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Abstract: Glioblastoma (GBM) is the most prevalent and aggressive adult brain tumor. Despite
multi-modal therapies, GBM recurs, and patients have poor survival (~14 months). Resistance to
therapy may originate from a subpopulation of tumor cells identified as glioma-stem cells (GSC),
and new treatments are urgently needed to target these. The biology underpinning GBM recurrence
was investigated using whole transcriptome profiling of patient-matched initial and recurrent GBM
(recGBM). Differential expression analysis identified 147 significant probes. In total, 24 genes were
validated using expression data from four public cohorts and the literature. Functional analyses re-
vealed that transcriptional changes to recGBM were dominated by angiogenesis and immune-related
processes. The role of MHC class II proteins in antigen presentation and the differentiation, prolifer-
ation, and infiltration of immune cells was enriched. These results suggest recGBM would benefit
from immunotherapies. The altered gene signature was further analyzed in a connectivity mapping
analysis with QUADrATiC software to identify FDA-approved repurposing drugs. Top-ranking
target compounds that may be effective against GSC and GBM recurrence were rosiglitazone, nizati-
dine, pantoprazole, and tolmetin. Our translational bioinformatics pipeline provides an approach
to identify target compounds for repurposing that may add clinical benefit in addition to standard
therapies against resistant cancers such as GBM.

Keywords: brain tumor; recurrent glioblastoma; patient-matched samples; whole transcriptome
profiling; ClariomTM D Human Assay; connectivity mapping; gene signatures; drug repurposing;
longitudinal study; QUADrATiC software

1. Introduction

Glioblastoma, IDH-wildtype (GBM), is the most aggressive malignant Grade IV brain
tumor occurring in adulthood [1]. GBM were formerly designated as either IDH-wildtype
or IDH-mutant; however, the latter subtype has since been re-classified by the World
Health Organization (WHO) as Grade IV astrocytoma IDH-mutant [2]. GBM are highly
heterogeneous tumors, both histologically and clinically. Outcomes for patients remain poor,
with a median overall survival of ∼14 months [3] and a 5-year survival rate of only 5% [4].
GBM are characteristically infiltrative with invasive edges that preclude complete surgical
resection. Despite radical resection followed by the current standard-of-care delivered as
fractionated radiation and concurrent temozolomide (TMZ) therapy (“Stupp protocol”),
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local relapse is inevitable [5]. Resistance to chemoradiotherapy is thought to be due to
several factors, including the presence of GBM stem-like cells (GSC), which may be key
in mediating tumor relapse [6,7]. Indeed, this tumor sub-population possesses enhanced
invasiveness, DNA repair, and drug-efflux pumps that mediate evasion and resistance to
current surgical, chemo, and radiation therapies, driving tumor relapse [8]. The conversion
of non-GSC to GSC in tumors may be induced by microenvironment conditions such as
hypoxia [9] and drugs such as TMZ [10].

Longitudinal profiling of GBM can provide insight into gliomagenesis, intratumoral
heterogeneity, tumor evolution, as well as therapy resistance mechanisms [11–14]. Rela-
tively few longitudinal studies have been carried out for recurrent GBM (recGBM) because
tumors are often necrotic and ~70% are inoperable [15]. Therapeutic options for recGBM
are currently dictated by the test results of molecular markers assessed from the initial
precursor brain tumor that provide the integrated final diagnosis based on contempora-
neous WHO classification guidelines [2]. Molecular alterations assessed in brain tumors
include IDH1/2 mutations, Histone H3F3A mutation, MGMT promoter methylation, TERT
promoter methylation, EGFR amplification, ATRX retention or loss, and 1p/19q chromoso-
mal co-deletion, for example. Increasing evidence shows that this provides an inaccurate
representation of the key biological mechanisms active in recGBM. Thus, it is essential to
observe transcriptional changes occurring between initial and recurrent tumors to under-
stand the changing biology to enable clinicians to better direct treatment strategies. To
this end, several studies have assessed longitudinal transcription profiles of progressing
GBM [16–18]. This has revealed multiple mechanisms of therapeutic resistance to the
standard treatment protocol for initial tumors by studying expression changes between
matched initial and recurrent tumors [16]. Another study, which used spatial sampling,
revealed all three cellular phenotypes (neuronal, mesenchymal, proliferative) were present
in recurrent IDH-wildtype gliomas, highlighting the transcriptional variability of GSC that
contribute to therapy resistance [17]. Targeted therapies are urgently required for GBM,
and several natural products and their chemical derivatives are being tested as therapeutic
strategies in GSC [19]. Drug repurposing may offer an alternative strategy for identifying
new GBM-targeted therapies that are already approved for clinical use.

Gene expression connectivity mapping is a method used to identify potential thera-
peutic compounds for drug repurposing [20]. The method involves a systematic approach
to identify functional connections between gene expression signatures associated with
biological phenotypes (e.g., physiological processes and diseases) with the mechanisms
of action of bioactive compounds or drugs contained within the Library of Integrated
Network-based Cellular Signatures (LINCS). Our group developed a novel standalone
connectivity mapping software called QUADrATiC (QUB Accelerated Drug and Transcrip-
tomic Connectivity) [21]. This software uses a statistical ranking algorithm to identify
connections between a query gene list and a database of reference profiles. Profiles have
been obtained by applying a variety of perturbagens or treatments to a range of cell lines
and quantifying the resulting transcriptional changes. QUADrATiC uses, as its reference, a
subset of the LINCS dataset, which is limited to those small-molecule compounds which
have FDA approval and allows this to be analyzed to produce a list of statistically significant
connections to a query gene list.

