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Abstract 
 
Invasive Lobular Carcinoma (ILC) is the second most common histological subtype of breast 

cancer (BC) accounting for 10-15% of all BCs. It is a unique disease entity with distinct 

histological appearances, molecular alterations and clinicopathologic features. It also has a 

unique tumour immune microenvironment. A subgroup of ILC patients have clinically 

aggressive disease with metastases occurring early (< 3 years) after primary diagnosis. These 

patients have limited treatment options. There is thus a need to better understand the 

molecular basis and transcriptional drivers of aggressive ILC, as well of the immune landscape 

to help identify potential new drug targets to improve patient outcomes. 

The project firstly investigated molecular drivers of clinically aggressive ILC at the 

genomic and transcriptomic level. This identified higher rates of TP53, FAT1 and HER2 

alterations and an association between FGFR1 alterations and relapse in the aggressive 

pleomorphic ILC histological subtype. Using RNA sequencing of pleomorphic ILC (n = 47), 

survival analysis and the use of a random forest model enabled the generation of prognostic 

risk scores which further validated as predictors of overall survival in independent validation 

cohorts. 

Characterisation of the immune landscape at the histological level through the 

quantification of stromal TILs in 163 ILCs showed that the majority of ILCs are characterised 

by a low level of stromal TILs but pleomorphic cases contain higher levels, although stromal 

TILs were not associated with clinical outcome in both pleomorphic and non-pleomorphic ILC. 

Further immune cell characterisation using NanoString Digital Spatial Profiling (DSP) 

technology in a cohort of 20 pleomorphic ILCs identified an association between high levels 

of CD68+ cells (macrophages) and early relapse. Validation using dual IHC identified the M2-

like/M1-like macrophage ratio is associated with poor clinical outcome. Co-culture 

experiments further showed enhanced growth of ILC cell-line tumour cells when grown with 

M2-like over M1-like macrophages. NanoString Whole Transcriptome (WTA) analysis of 10 

pleomorphic ILCs revealed differences between ‘immune-hot’ and ‘immune-cold’ tumour cells 

and cancer-associated fibroblasts (CAFs) and identified higher expression of HOXB13 in 

‘immune-cold’ tumour cells which was associated with poor outcome in independent ILC 

cohorts. A further experiment studying matched primary and brain metastases from an in vivo 

ILC model identified enrichment of pre-existing minor subclones that were enriched in brain 

metastatic lesions defined by high levels of the EMT associated gene GCNT2. 

Overall, the project revealed new insights into the transcriptomic and immune 

heterogeneity in clinically aggressive ILCs and identified new patient stratification biomarkers 

for further validation. 
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1. Chapter 1: Introduction 

 

1.1 Invasive Lobular Carcinoma: Overview 
 

Invasive lobular Carcinoma (ILC) is the second most common histological subtype of breast 

cancer accounting for 10 - 15% of cases [1-3]. It differs from invasive breast cancer of no 

special type (IC-NST), the most common subtype, in its epidemiology, molecular alterations, 

clinicopathologic features and responsiveness to therapy [1, 4-6]. Since the 1980s the 

incidence of ILC has increased relative to IC-NST, attributed to an increased use of hormone-

replacement therapy (HRT) and increased consumption of alcohol [7-30]. Despite the fact that 

ILC represents a unique disease entity, with clear biological and clinical differences from IC-

NST, its clinical management has long been the same as that of IC-NST [31]. ILCs tend to be 

oestrogen (ER) and progesterone (PR) positive (ER/PR+), HER2 negative (HER2-) and have 

a low Ki67 index which are features of the luminal A intrinsic subtype [1, 5, 32]. A minority of 

cases are classed as luminal B, showing an increased Ki-67 index, and rarely HER2-enriched 

or triple-negative/basal like. Whilst a luminal A intrinsic subtype typically predicts a favourable 

prognosis, evidence suggests that a subset of patients with ILC have poorer responses to 

endocrine therapy compared to those with IC-NST and similar biomarkers [33] as well as lower 

pathologic complete response rates after neoadjuvant chemotherapy [34]. When overall 

survival (OS) is considered, it has become clear that the long-term prognosis of ILC is worse 

than ER+ IC-NST [4, 6] (Figure 1.1).  

