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ABSTRACT
◥

Systemic targeted therapy in prostate cancer is primarily focused
on ablating androgen signaling. Androgen deprivation therapy and
second-generation androgen receptor (AR)–targeted therapy selec-
tively favor the development of treatment-resistant subtypes of
metastatic castration-resistant prostate cancer (mCRPC), defined by
AR and neuroendocrine (NE) markers. Molecular drivers of double-
negative (AR�/NE�) mCRPC are poorly defined. In this study, we
comprehensively characterized treatment-emergentmCRPC by inte-
grating matched RNA sequencing, whole-genome sequencing, and
whole-genome bisulfite sequencing from 210 tumors. AR�/NE�
tumors were clinically and molecularly distinct from other mCRPC
subtypes, with the shortest survival, amplification of the chromatin

remodeler CHD7, and PTEN loss. Methylation changes in CHD7
candidate enhancers were linked to elevated CHD7 expression in
AR�/NEþ tumors. Genome-wide methylation analysis nominated
Kr€uppel-like factor 5 (KLF5) as a driver of theAR�/NE� phenotype,
and KLF5 activity was linked to RB1 loss. These observations reveal
the aggressiveness of AR�/NE� mCRPC and could facilitate the
identification of therapeutic targets in this highly aggressive disease.

Significance: Comprehensive characterization of the five sub-
types of metastatic castration-resistant prostate cancer identified
transcription factors that drive each subtype and showed that the
double-negative subtype has the worst prognosis.

Introduction
Although localized prostate cancer is usually well controlled by

radiation, surgery, or systemic androgen deprivation therapy (ADT),
metastatic prostate cancer has a 5-year survival rate of only 31% (1).
Hormone-refractory metastatic disease, known as castration-resistant
prostate cancer (CRPC), develops after tumors become resistant to
ADT (2). Progression tometastatic CRPC (mCRPC) is associated with
recurrent driver gene alterations. In approximately 80% of cases,
somatic alterations affect the androgen receptor (AR) itself or a nearby
AR enhancer locus (3–5). Many patients with mCRPC receive AR-
targeting therapies such as enzalutamide or abiraterone acetate. Pro-
gression on these therapies is associatedwith furtherAR alterations (6).
However, a subset of treatment-resistantmCRPC infrequently harbors

AR somatic alterations and instead develops lineage features of small
cell neuroendocrine carcinoma (7–12). Patients whose tumors have
this phenotype have worse prognosis than those with adenocarcinoma
mCRPC (8). It was recently proposed that five distinctive histologic
and expression-based subtypes of mCRPC exist (13): adenocarcinoma
(ARþ/NE�), double-positive (ARþ/NEþ), low AR (ARL/NE�),
neuroendocrine (AR�/NEþ), and double-negative (AR�/NE�).
While these subtypes have been described at the transcriptional level,
the etiology and clinical implications of the low AR and double-
negative subtypes are largely unknown. Herein, we define the somatic
alterations and DNA-methylation changes among these five subtypes
by integrating whole transcriptome RNA sequencing (RNA-seq),
whole-genome sequencing (WGS), and whole-genome bisulfite
sequencing (WGBS) from 210 mCRPC tumors.
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Materials and Methods
Tumor specimens

Image-guided fresh-frozen mCRPC biopsy acquisition and DNA
extraction were performed as previously described (5, 11). WGS
and WGBS libraries were prepared and processed as previously des-
cribed (5, 11). The clinical characteristics of patients in this study are
available in SupplementaryTable S1.Human studies were approved and
overseen by the UCSF Institutional Review Board (IRB) in accordance
with the Declaration of Helsinki. All individuals provided written
informed consent to obtain fresh tumor biopsies and to perform
comprehensive molecular profiling of tumor and germline samples.

Data processing
RNA-seq data derived from laser-capture micro-dissected samples

were aligned with STAR (14). RNA abundance was calculated using
the default parameters, and transcripts were quantified at the gene level
by GENECODE v.28, as previously described (11). The expression
level of each gene was then converted to transcripts permillion (TPM).
WGBS data were aligned to GRCh38, and de-duplication, then base-
level methylation calling was performed using Bismark 0.23.0 with “–
pairedend” and “–no_overlap” parameters set; otherwise, default
parameters were used, as recommended by the Bismark User Guide
for the library kit.

