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A B S T R A C T   

The immune response associated with oncogenesis and potential oncological ther- apeutic interventions has 
dominated the field of cancer research over the last decade. T-cell lymphocytes in the tumor microenvironment 
are a crucial aspect of cancer’s adaptive immunity, and the quantification of T-cells in specific can- cer types has 
been suggested as a potential diagnostic aid. However, this is cur- rently not part of routine diagnostics. To 
address this challenge, we present a new method called True-T, which employs artificial intelligence-based 
techniques to quantify T-cells in colorectal cancer (CRC) using immunohistochemistry (IHC) images. True-T 
analyses the chromogenic tissue hybridization signal of three widely recognized T-cell markers (CD3, CD4, and 
CD8). Our method employs a pipeline consisting of three stages: T-cell segmentation, density estimation from the 
segmented mask, and prediction of individual five-year survival rates. In the first stage, we utilize the U-Net 
method, where a pre-trained ResNet-34 is em- ployed as an encoder to extract clinically relevant T-cell features. 
The segmenta- tion model is trained and evaluated individually, demonstrating its generalization in detecting the 
CD3, CD4, and CD8 biomarkers in IHC images. In the second stage, the density of T-cells is estimated using the 
predicted mask, which serves as a crucial indicator for patient survival statistics in the third stage. This ap- 
proach was developed and tested in 1041 patients from four reference diagnostic institutions, ensuring broad 
applicability. The clinical effectiveness of True-T is demonstrated in stages II-IV CRC by offering valuable 
prognostic information that surpasses previous quantitative gold standards, opening possibilities for po- tential 
clinical applications. Finally, to evaluate the robustness and broader ap- plicability of our approach without 
additional training, we assessed the universal accuracy of the CD3 component of the True-T algorithm across 13 
distinct solid tumors.   

1. Introduction 

The discovery of immune checkpoint therapy, which enhances the 
antitumor T-cell response to cancer Sharma and Allison [1], Sharma 
et al. [2], has revolutionized the field of oncology. This break-through 
has greatly influenced the field of cancer treatment, impacting both 

the present and future approaches. The integration of hybridization 
techniques for quantifying T-cells in cancer tissues has become widely 
accepted as the standard in translational and clinical research, and have 
been acknowledged for their substantial clinical utility in the diagnosis 
of colorectal cancer (CRC), both in key clinical studies Van Den Eynde 
et al. [3] and, more general, in international guidelines Nagtegaal et al. 
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[4], Quezada-Maŕ ın et al. [5]. However, despit this evidence, routine 
utilization of T-cell quantification in everyday tissue-based diagnostics 
is not yet prevalent. 

Histopathological slides that have been digitized and stained with 
immuno- histochemistry (IHC) provide a rich source of information that 
can be quantified and harnessed using artificial intelligence (AI), mainly 
via deep learning (DL) methods Singh et al. [6]; these methods have 
been designed to directly predict clinically significance biomarkers 
Srinidhi et al. [7]. Convolutional neural net- works (CNNs) with digital 
filters, specifically, are extensively employed to extract features from 
images, aiding in outcome prediction. In the realm of digital pathol- ogy, 
DL-based approaches are applied to various tasks, including nuclei 
detection, patient stratification, cell detection, and growth pattern 
classification using whole slide images (WSI) Aprupe et al. [8]. 

Abousamra et al. [9] introduced a DL framework utilizing CNN mod- 
els like VGG16 Simonyan and Zisserman [10], Inception-V4 Szegedy 
et al. [11], and ResNet-34 He et al. [12] to detect and estimate the 
density of tumor- infiltrating lymphocytes (TILs) in WSIs. This method 
effectively analyzed 23 different types of cancer, providing accurate 
automated TIL detection—a crucial biomarker for monitoring immune 
responses to diverse cancer types. Litjens et al. [13] proposed a deep 
CNN approach for analysis of tumour invasion front inva- sion in his-
topathology images; here, the CNN model captured subtle patterns of 
cellular invasion, providing a better understanding of cancer aggres-
siveness and planning treatment strategies. Matos-Cruz et al. [14], 
introduced a machine learning approach utilizing hematoxylin and 
eosin (H&E) staining to quantify the presence, abundance, and locali-
zation of tertiary lymphoid structures (TLS) as a predictive biomarker 
for clinical outcomes of immune-checkpoint inhibitor treatment. The 
authors investigated five cancer types, including bladder, breast, stom-
ach adenocarcinoma, lung adenocarcinoma, and lung squamous cell 
carci- noma, using data from The Cancer Genome Atlas (TCGA). The 
advanced TLS model-derived features demonstrated associations with 
gene expression patterns and survival outcomes across various cancer 
types. 

