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Androgen receptor binding sites enabling
genetic prediction of mortality due to
prostate cancer in cancer-free subjects
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Yoshinao Koike 1,9, Keiko Hikino 10, Soichiro Yoshino1,7, Kohei Tomizuka1,
Momoko Horikoshi 11, Kaoru Ito 12, Yuji Uchio3, Yukihide Momozawa 13,
Michiaki Kubo14, The BioBank Japan Project15*, Yoichiro Kamatani 15,
Koichi Matsuda 16,17, Christopher A. Haiman4, Shiro Ikegawa2,
Hidewaki Nakagawa 18 & Chikashi Terao 1,19,20

Prostate cancer (PrCa) is the secondmost common cancerworldwide inmales.
While strongly warranted, the prediction of mortality risk due to PrCa, espe-
cially before its development, is challenging. Here, we address this issue by
maximizing the statistical power of genetic data with multi-ancestry meta-
analysis and focusing on binding sites of the androgen receptor (AR), which
has a critical role in PrCa. Taking advantage of large Japanese samples ever, a
multi-ancestry meta-analysis comprising more than 300,000 subjects in total
identifies 9 unreported loci including ZFHX3, a tumor suppressor gene, and
successfully narrows down the statistically finemapped variants compared to
European-only studies, and these variants strongly enrich inARbinding sites. A
polygenic risk scores (PRS) analysis restricting to statistically finemapped
variants inARbinding sites shows among cancer-free subjects, individualswith
a PRS in the top 10%have a strongly higher risk of the future death of PrCa (HR:
5.57, P = 4.2 × 10−10). Our findings demonstrate the potential utility of lever-
aging large-scale genetic data and advanced analytical methods in predicting
the mortality of PrCa.

Prostate cancer (PrCa) is the most common cancer in Europe and
North America and the second most common cancer worldwide in
males, accounting for an estimated 6.7% of cancer mortality in males1.
Given its high mortality, the prediction of incidence and death due to
PrCa would be of great interest from a public health perspective as
implementing early detection and intervention for individuals with
high prospective risk could be beneficial to both patients and health
providers. To construct such predictive models, genetic components
would be excellent sources as PrCa is evidenced to have a heritability
of up to 58%, which is the highest among all cancers2. Family history
has been utilized to identify the at-risk subjects, but this alone is not

sufficient for precise risk stratification. More recently, polygenic risk
scores (PRS) based on genetic variants identified from genome-wide
association studies (GWAS) of PrCa3–14 have been developed14–21.
However, prediction of the incidence of PrCa has limited clinical utility
as PrCa could be latent, and autopsy studies showed a high prevalence
of asymptomatic PrCa in older men. Predicting death due to PrCa will
provide more value for clinical management but remains to be
investigated.

Compared with conventional PRSs based on variants of GWAS at
different P value thresholds, it has been shown that PRSs based on
finemapped variants or variants with functional relevance to diseases
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have a superior predictive performance22,23. There are twomethods to
identify variants that are informative for the PRS aside from the simple
expansion of the GWAS. One is a statistical fine-mapping which may
pinpoint potentially causal variants from the implicated association
regions. Another is to prioritize variants in cell-type-specific regulatory
elements relevant to the target phenotype. Considering the nature of
PrCa as a male-specific cancer, in the current study we focused on the
androgen receptor (AR), an important factor of PrCa development and
progression and also a therapeutic target of PrCa24. AR is a transcrip-
tion factor. Upon the binding of the active androgen
dihydrotestosterone25,26, AR is translocated into the nucleus and binds
to hormone response elements of DNA and subsequently regulates the
expression of various genes related to proliferation and
differentiation27. AR was overexpressed and dysregulated in 56% of
primary lesions and almost all metastatic lesions of PrCa28. Thus, we
hypothesized that focusing on statistically finemapped variants within
the AR-binding sites as putative causal variants may improve the pre-
diction accuracy for incidence and death of PrCa, which could be
useful in clinical settings.

Since European population is still the major source of genetic
association studies in PrCa14, non-European population would be use-
ful to find unreported associations. While Japanese has relatively low
prevalence of PrCa in comparison with European populations and
African Americans29, the previous studies showed substantial genetic
overlap among populations14.

In the present study, we conducted amulti-ancestrymeta-analysis
for PrCa and identified 171 loci associated with PrCa including 9
unreported loci. Furthermore, the fine-mapping analysis showed that
variants with high posterior probability were enriched in AR-binding
sites and PRS based on these variants predicts the PrCa mortality in
cancer-free subjects. These findings provide insights into the basics
underlying PrCa and clues for genetic prediction of the development
and death of PrCa, resulting in potential early detection and ther-
apeutic intervention for PrCa.