The molecular basis of disease relapse and drug resistance is poorly understood in ILC and 

biomarkers with the ability to identify early resistance, or to predict the likelihood of successful 

treatment at outset are yet to be identified. Whilst the majority of ILC patients with disease 

recurrence relapse several years after primary diagnosis, there is a subgroup of women who 

relapse early, within 3 years of primary diagnosis and this subgroup have limited treatment 

options and represent a clinically unmet need. Pleomorphic ILC is a rare histological ILC 

subtype which tends to follow a more clinically aggressive course and many pleomorphic ILC 

patients fall into this ‘early-relapse’ ILC group. Therefore, a comprehensive characterisation 

of aggressive early-relapsing ILCs including pleomorphic cases is warranted to better 

understand the molecular basis and immunological landscape of these tumours and to identify 

drivers of clinically aggressive disease and potential new drug targets, to ultimately improve 

the poor clinical outcomes for these patients. 
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1.2 Incidence and Risk Factors for ILC 
 

1.2.1 Incidence 
 
In the UK, breast cancer is the commonest cancer type and accounts for 15% of all new cancer 

cases. It is the commonest cancer among women, accounting for 30% of new female cancer 

cases [35]. Among men it is uncommon, accounting for less than 1% of new male cancer 

cases. The vast majority (99%) of UK breast cancer cases occur in women [35]. 

Approximately 55,500 new breast cancer cases occur per year in the UK and as the most 

common special breast cancer subtype, ILC accounts for a reported 10 - 15% of all cases [35, 

36]. The incidence rates of breast cancer have increased by 5% among women in the UK over 

the last decade [35]. Projections predict rises in the number of new cases among women each 

year from approximately 61,800 cases in 2023 - 2025 to 69,900 in 2038 - 2040 [35]. 

The change in incidence rate of ILC was compared to IC-NST using data from the ‘Studies 

based on Surveillance, Epidemiology, and End Result’ (SEER) database and showed that the 

ILC rates increased from 9.6% in 1987 to 15.6% in 1999 whilst the IC-NST rate remained 

stable during this period [2, 3]. The increase in ILC rates was attributed to an increased use 

of combined HRT (oestrogen and progestin). After a subsequent decrease in the use of HRT 

a non-significant reduction in the incidence of ILC occurred from 2002 to 2006 [37].  

From a demographic perspective, the incidence of the disease appears to be highest in white 

women, yet an increased mortality rate of ILC is observed in black women. A 2017 study 

assessed clinical outcomes in 18,295 ILC patients from the SEER database, including white 

(n = 15,936), black (n = 1,451), and other race (e.g. Asian/Pacific/American Indian, n = 908) 

patients [38]. This demonstrated that 5-year OS and breast cancer-specific survival (BCSS) 

were worst in black women (76.0% and 84.4%, respectively) vs white (85.5% and 87.7%, p < 

0.01) and other race women (91.1%, and 91.6%, p < 0.01) [38].  
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1.2.2 Risk Factors 
 
 
The use of HRT is an established risk factor for the development of ILC. There have been 25 

observational studies (10 cohort and 15 case control) examining the associations between the 

use of HRT and breast cancer development according to histological subtype [7-30]. Most of 

these have demonstrated that HRT use is more strongly associated with ILC risk compared to 

IC-NST risk. These studies also examined the associations separately for users of combined 

HRT (CHT) and oestrogen only HRT (EHT). Among current CHT users, the relative risk (RR) 

of IC-NST development was mostly lower than 2.0 (overall RR 1.5, 95% CI: 1.5 - 1.6) whereas 

it surpassed 2.0 for ILC in most of the studies (overall RR 2.0, 95% CI: 1.9 - 2.1). For current 

users of EHT the risks were less marked with the relative risk of IC-NST development ranging 

from 0.7 - 2.0 for IC-NST (overall RR 1.1, 95% CI: 1.0 - 1.1) and from 1.0 - 2.1 for ILC (overall 

RR 1.4, 95% CI: 1.3 - 1.5) [39].  