T-cell quantification has been suggested as part of the routine diag-
nostic ar-mamentarium Quezada-Maŕ ın et al. [15]. However, it is still a 
“prognostic” test; only when there is a clear value of this test as predictor 
of response (for in- stance, in Stage II & III CRC), the test will have its 
inherent clinical value An optimized quantification in CRC would make 
the test more clinically relevant, and at the same time more easily 
applicable Improvements in AI architectures in general, and CNN in 
particular, will improve the clinical applicability of T-cell analysis (for 
all stages), the clinical relevance (with better outcome separatetion of 
immune cold and immune hot groups) and a level of universal appli-
cability of the test (across solid tumours). 

In our previous research study Craig et al. [16], we provided 
persuasive evidence demonstrating that the quantitative analysis of 
chromogenic signal ex- pression of three T-cell epitopes, without using a 
deep learning approach, may successfully classify patients with CRC into 
discrete groups with notable and con- trasting clinical outcomes. The 
aforementioned observation demonstrated consis- tency throughout 
stages II-IV and is biologically associated with another essential char-
acteristic of cancer, specifically hypoxia. Based on these findings, we 
hypoth- esize that incorporating a set of deep learning-based algorithms 
would not only enhance this clinical stratification but also yield a tool 
that can be more widely applicable to other tumor types. This includes 
the detection of biomarkers, grad- ing of malignancy, identification of 
invasion regions, segmentation of cell nuclei, and quantifying cell pop-
ulations. The primary aim of our study is to enhance the clinical appli-
cability of this strategy through the utilization of artificial intel- ligence 
(AI)-based tools, thereby advancing its alignment with real-world clin-
ical research settings. 

We have developed a novel method called True-T, which uses a DL- 
based method employing AI techniques to quantify 3 cluster differen-
tiation antigens, representative of general (CD3), helper (CD4), and 

cytotoxic (CD8) T-cell func- tions in CRC using IHC images. Fig. 1 shows 
an example of patch images for each T-cell biomarker. The True-T 
framework has three stages: T-cells segmen- tation, density estimation, 
and survival rate prediction (see the general analytical framework in  
Fig. 2). In the first stage, we employed a standard U-Net archi- tecture 
with encoder and decoder layers, incorporating skip connections to 
refine the boundaries of T-cell segmentation. To capture spatial 
morphology (shape, texture, and intensity) and global feature repre-
sentation for each T-cell type, we utilize a pre-trained ResNet-34 He 
et al. [12] model, previously trained on Im- ageNet Deng et al. [17], as a 
feature extractor. To achieve accurate segmen- tation, the model was 
trained and evaluated separately for CD3, CD4, and CD8. We measured 
the density of these three biomarkers in the second stage to derive a 
prognosis. The densities of individual T-cell biomarkers were quantified 
for each patient and subsequently utilized in the final stage to predict the 
five-year survival rate. The developed pipeline is constructed and 
evaluated using carefully anno- tated multi-institutional datasets from 
four diagnostic institutions with national accreditation, the Precision 
Medicine Centre Queen’s University Belfast (QUB), Oxford University 
Hospitals NHS Foundation Trust, Nottingham University Hos- pitals 
Trust, and University Hospitals Coventry & Warwickshire (UHCW). The 
datasets consisted of 1, 041 patients in total. Our gold-standard dataset 
was cre- ated by pathologists who provided pixel-wise accurate T-cell 
annotations in IHC slide images. The proposed True-T aims to serve as a 
benchmark for CRC pa- tients, and its performance was experimentally 
validated at each stage. Extensive ablation experiments were conducted 
and evaluated on an independent test set to ensure its robustness and 
accuracy. The study evaluated the accuracy of the CD3 biomarker across 
13 different types of solid tumors, demonstrating the ro- bustness and 
broader applicability of the True-T tool without requiring additional 
training. Additionally, a proof-of-concept interface only for research 
purposes was developed to integrate the True-T status with other patient 
features such as age, microsatellite environment (MSI), and chemo-
therapy status. This interface provides personalized survival estimates 
for each patient over a five-year period, presenting the results visually 
through Kaplan-Meier curves and numerically as values. 

