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Abstract

Purpose: While numerous biology-driven subtypes have been described in metastatic castration-

resistant prostate cancer (mCRPC), unsupervised molecular subtyping based on gene expression 

has been less studied, especially using large cohorts. Thus, we sought to identify the intrinsic 

molecular subtypes of mCRPC and assess molecular and clinical correlates in the largest 

combined cohort of mCRPC samples with gene expression data available to date.

Methods: We combined and batch effect corrected gene expression data from four mCRPC 

cohorts from the Fred Hutchinson Cancer Research Center (FHCRC, N=157), a small-cell 
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neuroendocrine prostate cancer (SCNC)-enriched cohort from Weill Cornell Medicine (WCM, 

N=49), and cohorts from the Stand Up 2 Cancer/Prostate Cancer Foundation East Coast Dream 

Team (ECDT, N=266) and the West Coast Dream Team (WCDT, N=162).

Results: Hierarchical clustering of RNA-seq data from these 634 mCRPC samples identified 

two distinct adenocarcinoma subtypes, one of which (adeno-immune) was characterized by higher 

gene expression of immune pathways, higher CIBERSORTx immune scores, diminished ASI 

benefit, and non-lymph node metastasis tropism compared to an adeno-classic subtype. We also 

identified two distinct subtypes with enrichment for a neuroendocrine (NE) phenotype, including 

an NE-liver subgroup characterized by liver metastasis tropism, PTEN loss, and APC and SPOP 
mutations compared to an NE-classic subgroup.

Conclusion: Our results emphasize the heterogeneity of mCRPC beyond currently accepted 

molecular phenotypes, and suggests that future studies should consider incorporating 

transcriptome-wide profiling in order to better understand how these differences impact treatment 

responses and outcomes.

INTRODUCTION

Prostate cancer is a clinically and molecularly heterogenous disease. Outcomes for patients 

can vary substantially, as the presentation of prostate cancer can range from indolent 

tumors to highly aggressive and lethal disease. The molecular heterogeneity of the disease 

is reflected in the panoply of DNA alterations in key driver genes initially identified in 

localized prostate cancer(1–3). RNA-based gene expression profiling approaches further 

demonstrated a division between luminal-like or basal-like subtypes in prostate tumors(4–

6) that have different prognoses and importantly may respond differently to anti-androgen 

therapy, the backbone of systemic therapy in prostate cancer. These clinically important 

subtypes are now being incorporated into national clinical trials to improve patient selection 

for various standard of care and experimental therapies.

Metastatic prostate cancer is a very different disease than localized prostate cancer; this 

is particularly true for metastatic castration-resistant prostate cancer (mCRPC), which 

represents end stage disease with poor outcomes. The genomic landscape of mCRPC is 

characterized by a higher frequency of DNA alterations across many oncogenic drivers, 

especially in the androgen receptor (AR) due to the selective pressure of therapy(7–10). 

However, these DNA alterations have failed to capture the full heterogeneity of the 

disease and, with the exception of DNA-repair deficiencies and microsatellite instability 

in a minority of cases, cannot be used to guide clinical decision-making. In addition 

to DNA alterations, important transcriptional changes also take place during disease 

progression to mCRPC. Transcriptional changes have been identified on the basis of 

histologic differences between subsets of mCRPC; a number of studies have identified 

lineage plasticity, most commonly towards a neuroendocrine (NE) lineage, in response to 

prolonged AR-targeted therapy through which prostate cancer become independent of AR 

signaling for proliferation(10–14). Indeed, more recent studies focusing on differences in 

the neuroendocrine (NE) and AR signaling axes between mCRPC samples have defined five 

different subgroups: AR-high prostate cancer (ARPC), AR-low prostate cancer (ARLPC), 

amphicrine tumors composed of cells co-expressing AR and NE genes (AMPC), double-
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negative tumors (i.e., AR–/NE–; DNPC), and tumors with small cell or NE gene expression 

without AR activity (SCNC)(15). Lineage plasticity without NE differentiation may also be 

present towards a more stem cell phenotype through epithelial to mesenchymal transition 

(EMT) or towards a gastrointestinal lineage(16). Additional RNA profiling studies have 

demonstrated that transcriptional subtypes that exist in localized prostate cancer may exist 

in mCRPC; a recent study demonstrated that luminal and basal subtypes in mCRPC predict 

response to AR signaling inhibitors (ASIs), analogous to localized prostate cancer(17).