Statistical analysis
All statistical analyses were conducted using the R statistical soft-

ware version 4.2.0. Hierarchical clustering was performed using
Ward’s linkage algorithm with Euclidean distances. Survival analysis
was performed using the survival package in R and survival probability
was visualized using the Kaplan–Meier method, with endpoint overall
survival defined from the time biopsieswere obtained from the patients
to death from any cause. All correlation analyses were performed using
Pearson’s method unless otherwise specified. Fisher exact test was
applied to determine if DNA alterations were significantly different
between the subtype groups. All tests were 2-sided when applicable,
and P < 0.05 was considered statistically significant. Results were
corrected for multiple testing using the Benjamini-Hochberg method
(FDR) unless otherwise stated. All measurements were taken from
distinct individual samples. Box plots should be interpreted as follows:
horizontal lines denote median values; boxes extend from the 25th to
the 75th percentile of each group’s distribution of values; vertical
extending lines denote adjacent values (themost extreme values within
1.5 interquartile range of the 25th and 75th percentile of each group).
Differences between groups were assessed by the Kruskal–Wallis test.
Significance is indicated as follows in the figures: �, P ≤ 0.05; ��, P ≤
0.01; ���, P ≤ 0.001; ����, P ≤ 0.0001.

Differentially expressed gene analyses
Differential gene expression analysis was performed using RNA-seq

raw feature counts with DESeq2 version 1.36.0 (15). The data were
corrected for tumor purity and tumor ploidy. Genes with fold change≥
2 or ≤ �2 and FDR ≤ 0.01 were considered significantly up- or
downregulated, respectively.

Evaluation of copy-number alteration and tumor purity and
ploidy

The PURPLE tool (16) was used on WGS data to evaluate copy-
number alterations and assess the tumor purity and tumor ploidy. Copy
number and biallelic status of the tumors were determined by incorpo-
rating tumor purity, tumor ploidy, and chromosome type (autosomal or
sex chromosome). Genes were classified as amplified or deleted accord-

ing to the following criteria: for the genes in chromosomes X and Y, a
gene was marked as amplified if a minimum coding copy number was
higher than tumor ploidy � 0.9. A gene was marked as a single copy
deletion if the coding copy number was lower than 0.75. A gene was
marked as two copies deleted if the maximum coding copy number was
lower than 0.5. For genes in autosomal chromosomes, a genewasmarked
as amplified if aminimum coding copy number exceeded tumorploidy �

1.95. Genes were marked as deleted if their minimum coding copy
number was lower than 1.1. Genes were marked as two copies deleted if
their maximum coding copy number was lower than 0.5. Copy-number
boundsused in this analysiswere determined by reviewing genome-wide
distributions of all corrected gene copy estimates.

Evaluation of structural variants and mutation calling
Somatic mutation analysis was performed with Strelka2 version

2.9.10 andMuTect version 1.1.7 (17). Alterations with a PASS score in
both tools were used to improve the accuracy of the results as
recommended (18). SnpEff version 4.3was used to identify Frameshift,
Missense, Splice donor, Splice acceptor, Stop gain or Stop loss. Germ-
line mutation analysis was performed using HaplotypeCaller version
4.2.2.0. GRIDSS version 2.12.2 and LINX (19) version 1.17were used to
identify structural variations and gene fusions, respectively. Samples
lacking a PASS designation were excluded from the analyses.

Differentially methylated regions
Differential methylation analysis was performed using the DSS tool,

version 2.26.0107 (20).NominimumCpGread coveragewas set because
DSS considers the read depth for calculating the differentially methyl-
ated regions (DMR). The smoothingwas set to TRUE, otherwise, default
parameters were used inDSS. DMRswere required to pass the following
criteria: hypermethylated regions should have at least 10% higher
methylation level and hypomethylated regions should have at least
10% lower methylation level in each subtype compared with the same
regions in ARþ/NE�. The same criteria were used to identify DMRs in
ARþ/NE� when compared with all other subtypes combined.

Motif analysis in DMR regions
A list of all knownHomo sapiens transcription factor (TF) motifs was

downloaded from the JASPAR database (21). This list was employed to
perform an unbiased motif analysis using FIMO version 5.1.0 (22) with
default parameters. FIMOwas used to identify the occurrence of known
motifs with potential regulatory functions that may bind the putative
enhancer regions identified in theCHD7 gene. Regions of interest in the
CHD7 gene (DMR2 and DMR3) on build GRCh38 were used as inputs
in FIMO.Resultswere ranked by FDR (q value).DMRs includinghyper-
and hypomethylated regions identified by DSS for each subtype were
converted to bed files using the GenomicRanges package version 1.48.0.
We excluded ENCODE Blacklist (23) regions annotated in GRCh38,
under accession number ENCFF419RSJ, and genomic coordinates
outside of chromosomes 1–22, X, and Y. The BED files were used as
inputs for the motif enrichment analyses using the HOMER program
suite version 4.11.1 (24) (findMotifsGenome.pl) with “-size given”,
otherwise default parameters. Significantly enrichedmotifs, were ranked
by log (P value). The top 20motifs, if available, within each subtypewere
plotted on heat maps. Genes mapped to Kr€uppel-like factor 5 (KLF5)
were annotated using HOMER (annotatePeaks.pl).