Additional risks factors for the development of ILC are the same as those for IC-NST. Factors 

which increase the exposure to endogenous ovarian oestrogens are established breast cancer 

risk factors, such as early menarche, late menopause, increased age at first birth and low 

parity [39]. Interestingly a significantly stronger association between the age at menarche and 

risk of breast cancer development was identified for ILC compared to IC-NST in a meta-

analysis of 85 studies of individual patient data [40]. For each year younger at menarche the 

relative risk of breast cancer development was 1.073 for ILC vs 1.035 for IC-NST (p = 0.0001). 

Similarly, increased age of menopause was more strongly associated with ILC risk compared 

to IC-NST risk, with a 3.6% increase in risk of ILC development for each year older at 

menopause compared to 2.6% increased risk in IC-NST (p = 0.006) [40].  

The association between the use of the oral contraceptive pill and breast cancer risk has been 

widely studied with initial concerns raised about its carcinogenic potential. An analysis 

assessing outcomes in over 150,000 women who had been included in 54 epidemiologic 

studies demonstrated that patients who had ever used oral contraception had a mild (7%) 

increase in the relative risk of breast cancer when compared to never users of oral 

contraceptives. Current users appeared to carry a 24% increase in risk, which did not appear 

to rise with increased duration of use. The risk decreased after cessation of use and there was 

no increased risk evident after 10 years of stopping use [41]. The UK Royal College of General 

Practitioners’ Oral Contraception Study recruited 46,022 women in 1968 and 1969 and 

followed them up for 44 years [42]. Standardised rates of different types of cancer were 

calculated within patients who had ever used combined oral contraception vs patients who 
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had never used it. The data was standardised for a range of demographic and lifestyle factors 

e.g. smoking, age, parity. Incidence rate ratios between previous users and never users were 

calculated and the effects of increasing time since previous oral contraceptive use was 

assessed. An increased breast cancer risk was observed in current and recent users (used 

within 5 years) however this increased risk was lost after 5 years of stopping combined oral 

contraception [42].  

In addition to hormonal factors, lifestyle factors are also associated with risk of breast cancer 

development. Alcohol is a key modifiable risk factor and breast cancer is the most common 

cancer caused by alcohol among women globally. The World Health Organisation (WHO) 

reports that alcohol consumption is responsible for 7 of 100 new breast cancers in Europe and 

in 2020, 40,000 new breast cancers in Europe were caused by alcohol consumption according 

to the International Agency for Research on Cancer (IARC) [43]. 

An increased risk of the development of breast cancer is also associated with being overweight 

or obese in postmenopausal women with an increase of 5 kg/m2 in body mass index (BMI) 

being associated with an 8% increase in breast cancer risk [44]. In contrast a decreased breast 

cancer risk has been observed in overweight or obese premenopausal women [44].  

The associations between alcohol and excessive weight and breast cancer risk have been 

attributed to increased circulating oestrogen levels which these factors cause. Extra-glandular 

secretion of oestrogen by adipose tissue occurs in postmenopausal women whereas among 

premenopausal women, excessive weight is associated with anovulatory cycles and a 

reduction in circulating oestrogen which has been associated with the apparent reduced breast 

cancer risk in this group [45].  
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1.3  Clinical Features of ILC  
 
 
ILC differs from IC-NST in its clinical presentation as summarised in Table 1 [4, 6, 46-48]. 

