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Abstract

Pan-cancer genomic analyses based on the magnitude of pathway activity are currently lacking. 

Focusing on the cell cycle, we examined the DNA mutations and chromosome arm-level 

aneuploidy within tumours with low, intermediate and high cell cycle activity in 9 515 pan-cancer 

patients with 32 different tumour types. Boxplots showed that cell cycle activity varied broadly 

across and within all cancers. TP53 and PIK3CA mutations were common in all cell cycle score 

(CCS) tertiles but with increasing frequency as cell cycle activity levels increased (P < 0.001). 

Mutations in BRAF and gains in 16p were less frequent CCS high tumours (P < 0.001). In Kaplan-

Meier analysis, patients whose tumours were CCS Low had a longer Progression Free Interval 

(PFI) relative to intermediate or high (P < 0.001) and this significance remained in multivariable 

analysis (CCS intermediate: HR = 1.37; 95% CI 1.17 – 1.60, CCS high: 1.54; 1.29 – 1.84, CCS 

Low = Ref). These results demonstrate that whilst similar DNA alterations can be found at all cell 
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cycle activity levels, some notable exceptions exist. Moreover, independent prognostic information 

can be derived on a pan-cancer level from a simple measure of cell cycle activity.

Introduction

The Nobel prize winning research of Hartwell1, Nurse2,3 and Hunt4 in the nineteen seventies 

and eighties fundamentally changed our understanding of the cell cycle and provided broad 

insight into the molecules governing its regulation. These seminal discoveries have shaped 

our modern view of the cell cycle and its separation into four distinct phases commonly 

referred to as G1, S, G2 and M. Transitions between these phases are governed by the cyclin 

family of proteins along with their binding partners the cyclin dependent kinases (CDKs)5. 

Disruptions to the function of cyclin-CDK holoenzymes or other cell cycle pathway 

members can lead to impaired control over the cycle and sustained proliferation - a hallmark 

of cancer6.

Large scale pan-cancer studies have sought to understand human malignancies at a 

molecular level through the integration of multiple high-throughput data types. This 

approach has yielded a number clinically relevant findings including the coalescence of lung 

squamous, head and neck, and some bladder cancers into a single pan-cancer subtype and 

the ability to classify tumours into prognostic subgroups at a pan-cancer level7. More 

recently, data from over eleven-thousand patients has shown actionable mutations in up to 

fifty-seven percent of tumours8, a positive correlation between aneuploidy and cell cycle 

genes9, and frequent co-alterations in the p53 and cell cycle pathways10. To date, the 

analysis of genomic aberrations in these studies have typically focused on all pan-cancer 

tumours at once8, within subgroups of tumours that have clustered together on the basis of 

DNA, RNA and protein expression – termed the iClusters8, or within tumours with a 

common genetic alteration such as chromosome 3p loss9. Given the varying degrees of 

oncogenic pathway activation/suppression across cancer types10, we hypothesized that 

basing genomic analyses on the magnitude of pathway activity may also provide important 

biological information and clinical insight. In view of the fundamental biological role of the 

cell cycle in cancer and the frequent genomic alterations of its pathway members, it 

represents a compelling choice for a pathway activity-based analysis.

Here, in order to test our hypothesis, we compare the most prevalent genomic alterations in 

tumours with low, intermediate and high levels of cell cycle activity by integrating data from 

multiple genomic platforms in over nine-thousand tumours from The Cancer Genome Atlas 

(TCGA). Specifically, we examine gene expression levels, gene mutational frequency and 

chromosome arm-level alterations across pan-cancer tumours grouped into low, intermediate 

and high tertiles of cell cycle activity on the basis of our cell cycle score (CCS) gene 

signature11,12. Finally, we also determine the clinical relevance of this signature across and 

within cancer types using survival analyses including Kaplan-Meier graphs and 

multivariable Cox proportional hazards modeling adjusting for patient and tumour 

characteristics.
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Results

Cohort clinico-pathological characteristics in relation to CCS subgroups

In line with our aim to compare genomic alterations in tumours with differing levels of cell 

cycle activity we applied our CCS signature (genes are shown in Supplemental Table 1) to 

gene expression data from the tumours of 9,515 pan-cancer patients. Clinico-pathological 

characteristics for the pan-cancer cohort split by low, intermediate and high CCS tertile 

classifications are shown in Table 1 and a CONSORT diagram showing the exclusion criteria 

for this study is shown in Supplemental figure 1. Statistically significant associations were 

found between patient age, gender, pathological stage, radiotherapy and CCS subgroups 

(Table 1, Chi-squared test: P < 0.001 for all comparisons). After adjusting for cancer type, 

only stage and radiotherapy remained statistically significant whereby CCS high tumours 

were more likely to be stage IV and to have received radiotherapy (data not shown).