Gene set enrichment analysis
We obtained gene sets of the Cancer Hallmark pathways from the

Molecular Signatures Database (MSigDB) usingmsigdbr version 7.5.1
to conduct gene set enrichment analysis (GSEA) and single sample
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GSEA (ssGSEA). ssGSEA was carried out using GSVA version
1.44.1 (25). A matrix of RNA-seq read counts was used as an input
and the recommended parameters were applied for the ssGSEA
analysis (tau ¼ 0.25, kcdf ¼ "Poisson", method ¼ "ssgsea"). In Gene
Ontology (GO) enrichment analyses, differentially expressed genes
unique to each subtype were ranked by their log2 (fold change)
value, and the GO enrichment analyses were computed using the
clusterProfiler R package version 4.4.2 (26) with default parameters.
The gene sets with enrichment of FDR < 0.1 were considered
significant. Genes annotated to the KLF5 TF using HOMER were
ranked by FDR and GSEA was performed using the enrichR (27)
tool with default parameters. The P values of enriched pathways
were then adjusted for multiple testing using FDR. Pathways
enriched with FDR < 0.1 were considered to be significant.

Code availability
Code used in this manuscript is available at https://github.com/

DavidQuigley/WCDT_subtypes.

Data availability
RNA-seq FASTQ files of 148 localized samples from the CPC-

GENE cohort (28) were obtained from the European Genome-
PhenomeArchive (EGA) under accession number EGAS00001000900
and the FASTQfiles of eight benign samples from thePAIR cohort (29)
were retrieved fromGene Expression Omnibus (GEO) database under
accession number GSE115414. The files were aligned with STAR, and
the gene level quantification was performed using gene models in
GENECODE version 28. The expression value of each gene was
converted to TPM. The chromatin immunoprecipitation sequencing
(ChIP-seq) data of DNase I hypersensitive sites (DHS; ref. 30) was
obtained from the ENCODE project under accession number
ENCSR857UZV. The H3K27ac ChIP-seq data of primary prostate
tumors (31) was obtained from GEO, under accession number
GSE120738. WGBS and WGS from 100 samples of mCRPC tumors
from the West Coast Prostate Cancer Dream Team (WCDT) cohort
are available on dbGaP with study number phs001648 (11) and an
additional 28 samples are available on EGA with study number
EGAS00001006649. RNA-seq data from 210 samples ofmCRPC tumors
from the WCDT cohort are available on EGA with study numbers
EGAD00001008991, EGAD00001008487, and EGAD00001009065
(Supplementary Table S2). All other raw data are available upon
request from the corresponding author.

Results
Subtypes of mCRPC are associated with distinct transcriptional
phenotypes

We developed a cohort of 210 mCRPC tumors from fresh-frozen
core biopsies obtained through a prospective multi-institutional IRB-
approved study (NCT02432001; ref. 8). All 210 tumors of the WCDT
cohort were characterized by RNA-seq, with 128 tumors also char-
acterized byWGS andWGBS. The clinical characteristics of patients in
the cohort are listed in Supplementary Table S1, and characteristics of
themolecular analysis are summarized in Supplementary Table S2. All
samples were processed by a uniform analysis pipeline to evaluate
transcriptional activity, somatic alterations, and tumor methylation
status (Materials andMethods). We first tested the hypothesis that the
AR andNE tumor subtypes identified in Labrecque and colleagues (13)
could be replicated in this independent cohort. To this end, we
clustered the WCDT gene expression data by employing a gene set
previously demonstrated to distinguish these subtypes (13). Using

hierarchical clustering we identified 132 tumors as ARþ/NE�, 9 as
ARþ/NEþ, 49 as ARL/NE�, 7 as AR�/NEþ, and 13 as AR�/NE�
(Fig. 1A). An unbiased genome-wide principal component analysis
performed on tumor gene expression data identified clusters consistent
with the supervised gene set clustering analysis (Supplementary
Fig. S1). We inferred that the hierarchical clustering approach iden-
tified subtypes in the WCDT cohort consistent with those previously
described by Labrecque and colleagues (13), and that these subtypes
were associated with a large proportion of the overall transcriptional
variance in our cohort. We repeated this analysis in an independent
cohort of mCRPC tumors (7) and identified the same set of five
transcriptionally defined subtypes (Fig. 1B), further supporting the
generality of this subtype classification.

We next asked whether these subtypes are present in localized
tumors, or if they instead are exclusively observed in tumors that have
progressed on ADT. We clustered gene expression data from eight
benign samples from the PAIR cohort (29) and 148 localized prostate
cancer samples from the CPC-GENE cohort (28) in addition to the
WCDTmCRPC tumors using the Labrecque gene sets (13). Localized
tumors were not associated with subtypes in this analysis (Supple-
mentary Fig. S2). Six localized tumors with high levels of chromo-
granin-A (CHGA) expression, a neuroendocrine lineage marker, and
low AR expression clustered with the mCRPC tumors, closer to NEþ
and AR-low biopsies. This analysis was consistent with a model
wherein these subtypes either arise de novo after progression on ADT
or arise from rare cell populations among localized tumors that cannot
be readily identified by bulk sequencing (32).