Results
A genome-wide association study of Biobank Japan
The overall study design of GWAS was shown in the Supplementary
Fig. 1. First, we conducted a GWAS of Biobank Japan (BBJ) samples
consisting of 8645 cases and 89,536 controls (Supplementary Table 1).
We identified 32 significant loci including an unreported locus. The
unreported signal at 16.q22.2-16q22.3 peaks at rs8052683, an intronic
variant of tumor suppressor gene ZFHX330,31. rs8052683 is located in an
expression quantitative trait locus (eQTL) for ZFHX3 in the prostate
(the risk allele of the variant lowering the expression of ZFHX3) in the
GTEx data32. In line with the possible regulation of ZFHX3 expression
by this variant, rs8052683 is positioned in the H3K27ac-marked region
of the prostate33.

We confirmed the relatively high SNP-heritability estimate of
26.2% (SE of 4.3%). As expected, we observed a strong genetic corre-
lation of PrCa susceptibility betweenBBJ and Europeans (genetic effect
correlation =0.88 and p = 0.36 by popcorn software, indicating that
genetic correlation is not different from 1, see “Methods”). Genetic
correlation analyses also revealed significant positive correlations
(FDR <0.05) of PrCa with breast cancer (Supplementary Table 2,
“Methods”). This correlation was also observed in Europeans (Sup-
plementary Table 3). These findings are consistent with family studies
thatmenwith a familyhistory of breast or prostate cancer had elevated
prostate cancer risks34–36. Significant negative genetic correlations
were found in cardiovascular-related phenotypes and similar trends
were observed in Europeans (peripheral artery disease and chronic
heart failure (Supplementary Table 3)), supported by enrichment of
SNP heritability in the cardiovascular cell group (Supplementary
Table 4, “Methods”).

Multi-ancestry meta-analysis identified 171 significant loci
including nine unreported loci
Next, we conducted amulti-ancestrymeta-analysis, using the results of
BBJ and the summary statistics of a previous GWAS14 for prostate
cancer including European, African, and Hispanic ancestries assuming
a random effect (“Methods”, Table 1, Supplementary Fig. 2). The
combined dataset consisted of 107,218 cases and 197,733 controls. A
total of 6,720,553 variants were tested and 171 independent loci
reached the genome-wide significance threshold (log10 [Bayes factor
(BF)] > 6 and fixed-effect P value < 1 × 10−5, for further details, see
“Methods”). The 171 loci containednine unreported loci PrCa including
ZFHX3, ARHGEF28-LINC01334, and GINS1 regions (Table 1) which
showed relevance to PrCa or functional mechanisms of variants on
susceptibility to PrCa. rs4704108, located at the intergenic region
between ARHGEF28 and LINC01334, is an eQTL for ENC1 in prostate
tissues in the GTEx data32 and in high LD with the lead eQTL SNP
(rs17636369) of ENC1, suggesting that rs4704108 (or its tightly linked
variant) is associated with PrCa via altering expression of ENC1 in the
prostate. Risk allele of rs4704108 decreases expression of ENC1.
rs11087515 is an intronic variant of GINS1 located at 20p11.21 which is
expressed in high-grade prostate cancer and thus may be involved in
the mechanism where cancer cells become invasive or metastatic37.

Fine-mapping by asymptotic Bayes factors
Taking advantage that different LD structures across different popu-
lations may enable higher resolution in pinpointing candidate causal
variants, we further conducted fine-mapping analyses for all significant
loci identified by the multi-ancestry meta-analysis (“Methods”). We
calculated asymptotic Bayes factors (ABF) and built a credible set of
putative causal variants with an incremental 95% probability which
resulted in a total of 166 credible sets (“Methods” and Supplementary
Data 1). The number of variants included in a given credible setwas less
than 10 in 127 (77%) credible sets (Fig. 1a), suggesting that we could
finemap themajority of associations to a handful number of candidate
causal variants.

To analyze the superiority of themulti-ancestrymeta-analysis over
the European-only analysis, we applied the same fine-mapping strategy
to European data, restricting variants to those overlapped in the multi-
ancestry meta-analysis (to harmonize conditions of fine-mapping). We
found that the multi-ancestry meta-analysis resulted in a significantly
less number of variants in credible sets compared with those in Eur-
opeans (P = 1.34 × 10−4, “Methods”). This indicates that multi-ancestry
meta-analysis is useful to finemap association signals (to pinpoint or
narrowdowncandidate causal variants) even thoughEuropeans remain
a major data source in the multi-ancestry meta-analysis (Fig.1b).