This study characterizes the transcriptional changes occurring between initial and
recurrent GBM IDH-wildtype using patient-matched samples and a whole transcriptome
approach. A differential gene expression analysis of the cohort returned a list of recurrence-
specific genes. These were validated using evidence from the literature and four pub-
lic expression datasets [4,16,22,23]. Functional analyses revealed that angiogenesis and
immune-related processes were potentially up-regulated in recGBM tumors. The gene
signature was further analyzed in the in silico drug screen software, QUADrATiC [21].
FDA-approved drugs that could potentially reverse or target the transcriptional signaling
associated with the recGBM phenotype were identified. These novel candidate compounds
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may add clinical benefit in combination with the current standard therapy to prevent
GBM recurrence.

2. Materials and Methods
2.1. Sample Collection and Molecular Profiling of GBM IDH-Wildtype Tumors

A cohort of 25 GBM patients was identified, and informed consent (ORECNI 10/NIR01/13)
was obtained by the neurosurgeon (T.F.) prior to surgical resection. Samples were collected
during surgery at the Royal Victoria Hospital, Belfast. Tumors were formalin-fixed paraffin-
embedded and prepared as hematoxylin and eosin-stained slides. Histological diagnosis
was confirmed by the neuropathologist (E.G.H.). Samples were archived at the Northern
Ireland Biobank (NI Biobank; Project Ref NIB16-0218), which is a Human Tissue Authority
Licensed Research Tissue Bank with generic ethical approval from The Office of Research
Ethics Committees Northern Ireland (ORECNI REF 21/NI/0019) to confer ethical approval
for projects (subject to application). A total of 15 patients were eligible to be included in
the study based on the following criteria: (1) the patient initially presented with primary
GBM, which subsequently recurred after undergoing a course of Stupp protocol; (2) tissue
samples from both tumors (initial, recurrent) were retained in the NI Biobank; (3) tumors
were immunostained (with primary antibodies to ATRX, IDH1 (R132) and MIB1) and
molecularly profiled at the Molecular Neuropathology Laboratory, University College
London. All information was interpreted to provide an integrated final diagnosis for
tumors based on contemporaneous WHO classification guidelines [2,24].

2.2. RNA Extraction, Microarray Profiling, and Data Quality Control

Samples were provided by NI Biobank. In brief, total RNA was extracted from
macrodissected tissue and amplified using the GeneChip WT Pico Reagent Kit (Thermo
Fisher Scientific, Wilmington, NC, USA). The biotinylated sense-stranded DNA was hy-
bridized to the ClariomTM D Human array (Thermo Fisher Scientific, Wilmington, NC,
USA) and profiled. Transcriptome Analysis Console (TAC; Thermo Fisher Scientific) soft-
ware was used to conduct quality control (QC) assessments and data summarization prior
to further analysis (see Supplementary Materials for details).

2.3. Provisional Comparisons of Initial and Recurrent GBM

Transcriptional profiles of initial and recurrent tumors were compared using several
methods. A principle component analysis (PCA) was carried out using TAC software.
Tumor purity was assessed using a data subset with the ESTIMATE R package [25] and
statistically compared between groups using a t-test in SPSS (IBM). Transcriptional subtyp-
ing was carried out on all samples using the ssGSEA classification method [23]. Results
for Proneural, Mesenchymal, and Classic subtypes were compared between initial and
recurrent samples (see Supplementary Materials for more details).

2.4. Differential Gene Expression Analysis between Initial and Recurrent GBM

A differential gene expression analysis was implemented to compare initial and
recurrent GBM using the Bayes correction method and a repeated-measure ANOVA with
TAC software. This method pushes gene-wise residual variances towards a global trend,
thereby improving statistical power, which is optimal for small sample sizes. In addition,
this method automatically adjusts for multiple testing by assuming that 1% of the probes or
genes are expected to be differentially expressed (see Manual). Results were filtered using
p-value (<0.05) and expression fold change (<−2 or >2) threshold cut-offs. Differentially
expressed probes or genes (DEGs) were visualized as a volcano plot and categorized into
different functional groups.

The expression patterns of DEGs were further examined in initial and recurrent GBM
using semi-supervised hierarchical clustering analyzed with TAC software. Euclidean
distance was applied to measure the distance between objects, and the complete linkage
method was used to measure the distance between clusters. Heatmaps were visualized
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for all DEGs and for only those which mapped to known annotations in the Ingenuity
knowledge base from IPA Software (IPA®, QIAGEN Redwood City, USA).

To validate DEGs, expression patterns for the genes were compared between initial
and recurrent GBM in four public cohorts. This included the Chinese Glioma Genome
Atlas (CGGA), which according to the clinical data, its patients had similarly been treated
with radiotherapy (77.5%) and chemotherapy (81%) [22]. Expression data available for
DEGs were compared between initial (n = 85) and recurrent (n = 75) GBM IDH-wildtype
from CGGA using a paired t-test in R. In addition, expression data available for DEGs
were further compared between patient-matched initial and recurrent GBM from the
Wang et al. study [23]. This included datasets from Kwon et al. (N = 15) [16], TCGA-GBM
(N = 13) [4] and HF-MDA (Henry Ford Hospital—processed at MD Anderson; N = 9) [23].
Statistical comparisons were implemented with a paired t-test using the RecuR web portal
(http://recur.bioinfo.cnio.es/ (accessed on 1 October 2022)). For each comparison, a
threshold cut-off of p-value < 0.05 was applied to determine the statistical significance of
the test.