We next set out to identify the expression pathways that distinguish
the subtypes.Consistentwith previous studies,AR expression statuswas
the major determinant in mCRPC molecular measurements (5, 9, 11)
and was associated with the largest number of differentially expressed
genes. In comparison with ARþ/NE� tumors, we identified 1,557
and 2,856 differentially expressed genes specific to AR�/NE� and
AR�/NEþ subtypes, respectively (Supplementary Fig. S3; Supplemen-
tary Data 1). ARþ subtypes were significantly enriched for androgen
response, while NEþ subtypes were enriched for neuronal lineage and
proliferation gene sets such as Hallmarks of Pancreas Beta Cells and
E2F targets (Student t test P < 0.001; Fig. 2A; Supplementary Fig. S4).
Tumors in AR� subtypes were enriched for hallmarks of hypoxia
and proliferation (Student t test P < 0.001; Fig. 2A). Double-negative
AR�/NE� tumors had downregulation of adaptive immune response
genes, consistent with reports that this subtype has an immunosup-
pressed tumor microenvironment (33), and elevated expression of
genes related to innate immune response and fibroblast growth factor
signaling, as previously reported (SupplementaryFig. S4; ref. 34).Taken
together, these data validate the presence of these mCRPC transcrip-
tional subtypes in metastatic prostate tumors and demonstrate that
these subtypes can be identified at a time when this knowledge could
potentially lead to a change in therapy.

The AR�/NE� subtype is associated with the worst prognosis
Neuroendocrine mCRPC, which has also been termed aggressive

variant disease, is associated with poor patient outcomes (8, 35). We
assessed the patient outcomes of the five molecular subtypes of
mCRPC that we identified in theWCDT cohort of men with mCRPC.
We tested for association between molecular subtypes and patients’
survival from the date tumor biopsies were obtained. Survival analyses
confirmed that patients with AR� tumors had inferior overall out-
comes relative to ARþ tumors (log-rank P < 0.001). There was not a
significant association between AR signaling inhibitor exposure
and either AR� status or individual tumor subtype (Supplementary
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Table S1). Notably, pairwise-comparisons tests between the AR� and
ARþ subtypes indicated that the strongest significant difference in
survival was associated with the AR�/NE� subtype (vs. ARþ/NE�
P < 0.001, vs. ARþ/NEþ P ¼ 0.008, vs. AR�/NEþ P ¼ 0.06, vs.
ARL/NE� P < 0.001; Fig. 2B).

Biallelic loss of PTEN is associated with the AR�/NE� subtype
Leveraging the integrated molecular data available for the WCDT

cohort, we tested for association between somatic alterations and the
five mCRPC subtypes. We focused on 131 frequently altered prostate
cancer driver genes (5, 36), and conducted somatic mutation and

Figure 1.

mCRPC tumors cluster into five groups using the expression of androgen, neuroendocrine, and squamous gene panels. A and B, Heat map representing RNA-seq
gene expression level of AR, NE, and squamous (SQUAM) gene panels of mCRPC tumors from the WCDT cohort (A; refs. 5, 11) and the Beltran and colleagues
cohort (B; ref. 7). Results are expressed as log2 TPM (z-score) and colored from low (blue) to high (yellow) expression level. AR gene panel includes AR and
AR-regulated genes, NE gene panels (NE1 and NE2) include NE related genes, and SQUAM panel includes genes associated with squamous cell differentiation. The
expression levels of genes included in neuroendocrineprostate cancer (NEPC) panel fromBeltranand colleagues cohort (7)were used to assignabinary classification
(Binary class) of the samples based on their gene expression. White, adenocarcinoma tumors; black, small cell NEPC. AR and NEPC signature scores were calculated
based on the AR and NEPC-related gene expression values as reported previously (7). The tumor subtypes can be read as follows: ARþ/NE�, dark turquoise;
ARL/NE�, dark orange; AR�/NE�, light purple; AR�/NEþ, pink; ARþ/NEþ, light green.
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structural variation analyses to identify variants linked to each subtype.
As expected, ARþ tumors harboredmore frequent amplification ofAR
and a nearbyAR enhancer than AR� tumors (AR amplified in 69% vs.
15% Fisher exact test P¼ 0.001 and AR enhancer amplified in 79% vs.
23%, Fisher exact test P < 0.001; Fig. 3A). Inactivation of the tumor
suppressor genes TP53 and RB1 has been reported to be frequent in
neuroendocrine prostate cancer (37). Combined biallelic loss of RB1
and TP53 alterations was significantly more frequent in AR� tumors
than other subtypes (23% vs. 0%, Fisher exact test P¼ 0.002; Fig. 3A).