2. Material and method 

2.1. T-cell Biomarker dataset 

Staining and scanning: Our models underwent training, validation, 
and test- ing using slides obtained from four different laboratories. All 
biospecimens were collected on institutional review board (IRB) 
approval from the respective hospi- tals or biobanks. All slides were 
stained in ISO 15189 (2012) quality-controlled environments using 
Bond Rx (QUB), Oxford, or Bond III (Nottingham University Hospitals 
Trust, (UHCW) platforms and scanned at 40× on a Leica Aperio AT2 
scanner. Table 1 shows the primary antibody clones for each T-cell 
biomarker used by the respective laboratories. In this study, the cohort 
well described in Craig et al. [16] provided a larger study for indepen-
dent prognostics of different T-cells including CD3/CD4 and CD8. 
Wagner et al. [18] and Loughrey et al. [19] leveraged the full description 
of metadata information.It is worth noting that, we used the same cohort 
as compared with Craig et al. [16]. 

In total, we collected 1111 patients’ WSIs. Particularly, 661 cases 
from the Northern Ireland (NI) Biobank, as part of the Epi700 CRC 
cohort consisting of stage II to IV CRC patients used in numerous peer- 
reviewed studies to date [16,21–23] (see ethical approval under 
NIB13/0069, NIB13/0087, NIB13/0088 and NIB15/0168). The other 
three institutions contributed 150 cases each under the general Path-
LAKE Consortium collaborative and ethical framework (PathLAKE 
19/SC/0363). It is worth noting that appropriate consent was in place 
for the use of samples, images, and linked de-identified data in this 
research study under the ethical approvals sought from each centre, 
including Belfast (approval from Northern Ireland Biobank Reference 
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NIB19–0310; NIB15–0168); in Nottingham (approval from Nottingham 
Health Science Biobank 15/NW/0685), in Oxford (under approval from 
Oxford Radcliffe Biobank 19/SC/0173) and in UCHW (un- der approval 
from the Arden Tissue Bank 18/SC/0180). The Northern Ireland Bio-
bank (an HTA Licenced Research Tissue Bank with generic ethical 
approval. 

from The Office of Research Ethics Committees Northern Ireland 
(ORECNIREF 21/NI/0019) to release deidentified tissues and data for 
research) conferred eth- ical approval for projects True-T – Improving T- 
Cell Response Quantification with Holistic Artificial Intelligence Based 
Prediction in Immunohistochemistry Images. 

2.2. Development of robust ground-truth for T-cell biomarkers 

Our automated DL-based approach aimed to design and develop an 
AI tool capable of scoring the density of CD3, CD4, and CD8 T-cells 
within regions an- notated by the pathologist on the IHC WSI. Following 
a model successfully used in the interrogation of immuno-oncology 

markers Sarker et al. [24], the ob- jective was to guarantee a robust 
quantification of immune CD3, CD4, and CD8 biomarkers, resulting in 
targeted biomarker detection. 

Fig. 3 shows the general pipeline for our annotation data prepara-
tion. Our team began by creating a comprehensive reference dataset for 
biomarkers. We achieved this by manually annotating CD3, CD4, and 
CD8 positive lymphocytes with the assistance of skilled pathologists. 
The annotation process involved a data science researcher, three expert 
annotators, and two pathologists with over 15 years of experience in 
their field. The data science researcher initially prepared the multi- 
institute patient dataset into a single .svs project file. To help the an-
notators and pathologists, we designated the region of interest (ROI) 
bounding box of size. 

512 × 512 pixels, allowing them to annotate the T-cells inside this 
region. The selection of the ROI is determined by the pathologist’s 
knowledge and skill and encompasses the tumour invasive margin(s) 
annotated on the IHC slides. Note that annotators were allowed to select 
any region inside the WSI. When annotators finished the annotations, an 
independent senior pathologist thoroughly reviewed each annotated 
patch to ensure quality and adjust the marking if needed. These steps 
were followed for each of the T-cells biomarkers. Fig. 4 shows the three 
T-cell biomarkers examples with their corresponding annotations in 
CRC. 

Based on the defined criteria related to the quality of the stained and 
scanned slide, 1, 041 cases were used. Finally, the data science 
researcher used the open- source QuPath Bankhead et al. [20] software 
with version 0.2.3 to extract the patch size of 512 × 512 pixels with 
corresponding annotations and saved them into. 

Fig. 1. Illustration of IHC patches extracted at 40× magnification containing T-cell biomarkers of CD3, CD4, and CD8 in CRC. The positive cells are shown in brown 
cytoplasmic, and blue present the negative nuclear staining. 

Fig. 2. General framework of proposed True-T.  

Table 1 
Primary antibody clones used by the respective laboratories.  