This fine-mapping strategy resulted in a total of 331 potentially
causal variants with posterior probability (PP) > 0.1, among which 6
were coding variants (1.8%) including 5 missense variants (Supple-
mentary Table 5). Out of 5 missense variants, rs2277283 with a PP of
0.99 is in INCENP with scaled Combined Annotation-Dependent
Depletion (CADD) score of 25.6. rs76832527 with a PP of 0.90 is the
nonsynonymous variant of ANO7, which has been reported as a PrCa
causal variant in a previous study38. rs138708 is a SNP of a unreported
locus identified in the meta-analysis. The SNP is the nonsynonymous
variant of SUN2 with a PP of 0.99 and a CADD score was 25.7, which is
reported in a previous GWAS of Japanese3.

AR-binding sites as an important source of putative causal var-
iants and construction of PRS based on AR-binding sites for
potential clinical use
The small fraction (1.8%)of exonic variants among the candidate causal
variants strongly suggest non-coding regions as primary sources. We
hypothesized that AR-binding sites, hormone response elements for
AR, are important to the susceptibility for PrCa incidence and
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progression considering the critical roles of AR on PrCa development
and AR as a therapeutic target in PrCa in clinical settings39. Indeed,
ZFHX3, a unreported susceptibility gene identified in the study, was
regulated by androgen in prostate cancer cells, and the relationship
between androgen/AR signaling and ZFHX3 modulates prostate can-
cer development and progression31.

First, we evaluated the enrichment of heritability of PrCa sus-
ceptibility in AR-binding sites of prostate tissues in common database.
We computed LD scores using information of AR-binding sites in
prostate tissues obtained from the ChIP-atlas33 (this means that we
used general AR-binding in prostate and did not match origins of data
between PrCa susceptibility and AR binding). Then we conducted LD
score regression using summary statistics of BBJ and Europeans and
the computed LD scores (in combined with the basic model including
common functional annotations as background, see “Methods”). For
BBJ, 1.4% SNPs explained an estimated 46% SNP-heritability (P = 6.1 ×
10−5 for enrichment analysis) (Supplementary Table 6); For Europeans,
1.3% SNPs explained an estimated 47% SNP-heritability (P = 3.9 × 10−9

for enrichment analysis). These findings indicate that susceptibility
variants to PrCa are strongly enriched in AR-binding sites in a poly-
genic manner regardless of populations. In contrast, FOXA1 binding in
prostate obtained from ChIP-atlas as control did not show heritability
enrichment (p =0.075, in BBJ).

Furthermore, we analyzed the enrichment of PrCa-associated
variants in the AR-binding sites in normal prostate cells used for LDSC
detected, using Genomic Regulatory Elements and Gwas Overlap
algorithm (GREGOR)40. We found both lead variants identified in the
multi-ancestrymeta-analysis (N = 171) and putative causal variants with
PP >0.1 (N = 331)were significantly enriched inAR-binding sites (P = 4.5
× 10−26; fold enrichment 2.7; P = 4.5 × 10−53, fold enrichment 2.8,
respectively). Notably, although the number of finemapped variants
showing PP >0.1 is nearly two times the number of lead variants, a
slightly higher enrichment fold was observed, illuminating successful
fine-mapping in the current study and the importance of the detection
of critical functional annotations. We observed an enhanced fold
enrichment of statistically finemapped variants with PP >0.5 (P = 1.3 ×
10−15, fold enrichment 3.1) suggesting the more credible the variants
are, the stronger enrichment in AR-binding sites they show (Fig. 2 and
Supplementary Table 7). We noticed that AR-binding sites detected in
PrCa cells showed less enrichment for any groups of variants (Fig. 2
and Supplementary Table 7), suggesting an altered landscape of AR
binding after the development of PrCa. These results were consistent
with those when we used LD proxies of Asian populations (Supple-
mentary Table 8).