Broad variation in cell cycle activity across cancers and COCA subtypes

We next assessed tumour cell cycle activity by creating pan-cancer, Cluster of cluster 

assignment (COCA) and iCluster boxplots using the continuous CCS. We found the highest 

levels of cell cycle activity in Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 

(DLBC), Testicular Germ Cell tumours (TGCT), Head and Neck squamous cell carcinoma 

(HNSC) and Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) 

tumours and the lowest in Kidney Chromophobe (KICH), Pheochromocytoma and 

Paraganglioma (PCPG), Kidney renal papillary cell carcinoma (KIRP) and Prostate 

adenocarcinoma (PRAD) tumours (Figure 1A). Similar results were found using the COCA 

algorithm - a classification strategy that clusters samples by integrating information from 

multiple individual cross platform technologies, with CA17 (TCGT) and CA4 (PAN-SCC, 

mainly HNSC, LUSC and CESC tumours) forming the top two subgroups with the highest 

cell cycle activity (Figure 1B). CA10 (Breast Invasive Carcinoma (BRCA), basal-like) and 

CA25 (Hematologic/lymphatic, mainly Thymoma (THYM) and DLBC tumours), also 

showed high cell cycle activity, whilst CA1 (CNS/Endocrine, mainly PCPG tumours), CA14 

(PRAD) and C21 (PAN-Kidney) showed the lowest levels of all COCA subtypes (Figure 

1B). Analogous results were noted using the iCluster classification strategy (Supplemental 

Figure 2). Examining cell cycle activity clusters using heatmap analysis demonstrated that 

tumours with low levels of cell cycle activity (and thus classified as CCS Low) show low 

expression of the majority of genes in all cell cycle phases (G1 to M), whilst the opposite is 

true for tumours with high levels of cell cycle activity (Figure 1C, compare tumours with 

black column-side colour to those with yellow).

TP53 and PIK3CA mutations display increasing frequency across cell cycle activity 
subgroups

To more clearly delineate the frequency of DNA mutations in relation to the magnitude of 

cell cycle activity we next examined the mutational frequency of 299 well defined oncogene 

and tumour suppressor driver genes within CCS subgroups. TP53 was found to be the most 

mutated gene in all three CCS subgroups and displayed an increase in mutational frequency 

with increasing CCS activity (Figure 2A, Supplemental Table 2, Chi-squared test: P < 

0.001). In CCS Low tumours 40% of TP53 mutations were found in LGG, whereas in CCS 
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high tumours TP53 mutations were most common in HNSC (18%), LUSC (17%) and 

BRCA (13%) (Highlighted in Figure 2A) PIK3CA was the second-most commonly mutated 

gene in CCS intermediate and high tumours and fifth most common in CCS Low tumours 

(Figure 2A). It is also more frequently mutated in CCS Intermediate and High tumours 

relative to CCS Low (Supplemental Table 2, P < 0.001). PIK3CA mutations in Breast 

Invasive Carcinoma (BRCA) and Uterine Corpus Endometrial Carcinoma (UCEC) were 

common across all CCS subgroups and were additionally found in Head and Neck squamous 

cell carcinoma (HNSC) and Cervical squamous cell carcinoma and endocervical 

adenocarcinoma (CESC) in CCS high tumours (Figure 2A). Of interest, whilst BRAF 
mutations were prominent in Low and Intermediate subgroups as the third and eleventh most 

mutated gene respectively, it was absent from the top 15 in CCS High tumours (Figure 2A, 

red arrows, Supplemental Table 2, P < 0.001). These findings suggest genes other than 

BRAF are more commonly mutated in tumours with high cell cycle activity. Of note, the 

increased number of BRAF mutations in CCS Low tumours is mainly driven by a single 

tumour type – Thyroid carcinoma (THCA) (Thyroid carcinoma, pink colour under red arrow 

in Figure 2A), whereas in CCS Intermediate (and High) tumours BRAF mutations are 

mostly found in Skin Cutaneous Melanoma (SKCM) (Supplemental Table 3). The top 50 

most frequently mutated genes in all CCS subgroups are shown in Supplemental Table 4.