T-cell Biomarker Institution/Hospitals  

QUB Oxford Nottingham UHCW 

CD3 LN10 Leica LN10 Leica LN10 Leica LN10 Leica 
CD4 SP35 Roche 4B12 Leica 4B12 Invitrogen 4B12 Leica 
CD8 4B11 Leica 4B11 Leica 4B11 Leica 4B11 Leica  
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a .png image file format. The annotators used four different in-
stitutions or sites. 

to annotate the 3123 ROI-defined patches containing 165860 objects 
(positive lymphocytes) from the 1, 041 patient samples. The creation of 
this dataset formed the foundation for training and evaluating various 
deep-learning architectures. We used three biomarkers of CD3, CD4, and 
CD8 consisting of 77555, 36969, and 51336 annotated cells, respec-
tively. Table 2 summarizes the total number of an- notated positive 
lymphocytes for each T-cell biomarker. 

2.3. True-T framework 

Fig. 2 illustrates the comprehensive True-T framework, which com-
prises three key steps: T-cell biomarker segmentation from IHC, T-cell 
density estima- tion, and survival rate prediction. 

2.3.1. T-cells biomarker segmentation 
For segmentation, we used the U-Net architecture, consisting of an 

encoder and decoder block with skip connections. The encoder block has 
eight layers, leveraging the ResNet-34 He et al. [12] pre-trained on 
ImageNet Deng et al. [17] to extract clinically relevant features like 
shape, texture, and intensity from patch images of T-cells. Residual 
blocks were employed to address the gradient vanishing problem during 
network training. The encoder utilized four Resnet intermediate layers, 
with the first layer using a 7 × 7 convolutional kernel to gen-erate 64 
feature maps and the bottleneck layer producing 1024 feature maps with 
an 8 × 8 size. 

The decoder block consisted of eight decoding layers using Transpose 
convo- lutions. Its main purpose was to upsample the extracted feature 
maps to create binary segmentation masks for each T-cell’s biomarkers. 
Skip connections were employed, connecting the output of each encoder 
layer to the input of each de- coder layer, enabling the generation of 
precise cell segmentation boundaries. A threshold value of 0.5 was used 
to generate the masks. Table 3 shows the best hyperparameter used to 
train the segmentation model. We patient-wise split our dataset into 
three subsets, including training, validation, and testing, with a ratio of 
70%, 16%, and 14%, respectively. It is worth noting that the test set 
samples are kept independent and unseen throughout this process. 
Subsequently, we used an input size of 256 × 256 pixels, and in terms of 
patches, a total of 5536 patches for CD3, 3833 patches for CD4, and 
4632 for CD8 were used. Furthermore, we normalized the data to a 
range of 0 − 1. The model was trained using the Adam optimizer with a 

learning rate of 0.0001 for 100 epochs and a mini-batch size of 16. Data 
augmentation techniques such as rotation up to 30 degrees and hori- 
zontal/vertical flipping with a probability of 0.5 were applied to intro-
duce feature variability during training. To avoid the pixel imbalance, 
we applied the weighted cross-entropy (WCE) loss function by 
computing the weights of targeted T-cells and the background pixels. 

2.3.2. T-cells density estimation 
The segmented T-cell biomarkers CD3, CD4, and CD8 densities were 

calcu- lated using a connected components method. This algorithm 
identifies connected objects labeled as one, representing pixels 
belonging to each T-cell. A radius of four-pixel neighbors is considered 
for the connected components search. When applied to a selected ROI, 
cells densities are estimated for every single patch as. 

follows: given that each patch of height (h) and width (w) is 512 
× 512 px2, and based on QuPath 0.2.3 Bankhead et al. [20] each pixel 
area corresponds to. 

0.25 × 0.25 µm, leading to the following equation: 

Density per mm2 =

∑
(ToC) × 106

0.25 × 0.25 × h × w × no.of patches
(1) 

Where ToC refers to the total number of cells in the ROI of WSIs. This 
estimation is evaluated individually for the CD3, CD4, and CD8 slides for 
every patient. 

2.3.3. Survival rate prediction 
To compute the survival analysis, we considered the outcome of each 

biomarker cell density. Specifically, we used receiver operating char-
acteristic (ROC) analysis. This graphical representation helps find the 
optimal threshold for classifying cancer patients into two groups based 
on a specific measure: cell densities for each CD3, CD4, and CD8 
biomarker. In this scenario, patients display distinct survival curves 
represented by Kaplan-Meier curves for the two groups. Separate 
thresholds were determined for each biomarker, enabling the division of 
patients into two distinct groups. A majority voting approach was 
employed to classify patients into two groups based on the combination 
of CD3, CD4, and CD8 biomarkers, referred to as True-T status, catego-
rized as High or Low. More details can be found in the results section. 