Based on the importance of AR-binding sites on PrCa develop-
ment shown above, we analyzed statistically finemapped variants in
AR-binding sites aspotentially causal variants. A total of 44 variants out
of 331 statistically finemapped variants (PP >0.1) were within AR-
binding sites according to ChIP-atlas33 (“Method”, Supplementary
Table 9). In the IRX4 region, rs199577062 was the top SNP with a PP of
0.99. The variant is the lead eQTL for IRX4 and changes themotif of AR-
binding sites according to the JASPAR database (http://jaspar.genereg.
net) (Fig. 3a). In theRGS17 region, rs13215045 is the topSNPwith a PPof
0.95 and has been reported as eQTL in the prostate. In the FOXP4
region, rs1983891 is a SNP of the credible set with PP of 0.16, located at
the AR-bindingmotif (Fig. 3b). The variant is not a significant eQTL for
FOXP4 but the expression of the risk allele increases the expression of
FOXP4. rs12769682, rs12769019 and rs4962419 are SNPs with PP of
0.27, 0.16 and 0.15, respectively, are eQTL for CTBP2. The previous
study indicated that CTBP2 modulated the AR to promote prostate
cancer progression41. rs1099399, well-known as a risk SNP for PrCa,
was the top SNP with a PP of 1, which showed the result was well
replicated. Taken together, the AR-binding sites of normal prostate
cancer would be informative to pinpoint or narrow down putative
causal variants for PrCa.Ta
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We analyzed whether PRSs could predict the death of PrCa in
subjects without PrCa at baseline (registry of the BBJ, see “Methods”).
We constructed a PRS using the results of the multi-ancestry meta-
analysis which contained 6,720,152 SNPs, and the best parameters of
each matrix were determined (See “Methods”). As a result, the model
with r2 of 0.1 and p value threshold of 1 × 10−6, containing 952 SNPs,
reached the highest AUROC (0.673; 95% confidence interval (CI),
0.664–0.682). We applied the PRS to the subjects who did not have
PrCa or other cancers at the time of sample collection and analyzed
follow-up data in the BBJ42.We performed theCoxproportional hazard
model to assess the predictive value of the PRS for death from PrCa in
the follow-up period. We observed that the PRS was significantly
associated with PrCa death in a dose-dependent manner (HR:1.55,
P = 1.6 × 10−7). The top 10% of subjects carrying high PRS showed HR of
3.52 (P = 2.0× 10−5). These resultswere in linewith theprevious study in
the UKB21. Considering the contribution of variants overlapping AR to

PrCa susceptibility motivated us to construct another PRS integrating
AR information for variant selection using the lead SNPs and the SNPs
within AR-binding sites (88,240 SNPs). As a result, the model with r2 of
0.6 andp value thresholdof 5 × 10−4, containing 1107 SNPs, reached the
highest AUROC (0.686; 95% CI, 0.676–0.695). We applied the AR-
informed PRS to the same dataset as the analyses using the conven-
tional PRS. As a result, we found that the PRS based on AR information
showed better prediction in a dose-dependent manner (HR: 1.61,
P = 2.2 × 10−10, Supplementary Table 10) than that by the conventional
method. In addition, the top decile with high PRS also showed a
strongly higher risk of the future death of PrCa in cancer-free subjects
at registry of the BBJ (HR: 5.57, P = 4.2 × 10−10, Fig. 4 and Supplementary
Table 10). We confirmed consistent results of better fitness of AR-
informed PRS over normal PRS in additional analyses in which we
avoided sample overlap between survival analyses and case-control
studies (Supplementary Table 11 and “Methods”). In addition, we
observed a trend of positive associations between AR-informed PRS
and mortality in PrCa subjects (Supplementary Table 12). Taken
together, these results suggest that AR plays fundamental and central
roles on not only PrCa susceptibility, but on the future outcome of
PrCa even in subjects without PrCa.

Discussion
Here we present the PRS prioritizing AR-binding sites for potential
clinical use based on large genetic fine-mapping study for the meta-
analysis of PrCa comprising 107,218 cases and 197,733 controls in
European, East Asian, African, and Hispanic ancestries.

We showed the good prediction ability of the PRS for the death
fromPrCa both in quantitative and qualitativemanners. Thesefindings
were supported by strong heritability enrichment of PrCa suscept-
ibility on AR-binding sites in normal prostate tissues obtained from
public database and improved enrichment of statistically finemapped
variants in GWAS significant signals. These indicate the genetic
importance of AR-binding sites (in normal prostate tissues) shown in
both GWAS significant and polygenic manners. Furthermore, the
results indicate the SNPs within AR-binding sites in normal prostate
tissues can be involved in not only the incidence of PrCa but also the
progression of PrCa.

AR is a critical factor contributing to prostate cancer development
and progression. Mutations in the AR gene have been discovered in
prostate cancer, and their incidence may increase with tumor pro-
gression. On the other hand, Morova et al. demonstrate that AR-
binding sites have a dramatically increased rate of mutations that is
greater than any other transcription factors and specific to only

Fig. 2 | GREGOR for androgen receptor (AR) binding sites. Variants with high
posterior probability (PP) were enriched in AR-binding sites in prostate cells. Fold
enrichment and P value are shown (see “Methods”). Lead, lead variants; PP0.1, the
variants with PP > 0.1; PP0.5, the variants with PP> 0.5. Source data are provided as
a Source Data file.