While previous subtyping studies have revealed the biological heterogeneity of mCRPC, 

comprehensive unsupervised transcriptome-wide clustering approaches have seen limited 

use in metastatic samples to date, likely due to the lack of large cohorts of metastatic disease 

with molecular profiling, which requires metastatic tissue biopsies that are logistically 

difficult to obtain. Compared to localized prostate cancer, in which cohorts with thousands 

of patients samples have been published(18), the largest mCRPC cohorts with next-

generation sequencing and clinical outcomes are comprised of <150 (7,19,20). To allow 

for unsupervised data-driven approaches that may reveal key information which have not 

yet been hypothesized and tested, we recently compiled publicly available RNA-seq from 

mCRPC samples to form the largest dataset of its kind(17) which represents a unique 

opportunity for identifying the intrinsic molecular subtypes of mCRPC and assessing for 

molecular and clinical correlates.

METHODS

mCRPC Clinical Cohorts

We combined and batch effect corrected data from four mCRPC cohorts to assess intrinsic 

subtypes, and analyzed RNA, DNA, and overall survival as previously published(17). The 

mCRPC cohorts used were from the Fred Hutchinson Cancer Research Center (FHCRC, 

N=157)(21), a small-cell/neuroendocrine prostate cancer (SCNC)-enriched cohort from 

Weill Cornell Medicine (WCM, N=49)(14), an cohort from the Stand Up 2 Cancer/Prostate 

Cancer Foundation (SU2C/PCF) East Coast Dream Team (ECDT, N=266)(8,19) and the 

West Coast Dream Team (WCDT, N=162)(7,10,22).

Bioinformatics

Normalized gene expression, mutation calls, and copy number for FHCRC, WCM, and 

the ECDT were obtained directly from cBioPortal(23). The same data from the WCDT 

were obtained from prior publications(7,10,17). RNA-seq batch correction was performed as 

previously described(17). In our primary analysis of the RNA sequencing data, we included 

genes that had expression data in all samples. Hierarchical clustering was performed on the 

top 1000 genes with the highest variance across all the samples. Spearman’s correlation was 

used as the distance function, and default “ward.D” agglomeration method was used. Using 

this method, we identified four distinct subtypes based on the gene expression patterns. 

Clinical and pathologic variables were obtained from the original publications of these 

cohorts. Pathway scores using the Hallmark Pathways from MSigDb(24) were calculated 

using gene set variation analysis (GSVA)(25). Oncogene activating alterations (amplification 

and/or mutation) and tumor suppressor bi-allelic inactivating alterations (copy number loss 
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and/or mutation) were defined as previously published(17). CIBERSORTx was used to 

calculate an absolute immune score(26).

Statistics

Statistical testing between the subtypes and continuous variables was performed using a 

Wilcoxon rank-sum test. Statistical testing between the subtypes and categorical variables 

was performed using Fisher’s exact test. Survival analyses were performed using Cox 

regression and visualized using the Kaplan-Meier method. All statistical testing was 

performed in R version 4.0.4. All statistical testing was two-sided, and a p-value < 0.05 

was considered statistically significant.

Data Availability Statement

Only previously published data were used for this study. FHCRC, WCM, and the ECDT 

were downloaded from www.cbioportal.org. WCDT genomics data are available from 

dbGaP (phs001648) and EGA (EGAD00001009065).

RESULTS

Distinct Gene Expression Clusters

In order to identify intrinsic RNA subtypes within mCRPC, we performed hierarchical 

clustering on 634 total mCRPC samples with RNA sequencing, using the top 1000 genes 

with the highest variance (Figure 1). This resulted in four distinct subtypes based on 

RNA expression patterns. These subtypes were not associated with the cohort of origin, 

supporting the effectiveness of the batch correction. However, there visually did appear to 

be associations with both biopsy site and small-cell neuroendocrine cancer (SCNC, hereafter 

referring to the phenotypic definition as originally identified in each cohort). In the two 

subtypes associated with SCNC, the rate of SCNC was higher in one (78% SCNC, this 

RNA subtype hereafter referred to as NE-classic) vs. the other (29% SCNC, with all of 

the samples originating from a liver biopsy, this RNA subtype hereafter referred to as 

NE-liver). This was reflected in gene expression patterns of the neuroendocrine markers 

SYP and CHGA which were higher in the NE subtypes, more so in NE-classic (Figure 

2A-B, Supplemental Table 1). This was also reflected in AR and KLK3 (encoding PSA) 

gene expression, with the lowest expression in NE-classical, and intermediate expression in 

NE-liver subtype (Figure 2C-D, Supplemental Table 1).