Loss of the tumor suppressor gene PTEN has been associated
with castration resistance and worse survival outcomes in response to
AR-targeted therapy (38–40).Weobservedmore frequentPTEN biallelic
loss and inactivation in AR�/NE� tumors compared with the other
subtypes (57%, AR�/NE� vs. 17%, Fisher exact test P¼ 0.031; Fig. 3A
and B). Germline alterations inactivating an allele of BRCA2 are asso-
ciatedwithmore aggressiveprostate cancer (41), andbiallelic inactivation
of homologous recombination repair genes including BRCA2 is predic-
tive of response to PARP inhibitor therapy (42, 43). Two of the eight
tumors with biallelic inactivation of BRCA2 were AR�/NE� (29% of
AR�/NE� vs. 5% in other subtypes, Fisher exact test P¼ 0.061).MYC

activation is a key driver of aggressive prostate cancer tumors and is
associated with poor prognosis (44), and it has been observed thatMYC
overexpression impacts the activity of AR targets (45). We observed
positive correlation betweenMYC copy gain andMYC gene expression
level among the tumors (R ¼ 0.3, P < 0.001). AR� tumors were more
likely to harbor copy gain ofMYC than ARþ tumors (69% in AR� vs.
29% inARþ, Fisher exact test P¼ 0.019; Fig. 3A andB). Gene fusions in
the ETS family are the most common alterations in localized prostate
cancer. 62% of the WCDT tumors harbored ETS fusions and was not
associated with tumor subtypes (Supplementary Table S3). These results
demonstrated that PTEN biallelic loss, previously associated with poor
prognosis, was most frequently observed in AR�/NE� tumors com-
pared with the other subtypes. These associations were consistent with
our observation that AR�/NE� tumors were associated with the worst
prognosis for WCDT patients (Fig. 2B).

Alterations in the chromatin remodeling gene CHD7 are
associated with AR� tumors

Of the 131 prostate cancer genes we examined, chromodomain
helicase DNA binding protein 7 (CHD7) was the only gene with

Figure 2.

Distinct clinical outcomes associatedwith thefive subtypes ofmCRPC.A,Heatmap representing results of ssGSEAs and colored according to the legends.B,Kaplan–
Meier curves representing clinical outcome of patients in the WCDT cohort, using survival from date of biopsy acquisition as the clinical outcome. Pairwise test
conducted between AR�/NE� and other subtypes. The tumor subtypes can be read as follows: ARþ/NE�, dark turquoise; ARL/NE�, dark orange; AR�/NE�, light
purple; AR�/NEþ, pink; ARþ/NEþ, light green.
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significantly higher copy numbers in theAR�/NE� tumors compared
with the other subtypes (57% vs. 17%, Fisher exact test P ¼ 0.031;
Fig. 3A and B). Copy-number gain of CHD7, located at 8q12, was
distinct from gain ofMYC, located at 8q24. Notably, CHD7 expression
was significantly higher in AR� tumors compared with ARþ tumors
(Kruskal–Wallis, P ¼ 0.0031; Fig. 4A) and was positively correlated
with SOX2 expression (R ¼ 0.25; P < 0.001; Supplementary Fig. S5).
CHD7 was expressed at the highest levels in AR�/NEþ tumors,
despite a very low rate of somatic alterations in this subtype
(Fig. 3A and B). CHD7 was also expressed at significantly higher
levels in AR�/NEþ tumors than other subtypes in an independent
cohort (7) of mCRPC tumors (Supplementary Fig. S6). CHD7 is an
ATP-dependent chromatin remodeler essential formultipotent neural
crest formation (46). CHD7 plays a key role in promoting neural
progenitor differentiation in embryonic stem cells (ESC), where it co-
localizes with active gene enhancers such as SOX2 and subsequently
modulates the expression of ESC-related genes (47–49). SOX2 plays an
important role in disease progression, promoting androgen indepen-
dence and lineage plasticity in prostate cancer (50–52). The consistent
elevated expression ofCHD7 in AR� tumors led us to hypothesize that
CHD7 plays a role in AR� mCRPC.

We observed that elevated CHD7 expression in AR�/NEþ tumors
was not associated with increased CDH7 copy number; thus, we
investigated the hypothesis that DNA methylation changes impact
CHD7 expression in this subtype. DNAmethylation plays a prominent
role in the modulation of cellular states such as cell differentiation and
tumorigeneses (53, 54). Increased methylation at DNA enhancer
regions can reduce the expressionof the targetsof that enhancer (55, 56)
by preventing TF binding (57–59). We tested for differential meth-

ylation at the CHD7 promoter and nearby genomic loci and predicted
the presence of enhancers by intersecting these loci with regions
marked by H3K27ac ChIP-seq in localized prostate tumors (31), and
by DNase I sensitivity, assays that predict enhancer activity (Fig. 4B;
ref. 30). We identified four statistically significant DMRs overlapping
with H3K27ac ChIP-seq and DHS peaks. The loci were designated
DMR1 (Chr8: 60714901–60714964), DMR2 (Chr8: 60791842–
60794175), DMR3 (Chr8: 60846924–60850679), and DMR4 (Chr8:
60864944–60866961). DMR2 and DMR3 had 43% lower methylation
levels in AR�/NEþ tumors compared with ARþ/NE� tumors
(Fig. 4C–F). Methylation levels in DMR2 and DMR3 were negatively
correlated with CHD7 gene expression level, consistent with a role as
enhancers of CHD7 expression (R¼�0.43; P < 0.001 and R¼�0.27;
P ¼ 0.010, respectively; Fig. 4D and E).