Fig. 1 | Fine-mapping analysis. aNumber of 95% credible sets of potentially causal
variants, binned by their sizes. b The comparison of the number of credible sets
between the results of European and the multi-ancestry meta-analysis, n = 118 var-
iants. Box plots indicate median (middle line), 25th, 75th, percentile (box) and 5th

and 95th percentile (whiskers). P value is shown (two sided Paired t-test). EUR, the
result of Europeans; META, the result of the multi-ancestry meta-analysis. Source
data are provided as a Source Data file.
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prostate cancer, which can impact enhancer activity43. The alterations
of the landscape of AR-binding sites in prostate cancer cells seem in
line with decreased enrichment of statistically finemapped variants
in AR-binding sites in prostate cancer cells in comparisonwith those in

normal prostate tissue. These results also suggest that AR-binding sites
developing in prostate cancers are not genetically informative for
prediction of PrCa or mortality of PrCa. It would be very interesting to
compareAR-binding sites betweennormal prostate tissues andPrCa to
characterizeAR-binding sites in normalprostate tissue andunderstand
molecularmechanisms underlying PrCa development. The association
trend between AR-informed PRS and mortality was also observed in
the analyses where we restricted to subjects with PrCa. Increased
number of PrCa would confirm the association. We also noticed that
landscape of AR-binding sites is quite distinct based on origins of tis-
sues. When we analyzed AR bindings sites of white blood cells, we did
not observe even a trend of heritability enrichment of PrCa suscept-
ibility (data not shown), underscoring importance of selecting tissues
as a source of functional variants to construct PRS which would be
clinically useful.

In addition, we showed that multi-ancestry meta-analyses helped
not only identify more association signals by increasing statistical
power, but also narrow down candidate causal variants by taking
advantage of different LD structures among different populations.
Importantly, the addition of a relatively small number of different
populations seemed to contribute to this function.

We also found nine unreported loci associated with PrCa and
hundreds of statistically finemapped variants as potentially causal
variants. In combination of AR-binding sites of normal prostate tissues,
these variants would help us pinpoint causal genes and gain mechan-
istic insights into potentially causal variants and genes. The risk allele
of rs8052683, located at the intronic region of ZFHX3 which has a
tumor suppressive role in PrCa30, was found to be the sameassociation
direction across ancestries and showed associations with reduced
expression in the prostate. rs4704108 is eQTL in prostate tissue for
ENC1, one of the p53-induced genes44,45. rs11087515 was located at an
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Fig. 4 | Cox proportional hazard regression for death due to prostate cancer
(PrCa) using polygenic risk scores (PRSs). The comparison of survival rates
between the top 10% of PRS and the bottom 50% is based on the variants located in
androgen receptor binding sites. The x-axis indicates the time (years) from initial
recruitment and the y-axis indicates the cumulative survival rate of PrCa. Hazard
ratio and P value are shown in Supplementary Table 10.

Fig. 3 | Regional plot of the lead variants which affect androgen receptor binding sites. a rs199577062. b rs1983891. Source data of the variants are provided as a
Source Data file.
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intronic region of GINS1 expressing in high-grade prostate cancer37

with potential roles for PrCa susceptibility43,46,47.
Fine-mapping analyses identified several causal genes. SUN2 is an

inner nuclear membrane protein that plays a major role in nuclear-
cytoplasmic connection by the formation of a ‘bridge’ across the
nuclear envelope48. SUN2 also interacts with lamins, functioning as a
nuclear skeleton in the neoplasm. Dysregulation of SUN2, as a char-
acteristic nuclear envelope protein, is associated with many human
diseases, including cancers49. Notably, Yajun et al. reported loss of
SUN2 promoted the progression of prostate cancer by regulating fatty
acid oxidation50.

PYGB encodes glycogen phosphorylase which metabolizes gly-
cogen and is reported as an upregulated gene in prostate cancer tis-
sues. PYGB silencing suppressed the growth and promoted the
apoptosis of prostate cancer cells by affecting theNF-κB/Nrf2 signaling
pathway51. IRX4, a member of the Iroquois family of homeobox tran-
scription factors predominantly expressed in the ventricle of the heart,
could function as a tumor suppressor in the prostate via the vitamin D
receptor pathway52, which enhances antitumor immunity by inhibiting
Wnt/β-catenin signaling53.

Wu et al. confirmed that PAX5-induced upregulation of FOXP4-AS1
and FOXP4 contributed to tumorigenesis of PrCa54.