Biological Pathways

Next, we sought to understand the pathway level differences between the novel RNA 

subtypes using the MSigDb Hallmark pathways. We first examined the AR signaling 

pathway, where, as expected, the two adenocarcinoma subtypes had highest expression, 

followed by NE-liver, and then NE-classic, consistent with the AR and KLK3 expression 

above (Figure 3A, Supplemental Table 2). SCNC is also known to be highly proliferative, 

and this characteristic was reflected in NE-classic having higher expression of proliferative 

pathways such as the G2M checkpoint and E2F targets compared to the adenocarcinoma 

subtypes, with NE-liver between the two (Figures 3B and 3C, Supplemental Table 2).
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There was a small but statistically significant difference between the two RNA intrinsic 

adenocarcinoma subtypes for AR signaling (Figure 3A, Supplemental Table 2), consistent 

with differences noted with previous hypothesis-driven approaches(15,17). However, the 

most prominent difference was in immune pathways, with consistently higher expression of 

all eight immune-related hallmark pathways (Figure 3D–3K, Supplemental Table 2) in one 

RNA subtype (hereafter referred to adeno-immune) compared to the other (hereafter referred 

to adeno-classic). The results using the CIBERSORTx overall immune score were consistent 

with the pathway analyses, with overall immune scores higher in adeno-immune vs. adeno-

classic (Figure 3L, Supplemental Table 2). These data suggest that there may be two 

immunogenically distinct subgroups of mCRPC adenocarcinoma. Comparison between the 

two RNA NE subtypes demonstrated that the NE-liver subtype exhibited higher expression 

of 7 out of the 8 immune-related hallmark pathways (all except for the allograft rejection 

signature) (Figures 3D-K, Supplemental Table 2). While there was no significant difference 

in the CIBERSORTx overall immune score between the two NE subtypes (Figure 3L, 

Supplemental Table 2), the pathway analysis suggests that there are qualitative differences in 

the tumor immunologic response between the two NE subtypes.

DNA Alterations

We next sought to investigate DNA alterations in key prostate cancer oncogenic driver 

genes. Alterations in the tumor suppressors RB1, PTEN, and TP53 are all known to be 

associated with aggressive prostate cancer and SCNC(27). Of the two SCNC-enriched RNA 

subtypes, the NE-classic was more enriched for RB1 alterations (63% in NE-classic vs. 

26% in NE-liver) and the NE-liver for PTEN alterations (21% in NE-classic vs. 39% in 

NE-liver), with similar TP53 alteration rates (43% in NE-classic vs. 37% in NE-liver) 

(Figure 4A). While the rate of AR alterations was lower in both NE subtypes than in 

the adenocarcinoma subtypes, there were differences between the NE subtypes (33% in 

NE-classic vs. 63% in NE-liver) consistent with the AR and KLK3 expression data. There 

was also a difference in FOXA1 alteration rates (44% in NE-classic vs. 29% in NE-liver), 

but not MYC (70% in NE-classic vs. 71% in NE-liver) (Figure 4A, Supplemental Table 3). 

With regards to the adenocarcinoma subtypes, there were differences in PTEN alterations 

(43% in adeno-classic vs. 22% in adeno-immune). Mutation rates for APC and SPOP 
differed between both NE subtypes (APC 2.3% in NE-classic vs. 14% in NE-liver; SPOP 
0% in NE-classic vs. 14% in NE-liver) and adenocarcinoma subtypes (APC 1% in adeno-

classic vs. 5.2% in adeno-immune; SPOP 1% in adeno-classic vs. 11% in adeno-immune; 

Figure 4B, Supplemental Table 3). We found no differences between the subtypes in tumor 

mutational burden (as a surrogate for MSI/dMMR) or BRCA2 deep deletion or mutations, 

which are the two genomic markers currently most used for treatment selection in mCRPC 

(for immunotherapy or PARP-inhibitor therapy, respectively; Supplemental Figure 1).