Having identified two candidate enhancer regions that are prefer-
entially hypomethylated in AR�/NEþ compared with ARþ/NE�, we
next performed a DNA motif enrichment analysis on the DMR2 and
DMR3 regions to identify TFs that may affect CHD7 expression.
Unbiased motif enrichment analyses indicated that DMR2 was most
significantly enriched for neuronal lineage TFs including BCL11B
(q value ¼ 0.003; ref. 60) and ASCL1 (q value ¼ 0.009; ref. 10). In
DMR3, NEUROG2 (q value ¼ 0.006) and OLIG2 (q value ¼ 0.01;
refs. 10, 61) were the most significantly enriched TFs. In contrast,
DMR1 and DMR4, whose methylation levels were not significantly
correlated with CHD7 expression, do not contain these motifs
(Fig. 4G). These data are consistent with a model in which hypo-
methylation at these neuroendocrine TF binding regions of CHD7
could contribute to the upregulation ofCHD7 expression inAR�/NEþ
tumors via binding of neuronal TFs such as ASCL1.

Figure 3.

Somatic and structural alterations associatedwith subtypes ofmCRPC.A, Top rows showmCRPC subtypes, ETS family fusions, TMPRSS2-ERG fusions, tumor purity,
and tumor ploidy in theWCDTcohort. Bottom rows showoccurrence ofAR,AR enhancer,PTEN,RB1,TP53,MYC,BRCA2, andCHD7 alterations in each sample. Tumors
are sorted by their subtypes. Alteration frequency is shown to the right. B, Bar plots representing alteration frequency (%) of AR, PTEN, RB1, TP53, MYC, BRCA2, and
CHD7 genes within each subtype. In both panels, types of alterations are colored (and/or marked with symbols) according to the legends.
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Figure 4.

Hypomethylation in the putative enhancer regions of CHD7 is correlated with elevated gene expression in AR�/NEþ. Integration of gene expression and DNA-
methylation data for the CHD7 gene. A, Box plots representing CHD7 gene expression in the five mCRPC subtypes, colored according to the key below the plot.
B, Top, chromosomal location of the CHD7 gene along with H3K27ac ChIP-seq marker, DHS, and DMRs in AR�/NEþ tumors compared with ARþ/NE�. Bottom,
ChIP-seq data forASCL1 in different cell lines as indicated in the panels. The vertical dashed green and red lines show the transcription start site and transcription end
site of the CHD7 gene, respectively. The yellow bar indicates the canonical promoter region of CHD7. C–F, Box plots showing mean methylation level per sample in
DMR1 (C), DMR2 (D), DMR3 (E), and DMR4 (F) for AR�/NE�, AR�/NEþ, and ARþ/NE� subtypes. Pearson correlations were calculated between CHD7 gene
expression and mean methylation of each sample at DMRs1–4. Box plots should be interpreted as follows: horizontal lines, median values; boxes extend from the
25th to the 75th percentile of eachgroup’s distribution of values; vertical extending lines, adjacent values (themost extremevalueswithin 1.5 interquartile rangeof the
25th and 75th percentile of each group). Differencesbetweengroupswere assessed by theKruskal–Wallis test. Significance is indicated as follows: ns, not significant;
� , P ≤ 0.05; �� , P ≤ 0.01; ��� , P ≤ 0.001; ���� , P ≤ 0.0001. G, Venn diagram representing the overlap between the top 10 TF motifs enriched at each DMR location.
Neuroendocrine-lineage motifs found in DMRs are labeled in the panel.
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Expression and methylation analysis converges on KLF5 in
AR�/NE� tumors

We next extended this analysis to nominate TFs that influence the
development and activity in all mCRPC subtypes. We combined two
orthogonal unbiased methods to identify the strongest candidates:
subtype-specific differential expression analysis, and motif enrich-
ment analysis at regions preferentially hypomethylated in each sub-
type. We hypothesized that subtype-specific driver TFs would be both
upregulated and would have an increased number of hypomethylated
binding sites in that subtype. Differential expression analysis across all
subtypes, restricted to established TFs (62), identified subtype-specific
upregulation of numerous TFs previously associated with ARþ/NE�
and AR�/NE� disease. As expected, ARþ/NE� tumors expressed
AR, GATA2, NKX3–1, and MYC at significantly higher levels than
other subtypes (Fig. 5A). Consistent with prior reports, AR�/NEþ
tumors had significantly higher expression of ASCL1, INSM1, and
NKX2–1 (Fig. 5A). We then focused on double-negative tumors, which
have been lesswell-studied.We found thatmanyTFs previously linked to
AR� mCRPC such as KLF5, MYCN, and FOXA2 were expressed at
significantly higher levels in AR�/NE� tumors.