Studies consistently show that ILC patients tend to present at an older age than IC-NST [47, 

49-51]. A large retrospective study assessed ILC and IC-NST patients from the SEER tumour 

registry database. When the clinicopathological features of 30,190 ILC patients and 288,216 

IC-NST patients were compared, a significant increase in age at presentation was observed 

in the ILC group with a median presentation age of 63 years compared to 59 years in the IC-

NST group (p < 0.0001) [47]. Most women present with a poorly defined palpable breast mass 

which can be difficult to detect on physical examination due to the diffusely infiltrative nature 

of the tumour. For this reason, they tend to go clinically undetected for a longer period, and 

patients therefore present with larger overall tumour sizes and with more advanced-stage 

disease compared to IC-NST. SEER tumour registry data was used to study 263,408 patients 

diagnosed with either ILC or IC-NST. ILC patients were more likely to have tumour sizes of > 

2cm (43.1% vs 32.6%; p < 0.001) and positive lymph nodes at diagnosis (36.8% vs 34.4%; p 

< 0.001) [52] 

 

Multicentricity in breast cancer describes the presence of two or more foci of cancer which 

have formed separately within different quadrants of the same breast [46]. Bilateral breast 

cancer describes the presence of a second tumour in the contralateral breast. Bilateral breast 

cancers can be synchronous or metachronous depending on the time interval between 

diagnosis of the first and second lesions with synchronous tumours being diagnosed at the 

same time or within three months of the index tumour whereas metachronous tumours are 

diagnosed after 3-6 months of the index tumour [46, 47]. Studies consistently report higher 

rates of multicentricity, multifocality and bilaterality in ILC when compared to IC-NST [48, 49]. 

Bilateral involvement is reported in 20 - 29% of ILCs and in a large cohort comparing the 

clinical features of ILC and IC-NST, the rate of cancer involvement in the contralateral breast 

in ILC was almost double that observed in IC-NST [49].  

 

Radiologically, ILCs can be challenging to diagnose due to the limited contrast difference 

between the tumour and the normal adjacent fibro-glandular breast parenchyma. The most 

common mammographic finding is a spiculated mass with architectural distortion [50]. The 

pattern of subtle invasion of ILC means that the tumour size often exceeds the mammographic 

findings. MRI is more helpful in diagnosing ILCs than traditional mammography and is 

therefore used in the setting of a diagnosis of ILC on core needle biopsy [51]. It is particularly 

useful in detecting multifocal lesions although can lead to false positives and an overestimation 
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of tumour size [51]. Ultrasound is also superior to traditional mammography in identifying 

multifocal lesions and allows for a more accurate evaluation of tumour size [50]. Tumours may 

also be subclinical by palpation and imaging modalities and instead present with metastases, 

known as de novo metastatic disease. Overall, the elusive nature of ILC on clinical and 

radiological assessment means that this breast cancer subtype tends to present at a later 

stage compared to IC-NST [52]. 

 

An area of particular interest is the somewhat distinct pattern of metastatic spread of ILC, 

which shows higher rates of spread to skin and bone compared to IC-NST as well as spread 

to non-traditional sites such as the gastrointestinal and gynaecological tracts, peritoneum and 

leptomeninges, reflecting the unique biology of ILC [53]. In contrast, extension to the lung is 

more frequently observed in IC-NST [53]. Similar to primary ILC of the breast, metastases are 

usually diffusely infiltrative and hypometabolic (having a low metabolic rate), instead of mass-

forming and hypermetabolic (having an increased metabolic rate) [54]. This results in them 

being challenging to detect using conventional and metabolic based imaging modalities. 

Consequently, ILC metastases often present late with associated complications. Patients for 

example with intra-abdominal metastases often present with the clinical complications of 

extensive metastatic disease e.g. bowel obstruction, liver failure, ascites and hydronephrosis 

[54].  