This framework component establishes the significance of True-T as a 
crucial indica- tor for predicting patient survival probabilities. Once this 
was established, we introduced a proof-of-concept interface that inte-
grated True-T status with other patient features, in- cluding age, stage, 

Fig. 3. Overview of the proposed annotation data preparation pipeline. It consists of a multi- institutional dataset obtained from four different institutes in the United 
Kingdom. The data sci- ence researcher and pathologists’ team designed the annotation protocol followed by the three expert annotators. The corresponding patch 
image and annotation mask were extracted with the help of QuPath Bankhead et al. [20] software and fed to stage 1 of True-T pipeline. 
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microsatellite instability status, and chemotherapy treatment. The in- 
terface generated individual survival estimates for each patient over five 
years, represented graphically through Kaplan-Meier curves and as nu-
merical values. The Cox proportional model was utilized in this process. 

3. Results 

3.1. Colorectal True-T: Performance 

We assessed the proposed model’s efficacy by calculating its per-
formance at two dis- tinct levels: the pixel level and the object level. At 

the pixel level, we determined per- formance metrics by analyzing the 
model’s output in comparison to ground truth anno- tations on a per- 
pixel basis. Five diverse metrics were employed to evaluate pixel-level 
performance, including accuracy, sensitivity, specificity, Dice coeffi-
cient score (Dice), in- tersection over union (IoU), and the aggregated 
Jaccard index (AJI). On the other hand, at the object level, we computed 
performance metrics by examining the correspondence be- tween 

Fig. 4. Illustration of individual T-cell biomarkers like CD3, CD4 and CD8 with their corre- sponding annotation in CRC.  

Table 2 
Total number of annotated positive lymphocytes for each T-cell 
biomarker.  

T-cell Biomarker Number of annotated cells 

CD3 77555 
CD4 36,969 
CD8 51,336  

Table 3 
Summary of the best hyperparameter used to train the segmentation model.  

Parameter Value 

Architecture U-Net Ronneberger et al.[25] 
Backbones ResNet-34He et al.[12] 
Batch size 16 
Normalization 0 − 255–0 − 1 
Optimizer Adam 
Learning rate 0.0001 
Data augmentation Rotation, Horizontal/vertical flipping 
Epochs 100 
Loss function Weighted cross entropy  

Y. Makhlouf et al.                                                                                                                                                                                                                              



Computational and Structural Biotechnology Journal 23 (2024) 174–185

179

ground truth annotations and the model’s output on a per-object basis, 
considering 4-pixel connectivity. The precision and recall scores were 
measured on the object level. 

Table 4 demonstrates the results of T-cell biomarkers segmentation 
using the proposed model compared with state-of-the-art methods, such 
as FCN Long et al. [26], LinkNet Chaurasia and Culurciello [27], and 
DeepLabv3 + Chen et al. [28]. It’s important to note that we carried out 
distinct training and evaluation processes for the proposed and 
compared segmentation model for each individual biomarker, 
approaching each as a binary classification problem. The model ach-
ieved Dice coefficient scores of 70.31%, 67.6%, and 65.8% for the CD3, 
CD4, and CD8 biomarkers, respectively. DeepLabv3 + secured the 
second-highest scores for each T-cell biomarker, leveraging the extrac-
tion of multi-scale contextual information through atrous convolutions 
at various scales. In contrast, LinkNet recorded the lowest scores across 
all metrics, indicating subpar seg- mentation performance. Additionally, 
FCN yielded lower Dice scores than the proposed model, with margins of 
3%, 7%, and 10% for CD3, CD4, and CD8, respectively. From our. 

experimental analysis, we observed that the model’s performance in 
CD8 detection was affected by variations in staining and scanning 
quality from certain sources. Nonetheless, it also demonstrated sub-
stantial results as it showed a degree of generalization to other T-cell 
biomarkers. The model achieved notably superior results at the object 
level, with a precision score exceeding 78%. It effectively demonstrated 
a robust agreement with pathologist annotations and precisely quanti-
fied CD3, CD4, and CD8 T-cells. We also plotted the AUROC curve for 
CD3, CD4 and CD8 as shown in Fig. 5. 

