and post-NACT CT scans without the need of surgical
specimens [4]. For simplicity, the predictive model described in [4] was recreated with the
selected clinically interpretable features only, using a random forest model trained and
validated on the same datasets as the original work. The ML model was built and saved
as a Python scikit-learn joblib file and loaded at runtime as a postprocessing step after the
inference is obtained. The final outcome of the DL+ML model is therefore the segmenta-
tion of the omental lesions labelled with either ‘TRUE’ (green coloured segmentations) or
‘FALSE’ (red coloured segmentations) if the prediction for the patient is to respond or not,
respectively, to NACT, according to the CRS.

2.4. Hardware and Information Governance Requirements

The different elements in Figure 6 are incorporated into the pipeline such that the
several processes run unperceived by the end-user. In general terms, it requires two servers
to be deployed and connected to each other:

• Repository server, either Linux-based or able to run a virtual machine (VM) via Vagrant
or similar to deploy the XNAT-based database.

• AI server, with GPU access and Docker installed, to run the AIAA Docker container
and the inference of the models. It also needs to have a static IP address accessible
from the repository server.

Both servers can be hosted in the same physical or virtual machine. The platform has been
tested with different configurations, with either a local, physical machine vs. a cloud-based
solution for either or both the repository and the AI server, including testing with local services
as well as with commercial solutions such as Amazon Web Services (AWS).

It is a requirement for our repositories to store only de-identified images; however,
given appropriate security measurements, the pipeline could be replicated in an identifiable
context. According to the chosen configuration, there are different possibilities as well to
be in accordance with information governance requirements. The ovarian cancer use case
presented here is in fact following the most challenging configuration in this respect, since
it works with a cloud-based repository server and an independent, physical AI server. In this

https://pyradiomics.readthedocs.io/en/latest/


Diagnostics 2023, 13, 2813 12 of 22

setting, and in order to prevent the transfer of DICOM images, even though de-identified
at the origin, we opted to use the option of the AIAA integration in the OHIF viewer plugin
that works with an intermediate file format: the DICOM images open in the viewer are
buffered and a NIfTI [19] file, with only reduced metadata, is created and transferred to the
AI server instead.

3. Results

The example of the ovarian cancer described in Section 2.3, including segmentation
and response prediction, will be used in this section to illustrate the steps and tools created
for the pipeline, applied to a specific use case.

3.1. Pipeline and APIs

Once the AIAA Docker container is running in the AI server, an API web-page is ready
and can be accessed in the URL of the static (public) IP address of the server, as shown in
Figure 7, accessed as http://AIAA_SERVER_IP.

Figure 7. Upper portion of API web-page created by the NVIDIA AIAA Docker container and
accessed in the URL of the static (public) IP address of the server.

This API interface gives access to basic administration commands (e.g., list, access,
upload or delete models) that can be run interactively through this web page, as illustrated
in Figure 8, accessed as http://AIAA_SERVER_IP/docs.

http://AIAA_SERVER_IP
http://AIAA_SERVER_IP/docs
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Figure 8. Basic administration commands (e.g., list, access, upload or delete models) accessible
through the API interface.

Any additional packages can be installed inside the AIAA Docker container by ini-
tiating a remote shell via the SSH protocol into it, provided that compatible versions of
the desired libraries exist. In our ovarian cancer use case, it was necessary, for example, to
install two additional Python libraries: rt-utils and PyRadiomics. When the AIAA Docker
container is started, it is advisable to pass as input and mount a directory accessible from
outside the container. This is where sessions (equivalent to imaging sessions) will be
temporarily stored and where the libraries of our custom models will be installed, typically
in a path of the form: aiaa_workspace/aiaa-1/lib/). Files can be changed or added directly
in this directory from outside the container, for example, if we want to replace weights with
an updated version. This can be carried out very easily, simply by adding/replacing those
files, without needing to upload the model to AIAA again: the only necessary step for the
AIAA server to pick up the changes is to restart (stop and recreate) the Docker container.

aiaa_workspace/aiaa-1/lib/
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From the API web-page, it is also possible to access the logs generated by the AIAA
server, containing useful information, for example, to debug if an error happens when
uploading or running a model, or to print out debugging information for further develop-
ments. It can be accessed as http://AIAA_SERVER_IP/logs.

During execution, the end-user will just see a waiting screen, transparent to any
processes running in the AI server in the meantime (e.g., segmentation model inference), as
shown in Figure 9. The waiting time can take from seconds to several minutes, depending
on the size of the imaging session, the Internet network, the AI server capacity and the
complexity of the model inference running.

Figure 9. Waiting screen seen by the end-user while the session is created at the AI server and the AI
inference process is running.