Higher levels of chromosomal gains and losses in CCS intermediate and high tumours

We next performed the same subgroup analysis, but this time focusing on chromosome arm-

level gains and losses. All CCS subgroups showed a high number of gains to arms 20q, 8q 

and 7p and losses to arms 17p and 8p (Figure 2B and C, respectively, all CCS subgroups). 

Moreover, these chromosomal aberrations all displayed an increase in frequency with 

increasing CCS activity (Supplemental Table 2, Chi-squared test: P < 0.001 for all 

comparisons, not adjusted for multiple testing). Overall, gains in KIRP (Figure 2B, 

highlighted) and losses in PCPG cancers (Figure 2C, highlighted) were more common CCS 

Low tumours relative to CCS Intermediate and High subgroups, as could be anticipated 

given the low cell cycle activity levels displayed by these tumour types and their grouping 

into the CCS Low tumour subgroup (Figure 1A). Analogous to our BRAF mutation 

findings, gains to 16p (Figure 2B, red arrows) were more common in CCS Low and 

Intermediate subgroups relative to the CCS High subgroup (Supplemental Table 2, P < 

0.001). 29% of 16p gains are found in KIRP in CCS low tumours, whereas they occur most 

commonly in BRCA in CCS Intermediate and High tumours (Supplemental Table 3). The 

frequency of chromosomal arm gains and losses in all CCS subgroups are shown in 

Supplemental Table 5.

Next, we examined genomic alterations more broadly within CCS subgroups and found the 

frequency of gene mutations and chromosomal arm gains and losses to be greater in CCS 

Intermediate and High groups relative to Low (Figure 3 A – C, Tukey HSD test, 3A top 50 

DNA mutations: P < 0.001 and P < 0.001, 3B chromosomal gains: P = 0.018 and P < 0.001 

and losses 3C: P < 0.001 and P < 0.001 for Low vs. Intermediate and High, respectively). 

Similarly, using the recently derived aneuploidy score9 - a measure of the total number of 

chromosome arms with arm-level copy number changes in a given sample, we also found a 
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statistically significant increase with increasing CCS activity levels (Figure 3 D, P < 0.001 

for all comparisons).

CCS signature provides independent prognostic information at pan-cancer level

We next assessed the relationship between CCS and Progression Free Interval (PFI) using 

Kaplan-Meier and multivariable Cox proportional hazard regression model analyses. In 

univariate Kaplan-Meier analysis patients whose tumours were classified as CCS Low had a 

significantly longer PFI relative to those classified as CCS Intermediate or High (Figure 3 E, 

log-rank test: P < 0.001). This significance remained when adjusting for tumour type, age, 

gender, pathological stage and radiotherapy in Cox proportional hazard analysis (Table 2, 

CCS intermediate: HR 1.37 95% CI 1.17 – 1.60, CCS high: HR 1.54 95% CI 1.29 – 1.84, 

tumour type not shown). The upper age tertile (≥ 66) remained statistically significant in the 

same model (HR 1.19 95% CI 1.05 – 1.35 vs. Ref), as did all pathological stages vs. the 

Stage I model reference group. As many cancers contain additional molecular subgroups 

(e.g. breast cancer) we also performed a similar analysis but adjusting for COCA subtypes 

rather than pan-cancer types and found comparable independent prognostic capacity for the 

CCS (data not shown).

In order to more closely examine individual cancer types where the signature splits tumours 

into two or three CCS subgroups, we again performed Kaplan-Meier and Cox proportional 

hazard modelling but this time focusing on individual cancers. CCS provided significant 

independent prognostic information in four cancer types: Kidney renal clear cell carcinoma 

(KIRC) (P = 0.042), LGG (P < 0.001), Sarcoma (SARC) (P = 0.001) and Uveal Melanoma 

(UVM) (P = 0.013, Supplemental Figure 3, alphabetical ordering, adjusted for multiple 

testing). Finally, as the CCS subgroups are based on a tertile split of cell cycle activity on a 

pan-cancer level, we hypothesized that deriving subgroups in this manner may provide 

superior prognostic information to a simple tertile split within (intra) each cancer type. To 

test this hypothesis, we compared our pan-cancer CCS tertile subgroups to intra-cancer CCS 

tertile subgroups. We found that whilst both cut-offs provide significant prognostic 

information in the above four cancer types (Compare Kaplan-Meier curves for pan-cancer 