Further validation of DEGs was sought through the scientific literature using a
PubMed search. For each gene name, the search terms ‘glioblastoma’ and ‘GBM’ were
included both with and without the additional prefix term ‘recurrent’. Results in scientific
articles were examined to determine the directionality of expression of the DEGs in recGBM
and the methodology used for data collection.

2.5. Functional Enrichment Analyses
2.5.1. Gene Ontology Enrichment Analysis of the DEGs

DEGs were analyzed in a Gene Ontology (GO) enrichment analysis with Panther
software using a web portal (http://geneontology.org/, accessed on 1 October 2022) [26].
All probes that were expressed in samples (N = 14,893) were exported from TAC software
and used as a background set for the analysis. The DEG list was uploaded, and genes
that were uniquely mapped were used for the GO analysis. Genes that are over- or under-
represented in gene lists from GO terms are identified by comparing the background
frequency to the sample frequency using a Fisher’s exact test. The background frequency is
the number of genes annotated to a GO term in the entire background set, while sample
frequency is the number of genes annotated to that GO term in the input list of DEGs. The
statistical test result p-value is then the probability or chance of seeing at least x number
of genes out of the total n genes in the list annotated to a particular GO term, given the
proportion of genes in the whole genome that are annotated to that GO term. GO terms are
then categorized based on their function as either biological process, molecular function, or
cellular component. Results were corrected for multiple testing using FDR and adjusted
p-values. The top ten results from each category and the number of genes enriched in that
pathway were plotted using the ggplot2 package in R.

2.5.2. Canonical Pathway Analysis

DEGs were analyzed in a canonical pathway analysis using IPA software. The DEG
list generated in TAC software was uploaded as a new dataset, and mapped identifiers
were used in a core analysis with default settings for significance (−log(p-value) > 2).
Pathways with a z-score of greater or less than ±1.5 were plotted to reveal predicted
activation or inhibition in the recGBM group. Results identify relevant relationships,
pathways, mechanisms, and functions given a differentially expressed gene list and their
corresponding p-values and expression fold change.

2.6. Upstream Regulator Effects

Upstream regulator analysis was carried out with IPA software. This identifies any
gene or small molecule which has been shown experimentally to affect gene expression as a
potential upstream regulator. The regulator effects feature was used to explore the recGBM
phenotype. The relationships between upstream regulators and downstream functions
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and diseases were plotted to identify drug targets. For each process, the significance
(p-value) and directionality (z-score) between groups were visualized as a hierarchical
heatmap. The size of each heatmap square was determined by the −log(p-value), and
based on the z-score, orange and blue indicated processes activated in the recurrent and
initial groups, respectively.

2.7. Gene Expression Connectivity Mapping

The gene signature of up-(53) and down-regulated DEGs (46) were investigated for
identifying repurposing FDA-approved therapeutics using QUADrATiC software [21].
Using the gene signature, target compounds that would reverse the recurrent phenotype
(i.e., negative connections) were identified. Results for all significant negative connections
and those for brain cells and brain stem/progenitor cell types (i.e., NEU, NPC) were
tabulated. NEU cells are normal terminally differentiated neuronal cells derived from iPS
(induced pluripotent stem)-derived neural progenitor cells (NPC). Results were visualized
as normalized contribution fraction (NCF) heatmaps, which indicate which genes are
responsible for the identified connections.

3. Results
3.1. Samples, Data Quality Control, and Provisional Comparisons of Initial and recGBM

In brief, samples from eleven patients (eight male, three female) with an average
age of 49 years of age at first diagnosis were analyzed. Molecular profiling confirmed all
tumors were IDH1/2-wildtype, while four had MGMT promoter methylation as either
low (5–10%; patients 6,11) or intermediate (10–25%; patients 7,10). Seven patient-matched
pairs and four additional unmatched samples (n = 18) passed QC (Table 1). Initial and
recurrent samples formed two groups in the PCA, indicating distinct transcriptional profiles
(Figure S1). Stroma and immune scores were slightly higher in recurrent, but tumor purity
was equivalent (p-value = 0.778; Table S1). Four of the seven patient-matched paired
samples (57%) switched transcriptional subtypes after disease progression, while three
remained the same, revealing no bias. RecGBM tumors were classified as mesenchymal
(n = 3), proneural (n = 2), and classical (n = 3; Table S2; see Supplementary Materials).
Further analysis was performed to compare transcriptional profiles of the patient-matched
initial and recurrent GBM (n = 7).

3.2. Differential Gene Expression Analysis between Initial and recGBM

Following filtering, 147 probes were identified as being differentially expressed
(Table S3). Probes composed of coding (n = 14; 9.5%), non-coding (n = 54; 36.7%), small
RNA (n = 8; 5.4%), precursor micro-RNA (n = 4; 2.7%), multiple complex (n = 46; 31.2%),
and unassigned transcripts (n = 21; 14.2%). In total, 60 (40.8%) and 87 (59.2%) transcripts
were up- and down-regulated, respectively, in recGBM (Figure S2). A greater proportion
of the down-regulated transcripts were non-coding genes (49.4%) and small RNAs (9.2%),
compared to up-regulated transcripts, which were mostly multiple complex genes (51.6%)
and no small RNAs. Only 103 probes had gene symbols, and 30 of these were predicted
‘genes’ identified by ACEVIEW, but not described by GENCODE. A further eight probes
lacked annotation and descriptions (e.g., RP11-318C24.1, AC007881.4, AL772161.2). Many
of the remaining probes were related to unannotated tRNAs and some small RNAs etc.
Thus, only 65 of the differentially expressed probes related to annotated functional genes.
The top ten most significant DEGs were ZEB1, RMST, GZMK, VSIG4, RPL30P7, HLA-DQA1,
CPNE8, PER3, HLA-DRA, and CLEC7A. According to expression (fold change), the most up-
regulated DEGs included HBB (8.95), HBA1 (8.63), and HBA2 (7.22), and down-regulated
ones included CXCL8 (−4.84), NAMPTP3 (−4.08), and VSIG4 (−3.51). Initial and recurrent
GBM stratified into distinct groups confirming that their transcriptional profiles differed
significantly (Figure 1).
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Table 1. A summary of relevant clinical, treatment, molecular profiling, and diagnosis data for the GBM IDH-wildtype patients assessed. Time to relapse and
overall survival are measured in days. The data file accession numbers for the initial and recurrent tumors are provided. TI = Technical Issue, TU = Technically
unsatisfactory; * Isolated 19Q loss of heterozygosity, IHC = Immunohistochemistry, AMP/No AMP = Amplification.