Our study has several limitations. First, we did not include rare
variants (MAF < 0.005) in our analyses. Such variantsmay play a crucial
role in PrCa incidence. Further studies using whole-genome sequen-
cing data are needed to elucidate the causality of rare variants and
structural variants. Second, the majority of patients in our study were
Europeans, resulting in a bias towards Europeans. Aswe showed,multi-
ancestry meta-analyses contributed to narrowing down statistically
finemapped variants. More non-Europeans are needed to further
identify the true causal functional variants, which may lead to the
elucidation of additional genetic factors. Third, due to limited number
of follow-up data of PrCa subjects, we could not fully address AR-
informed PRS and future death due to PrCa in PrCa subjects. Lastly,
prediction of AR-informed PRS onmortality due to PrCa in cancer-free
subjects and cancer cases should be addressed in European popula-
tions to show its generalizability, especially in a cohort specific to PrCa.

In summary, our large-scale multi-ancestry meta-analysis of
GWASs provides further insights into the genetic architecture of PrCa
susceptibility, and the unreported genetic loci identified may lead to
the development of drug discovery and intervention for patients with
PrCa.Wedemonstrated the potential utility of the PRS using candidate
causal variants in AR-binding sites to predict the future mortality risk
of PrCa.

Methods
This research complies with all relevant ethical regulations and
approved byThe EthicsReviewCommittee in RIKENunder approval ID
of 2021-19 and 17-17-16.

Subjects
All cases and controls in the BBJ GWAS were collected in the BioBank
Japan (https://biobankjp.org/english/index.html), which is a biobank
that collaboratively collects DNA and serum samples from 12 medical
institutions in Japan and recruited approximately 200,000 patients
with a diagnosis of at least one of 47 diseases (including 13 cancers)55.
We selected 8645pathologically proven PrCapatients and 89,536male
subjects without PrCa as control from BBJ. We used all available sam-
ples we have and no statistical method was used to predetermine
sample size. Since the target disease is prostate cancer, only male
subjects were recruited and analyzed. We obtained informed consent
from all participants by following the protocols approved by com-
mittees of the RIKEN Center for Integrative Medical Sciences and
Institute of Medical Sciences at The University of Tokyo. We complied
with all relevant ethical regulations56.

Genotyping and quality control
We genotyped samples with the Illumina HumanOmniExpressExome
BeadChip or a combination of the Illumina HumanOmniExpress and
HumanExome BeadChips.

For quality control of samples, we excluded those with: (1) a
sample call rate of <0.98; and (2) outliers from East Asian clusters
identified by a principal component analysis using genotyped samples.
For quality control of genotypes, we excluded variants meeting any of
the following criteria: (1) call rate <99%; (2) P value for
Hardy–Weinberg equilibrium (HWE) < 1.0 × 10−6.We also excluded SNP
with a large allele frequency difference between the reference panel
and the samples (>0.06).

Imputation
We utilized the 1000 Genomes Project Phase 3 (1KGP3; May 2013,
n = 2504) and an in-house Japanese whole-genome sequence dataset
obtained from 3,256 BBJ subjects (JEWEL 3K) for imputation. We
imputed genotype dosages with minimac457. After imputation, we
excluded variants with an imputation quality of Rsq <0.3 and
MAF <0.005.

GWAS and meta-analysis
We conducted a GWAS of BBJ samples by applying a generalized linear
mixed model using SAIGE (version 0.35.8.3)58, which consisted of two
steps. In Step 1, we fit a null logistic mixedmodel using genotype data,
and the top 10 principal components (PCs) were incorporated as
covariates. In Step 2, the single-variant association tests were per-
formed by using the imputed variant dosages. We divided the datasets
into two depending on the registration period and conducted the
association studies separately to see the robustness of the observed
association. We further performed a fixed-effects meta-analysis for
these two datasets using METAL (two-tailed)59.

Multi-ancestry meta-analysis
We used summary statistics of PrCa GWAS divided into three
ancestries (European, African and Hispanic)14. We excluded samples
of East Asian ancestries due to duplicate samples. To account for the
ancestral heterogeneity in each study, we applied the MANTRA
algorithm in our multi-ancestry meta-analysis analysis60. We con-
sidered that a variant was significantly associated with PrCa when its
log10BF > 6 and PFixed effect < 1 × 10−5 by using METAL (two-tailed)
according to a previous simulation result61. We excluded variants
with a heterogeneity score > 6.