CCS to intra-cancer CCS, Supplemental Figure 4), a pan-cancer cut-off provides more 

prognostic information calculated by likelihood ratio (LR) test, in KIRC (LR = 24.7), LGG 

(LR = 31.1), SARC (LR = 18.5) and UVM cancers (LR = 17.1, Table 3, compare pan-cancer 

column to intra-cancer). These findings suggest that deriving transcriptional biomarker cut-

points on a pan-cancer level may be advantageous relative to deriving them in a single 

cancer type. For the sake of completeness, hazard ratios and 95% confidence intervals for 

pan-cancer and intra-cancer tertile subgroups in individual cancers are shown in 

Supplemental Table 6.

Discussion

The present study integrates gene expression, DNA mutation, DNA copy number and 

clinico-pathological data from 9 515 pan-cancer patients in order to better understand the 

DNA level alterations present in tumours with low, intermediate and high cell cycle activity. 

Our main findings show first, that cell cycle activity varies broadly across and within cancer 
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types; second, that TP53, PIK3CA and chromosomal alterations (including gains to 20q, 8q, 

7p and losses to arms 17p and 8p) occur with increasing frequency in tumours with 

increasing cell cycle activity; third, whilst in general similar mutations/arm level alterations 

are present within tumours with low, intermediate and high cell cycle activity, mutations in 

BRAF and gains in 16p were less frequent in tumours with high cell cycle activity; and 

fourth, that deriving cut-points for biomarkers on a pan-cancer level may provide more 

prognostic information than deriving them within specific cancer types. These analyses are 

the first to provide broad insight on the genetic alterations occurring within tumours grouped 

on the basis of cell cycle activity in order to advance our understanding of a pathway that is 

frequently dysregulated in human malignancies.

In pan-cancer analyses, TP53, PIK3CA, KRAS, PTEN and ARID1A genes have all been 

previously demonstrated to be mutated in over 15 different cancer types8. These genes also 

featured heavily in our mutational analysis with TP53 and PIK3CA mutations showing the 

high mutational frequency across CCS subgroups. This implies that mutations in these genes 

are found in tumours with a broad range of cell cycle activity and are not just associated 

with highly cycling cancers, despite their very clear links to cell cycle progression13,14. 

Whilst we found the ARID1A gene to be mutated in all CCS subgroups, BRAF was notable 

for only being found in the top 15 of the CCS Low and Intermediate subgroups, implying 

that other genes are more commonly mutated in tumours with high cell cycle activity, such 

as TP53 and PIK3CA. This result is partially driven by the cancer types found in each of the 

CCS subgroups, e.g. BRAF mutations are predominantly found in THCA cancers in the 

CCS Low subgroup and SKCM in CCS intermediate and high tumours. It is important to 

highlight that CCS tumour subgroups were derived on the basis of biological cell cycle 

pathway activity alone. Our aim was to provide map/characterize the DNA aberrations 

within tumours on the basis of pathway magnitude, as such, even if a specific aberration is 

enriched owing to a certain tumour type, it is still one characteristic of tumours with low 

levels of cell cycle activity, albeit one associated with a specific cancer type.

It has recently been demonstrated that tumour aneuploidy is inversely correlated to immune 

signaling genes and positively correlated to cell cycle and pro-proliferation pathways9. Our 

findings are in line with these showing a step wise increase in aneuploidy score with 

increasing CCS activity levels. Related to this, whilst most of predominant chromosome 

arm-level alterations we observed overlapped with those from the pan-cancer publication9, 

our within subgroup analysis yielded some novel findings. In particular, and analogous to 

our mutational results, we found that specific gains (16p) were present in the CCS 

Intermediate and high subgroups only (Figure 2B and C, red arrows). This raises the 

possibility that this chromosomal alteration could potentially be used as novel clinical 

biomarkers for more indolent tumours in cancers of unknown primary origin.