Patient
Identifier P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Initial P1_I P2_I P4_I P5_I P6_I P7_I P8_I P11_I
Recurrent P1_R P2_R P3_R P4_R P5_R P6_R P7_R P9_R P10_R P11_R

Sex F F M M M M M F M M M
Age at diagnosis 56 55 35 54 33 64 45 55 36 61 45
Time to relapse 462 266 312 511 336 541 658 348 395 343 427
Overall survival 757 454 449 764 493 588 987 651 751 665 556
CCRT (weeks) 6 6 6 6 6 6 6 6 6 6 6
TMZ (cycles) 6 5 6 6 3 0 2 6 4 6 6
IDH1 (R132H)

IHC NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE NOT
PERFORMED

ATRX IHC NEGATIVE (TI) RETAINED NEGATIVE (TI) RETAINED NEGATIVE (TI) RETAINED NEGATIVE (TI) RETAINED NEGATIVE (TI) RETAINED RETAINED

TERT FAILED NOT
REPORTED

C250T
MUTATION FAILED FAILED NOT

REPORTED FAILED FAILED FAILED C228T
MUTATION

NOT
PERFORMED

Histone H3F3A NO MUTATION NO MUTATION NO MUTATION NO MUTATION NO MUTATION NO MUTATION NO MUTATION NO MUTATION NO MUTATION NO MUTATION NOT
PERFORMED

IDH1/2 Seq NO MUTATION NO MUTATION NO MUTATION NO MUTATION NO MUTATION NO MUTATION NO MUTATION NO MUTATION NO MUTATION NO MUTATION NO MUTATION
1p/19q

co-deletion RETAINED RETAINED RETAINED RETAINED * RETAINED RETAINED RETAINED * RETAINED * RETAINED RETAINED RETAINED

EGFR NO AMP NO AMP NO AMP AMPLIFICATION NO AMP AMPLIFICATION NO AMP AMPLIFICATION AMPLIFICATION NO AMP AMP AND VIII
MUTATION

MGMT
promoter

NO/INSIGNIFI
CANT

NO/INSIGNIFI
CANT

NO/INSIGNIFI
CANT

NO/INSIGNIFI
CANT

NO/INSIGNIFI
CANT LOW 5–10% INTERMED

IATE 10–25%
NO/INSIGNIFI

CANT
NO/INSIGNIFI

CANT
INTERMED
IATE 10–25% LOW 5–10%

Diagnosis GBM, IDH-WT GBM, IDH-WT GBM, IDH-WT GBM, IDH-WT GBM, IDH-WT GBM, IDH-WT GBM, IDH-WT GBM, IDH-WT GBM, IDH-WT GBM, IDH-WT GBM, IDH-WT

Initial GEO
Accession GSM6508723 GSM6508725 GSM6508728 GSM6508730 GSM6508732 GSM6508734 GSM6508736 GSM6508739

Recurrent GEO
Accession GSM6508724 GSM6508726 GSM6508727 GSM6508729 GSM6508731 GSM6508733 GSM6508735 GSM6508737 GSM6508738 GSM6508740
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Figure 1. Hierarchical clustering of GBM IDH-wildtype samples based on the expression of the
147 differentially expressed probes or genes (DEGs). Expression (Log2) is displayed on a scale from
high (red) to low (blue) values. Patient sample IDs of initial (red) and recurrent (blue) are displayed
at the bottom of the heatmap.

Expression data in four public cohorts were tested to validate DEGs. In total, 22
genes were found to also be differentially expressed between initial and recGBM in at least
one other dataset (p-value < 0.05; Table S4). DEGs that were observed to be up-regulated
in the Belfast and another cohort included FPR3, SDC2, FCGR2B, GPNMB, CTSZ, AHR,
HLA-DRA, CXCL12, LYZ, MEF2A, EIF1, RPL30, and EIF4A2. DEGs that were observed
to be down-regulated in the Belfast and another cohort included BCAN, CNOT2, ABCG2,
and GZMK. Thus, the majority of genes (n = 17) showed the same directional regulation of
expression as the Belfast cohort, with the exception of five genes (SPOCK1, PTPRC, SCG3,
CLEC7A, and DMXL2).

The literature search revealed that 23 DEGs had known connections to GBM. Addi-
tional search results on the expression of these genes in recGBM returned studies for seven
genes, which provided validation for a further two genes (EGFR, CXCL8), giving a total of
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24 validated DEGs (Table S5). Patterns of expression for the five DEGs (HLA-DRA, CXCL12,
EGFR, BCAN, and GPNMB) that were up-regulated in this study were corroborated. In
contrast, the two genes, SPOCK1 and CXCL8, significantly down-regulated in this study
were previously reported to be up-regulated in recGBM (Table S5).