Fig. 6 shows the two examples of each biomarker type that are 
compared with pathologist ground-truth annotations and corresponding 
mask predicted by the segmenta- tion model. Notably, in the case of 
CD8, the boundaries of specific T-cells can be ambigu- ous and chal-
lenging to determine with precision. We provided the color maps to 
visualize the predicted mask against the ground truth. The colors yel-
low/orange, red, and green correspond to the true positives, false neg-
atives, and false positives. Visual inspection confirmed the model’s 
accurate segmentation of T-cell types like CD3 and CD4, effec- tively 
identifying positive T-cells. The model has a high accuracy in identifying 
positive cells and produces minimal false positives. However, it en-
counters challenges in segment- ing CD8 cells due to the interconnected 
T-cell boundaries, leading to poor segmentation. The proposed model 
had difficulties in separating the connected cell boundaries. Our pri- 
mary objective is to calculate the density of these cells, so we are more 
concerned with the object-level performance rather than the pixel level. 
We observed that the model has achieved significantly high performance 
for each T-cell type. 

On the other hand, we also provided the proposed model qualitative 
comparison with existing state-of-the-art segmentation methods. Fig. 7 
shows the examples of predicted masks generated using the proposed 
model compared with other segmentation methods. From the visual 

inspection, we found that existing compared methods produced weak 
segmentation with more false positives (shown in green) that lead to 
overall poor per- formance. However, the proposed model delineates the 
cell boundaries precisely with minimal false positives. 

Considering the segmentation performance of the proposed model 
for these three biomarkers, we established a satisfactory level of confi-
dence to extend our analysis to an independent subset consisting of 141 
patients. This subset is sourced from QUB, and it is worth noting that 
metadata was unavailable for the slides provided by the three other in- 
stitutions. In this analysis, we evaluated the CD3, CD4, and CD8 den-
sities within specific ROIs identified by our pathologists for each patient. 

We utilized ROC analysis to evaluate each T-cell biomarker and 
subsequently con- ducted a survival analysis. The goal was to determine 
a threshold value that could effec- tively segregate patients into two 
distinct groups (1 and 2) based on the available follow-up data (survival 
time) and the model-predicted densities. We employed a majority voting 
approach to assign each patient to a particular group, considering 
threshold values of 500 for CD3, 300 for CD4, and 700 for CD8. Patients 
who fell below the threshold were. 

classified as having a low ”True-T” status (i.e., at least two bio-
markers’ densities are be- low the respective thresholds), while those 
above the threshold were classified as having a high ”True-T” status (i.e., 
at least two biomarker densities above the respective thresh- olds). For 
each cancer types, the threshold values of CD3/CD4/CD8 will change 
due to the density scores based on each T-cell biomarker. Subsequently, 
we conducted uni- variate survival analysis using the Kaplan-Meier 
method for each group. We applied the log-rank test to evaluate the 
statistical significance of the survival disparities between the two 
groups. Fig. 8 depicts the Kaplan-Meier survival curve derived from the 
combined T-cell biomarker scores of CD3, CD4, and CD8. When 
considering combining these three biomarker scores during the majority 
voting step for generating the Kaplan-Meier curves, a noticeable diver-
gence in survival outcomes became evident between patients assigned to 
Group 1 and Group 2. The classification into these groups was based on 
the opti- mal threshold value obtained by ”True-T.” The statistical sig-
nificance of the difference in survival curves was evaluated using the 
log-rank test, yielding a p-value of 0.002. This p-value confirms the 
statistical significance and aligns with the findings presented in Craig 
et al. [16]. 

Fig. 9 shows the survival curve considering CD3 and CD8 scores only. 
Given that most previous T-cell applications primarily focused on CD3 
and CD8 scoring, we hy- pothesized that incorporating CD4 would offer 
a clinical advantage. When examining the combination of CD3 and CD8 
scores alone (see Fig. 9), the log-rank test applied to the. 

Kaplan-Meier curves for the two patient groups yielded a lower level 
of statistical signifi- cance (p = 0.05) compared to the combined inclu-
sion of CD3, CD4, and CD8 scores. This finding aligns with the analysis 
presented by Craig et al. [16] and supports incorporating CD4 to provide 
added value. 

Table 4 
Performance metrics of the proposed model comparing with state-of-the-art methods for each T-cell biomarker segmentation.  

Model Biomarker Pixel level Object level   

Accuracy Sensitivity Specificity Dice IoU AJI Precision Recall 

FCN CD3  95.7  75.37  97.39  67.58  58.11  54.39  71.26  66.36 
CD4  97.67  69.16  98.81  60.58  54.47  45.68  77.69  60.84 
CD8  95.77  71.86  97.80  55.20  48.38  45.06  69.50  66.21 

LinkNet CD3  95.18  68.82  98.20  65.87  54.21  53.64  68.68  62.28 
CD4  97.84  58.16  99.35  59.10  54.36  43.81  75.14  59.56 
CD8  95.86  68.72  98.19  58.03  51.02  48.29  67.47  62.79 