We found that our cell cycle score gene expression signature, which has been previously 

applied in a breast cancer setting11,12, provided independent prognostic information on a 

pan-cancer level. This signature was originally conceived as a simple biological measure of 

cell cycle activity in response to the dependence of more established commercial gene 

expression signatures on multiple cell cycle/cell proliferation genes for their prognostic 

capacity15. The signature genes were chosen through the aggregation of three different 
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biological pathway databases16–18, meaning that it is not cancer-specific and can be applied 

to any tissue sample. In keeping with its descriptive nature, we have not attempted to 

maximise the signature’s prognostic capacity through selection of genes that are the 

strongest predictors of the study’s clinical endpoint - progression free interval. Despite this, 

the signature performed well in both Kaplan-Meier and multi-variable analyses, likely owing 

to its ability to select for faster growing, more aggressive tumours. As we are applying the 

CCS to a pan-cancer cohort, the prognostic capacity of the signature should be viewed in the 

context of all cancers and in general, not necessarily within specific cancer types. For 

example, when we split the continuous CCS into tertiles of activity the majority of prostate 

cancers (PRAD) are classified into the CCS Low subgroup and thus as “good” prognosis 

based on our analyses. Conversely, glioblastoma cancers (GBM) were predominantly 

classified into CCS Intermediate and High subgroups and thus as “poor” prognosis. In line 

with this, the median time to a PFI event for PRAD patients in the pan-cancer cohort is 18.4 

months, whereas for GBM it’s 6.1 months19. As such, the prognostic capacity for the CCS 

signature when applied to all tumours cannot be determined on the basis of its strength 

within in a single cancer type, but only when considered in the context of all cancers. 

Interestingly, however, some cancers were split into two or three different CCS subgroups 

and upon further examination of these cancer types we found that deriving CCS tertiles of 

activity on a pan-cancer level may provide more prognostic information than deriving them 

within a specific cancer type. This could be of utility in a clinical setting where a gene 

transcript is being used as a biomarker for treatment response, such as the recent example of 

cyclin E expression and Palbociclib efficacy in metastatic breast cancer patients20. In this 

instance it is conceivable that re-defining a cyclin E cut-point on the basis of pan-cancer 

expression levels of the gene may more clearly delineate which patients are likely to be 

resistant to the drug.

When applying a gene expression signature to any dataset a choice regarding the best cutoffs 

for sample subgrouping is typically inherent to the analysis. Here, we chose to divide the 

continuous CCS into three equal groups resulting in low, intermediate and high expression 

subgroups. This decision was largely based on both our experience with other gene 

expression signatures in the breast cancer field where three subgroups are common, such as 

for the 21-gene recurrence score21 and the biology-based gene expression modules22. 

Moreover, given that the CCS is continuum of values (as shown in Figure 1) without any 

clear bimodal distribution, it does not make sense to force a simple binary high/low grouping 

on the data. Instead we opted for tertiles that reflect this continuum with high and low 

expression groups and the addition of a third intermediate subgroup to cover the range of 

samples transitioning from low to high expression. Another important point to consider is 

that we are applying the CCS signature to data extracted from an entire tumour and as such 

are getting an average gene signal across the entire sample. This means that heterogeneity in 

terms of the cellular composition of the tumour and in terms of expression of the CCS in 

different tumour regions is not taken into account. Many newer technologies including 

single-cell sequencing and spatial transcriptomics can be used to examine tumour 

heterogeneity at single cell resolution23, however, as this type of data is not currently 

available for the tumours of the pan-cancer cohort we cannot assess the intratumour 

variation of the CCS in this material. A second, more traditional way to take heterogeneity 
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into account is through the examination of whole tumour sections under the microscope. 

Given that the CCS is interlinked with cell proliferation, which in turn is an important 

component of tumour grading (in the form of mitotic count), one could speculate as to the 

merits of grading in addition in to or in place of applying the CCS. Unfortunately, tumour 

grading information was missing for over 50% of the tumours included in this study 

meaning it was not included in multi-variable analyses. More importantly, grading systems 

differ greatly between cancer types, for example the three-level Nottingham histologic grade 

is used in breast cancer whilst Gleason grading with up to 5 different groups is used in 

prostate cancer. This renders the application of grade at a pan-cancer level currently 

unfeasible and relatedly, we have previously demonstrated the propensity of the CCS and 

other gene expression signatures to outperform ocular assessment of the proliferation marker 

Ki67 on whole tumour sections11,24.