Tumor Site

The site of metastasis was different between the NE subtypes, with all of the NE-liver 

tumors coming from liver metastases, whereas the distribution was more evenly split in the 

NE-classic tumors between the different metastatic locations (Figure 5, Supplemental Table 

4). Interestingly, a difference between the two adenocarcinoma RNA subtypes was also 

observed, with adeno-immune being enriched for distant metastases while adeno-classic was 
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enriched for lymph node (LN) metastases. The gene expression from bulk RNA-sequencing 

of tumor biopsies is a mix of the tumor cells and the surrounding non-tumor tissue which 

will influence comparison across tumor sites. However, immune-related measures should 

favor LNs preferentially, as the non-tumor background is mostly immune cells, which is in 

contrast to what we observe for adeno-immune vs. adeno-classic, suggesting that there may 

indeed be a difference in immunogenicity between the two adenocarcinoma RNA intrinsic 

subtypes.

Clinical Outcomes

The association between different RNA subtypes and clinical outcomes was also 

investigated. As expected, the two adenocarcinoma subtypes had significantly improved 

overall survival compared to the NE subtypes (Hazard Ratio (HR) 0.265 (95% CI 

0.159−0.44); p < 0.001; Figure 6A), without a difference between them. However, when 

we account for ASI therapy, we observed that the adeno-classic subtype showed a significant 

benefit from ASI therapy (HR 0.219 (95% CI 0.1−0.476); p < 0.001) after the biopsy, 

whereas the adeno-immune subtype had a weaker trend in the same direction that was 

not significant (HR 0.592 (95% CI 0.337−1.04); p = 0.068; Figure 6B). While the NE-

classic and NE-liver RNA intrinsic subtypes also showed similar worse survival, there 

were different proportions of patients that were not originally identified as SCNC in these 

subtypes.

DISCUSSION

Data-driven and unsupervised approaches to derive intrinsic subtypes can reveal differences 

not immediately apparent based on hypothesis-driven approaches based on prior biological 

knowledge. Herein, we present the largest intrinsic RNA-based molecular subtyping of 

mCRPC in 634 samples with RNA-seq. We find two distinct adenocarcinoma subtypes, one 

of which (adeno-immune) is characterized by higher expression of immune pathways, higher 

CIBERSORTx immune scores, a lower hazard ratio for ASI benefit, and non-LN metastasis 

tropism compared to an adeno-classic subtype. We also identify two distinct NE subtypes, 

including an NE-liver subgroup characterized by liver metastasis tropism, PTEN loss, and 

APC and SPOP mutations compared to an NE-classic subgroup.

SCNC is an aggressive, androgen-independent subtype of mCRPC that can either be present 

de novo, or more commonly emerge during the course of treatment via lineage plasticity(12–

14,27,28). SCNC has been shown to exhibit distinct transcriptomic and epigenomic patterns, 

and is genomically characterized by loss of the tumor suppressors PTEN, RB1, and 

TP53(12–14,27–31). When we compare our intrinsic RNA subtypes to the five subtypes 

previously described by AR and NE markers(15), theNE-classic subtype likely corresponds 

well to the SCNC (AR-, NE+) subgroup. The NE-liver subgroup shares similarities to 

some other subgroups described previously, such as AMPC (AR+,NE+) or intermediate 

atypical carcinoma (IAC)(32), a histologic subgroup between adenocarcinoma and SCNC. 

It is also possible that it represents a transition state between adenocarcinoma and emerging 

SCNC, which on bulk sequencing would have gene expression between the two, or specific 

biology driving the aggressive tumors that metastasize to the liver. Indeed, both intrinsic 
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RNA subtypes enriched for SCNC tumors identify tumors not originally diagnosed as 

SCNC, especially in the NE-liver group. However, the prognosis of both subtypes is equally 

poor, and the transcriptional similarities would suggest that similar therapeutic approaches 

could be tried. Interestingly, the difference in RB1/PTEN alterations between the RNA NE 

subtypes also suggest that these alterations are not equivalent. As PTEN-altered tumors 

begin to have new treatment options(33), the management of NE-liver tumors may diverge 

from NE-classic. We did not observe a distinct double negative cluster in this unsupervised 

intrinsic clustering resulting in four main clusters(15), and such tumors may be grouped in 

with the other subtypes.