3.3. Functional Enrichment Analyses of the DEGs
3.3.1. Gene Ontology Analysis

In total, 180 significant GO terms for biological processes (N = 126), molecular function
(N = 7), and cellular components (N = 47) were identified for the DEGs (Table S6). The
top pathways had between two and seven DEGs overrepresented per pathway (Figure 2).
Although this number of DEGs may seem low, it actually represented a 20 to >100 fold
enrichment per pathway based on the background frequency of its genes expressed in
the cohort (see Methods). Amongst the top results, ten GO terms related to the major
histocompatibility complex (MHC). Specifically, DEGs were overrepresented in the MHC
class II and protein complexes (GO:0042613; GO:0042611), including binding and receptor
activity (GO:0023026; GO:0023023; GO:0032395) contributing to the biological process of
antigen processing and the presentation of endogenous peptide antigen (GO:0002491).
Furthermore, DEGS were overrepresented in myeloid dendritic cell antigen processing and
presentation (GO:0002469) as well as the positive regulation of both memory (GO:0043382)
and CD4+, CD25+, alpha-beta regulatory T-cell differentiation (GO:0032831; GO:0032829).
Thus, DEGs reflect the transcriptional changes to recGBM related to the immune response.

Figure 2. Results of the functional enrichment analyses of the DEGs identified in recGBM. Top ten
GO terms for biological processes (red), molecular function (blue), and cellular components (green)
are presented, including the number of genes overrepresented for each pathway.
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3.3.2. Canonical Pathway Analysis

A total of 36 canonical pathways were significantly altered between initial and recGBM
(Figure S3). The top three pathways were B-cell development, antigen presentation path-
way, and allograft rejection signaling, implying significant changes in immune signaling.
Pathways activated (orange) or inhibited (blue) in recGBM are presented in Figure 3. Eight
pathways (z-score), all relating to the immune response, were activated in recGBM. These
included NFAT in the regulation of immune response (2.449), iCOS-iCOSL signaling in
T-helper cells (2.0), Th1 pathway (2.0), calcium-induces T lymphocyte apoptosis (2.0),
dendritic cell maturation (2.0), neuroinflammation signaling (1.633), systemic lupus erythe-
matosus in T cell signaling (2.236), and PKCθ signaling in T lymphocytes (2.0). Inhibited
pathways in recGBM included PD-1, PD-L1 cancer immunotherapy (−2.0), and MSP-RON
signaling in macrophages pathway (−2.236).

Figure 3. Canonical pathways activated (orange) or inhibited (blue) in the recGBM group. Each bar
represents the pathway’s p-value on a negative logarithmic scale, such that the taller bars are more
significant than the shorter bars. The ratio of the number of molecules present in the DEG list divided
by the total number of molecules in the pathway is represented by the line graph (orange).
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3.4. Upstream Regulator Effects

A total of 1279 upstream regulators were enriched in recGBM, linking them to acti-
vation or inhibition of gene expression. Among them, the genes (z-score), RAD21 (2.0),
PML (2.162), and EIF4E (2.236) were activated, and fluticasone propionate a corticosteroid
that reduces inflammation (−2.315) was inhibited in recGBM (Figure 4). RAD21 was the
most significant, and its activation downregulates CXCL12, HLA-DRB1, and HLA-DQA1
and up-regulates ZEB1 resulting in the activation of the hematopoiesis of mononuclear
leukocytes (Figure S4). Biological processes most significantly differentiating initial and
recGBM in order were organismal injury and abnormalities (e.g., tumor growth), hema-
tological system development and function (e.g., antigen, T-lymphocytes, mononuclear
leucocytes), inflammatory response, and cancer and immune cell trafficking (see Figure S5;
Supplementary Materials).

Figure 4. Results of the regulator effects analysis based on the DEGs. Predicted upstream regulators
of the recGBM IDH-wildtype phenotype included (A) RAD21; (B) fluticasone propionate; (C) PML;
and (D) EIF4E.

3.5. Gene Expression Connectivity Mapping

The DEGs reflecting the transcriptional changes to recGBM were used in a connectivity
mapping analysis to identify FDA-approved repurposing drugs that could potentially
reverse the recGBM phenotype. In total, 114 significant negative connections, consisting of
98 unique compounds across 25 cell lines, were identified (Table S7). Overall, rosiglitazone
was identified as the top and the fifth highest-ranking target compound identified from
all cell lines (Figure 5). Amongst the other top five target compounds identified from all
cell lines were escitalopram, rifampicin, and medroxyprogesterone. According to NCF,
DEGs most affected by the identified drugs, in order, were HLA-DQA1, GPNMB, CXCL9,
LYZ, HBB, and CLEC7A (Figure 6). Target compounds identified for the neuronally derived
cell lines specifically, in order of significance, were nizatidine, pantoprazole, tolmetin,
gemfibrozil, bicalutamide, progesterone, clomifene, hydroxychloroquine, dinoprostone,
and levocabastine (Table 2). Dinoprostone was effective against ten different NPC cell lines,
while hydroxychloroquine and gemfibrozil were both effective against six different NEU
cell lines.
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Figure 5. The top 30 FDA-approved target compounds identified from all cell lines by QUADrATiC
software that could potentially reverse the recGBM phenotype.

Figure 6. The normalized contribution fraction heatmap for the top 100 significant negative con-
nections to target compounds identified for all cell lines identified by QUADrATiC software.
Probes/genes have been sorted according to which DEGs in the signature are most affected by
that drug. The DEG’s relative contribution is evident by their shading, which is on a scale from 1
(red) to −1.0149 (yellow).
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Table 2. Significant negative connections to target compounds for neuronal cell lines identified by
QUADrATiC software that could potentially reverse the recGBM phenotype.