There are three main strengths to our study; first, we utilise a novel methodology to examine 

the DNA alterations in subgroups of tumours that is based on the magnitude of cell cycle 

activity both across and within cancer types; second, our analysis provides an expansive, 

descriptive overview of the frequency of DNA mutations and chromosomal gains and losses 

in subgroups of low, intermediate and high cell cycle activity; and third, we demonstrate the 

translational relevance of our work by relating our CCS signature to a clinical survival 

endpoint – PFI. The limitations are as follows; first, our analysis focuses on DNA and RNA 

technologies only, with no protein or methylation array data included; second, we chose to 

study broad chromosomal gains and losses rather than gene-centric copy number changes – 

this was to avoid a situation where the most changed genes within a given CCS subgroup 

would all come from the same chromosomal location; third, we did not adjust the CCS for 

every molecular subgroup within every cancer type in multivariable analysis – this is a 

general limitation of any pan-cancer study, we did however perform additional analyses 

adjusting for COCA subtypes which captures more molecular heterogeneity than adjusting 

for cancer types alone and found analogous results; and fourth no external validation was 

performed for the CCS signature, although we are not aware of any other pan-cancer dataset 

where it could be validated and more importantly, we are not currently proposing it for use 

in a clinical setting – rather as a general tool to examine the cell cycle activity of a given 

tumour.

In summary, this study describes the DNA mutations and chromosomal alterations found in 

tumours with low, intermediate and high levels of cell cycle activity and also demonstrates 

the ability of a simple cell cycle gene expression signature to provide independent 

prognostic information at a pan-cancer level.

Materials and Methods

Study population and specimens

The Pan-Cancer Atlas (PanCanAtlas) project compared and contrasted genomic and cellular 

differences between tumour types profiled as part of TCGA. The project consists of 11 069 

patients with primary tumours from 32 different cancer types, including Adrenocortical 

carcinoma (ACC), Bladder Urothelial Carcinoma (BLCA), Brain lower grade Glioma 

(LGG), Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), 
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Cholangiocarcinoma (CHOL), Colon adenocarcinoma (COAD), Esophageal carcinoma 

(ESCA), Glioblatoma multiforme (GBM), Head and Neck squamous cell carcinoma 

(HNSC), Kidney Chromophobe (KICH), Kidney renal clear cell carcinoma (KIRC), Kidney 

renal papillary cell carcinoma (KIRP), Liver hepatocellular carcinoma (LICH), Lung 

adenocarcinoma (LUAD), Lung squamous cell carcinoma (LUSC), Lymphoid Neoplasm 

Diffuse Large B-cell Lymphoma (DLBC), Ovarian serous cystadenocarcinoma (OV), 

Pancreatic adenocarcinoma (PAAD), Pheochromocytoma and Paraganglioma (PCPG), 

Prostate adenocarcinoma (PRAD), Rectum adenocarcinoma (READ), Sarcoma (SARC), 

Skin Cutaneous Melanoma (SKCM), Stomach adenocarcinoma (STAD), Testicular Germ 

Cell tumours (TGCT), Thymoma (THYM), Thyroid carcinoma (THCA), Uterine 

Carcinosarcoma (UCS), Uterine Corpus Endometrial Carcinoma (UCEC) and Uveal 

Melanoma (UVM). From the original 11 069 patients, 9 515 were included in our study and 

reasons for exclusion were missing or no matching gene expression data (n = 795), copy 

number data (n = 498) or clinico-pathological information (n = 261). A CONSORT diagram 

showing the exclusion criteria for this study is shown in Supplemental figure 1. This cohort 

was chosen owing to its large sample size ensuring sufficient power for the statistical testing 

being performed. All clinical, gene expression, mutation and chromosome arm-level data 

from the PanCanAtlas study were taken from the publicly available database of the National 

Institutes of Health (NIH) (https://gdc.cancer.gov/about-data/publications/pancanatlas).

mRNA data, clustering and the Cell Cycle Score (CCS)

Fully processed, batch corrected, RNA-sequencing data were accessed from NIH genomic 

data commons (GDC) database (https://gdc.cancer.gov). All data quality control, 

normalisation and gene level counts were performed by the PanCanAtlas investigators as 

described in the their original publication25. iCluster were also retrieved from the same 

publication. COCA classifications were performed by the pan-can investigators as described 

in Hoadley et al.7, resulting in 32 different tumour clusters. Clusters with less than 20 

tumours were excluded from further analysis.