 

In contrast to IC-NST, ILCs show a strong tendency to spread to the peritoneum and 

retroperitoneum with two autopsy series of ILC patients identifying peritoneal metastatic 

deposits in 60 - 90% of cases in contrast to 15% of IC-NST [55, 56]. Consistent with the 

histological features of the primary disease, the peritoneal metastases in ILC were diffusely 

infiltrating, in contrast to more solid nodular deposits observed in IC-NST [55, 56]. Early 

peritoneal and retroperitoneal ILC metastases are clinically silent and present as stranding on 

imaging. When the indistinct lesions of peritoneal carcinomatosis become confluent they result 

in ‘omental caking’ which describes the radiological appearance of a thickened solid omentum 

and is a feature of advanced stage disease [57]. Peritoneal disease is associated with 

endocrine resistance and the prognosis following the diagnosis of peritoneal metastases is 

poor, with one study reporting a median survival time of 19 ± 9 months [58]. Metastatic 

retroperitoneal disease is also associated with advanced stage and poor outcome and can 

cause retroperitoneal fibrosis which can result in ureteral obstruction and hydronephrosis 

(hydrostatic dilation of the renal calyces and renal pelvis resulting from obstruction) [59]. 

 

When peritoneal abnormalities and ovarian lesions are present in a patient with a history of 

ILC, it can prove difficult to differentiate between metastatic breast cancer and metastatic 
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ovarian cancer [57]. ILCs show a relatively stronger tendency to spread to the gynaecological 

tract especially compared to IC-NST with reports of up to 13% of metastatic ILC patients 

showing ovarian lesions [53, 55, 60]. The presence of bilateral solid ovarian tumours known 

clinically as Krukenberg tumours, favours a diagnosis of metastatic breast cancer spread to 

the ovaries since primary ovarian cancers tend to have an admixture of both cystic and solid 

components [61, 62]. On the other hand, a subset of breast cancer patients; those harbouring 

BRCA1 and BRCA2 mutations, carry a higher risk for the development of both primary ovarian 

and breast tumours. BRCA1 germline mutations are uncommon in ILC whilst BRCA2 

mutations show a higher frequency [39]. When the histology of the primary breast tumours of 

6,893 BRCA1 and BRCA2 mutant patients was assessed, only 2.2% of BRCA1-associated 

tumours were ILCs whereas the proportion of ILCs in the BRCA2 mutant population was 8.4% 

[63]. It is therefore important to distinguish between metastatic ILC vs primary breast and 

ovarian disease in BRCA mutant ILC patients.  

Table 1.1: Clinical Differences between ILC and IC-NST [4, 6, 58, 64] 
 

  

ILC IC-NST

Patient age Older (median age 63) Younger (median age 59)

Tumour size at 
presentation Larger Smaller

Tumour stage at 
presentation Higher proportion of stage 3 and 4 cases Lower proportion of stage 3 and 4 cases

Tumour grade Predominantly grades 1 and 2 Higher proportion of grade 3 tumours

Tumour site More frequently multifocal with bilateral lesions
Lower frequency of multifocal and bilateral 

lesions

Siites of metastatic spread
Unique sites: gastrointestinal tract, 

gynaecological tract e.g.ovaries, peritoneum, 
leptomeninges, ophthalmic region

Traditional metastatic sites: lung, liver, bone, 
brain

ER / PR / HER2 status Higher rates of ER and PR positivity,
 lower rates of HER2 positivity

Lower rates of ER and PR positivity, 
higher rates of HER2 positivity

Surgery Higher mastectomy rates Higher rates of breast conserving surgery

Chemosensitivity Poor responses to chemotherapy Greater chemosensitivity

10 year Survival Outcome Worse OS and DFS Improved OS and DFS
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1.4 Survival Outcomes in ILC 

The OS and disease-specific survival (DSS) for patients with ILC are poorer than IC-NST after 

5 years (Figure 1.4) [6]. An explanation for the higher rates of late recurrence and associated 

worse outcomes in ILC is the presence of disseminated cancer cells which are distributed 

away from the primary tumour prior to surgery existing as minimal residual disease following 

primary surgery. These cells have the ability to rest dormant for extensive periods of time and 

upon reactivation may result in aggressive tumour growth and overt metastases at distant 

sites [65]. Metastatic ILC therefore often presents several years after remission with patients 

sometimes failing to declare a previous ILC diagnosis due to such an extensive period 

between ILC treatment and metastatic presentation [65].  