FDA-Approved Drug Description No. of Profiles Z-Score Connection
Score p-Value Cell Line *

nizatidine Histamine H2-receptor antagonists 4 −5.376 −0.278 8.19 × 10−8 NPC
pantoprazole Proton pump inhibitor 4 −4.458 −0.234 7.37 × 10−6 NPC
tolmetin Nonsteroidal anti-inflammatory drug 3 −4.440 −0.301 9.66 × 10−6 NPC
bicalutamide Anti-androgen drug 4 −4.250 −0.254 1.99 × 10−5 NPC
clomifene Effective inhibitor of mutant IDH1 4 −4.076 −0.240 4.87 × 10−5 NPC
dinoprostone Naturally occurring prostaglandin 10 −3.948 −0.145 7.40 × 10−5 NPC

levocabastine H1 receptor antagonist 2 −3.929 −0.293 7.51 × 10−5 NEU
hydroxychloroquine Regulates the immune system 6 −4.060 −0.189 4.98 × 10−5 NEU
progesterone Endogenous steroid hormone 5 −4.189 −0.228 2.80 × 10−5 NEU.KCL
gemfibrozil Lipid-lowering drug 6 −4.390 −0.193 1.01 × 10−5 NEU

* NPC: cells differentiated from induced pluripotent stem cells but not terminally differentiated. NEU: cells
terminally differentiated to be neurons. NEU.KCL: cells terminally differentiated to be neurons and exposed to
potassium chloride solution to activate neurons.

4. Discussion

There is a lack of treatment options for GBM once the standard of care (Stupp protocol)
has been delivered to patients. Radiotherapy has limitations as a salvage therapy due to
radiation toxicity and the potential selection of chemo-resistant tumor cell populations.
More studies are revealing that recGBM tumors are both molecularly and transcriptionally
distinct compared to the initial tumor following cytotoxic treatments. This necessitates the
development of other therapeutic strategies that might be new to the tumor, and gathering
transcriptional data from recGBM is crucial for this. In this study, initial and recGBM
IDH-wildtype tumors were profiled using a whole transcriptome approach that included
>540,000 transcripts and splice variants. From an initial cohort of 25 patients, data from
only 11 patients (seven patient-matched pairs and four additional unmatched samples)
was collected. Similar to other studies, this was technically challenging to achieve, as
sample drop-out was high, impacting the sample size and statistical power of the study.
Nevertheless, differential gene expression analysis of the patient-matched pairs revealed
147 differentially expressed probes. In total, 24 DEGs were validated using public cohorts
and the literature. Up-regulated DEGs in recGBM were involved in angiogenesis (SDC2,
CXCL12), immune-related processes (HLA-DRA, FPR3, FCGR2B, AHR, LYZ), tumorigenesis
(CTSZ/Cathepsin Z) and metastasis (GPNMB), neuronal differentiation (MEF2A), and RNA
binding (EIF1, RPL30, EIF4A2). Down-regulated DEGs in recGBM were involved in cell
proliferation (EGFR) and possibly brain tumor cell growth (BCAN), deadenylation of
mRNA, which is linked to neurodevelopmental disorders (CNOT2), multi-drug resistance
(ABCG2), and immune-related processes (GZMK).

Angiogenesis genes, SDC2 and CXCL12, were up-regulated in the recGBM group.
SDC2 is highly expressed in glioma microvasculature regulating angiogenesis [27]. For
CXCL12, GBM potentially switches to a CXCR4-CXCL12 angiogenic pathway from the
well-known VEGF-HIF1a pathway [28]. RecGBM are frequently treated with bevacizumab,
an anti-angiogenic drug that targets the VEGF-VEGFR axis with the aim of disrupting
tumor angiogenesis; however, survival benefits with this monotherapy are negligible [29].
Immune-related genes, HLA-DRA, FPR3, FCGR2B, AHR, and LYZ, were also up-regulated
in the recGBM group, with the exception of GZMK, which was down-regulated. In humans,
MHC class II proteins are termed human leukocyte antigen (HLA) molecules, encoded
by HLA-DR, HLA-DP, and HLA-DQ genes. HLA-DR expression is associated with tumor
grade and prognosis in glioma [30,31]. Similarly, high expression of FPR3 is associated
with grade and IDH status in glioma [32]. A further study found that a gene signature
of FPR3, along with two other genes, was prognostic for GBM [33]. FCGR2B was also
prognostic for GBM singly and as part of an immune-related gene signature [34]. GBM
patients with higher FCGR2B expression had shorter survival and were resistant to TMZ-
nitrosoureas combination therapies [35]. AHR expression was also found to be associated
with tumor grade and poor prognosis. High expression of AHR drives the expression of
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CD39 in tumor-associated macrophages promoting CD8+ T-cell dysfunction [36]. In GBM,
differential expression of LYZ and PIK3AP1 alters the immune and tumor microenviron-
ment leading to worse prognoses [37]. GZMK (Granzyme K) is a cytotoxic granule that
promotes tumor death. Treatment of recGBM with neoadjuvant PD-1 checkpoint blockade
improves survival outcomes by increasing anti-tumor T-cell responses, including GZMK;
however, this is curtailed by additional T-cell checkpoints and other immunosuppressive
pathways by the myeloid populations [38]. A better understanding of these processes
could improve therapies. Other up-regulated DEGs were also involved in tumorigenesis
(CTSZ/Cathepsin Z), metastasis (GPNMB), neuronal differentiation (MEF2A), and RNA
binding (EIF1, RPL30, EIF4A2).