The Cell Cycle Score (CCS) signature is comprised of 463 genes that were originally 

identified through the aggregation of three different pathway-related databases – KEGG, 

HGNC and Cyclebase 3.016–18. As these databases aim to describe general biology rather 

than being cancer focused, the CCS genes can be seen as representative of general cell cycle 

activity and could be applied to any tissue sample (normal or tumour tissue). Whilst the 

signature has previously been applied in a breast cancer setting, the gene list has not been 

reduced or altered on the basis of those studies. For the sake of clarity and reproducibility all 

463 signature genes are shown in Supplemental Table 1 along with annotations of which 

genes were present in previous breast cancer studies as well as the current pan-cancer 

dataset. 441 of the 463 original CCS signature genes were present in, and extracted from, the 

pan-cancer dataset. Expression values were summed on an individual tumour basis to derive 

a single score of cell cycle activity for each sample. This continuous variable was further 

divided into tertiles in order to classify tumours as having Low, Intermediate or High levels 

of cell cycle activity on a broad, pan-cancer level. Cancer types where the pan-cancer CCS 

demonstrated independent prognostic information in multivariable Cox proportional hazard 

Lundberg et al. Page 9

Oncogene. Author manuscript; available in PMC 2021 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov


models were also assessed using within (intra-) cancer CCS tertiles: KIRC, LGG, SARC and 

UVM.

Mutational analysis

Fully processed mutational data derived from exome sequencing was taken from GDC 

database in a mutation annotation format file (MAF) (https://gdc.cancer.gov). All data 

quality control, processing and mutation calling was performed by the PanCanAtlas 

investigators as described in the their original publication8. We limited our analysis to 299 

cancer driver genes manually annotated by experts in the pan-cancer field8. The MAFtools 
package in the R-statistical environment was used for mutation count calculations within 

CCS subgroups. A gene was counted as mutated (1) or not (0) for each tumour regardless of 

the number of mutations within that gene.

Chromosomal arm-level alterations and Aneuploidy score

Fully processed chromosome arm-level alteration data and tumour aneuploidy scores were 

accessed from GDC database (https://gdc.cancer.gov) and were derived from Affymetrix 

SNP 6.0 arrays. All data quality control and processing was performed by the PanCanAtlas 

investigators as described in the original publication26. Chromosome arm-level alterations 

are presented as estimated ploidy values of +1, 0 and −1 for gains, non-aneuploidy and 

losses, respectively9.

Statistical Analysis

To assess differences among clinico-pathological characteristics of tumour samples and CCS 

subgroups χ2 tests were employed. Clinical and survival data were retrieved from the GDC 

database (https://gdc.cancer.gov/about-data/publications/pancanatlas). Univariate Kaplan-

Meier analysis was performed for the CCS in all pan-cancer tumours together and in 

individual cancer types with PFI censored at 15 years as the clinical endpoint, as previously 

recommended19. PFI is defined as the period during or after the course of a treatment given 

to patients in which the disease does not show any progression until a loco-regional 

recurrence and/or second malignancy occurs, or the patients die from any cause. 

Multivariable Cox proportional hazard models were used to determine the independent 

prognostic capacity of the CCS subgroups in all pan-cancer tumours together and in 

individual cancer types adjusting for cancer type, age (grouped in tertiles), gender, radiation 

therapy and pathological stage. Tumour grading information was missing for over 50% of 

pan-cancer samples and as such was not included in multivariable analyses. To compare the 

prognostic capacity of pan-cancer vs. intra-cancer CCS cutoffs we used the likelihood ratio 

(LR) which can be interpreted as a goodness-of-fit test. LR and concordance index (c-index) 

measures were extracted from the output of the coxph function of the survival package in R. 

Genomic alterations including the frequency of gene mutations and chromosomal arm gains 

and losses as well as aneuploidy score were compared between three CCS subgroups by 

using ANOVA with post-hoc Tukey HSD test, all tests were 2-sided and p < 0.05 was 

considered as statistically significant, * p < 0.05, ** p < 0.01, *** p < 0.001. All p values in 

the Kaplan-Meier curves were corrected for multiple comparisons using the Benjamini & 

Hochberg method. The data fulfilled the preconditions/assumption of the above tests. 
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Continuous CCS was normally distributed and variation was <1% between groups. All 

statistical analyses were performed using R statistical software version 3.5.327.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. CCS score across cancer types and COCA subtypes
Boxplots comparing CCS across (A) pan-cancer types and (B) COCA subtypes. Numbers in 

parentheses represent number of tumours in each cancer type and/or COCA subtype. (C) 

Heatmap of CCS genes across pan-cancer tumours. Heatmap colside colours (horizontal, 

above heatmap) represent cell cycle score, cancer types and COCA subtypes as indicated in 

figure legend. Rowside colours (vertical, left hand side of heatmap) represent cell cycle 

phases.