Fine-mapping
There are no fine-mapping methods currently to handle multiple
populations. Furthermore, for some ethnic groups analyzed here, we
have difficulty accessing a large reference panel to account for LD.
Thus, we finemapped a Bayesian approach by adapting the method
proposed by Maller et al. to assign a posterior probability of inclusion
(PIP) to each variant and construct 95% credible sets56.

For themulti-ancestrymeta-analysis by usingMETAL,wedefined
a significantly associated locus of a lead variant as 1Mb of its sur-
rounding sequences in both directions. Then, we extended the
region to nearby significant variants and their 1Mb surrounding
sequences as far as a significant variant was contained in the defined
region. For each locus, we calculated asymptotic Bayes factors as
previously described62 which is a LD-independent method. Bayes
factors can be approximated from summary statistics (such as p
value and standard error of the effect size of each variant from
GWAS) without individual-level genotype data. Then we defined the
subset of SNPs based on posterior probability (PP), as 95% likely to
contain the causal disease-associated SNP (https://github.com/
chr1swallace/finemap-psa). These credible SNP sets were then
annotated for putative function.
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We further compared the number of variants in the credible sets
between the results of the multi-ancestry meta-analysis and that of
European alone. We restricted variants present in both the multi-
ancestry meta-analysis and European results to harmonize conditions
and conducted fine-mapping as described above for each of themulti-
ancestry meta-analysis and European alone. Then we focused on the
significant regions overlapped between the two results and compared
the number of variants in the credible sets. The comparison was esti-
mated by paired t-test using R (version 4.0.3).

Heritability enrichment analyses and genetic correlations
We estimated the heritability of PrCa with BBJ GWAS results using
linkage disequilibrium score regression (LDSC, version 1.0.0)63. We
excluded variants in the human leukocyte antigen region (chromo-
some 6: 26–34Mb). We further calculated heritability z-scores and
standard errors (SEs) to assess the reliability of heritability estima-
tion. The disease prevalence of PrCa used for the heritability esti-
mations was 0.08 according to a previous report64.We also estimated
genetic correlation of PrCa susceptibility between BBJ and EUR by
popcorn software, using the sumstats of PrCa in EUR used for the
meta-analysis. We additionally estimated genetic correlations with
the 42 target diseases of the BBJ.We also evaluated the enrichment of
the heritability of histone marks in 220 different cell types and 10
different tissue types.

Annotation of the significant SNPs in our meta-analysis
We extracted histone modifications (H3K4me1 mark often found near
regulatory elements, H3K4me3mark often found near promoters, and
H3K27ac mark often found near active regulatory elements on 7 cell
lines) and DNase hypersensitive sites (DNaseI hypersensitivity clusters
in 125 cell types) defined by ENCODE (version 3)65, and, if SNPs are
intergenic, enhancers (hg19) mapped by FANTOM5 (phase2.5) from
the UCSC database66,67. We also used Combined Annotation-
Dependent Depletion (CADD) score68, a method integrating multiple
annotations, to evaluate the functional potential of SNVs.

Enrichment analysis of PrCa statistically finemapped variants in
androgen receptor binding sites
To confirm the enrichment of AR-binding sites, we evaluated two
methods, LDSC and GREGOR tool, a SNP-matching-based method to
test for enrichment69. Regarding the information on AR-binding sites,
we downloaded the bed file of AR-binding sites in the prostate from
ChIP-atlas33. We extracted the bed files in normal prostate cells and
prostate cancer cells, each file was evaluated for subsequent analysis.

For LDSC, we assessed heritability enrichment in AR-binding sites
as previously described70 for each of European and BBJ GWAS results.
TakingChIP-seqdata of AR innormal prostate,wecomputedLD scores
of AR binding in normal prostate using LD structure of East Asians and
Europeans, respectively, and used them for LDSC. We used the BBJ
sumstats with use of EAS LD scores and European population sumstats
with European’s LD scores for LDSC. We used the 53 basic model
annotations (v1.0) to control inflation of the results as previously
described70. We excluded variants within the major histocompatibility
complex (MHC) region (chromosome6: 25-34Mb) from the regression
analysis.

For GREGOR, we calculated the fold-enrichment expectation and
an enrichment P value that represents the probability that the overlap
of control SNPs represented as a cumulative probability distribution is
greater than or equal to the observed overlap with PrCa potentially
causal variants. We conducted the analysis using three SNP sets: lead
variants identified in the meta-analysis, the variants with PP > 0.1, the
variants with PP >0.5. Reference based on European population was
used in the analysis because the majority of the samples are from
Europeans.