Down-regulated DEGs in recGBM included genes involved in cell proliferation (EGFR),
possibly brain tumor cell growth (BCAN), deadenylation of mRNA, which is linked to
neurodevelopmental disorders (CNOT2), and multi-drug resistance (ABCG2). The recep-
tor tyrosine kinase EGFR is frequently amplified (∼57%) or mutated (∼11%) in primary
GBM [4]. Overexpression of EGFR is often lower (44%) at GBM recurrence [39], corroborat-
ing our findings. EGFR inhibitors have yet to show clinical benefit against GBM; however,
combinatorial therapies targeting both the EGFR and STAT3 signaling pathways may
have better therapeutic potential [40]. Single-cell transcriptomic profiling of dissociated
GBM and peri-tumoral tissues observed neural stem cells in both, which included an
EGFR+ BCAN+ cell cluster, which may influence GBM recurrence [41]. ABCG2 functions to
efflux neurotoxic substances from the brain parenchyma to the bloodstream and may play
a major role in multi-drug resistance [42]. Whilst ABCG2 was significantly downregulated
in recGBM, its expression is still very high compared to normal brain tissue, which could
hinder therapy effectiveness [43].

Functional analyses revealed GO terms relating to an ‘MHC class II protein complex’
and ‘antigen processing and presentation’ as enriched in recGBM. MHC class II genes en-
code antigen-presenting peptides, which are key in initiating immune response [44]. These
peptides are usually found on B-cells, macrophages, and dendritic cells. Down-regulation
of MHC class II molecules has been associated with tumor cell invasion and immune
evasion in glioma [45,46]. The enrichment of these genes in recGBM may indicate a change
in the biological processes adopted by the tumor in response to therapy. Similarly, pathway
analysis returned B-cell development, antigen presentation pathway, and allograft rejection
signaling as the top three, further corroborating the observation of activated immune signal-
ing in recGBM. The ‘Role of NFAT in the regulation of the immune response’ was the most
significantly activated pathway. NFATs are calcium-dependent transcription factors that
are required to be activated with the Fos-Jun complex for a productive immune response.
High NFAT2 expression was associated with recGBM, the mesenchymal subtype, and
poor survival, supporting our findings [47]. Inhibitors of the calcineurin-NFAT pathway
suppressed proto-oncogenic pathways (hypoxia, glycolysis, PI3K/AKT/mTOR signaling
axis) in vivo in GBM and, consequently, are being considered for therapies [48]. Addition-
ally, two pathways inhibited in recGBM were ‘PD-1, PD-L1 cancer immunotherapy’ and
‘SP-RON signaling in the macrophages pathway’.

RAD21 was identified as a potential upstream regulator of CXCL12, HLA-DQA1,
HLA-DRB1, and ZEB1 expression in recGBM. This may result in the downstream acti-
vation of ‘hematopoiesis of mononuclear leukocytes’, i.e., the formation of blood cells
including both lymphocytes (B-cells, T-cells, NK cells) and monocytes (macrophages, den-
dritic cells). RAD21 encodes a double-strand break repair protein; however, it also has
roles as an upstream regulator. For example, the lncRNA, MIR4697HG, plays a role in
gliomagenesis and progression [49]. Perhaps RAD21 may be involved in the infiltration
of antigen-presenting immune cells in recGBM. Several studies have been completed on
the effects of immune cells, including mononuclear leukocytes, on GBM. Macrophages,
originating in bone marrow, accumulate centrally in GBM tumors creating an immunosup-
pressive environment [50]. Assessment of the immune infiltration of GBM transcriptional
subtypes found that the mesenchymal subtype had the highest microglia, macrophage,
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and lymphocyte infiltration, which could make it more susceptible to immunotherapy [51].
Results of the disease and function analysis highlighted the quantity of CD4+ T lympho-
cytes, differentiation of T lymphocytes and mononuclear leukocytes, and the proliferation
of lymphocytes as potentially being increased in recGBM. This suggested a high infiltration
of immune cells in recGBM while also highlighting increased inflammatory responses in
the initial tumors. Inflammation, a natural immune response to infection, may be involved
in gliomagenesis [52]. Therapies generating an injury response could be effective against
GSCs that carry hallmarks of inflammation and may be responsible for gliomas via a
neural wound response pathway [53]. In summary, increased activation of immune-related
pathways was observed in recGBM. It should be noted that our GBM cohort was relatively
young, with an average age of 49, and that these patients were “healthy” enough to be
eligible for a second surgery. Thus, our results relate to a small and select patient cohort
with a “resectable” recurrent tumor. It is not clear whether results might be transferrable
to a “non-resectable” diffuse cohort. Nevertheless, our study suggests that recGBM may
benefit from immunotherapy. To date, immunotherapies have not had significant clinical
benefits for GBM patients. A lack of HLA-presented epitopes has been suggested as a
limiting factor in the immunogenicity of GBM [54]. Our findings potentially suggest that
HLA-DQA1 could be targeted intratumorally in recGBM as part of CAR-T cell therapy,
which might prove successful against these solid tumors [55].