Lundberg et al. Page 13

Oncogene. Author manuscript; available in PMC 2021 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Top 15 most commonly mutated genes or chromosomal arm-level alterations within 
CCS subgroups
Pan-cancer tumours were divided into tertiles on the basis of low, intermediate or high CCS. 

Within each subgroup the Top 15 (A) Most frequently mutated oncogenes and tumour 

suppressor genes, (B) Arm-level gains and (C) Arm-level losses are shown. Cancer type 

colour key is are shown at the bottom of the figure. Red arrows indicate BRAF mutations 

and 16p gains in CCS low and intermediate subgroups.
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Figure 3. Boxplots comparing frequency of DNA alterations across CCS subgroups
Pan-cancer tumours were divided into tertiles on the basis of low, intermediate or high CCS. 

Within each subgroup the number of (A) Total mutations in the top 50 most mutated 

oncogenes or tumour suppressor genes, (B) Total chromosomal arm-level gains, (C) Total 

chromosomal arm-level losses and (D) Aneuploidy score are shown. (E) Kaplan-Meier 

analysis of CCS subgroups with Progression-free Interval (PFI) as clinical endpoint. Low/

Inter/High = Low/Intermediated/High CCS subgroups, p values in boxplots (based on 

ANOVA with post-hoc Tukey HSD test) = NS > 0.05, * < 0.05, ** < 0.01, *** < 0.001; p 
value in the Kaplan-Meier curves refer to long-rank tests.
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Table 1.

Clinical characteristics of all patients split by CCS - pan-cancer

Variables

Pan-cancer (n = 9515)

Low Intermediate High

n (%) n (%) n (%)

3145 (33) 3184 (33.5) 3186 (33.5) p

Age

≤ 54 1290 (41) 876 (28) 1061 (34) < 0.001

54 – 66 1044 (33) 1062 (33) 996 (31)

≥ 66 808 (26) 1236 (39) 1119 (35)

Missing cases = 23

Gender

Male 1771 (56) 1372 (43) 1494 (47) < 0.001

Female 1374 (44) 1812 (57) 1692 (53)

Pathological stage

Stage I 859 (45) 601 (26) 444 (20) < 0.001

Stage II 480 (25) 820 (35) 768 (35)

Stage III 419 (22) 639 (28) 575 (27)

Stage IV 150 (8) 260 (11) 382 (18)

Missing cases & excluded cases° = 3118

Radiotherapy

No 1954 (73) 2047 (73) 1820 (65) < 0.001

Yes 709 (27) 770 (27) 993 (35)

Missing cases = 1222

° :
I/II NOS-Stage 0/IS/X, , In bold significant p < 0.05
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Table 2.

Multivariate evaluation of prognostic markers in patients characterized by Cell Cycle Score

Pan-cancer (n = 5421)*

Variables N (%) HR 95% CI p

Age

≤ 54 1679 (31) Ref - -

54 – 66 1761 (32) 1.04 0.91 – 1.18 0.551

≥ 66 1981 (37) 1.19 1.05 – 1.35 0.008

Missing cases = 23

Gender

 Male 2757 (51) Ref - -

 Female 2664 (49) 0.96 0.87 – 1.07 0.483

Pathological stage

 Stage I 1561 (29) Ref - -

 Stage II 1852 (34) 1.60 1.38 – 1.86 < 0.001

 Stage III 1378 (25) 2.41 2.08 – 2.79 < 0.001

 Stage IV 630 (12) 5.04 4.21 – 6.03 < 0.001

Missing cases = 3118

Radiotherapy

 No 3997 (74) Ref - -

 Yes 1424 (26) 0.97 0.84 – 1.11 0.658

Missing cases = 1222

Cell cycle score

 Low 1505 (28) Ref - -

 Intermediate 2013 (37) 1.37 1.17 – 1.60 < 0.001

 High 1903 (35) 1.54 1.29 – 1.84 < 0.001

*:
adjusted for cancer types, Ref: Reference groups, N: Number of patients, HR: hazard ratio, CI: confidence interval, In bold significant p < 0.05
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