We next performed genome-wide differential methylation analysis
comparing each subtype to ARþ/NE� tumors, followed by motif
enrichment analysis to identify TF binding sites that were preferen-
tially exposed in that subtype. Hypomethylated regions in ARþ/NE�
tumors were enriched for motifs associated with Androgen Response
elements, FOX family motifs, GREmotifs, and GRHL2 (Fig. 5B). This
positive control result demonstrated differential methylation analysis
could identify binding sites associated with driver TF and pioneer
factors. Complementing these observations, hypermethylated regions
in AR� tumors were enriched for ETS family motifs such as ETV2 and

ERG, and androgen-associated motifs includingHOXB13 andGRHL2
(Supplementary Fig. S7). Hypomethylated regions in AR�/NEþ
tumors were significantly enriched for NE lineage-related TFs such
as ASCL1 and NEUROD1 as well as TFs that promote epithelial-
mesenchymal transition (EMT) including SNAIL1 and SLUG (Fig. 5B;
refs. 63, 64).

Focusing next on AR�/NE� tumors, we observed enrichment for
motifs associated with SOX family and KLF motifs in the hypomethy-
lated regions of this subtype (Fig. 5B). The KLF5 motif was the most
highly enriched motif identified in AR�/NE� tumors, but it ranked
257th of 433motifs in the AR�/NEþ subtype and was not enriched in
ARþ subtypes (Fig. 6A; Supplementary Data 2). Among the KLF
family genes with binding motifs enriched in AR�/NE� tumors
(KLF5, KLF3, KLF1, KLF14, KLF6, KLF9), only KLF5 had significantly
higher expression in AR�/NE� tumors (Fig. 5A; Supplementary
Fig. S8). Genes harboring KLF5 binding sites that were hypomethy-
lated in AR�/NE� tumors were enriched for roles in EMT, myogen-
esis, and estrogen response (Fig. 6B). This result was consistent with
prior reports that KLF5 maintains epithelial cell identity in normal
prostate and mammary tissues (65–67). To nominate subtype-specific
associations between KLF5 and other genes linked to lineage pheno-
types, we performed differential correlation analysis centered onKLF5.
KLF5 expression was significantly correlated with luminal markers
such as KRT18 in AR� and AR-low subtypes (Fig. 6C). KLF5 was not
correlated with basal markers such as KRT5, which were expressed at
low levels in all subtypes, though at significantly higher levels in AR�/
NE� tumors than other subtypes (Fig. 6C). KLF5 expression levels
were positively correlated with mitotic cyclin CCNB2 (Fig. 6C).

One of the strongest significant correlations we observed was an
inverse correlation between expression ofKLF5 andRB1 inAR�/NE�

Figure 5.

Gene expression andDNAmethylation analysis converges onKLF5 TF in AR�/NE� tumors.A,Heatmap representing differentially expressed TFs in five subtypes of
mCRPC. B, Heat map representing top 20 enriched TFs in hypomethylated regions of the five mCRPC subtypes. TFs are ranked by log (P value). The color intensity
indicates the rank of the TFs from most enriched (dark red) to least enriched (white).
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tumors (Figs. 6C and 4F). RB1 and KLF5 are located on chromosome
13 at 48.3 and 73 Mb, respectively. RB1 is frequently deleted in
mCRPC (5), and expression levels of RB1 were correlated with RB1
copy number in both AR�/NE� and ARþ/NE� tumors (Fig. 6D, top
row). KLF5 was rarely deleted or amplified in AR�/NE� tumors, and
there was no significant association between KLF5 expression and
KLF5 copy number (Fig. 6D, middle row). KLF5 expression was,
however, negatively correlatedwithRB1 copy levels only inAR�/NE�
tumors (Fig. 6D, bottom row). The RB1 inverse correlation withKLF5
was the 22nd strongest correlation among all genes in the genome for
AR�/NE� tumors. These observations were consistent with RB1 loss
being linked to increased KLF5 activity in AR�/NE� tumors.

Discussion
Several studies have shown subtype heterogeneity among mCRPC

tumors (5, 11, 13) and have identified that a subtype variously called
small cell, neuroendocrine (7), t-SCNC (8), and aggressive variant (68)
disease exists and has worse prognosis than prostate adenocarcino-