PRS for prediction of susceptibility to PrCa
We conducted an ethnic-ancestry meta-analysis using the 1st BBJ,
European, African, and Hispanic ancestries and determined the weight
for the multi-ancestry PRS. Using these weights, we calculated the PRS
for the 2nd BBJ and validated its performance. To determine the best
parameter, we applied the pruning and thresholding method, the
standard method of analysis, to construct the PRS. Specifically, we
used the clump function of PLINK version 1.90 to generate eligible
SNPs by setting a 250kb window. We set seven linkage disequilibrium
pruning thresholds (r2) of 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, and a total
of 20 thresholds of p values in the GWAS (5 × 10−8, 5 × 10−7, 1 × 10−6, 5 ×
10−6, 1 × 10−5, 5 × 10−5, 5 × 10−4, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1). As weights, we used the natural logarithms of the
GWAS odds ratios (ORs) for PrCa. The SNP alleles used in the PRS were
aligned to risk alleles for PrCa susceptibility. The PRS was the sum of
the weighted allele counts (by their respective GWAS effect sizes)
across all SNPs included in the PRS.

Next,weaddressed thepossible improvementof theperformance
of the PRS by prioritizing SNPs included in the predictive model. Since
we showed significant heritability enrichment of PrCa in the AR-
binding sites.We prioritized SNPs overlappingwith AR-binding sites of
the prostate and adopted the same manner for generating the PRS
described above.

We further investigated the potential of integrating functional
annotations to improve the predictive performance and multi-
ancestry portability of the PRS. We hypothesized such improvement
might be achieved by prioritizing SNPs located within the AR-binding
sites, given the significant enrichment of AR sites in the heritability of
PrCa. To test this hypothesis, we repeated the PRS analysis while
restricting the variants that overlapped with the AR-binding peaks
(determined by CHIP-Seq analysis).

Survival analysis of death due to PrCa in cancer-free subjects
We used the BBJ follow-up data in which ~142 K participants were fol-
lowed up to 10 years after BBJ registration to monitor their survival.
Causes of death (codedwith ICD10 codes) were recorded by accessing
the national vital registration system used for input survey of medical
and social welfare at the Ministry of Health, Labour and Welfare of the
Japanese Government. We restricted subjects to males and not affec-
ted by any cancers at the registry, resulting in a total of 54,033 male
subjects. We focused on associations between the death of PrCa and
PRS and applied the Cox Proportional hazard model with top 10 PCs,
age, smoking, basic disease status, and SNP array type as covariates.
We evaluated fitness of the PRS on survival/death of PrCa in a quan-
titative manner (treating PRS as a quantitative value) or in a qualitative
manner (taking the top 10% of PRS as cases and the below 50% as
controls).

To confirm the findings, we conducted additional analyses in
which we avoid sample overlap between survival analyses and case-
control study (Supplementary Fig. 4). We split the BBJ controls into
two sets based on availability of follow-up information. We recon-
ducted association analyses using the 1st set of subjects without
follow-up data and meta-analyzed the association results in a multi-
ancestry manner. We then reconstructed PRS using the same variants
with different beta coefficients. For intuitive interpretation, we used
the same parameters for PRS as the final model as written above (r2 of
0.6 and p value threshold of 5 × 10−4) and conducted survival analyses
using the 2nd set of control subjects in Coxproportional hazardmodel
with the same covariates as above.

Survival analysis in PrCa subjects
To evaluate an association between AR-informed PRS and mortality in
subjects with PrCa, we conducted survival analyses in case subjects.
Weused the sameAR-informedPRSdescribed in the former part of the
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previous section. In this analysis, we took mortality due to any causes
as outcome. We used the same covariates described above and ana-
lyzed the association in Cox proportional hazard model.

Statistics & reproducibility
No statistical method was used to predetermine sample size because
we used all available case samples we have to maximize
statistical power.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The GWAS and Meta-analysis summary statistics generated in this
study is available in the JENGER database and GWAS catalog (BBJ:
http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/
GCST90269001-GCST90270000/GCST90269956j, A multi-ancestry
meta-analysis: http://ftp.ebi.ac.uk/pub/databases/gwas/summary_
statistics/GCST90269001-GCST90270000/GCST90269957). The BBJ
Genotype data is available JGAS000114 in NBDCdatabase. The authors
are not allowed to deposit individual disease affection status and
survival data in common database. Source data are provided with this
paper. The remaining data are available within the article, Supple-
mentary Information or SourceDatafile. Sourcedata areprovidedwith
this paper.

Code availability
The code of statistical analyses is available on GitHub (https://github.
com/Shuji2022/PrCa_GWAS) and is also archived in Zenodo (https://
zenodo.org/badge/latestdoi/633776153).
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