DeepLabv3 + CD3  95.55  75.01  97.24  68.77  51.75  53.48  73.95  68.11 
CD4  97.64  68.94  98.79  60.45  53.64  45.10  76.12  57.48 
CD8  95.87  74.22  97.97  58.54  52.29  50.65  67.86  64.62 

Proposed CD3  98.33  79.27  98.96  70.31  60.34  57.57  78.45  71.21 
CD4  99.26  85.22  99.41  67.60  62.13  56.18  86.97  68.84 
CD8  96.94  80.61  98.99  65.80  59.66  57.81  78.35  75.19  
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We developed a simple proof of concept (PoC) interface only for 
research purposes viz the True-T predictor as shown in Fig. 10 that fa-
cilitates rapid estimation of indi- vidual patient survival over five years 
based on their ”True-T” status. The purpose of this interface is to offer a 
user-friendly tool for pathologists to efficiently evaluate patient prog- 
nosis. When a pathologist selects a patient profile, the interface presents 
both the survival estimate as a percentage and the corresponding 
Kaplan-Meier curve. The ”True-T” status was established based on the 
combined scores of CD3, CD4, and CD8, categorizing it as either low or 
high. Furthermore, the interface incorporated additional pertinent pa-
tient details, including age, chemotherapy status, microsatellite insta-
bility status, and staging. 

3.2. Universal CD3 scoring 

We hypothesized that a robust tool for quantifying T-cells in solid 
tumors might have biological relevance across a range of solid tumor 
types. To examine this hypothesis, we assessed the performance of our 
CD3 model, initially trained on colorectal cancer (CRC), on a cohort of 

130 patients representing 13 distinct tumor types without any further 
train- 

ing. For each tumor type, we selected ten patients (except for breast 
cancer, where we chose 20 patients), with each patient represented by a 
single core in a tissue microarray format. The included cancer types 
encompassed bladder cancer (transitional cell car- cinoma), various 
molecular subtypes of breast cancer, both adenocarcinomas and squa- 
mous cell carcinomas in lung cancer, adenocarcinomas and squamous 
cell carcinomas in oesophago-gastric cancer, oropharyngeal squamous 
cell carcinomas, ovarian serous carcinomas, pancreatic ductal adeno-
carcinomas, prostate adenocarcinomas, small bowel adenocarcinomas, 
and colorectal adenocarcinomas. Our model’s CD3 scores displayed a 
robust linear correlation when compared to the manual annotations 
provided by the pathologists. This correlation was quantified using the 
Pearson correlation coefficient, yielding a value of 90%. This high cor-
relation underscores the quality and universality of our proposed CD3 
model. Fig. 11 visually illustrates the linear relationship between the 
pathologist and model scores. 

Fig. 5. Illustration of ROC curves for CD3, CD4, and CD8.  

Fig. 6. Illustration of proposed model’s segmentation results for CD3, CD4, and CD8. Exam- ples of each T-cell type were chosen, showing manual annotation and 
model output. 
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4. Discussion and conclusion 

In the realm of potential biomarkers explored in the scientific liter-
ature, only 1% ultimately find their way into routine clinical or diag-
nostic use Kern [29]. This phe- nomenon can largely be attributed to the 
various ”reality filters” inherent in biomarker development, including 
the critical requirement for robust validation strategies and pre- cise 
quantification, as suggested by Salto-Tellez and Kennedy [30]. 
Leveraging AI in the analysis of protein signals in tissue hybridization 
tests holds the potential to introduce. 

an additional level of accuracy and reproducibility. This advance-
ment has the capacity to facilitate the inclusion of more biomarkers in 
the realm of clinical applicability. 

The development of dependable supervised deep learning tools ne-
cessitates the estab- lishment of a robust ground truth. In our study, we 
developed a reference dataset for CD3, CD4, and CD8 lymphocytes in 
colorectal cancer cases, drawing from the expert annota- tions provided 
by pathologists. A team of expert annotators and two certified pathol-
ogists collaborated in creating this dataset Makhlouf et al. [31]. To 
maintain data quality, an independent senior pathologist conducted a 
thorough review of all annotations. This rigorous assessment encom-
passed the examination of each annotated patch employed for training 
and testing the AI model (as shown in Fig. 4). Our commitment to these 
rigorous procedures was aimed at ensuring the reliability and accuracy 
of the data utilized in our study. 

Ensuring reproducibility is a significant challenge in the field of 

Fig. 7. Illustration of proposed model’s segmentation results against other methods for CD3, CD4, and CD8.  