3.2. Integration of a New Model into the Pipeline

In Section 2.3, we detailed the process followed to upload the custom model for
ovarian cancer using a curl command. It is also possible to upload new models, prepared
in the same way, through the AIAA API shown in Figures 10 and 11, replacing the curl
command with the appropriate API command.

http://AIAA_SERVER_IP/logs
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Figure 10. API web page for uploading new models.

Figure 11. API command for new model uploading to the AIAA server.
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3.3. Example: Ovarian Cancer Segmentation

For this example, we created AI models for the automated segmentation of ovarian
cancer lesions, and incorporated them into our pipeline. An example of the visualisation
of one of the three different ovarian cancer models created (detailed in Section 2.3), the
one for abdominal lesions, can be found in Figure 12.

Figure 12. Example 2D CT image with overlaid masks showing the outcome of the custom inference
for abdominal lesions added to the pipeline: omentum (red), right upper quadrant (RUQ, green),
left upper quadrant (LUQ, purple), mesentery (brown), left paracolic gutter (LPG, blue) and right
paracolic gutter (RPG, pink).

3.4. Integration of the Radiomics-Based Prediction

The AI inference integrated and run in this pipeline can be for many specific processes.
In addition, several processes can be run in chain. In this example, once a segmentation
has been automatically obtained with our DL-based model, further measurements can
be extracted from the images, and a second inference, this time of a radiomics-based ML
model, can be run using the output of the segmentation as input.

The purpose of this ML-based model is to predict treatment response from the omental
lesions, so a special model is created using the pelvis/ovaries + omentum model, discarding
the pelvic/ovarian lesions. In addition, this model labelled the output omental lesions as
response or non-response, with different colours. An example of the visualisation of the
output of this model in the platform can be found in Figure 13.
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Figure 13. Example outcome of the segmentation and radiomics-based prediction of omental lesions
of ovarian cancer, showing the lesions in green as the prediction for this particular patient was to
respond to the chemotherapy treatment.

A video can be found in the Supplementary Material (Video S1) showing a demo of the
whole process, from opening an imaging session and selecting the AI model to running and
visualising the outcome. The video also shows the output of each step running seamlessly
one after another (segmentation, then feature extraction and outcome prediction) written
out to the server logs.

4. Discussion

In this paper, we have presented a prototype pipeline to incorporate custom AI tools
into the clinical research setting, bridging the gap between AI developments and their usage
by clinicians. Although this pipeline has the ability to interface and run any type of inference
(reconstruction, segmentation, prediction, etc.), we focused on a segmentation + prediction
problem as a use case to illustrate its capabilities. This pipeline allows radiologists as
end-users to easily access and interact with the latest AI developments, and it also allows
AI developers to test, validate and improve their models by having a setting they can
manipulate in direct contact with real-world clinical data.

A platform like the one we envision has the potential to democratise the use of AI, as
it can increase diversity in training AI models, facilitating their validation and enabling
end-users (clinicians) to learn the steps needed to adapt the models to the clinical needs of
their institutions. Based on the idea of bringing an AI model to the patient data, instead of
patient data to the model, it opens up the capability for clinicians to build, share, locally
adapt and validate AI algorithms, while also ensuring patient data stay protected at the
local institution. This includes offering tools that vastly simplify training AI models on
data from different centres, which helps increase robustness while reducing bias, resulting
in improved models across broader populations. A popular way to achieve this is by using
federated learning, a way to train AI models against data located in multiple sites without
the need to store all the data in the same place or to share it across centres. Instead, models
are trained at the source and weights are shared with a single generalised model without
the transfer of any data.
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We paid special attention to the tumour segmentation task, as the development of
AI tools for automated segmentation of organs and tumours has been a clear focus of the
AI research community in the last years [20–23]. These methods do not only reduce the
required time to generate such delineations, crucial to perform downstream analyses, but
they also have the potential to improve the quality of the segmentations [24] and their
reproducibility. Despite their clinical relevance, however, these AI methods are typically
developed in technical research groups with little or no communication with the clinical
experts who could eventually use them. This creates at present a disconnection for which
pipelines, like the one we present in this paper, are of the utmost importance: only by
making such AI segmentation tools and their outcomes accessible to radiologists will they
fulfil their ultimate purpose, and only by providing a testing environment to AI developers
can we achieve the agile development of the necessary methods.