The differences between the intrinsic adenocarcinoma subtypes of mCRPC are also 

potentially clinically important. Interestingly, the two intrinsic adenocarcinoma subtypes 

do not differ via an AR high vs. low dichotomy described in these previous subtyping 

efforts(15,17). mCRPC has traditionally been thought of as not particularly immunogenic, 

with poor response rates to immune checkpoint blockade(34,35). Our adeno-immune 

subtype suggests that not all tumors may be equally quiescent, and suggest potential 

biomarker-driven approaches for immunotherapies in mCRPC. Despite analyzing the largest 

harmonized cohort of mCRPC tumors with gene expression data, a limitation to this study 

is that that limited clinical treatment annotation and follow-up data were only available for 

a subset of the patients, and did not allow for analysis of association between subtypes and 

treatments other than AR targeted therapy.

Ultimately, our results emphasize the molecular heterogeneity of mCRPC. Our unbiased 

clustering approach confirms key findings identified through hypothesis-driven approaches 

in the field, such as the existence of distinct subgroups driven by AR signaling versus 

neuroendocrine (NE) features; however, we also discover that AR-driven adenocarcinoma 

subgroups can be differentiated by signaling along immune pathways, and that NE 

subgroups may be grouped biologically, with distinctions in the site of metastases and 

DNA alterations. In total, our study suggests that future studies and clinical trials should 

consider transcriptome-wide profiling in order to better understand how these differences 

impact treatment and outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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STATEMENT OF TRANSLATIONAL RELEVANCE

Data-driven unsupervised molecular subtyping of metastatic castration-resistant prostate 

cancer (mCRPC) can reveal insights into the disease heterogeneity observed clinically. 

Thus, we sought to leverage large sample cohorts with harmonized gene expression 

data to identify the intrinsic molecular subtypes of mCRPC and assess molecular and 

clinical correlates. Analysis of 634 mCRPC samples identified four distinct subtypes, 

two adenocarcinoma-enriched and two enriched for a neuroendocrine (NE) phenotype. 

One of the adenocarcinoma subtypes (adeno-immune) was characterized by higher gene 

expression of immune pathways, diminished benefit of androgen-signaling inhibitors, and 

non-lymph node metastasis tropism compared to an adeno-classic subtype. An NE-liver 

subtype was characterized by liver metastasis tropism, PTEN loss, and APC and SPOP 
mutations compared to an NE-classic subtype. Both NE-subtypes had worse survival 

than the adenocarcinoma subtypes. Our results emphasize the molecular heterogeneity 

of mCRPC and supports incorporating transcriptome-wide profiling in future studies 

investigating how these subtypes may influence treatment outcomes.
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Figure 1. 
Heatmap of FHCRC, ECDT, WCDT, and WCM data showing gene expression profiles of 

the top 1000 differentially expressed genes (rows) in 634 patients (columns). Both patients 

and genes are clustered using unsupervised hierarchical clustering. Red represents high 

expression, and green represents low expression.
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Figure 2. 
Boxplots show that SYP (A), CHGA (B), AR (C) and KLK3 (D) expression across RNA 

subtypes. Gene expression shows the log transformed batch corrected rank.
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Figure 3. 
Boxplots showing GSVA scores across RNA subtypes and Hallmark pathways (A-K) and 

the CibersortX immune score (L).
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Figure 4. 
(A) Proportion of samples with an amplification and/or mutation (for oncogenes) or 

bi-allelic loss and/or mutation (for tumor suppressor genes) for each RNA subtype. (B) 

Proportion of samples with a mutation for each subtype.
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Figure 5. 
Proportion of each RNA subtype originating from different biopsy sites, as well as the 

proportion of each subtype from adenocarcinoma vs. SCNC.
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Figure 6. 
(A) Survival compared between subtypes Adeno-Classic, Adeno-Immune, NE-Classic, and 

NE-Liver. (B) Survival compared between patients with and without ASI for Adeno-Classic 

and Adeno-Immune.
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