Fig. 8. Illustration of Kaplan-Meier survival curves based on the three biomarkers with CD3- CD4-CD8 combination status.  
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machine learning tools. Typically, researchers choose representative 
values for biomarkers and employ ad- ditional examples to construct 
classifiers, as documented in references such as Bankhead et al. [20]; 
Jhun et al. [32]. However, these conventional approaches may need to 
be revised to ensure robust reproducibility across diverse datasets from 
different institutions, primarily due to variations in section preparation 
and staining methods. To address this challenge, we incorporated clin-
ical examples stained for CD3, CD4, and CD8 from four additional lab-
oratories adhering to ISO-15189 (2012) standards. By amalgamating 
data from multiple sources, including different staining procedures, we 
aimed to account for the inherent variability in the staining process. In 
our study, we employed a T-cell seg- 

mentation method based on the ResNet-UNet architecture to assess 
the performance of our proposed approach. We established a systematic 
process for evaluating performance metrics at the pixel, object, and case 
levels, resulting in high accuracy. 

We assessed the effectiveness and resilience of the proposed pipeline 
by extending the application of the CD3 tool to different types of cancer. 
Our findings illustrated that well-supervised deep-learning tools can be 
successfully employed across a range of solid tumors. This underscores 
the analytical robustness and the potential for broader clini- cal appli-
cability of our approach. Furthermore, our supervised DL development 
led by. 

pathologists, combined with an AI approach within a quality man-
agement system, aims to enhance reproducibility and clinical utility. 
Our approach combines the output of multi- ple stains using DL, inte-
grating biomarker outputs with well-established predictor factors for 
CRC, such as age, stage, chemotherapy status, and MSI status. This 
innovative ap- proach has been further supported by more recent studies 
Foersch et al. [33]; Chen et al. [34]. 

Our output matrix True-T identified patients’ survival in the case 
number available with robust prediction in CRC stages II-IV. Looking 
more closely at the approach taken by Foersch et al.Foersch et al. [33], 
there are some technical similarities but also some important differ-
ences. Firstly, our training, validation, and test cohorts consist of WSI, in 
contrast to the mix of Tissue Microarrays (TMAs) and WSI used in the 
Foersch et al. Foersch et al. [33] study. This brings True-T closer to the 
real-world clinical scenario of scoring WSI. In terms of technical 
approach, the Foersch et al. [33] tool, MSDLM, is more complex, uti-
lizing the concept of attention to integrating the images of the var- ious 
stains (CD4, CD8, CD20, and CD68) to produce a single score of the 
so-called Aimmunoscore, or AIS. Our approach, while acknowledging 
the claims of Foersch et al. [33] that MSDLM can provide superior 
performance, is simpler in determining indi- vidual densities of the three 
markers (CD3, CD4, and CD8) prior to combining these to produce the 
True-T score. 

This study also introduces a noteworthy contribution in the form of a 

proof-of-concept (PoC) user interface and workflow for implementing 
the True-T system. This approach aims to closely resemble the current 
manual scoring process, which could bring signif-icant advantages in 
acceptance within the pathology community. However, it is crucial to 
approach the utilization of these interfaces carefully. It is essential to 
acknowledge that these interfaces are based on cases from previous 
years, ensuring a sufficient clinical follow-up duration. However, this 
also means they might need to rely on updated ther- apeutic standards. 
Consequently, if constructed using local or regional data, they may not 
accurately reflect current national or international trends. Conversely, 
they may not account for regional variations if built using global data. 
Despite these considerations, these interfaces demonstrate the potential 
of a novel biomarker in a multimodal context. They offer valuable 
guidance for both patients and practitioners, although it is essential to 
remain aware of their limitations. 

Over the past decade, immuno-oncology has witnessed remarkable 
advancements, leading to the development of a diverse array of drugs 
tailored to various cancer sub- types. However, a puzzling paradox exists 
wherein the available biomarkers associated with therapeutic response 
remain limited, essentially PD-L1 by IHC; MSI status by IHC, PCR, or 
next-generation sequencing (NGS); and tumor mutation burden by 
broad-based NGS analysis. In response to this challenge, we introduce a 
robust and straightforward method that facilitates the precise quantifi-
cation of T-cells in solid tumors. This method can address the current 
scarcity of biomarkers and, when applied systematically to clinical trial 
material Salto-Tellez and Reis-Filho [35], can offer valuable insights for 
enhancing treatment strategies in immuno-oncology. 

Traditionally, the potential clinical value of T-cells, since the early, 
seminal work of Galon et al. [36], is based on their quantitation. How-
ever, we also know of the different functions of similar immune cells in 
different solid tumours, and this may need to be taken into account in 
future predictive models of T-cell response. 
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