ma (8). This study characterized genomic and epigenomic drivers of
mCRPC by integrating RNA-seq, deep WGS and WGBS, and clinical
outcomes from 210 mCRPC tumors to assess subtypes defined by AR
and NE status including adenocarcinoma (ARþ/NE�), double-
positive (ARþ/NEþ), low AR (ARL/NE�), neuroendocrine (AR�/
NEþ), and double-negative (AR�/NE�). We demonstrated that
AR�/NE� tumors have the worst survival outcomes of these subtypes
and harbor distinct genomic and epigenomic changes compared with
theAR�/NEþ subtype, whichmay facilitate the identification of novel
therapeutic targets in AR-independent tumors. We identified tran-
scriptional subtypes that were consistent with five molecular subtypes
reported by Labrecque and colleagues (13). These five subtypes were
not observed in primary prostate tumors. This suggests mCRPC
tumors evolve from the ARþ/NE� phenotype concurrently with the
development of castration-resistant disease in response to therapeu-
tic pressure from androgen-targeting therapy (69). Our observation
that patients with AR�/NE� tumors had the worst survival outcome
among men with mCRPC who are actively being treated supports the
expansion of the adenocarcinoma versus neuroendocrine dichotomy

Figure 6.

Association betweenKLF5 TF enrichment andRB1gene loss in AR�/NE� tumors.A,Rank order plots show the enrichment rank ofKLF5 in AR�/NE� andAR�/NEþ
subtypes on the left to right. Dashed red color indicates rank 20.B, Bar plots showing the gene set enrichment analyses for genesmapped to the KLF5motif. Dashed
line, FDR¼0.05.C,Scatter plots representing Spearman correlationbetweenKLF5geneexpression andKRT5,KRT8,RB1, andCCNB2genes.D,Scatter plots showing
the relation between RB1 gene expression and RB1 copy numbers (top row), KLF5 gene expression and KLF5 copy numbers (middle row), and KLF5 gene expression
and RB1 copy number (bottom row).
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to include these five subtypes in genomic and clinical studies of
mCRPC. The small number of tumors with the AR�/NE� pheno-
type in our cohort limited our statistical power to perform multi-
variate survival analysis.

AR�/NE� tumors were enriched for biallelic inactivation of PTEN
and amplification of a DNA region that included CHD7, an ATP-
dependent chromatin remodeling gene. Despite a low frequency of
somatic changes in CHD7 among AR�/NEþ tumors, these tumors
express the highest levels of CHD7. In normal tissues, CHD7 is abun-
dantly expressed only in the cerebellum. CHD7 is essential for proper
formation of the multipotent migratory neural crest (46), it plays an
important role in promoting neural progenitor differentiation in ESCs,
and it colocalizes with SOX2 (47–49). We identified two intragenic
candidate enhancer regions of CHD7 (DMR2 and DMR3) that were
hypomethylated in theAR�/NEþ subtype. Hypomethylation ofDMR2
and DMR3 was significantly correlated with higher CHD7 expression,
consistent with the profile of an enhancer. Published ChIP-seq experi-
ments in neuroendocrine lineage tumors showedASCL1 binds atDMR2
at the location of an ASCL1 binding motif. Analysis of chromatin
interactions in models of prostate cancer using Chromatin Interaction
Analysis with Paired-End Tag (ChIA-PET) techniques (70) would be
informative to explore this relationship further; our observations predict
influence of DMR2 and DMR3 would be conditional on whether the
cells have aneuroendocrinephenotype.EctopicoverexpressionofCHD7
in preclinical models of glioblastoma cell-line increases cell motility and
invasiveness (71). Abundant prior evidence therefore links CHD7 to
neural development, though to our knowledge this is the first study
linking CHD7 to neuroendocrine mCRPC.

We nominated TFs specifically relevant to each subtype by unbiased
genome-widemethylation analysis of TF bindingmotifs. This analysis
underscored the profound differences in transcriptional control of
AR�/NE� andAR�/NEþ tumor cells.ASCL1 bindingmotifs had the
strongest enrichment in AR�/NEþ tumors. Together with our CHD7
analysis, this observation adds to emerging evidence that ASCL1 plays
a key role driving lineage plasticity in this subtype (10). This analysis
also showed KLF-family motifs were significantly enriched in the
hypomethylated regions of AR�/NE� tumors. Among KLF family
genes, KLF5 was most highly expressed in this subtype. A positive
association has been reported between KLF5 gene expression and
SPOP gene expression in an early-onset primary prostate tumors (72).
It has been proposed that KLF5 plays contrasting roles in advanced
prostate cancer depending on AR activity (65). In ARþ tumors, KLF5
interacts with AR and decreases AR expression. In the absence of AR,
KLF5 has been reported to function as an oncogene that promotes cell
migration and invasion (65). We observe highly divergent enrichment
in our methylation analysis for KLF5 binding sites in AR�/NE� and
AR�/NEþ subtypes. Notably, KLF5 was the most enriched motif in
AR�/NE� tumors, while it ranked 257th inAR�/NEþ tumors. These
observations, combined with elevated expression of KLF5 in AR�/
NE� tumors, support our hypothesis that KLF5 drives AR�/NE�
tumors. The link that we observed between elevated KLF5 expression
and RB1 inactivation was striking, but further studies will be required
to determine whether RB1 loss directly impacts KLF5 expression in
AR� disease.
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