We have also demonstrated that such models for automated segmentation can be
easily complemented with other AI tools, such as ML-based radiomic models, to provide
clinicians with predictions that can be useful in the clinical setting. For example, we
tested incorporating into the pipeline predictions of patient response to chemotherapy
treatments, which in the future could be informative to make personalised treatment
decisions; such a model could aid in the early identification of patients unlikely to respond
to first-line chemotherapy, thereby identifying them as possible candidates for trials of
alternative neoadjuvant approaches. With the platform described, the possibilities are
manifold to introduce the latest research advances into practical clinical applications in
terms of diagnosis, treatment selection and monitoring, in an accessible way for clinicians
that will be crucial for their future usage.

In addition, segmentation models widely available today are generally limited to can-
cer types for which large and often public datasets are available (e.g., brain [25], liver [26],
kidney [27]), which results in available models being of the more common cancers only.
For other, more rare cancer types, solutions are far from being developed and/or commer-
cialised, as access to images and high-quality annotations to train with is very limited. It is
within the research groups in contact with the professionals treating those patients that this
can be developed further, and platforms like the one proposed would help to achieve this.

Replicating this pipeline in the clinical context will imply handling biases and limita-
tions from the clinical side, and in particular to overcome the following challenges:

• To ensure the safe usage of potentially identifiable data;
• To acquire and maintain the adequate computing resources required;
• To maintain access for AI developers to the platform for continuous development;
• To seamlessly integrate with existing systems like PACS (picture archiving and com-

munication system) and electronic patient records (EPR) for non-imaging metadata;
• To provide mechanisms for the appropriate presentation of data to clinicians;
• To train clinical staff in the usage of the available tools and to make results of the

models available to them in a timely manner;
• To gain the acceptance of patients and to solve any related ethical issues.

In particular, it is necessary to ensure resilience of these AI-based tools against varia-
tions in acquisition and instrumentation in order for them to be part of clinical decision
support systems for improving diagnostic, prognostic and predictive accuracy. The https://
www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-
machine-learning-aiml-enabled-medical-devices (accessed on 23 June 2023) list of FDA
approved DNN-based algorithms for medical image analysis is growing; see also the list-
ing in the https://ericwu09.github.io/medical-ai-evaluation/ (accessed on 23 June 2023)
Medical AI Evaluation Database at Nature. However, there are ongoing concerns about
the stability of such algorithms, since it is well known that the performance of DNN-based
models tends to degrade when the trained model is applied to images with features that
deviate somewhat from those used for training. A mathematical motivation for this poor
generalisation (lack of stability) is given in [28], and those arguments apply to general
DNN-based models. Issues related to poor generalisation arise especially in image analysis

https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://ericwu09.github.io/medical-ai-evaluation/
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tasks that involve elements of visual classification, like semantic segmentation, which
are known to be sensitive to variations in texture and contrast [29,30]. Likewise, some
radiomic features have been shown to be highly sensitive to variations in several factors,
including variability in scanner manufacturer, generation and models, acquisition proto-
cols and reconstruction settings [31–34]. This lack of robustness that DNN-based image
analysis methods and radiomics have against such variations is one reason for the slow
dissemination to clinical practice [35,36].

A strategy to improve their generalisation is by data augmentation. This requires
a training dataset that is large enough to account for all the variability one expects to
encounter. Gathering such large datasets is not only expensive, but it also poses challenges
of information governance. Another strategy is to have image analysis methods that
encode knowledge about how sensor data are generated, which is now possible thanks
to recent advances in physics-informed AI models for image reconstruction [37–40]. As
outlined in [38,41,42], there is a general framework for integrating some of these DNN-
based reconstruction methods with DNN-based methods for image analysis. This results in
end-to-end approaches for image analysis [43–45] that are parametrised by a (handcrafted)
model for the underlying physics and a specification of how sensor data are acquired, thus
being more resilient against variations in acquisition and instrumentation.

Although much still needs to be carried out to overcome such challenges, we have
already provided some solutions with the pipeline presented here. Indeed, we paid
attention to build a system that can seamlessly incorporate AI models into intuitive tools
for radiologists as end-users, while maintaining the capabilities needed by AI developers
for an agile cycle of testing and validation of models.

In the future, we will consider making available to radiologists segmentations together
with their uncertainties [46], encouraging them to look more closely at segmented regions
where there is lower confidence. We will also expand it to become an end-to-end pipeline
optimising reconstruction as well as performing automated tumour segmentation and
radiomic-based predictions, applied to other cancers as well in the future. And we will
continue working together with clinicians to understand the steps required to bring this
pipeline from the research setting to the clinical setting.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/diagnostics13172813/s1, Video S1: Demo video (.mov)
demonstrating the pipeline in use for the ovarian cancer example, showing the whole process: open-
ing an imaging session, selecting the AI model, running and visualising the outcome, modifying the
predicted masks and saving them back to the database.
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