These transcriptional changes to recGBM were utilized in a gene expression connec-
tivity mapping analysis to identify FDA-approved compounds that could potentially be
re-purposed in recGBM. The top-ranking compound across all cell lines was rosiglitazone,
a synthetic agonist of the PPARγ nuclear hormone receptor [56]. It is also a member of the
thiazolidinedione family of compounds (TZDs) that are synthetic ligands of the nuclear-
receptor-peroxisome-proliferator-activated receptor gamma (PPARγ). PPARγ forms a
heterodimer with retinoid-X-receptor for efficient ligand binding, after which the receptor-
ligand complex binds DNA and induces signal trans-activation, regulating a spectrum of
processes including glucose homeostasis, inflammation, and fatty acid metabolism [57].
Preliminary evidence from in vitro experiments by this group suggests that rosiglitazone
in combination with radiation is effective against GBM cell proliferation [Al Rashid et al.
in prep. unpublished results]. Compounds specifically identified for neuronal cell lines
included nizatidine, pantoprazole, and tolmetin. Importantly, a compound structurally and
pharmacologically related to the nonsteroidal anti-inflammatory drug tolmetin, ketorolac,
and it is r-enantiomer, has been shown to inhibit small Rho GTPases (Rac1, Cdc42) and to
reduce GBM infiltration in vitro [58]. A review of repurposing drugs to treat GBM only lists
rosiglitazone, escitalopram, and hydroxychloroquine from the drugs we identified, and
from those, only escitalopram has been tested in Phase II/II clinical trial (NCT02623231) [59].
All the other drugs we identified are novel suggestions for GBM and remain untested. High-
content profiling of drugs is underway using a phenotypic approach on well-characterized
GBM patient-derived cell lines by combining the Cell Painting assay with machine learning
to classify drug mechanism of action [60]. Following successful in vivo and in vitro testing,
the candidate compounds could be evaluated in future pre-clinical trials in combination
with standard therapies, such as TMZ and bevacizumab, to target GBM and specifically the
resistant GSC sub-populations in the initial tumor to prevent recurrence. Our translational
bioinformatics pipeline provides an approach that could identify novel targets for cancer
therapy. Finally, results from our whole transcriptome approach indicated that alterations
in small non-coding RNAs, such as tRNAs, might have a role in disease progression in
GBM IDH-wildtype. In other cancers, tRNAs are involved in apoptosis and tumorigenesis
and have been successfully used as diagnostic biomarkers see [61]. Future work to charac-
terize the non-coding portion of the transcriptome, including tRNAs, may prove useful
to reveal additional mechanisms of disease regulation that could open new avenues for
therapeutic interventions.



Biomedicines 2023, 11, 1219 15 of 19

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines11041219/s1. Figure S1: PCA plots generated for
(A) all 18 GBM tumor samples profiled and (B) patient-matched initial and recurrent GBM samples
only. Initial and recurrent tumors are labeled red and blue, respectively. Samples that did not pass
the labeling control thresholds are labeled with a cube shape. One sample failed labeling QC (P11_I);
however, as it did not appear as an outlier, it was maintained in the study; Figure S2: Results of
the differential gene expression analysis between patient-matched initial and recurrent GBM. A: A
volcano plot indicating the spread of up-regulated (red) and down-regulated DEGs were identified. B:
Functional categories (%) assigned to each set of up-regulated and down-regulated DEGs; Figure S3:
Results of the canonical pathways identified from the DEGs. A total of 36 canonical pathways were
significantly altered between initial and recurrent tumors. Pathways activated (orange) or inhibited
(blue) in the recurrent group are represented by bars with a positive or negative z-score, respectively.
The ratio of the number of molecules present in the DEG list divided by the total number of molecules
in the pathway is indicated in the line graph. Pathways having no activity pattern available (grey)
meant that a z-score could not be calculated; Figure S4: Regulator effects analysis for RAD21 revealed
that its activation downregulates CXCL12, HLA-DRB1, HLA-DQA1 and up-regulates ZEB1 resulting
in the activation of the hematopoiesis of mononuclear leukocytes; Figure S5: Hierarchical heatmap
representing the biological processes most significantly differentiating the initial and recurrent groups
based on the DEGs. Processes are sized according to their log(p-value) and colored according to
z-score. Activation (orange) and inhibition (blue) in the recurrent group are represented by positive
and negative z-scores of 1.5, respectively; Table S1: Comparison of the tumor composition results from
ESTIMATE. Tumor purity did not significantly differ between initial (Mean = 0.7631 ± 0.0318 Stdev.)
and recurrent (Mean = 0.7568 ± 0.0294 Stdev) samples (p-value = 0.778, F = 0.082, t = 0.437, df = 16);
Table S2: Results of the transcriptional subtype assignment for all the initial and recurrent GBM
IDH-wildtype samples. p-values were generated for each gene signature based on 1000 permutations
of the gene set provided. For each sample, the lowest p-value was used to determine its subtype;
Table S3: A list of the probes or genes that were identified as being differentially expressed between
patient-matched initial and recurrent GBM IDH-wildtype; Table S4: Validation of the expression
patterns of DEGs in other GBM cohorts. Results of the statistical comparison of expression of DEGs
between initial and recurrent GBM in the four independent cohorts: CGGA (N = 75/85); Kwon et al.
(N = 15); TCGA-GBM (N = 13); HF-MDA (N = 9). Trends for up (UP), down (DN), or opposite
(O) gene expression regulation are indicated in comparison to the Belfast cohort, which is also
listed. A column indicating whether the gene is validated in at least another cohort and showing
the same expression trend is provided, and the test result is shaded. NS = Non-significant test
result; NA = Not applicable because gene not available in the cohort for testing; Y = Yes; N = No;
Table S5: Validation of the expression patterns of DEGs from the literature. Overview of the DEGs
for which expression was reported for both initial and recurrent GBM in the literature; Table S6:
Results of the GO analysis of DEGs related to Biological Process, Molecular Function, and Cellular
Component; Table S7: Significant negative connections to target compounds that could reverse
the recurrent GBM IDH-wildtype phenotype identified for all cell lines by QUADrATiC software.
References [28,39,62–66] are cited in the Supplementary Files.
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