A study comparing luminal A ILC and luminal A IC-NST at the gene expression level using 

data from TCGA and METABRIC showed that pathways that were less enriched in ILC were 

associated with protein translation and metabolism which are established characteristics of 

tumour dormancy [66]. A further study quantified circulating tumour cells (CTCs) in patients 

with ILC vs IC-NST and demonstrated that whilst ILC patients showed increased numbers of 

CTCs, the prognostic significance of CTCs was less strong in ILC compared to IC-NST 

implying a more dormant nature of these cells [67]. Overall, dormant disseminated cancer 

cells are recognised to play a key role in late disease recurrence in ILC and targeting this 

dormant niche may play a key role in delaying or preventing subsequent disease recurrence. 

Developing a better understanding of the dormant cell population and the specific molecular 

or microenvironmental factors which press the switch to reawaken the dormant cells, such that 

they become aggressive and grow into overt macro-metastases, will be critical for developing 

more effective and novel therapeutic strategies in ILC. 

Survival outcomes among the ILC patient population also differ based on a range of clinical 

features such as tumour size, ILC histological subtype, tumour grade, lymph node involvement 

and hormone receptor status. For example, whilst ER+ disease accounts for the majority of 

ILCs, triple-negative (TN) ILCs are associated with a worse prognosis. A study compared 

outcomes in 38 TN-ILCs, 76 ER+ ILCs and 76 TN-IC-NST cases [68]. Whilst there was no 

significant difference in survival outcomes between TN-ILC and TN-IC-NST, when TN-ILCs 

were compared to ER+ ILCs, distant metastasis-free survival (DMFS) and OS were 

significantly worse in TN-ILC patients (p = 0.039, p = 0.047, respectively) [68]. Pleomorphic 

ILC, a rare histological subtype has also been shown in numerous studies to be associated 

with higher recurrence rates and in some studies, worse OS [69-72].  



 23 

Figure 1.1: Comparison of overall survival (OS) and disease-specific survival (DSS) rates of IC-
NST (n = 711,287) and ILC (n = 85,048): The OS curve shows an early survival advantage for the 
ILC patients before 5 years, (ILC vs IC-NST hazard ratio (HR): 1.118, p < 0.0001) but after 5 years an 
advantage for the IC-NST patients is seen (ILC vs IC-NST, HR: 0.775, p < 0.0001). The DSS curve 
shows that the IC-NST patients had improved survival over the ILC patients, both early and long-term 
(ILC vs IC-NST, HR: 0.809, p < 0.0001) Taken from [6] 
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1.5  Histology of Lobular Neoplasia 
 

1.5.1 In situ Lobular Neoplasia 
 
 
In terms of evolution, ILCs develop from a group of non-obligate precursor lesions know as 

lobular carcinoma in situ (LCIS) and atypical lobular hyperplasia (ALH) both of which are 

characterised by in situ proliferation of neoplastic lobular cells within the terminal duct lobular 

unit (TDLU) [73]. LCIS is considered both a risk factor and a non-obligate precursor of ILC 

with a relative risk of development of ILC following a diagnosis of LCIS being 9 - 10 times 

greater than that of the general population [74].  

 

The most common form of LCIS is classic LCIS (cLCIS). In both cLCIS and ALH the cells are 

discohesive and can be polygonal, cuboidal, or round with light/clear cytoplasm [73]. They 

have high nucleus/cytoplasm ratios, with round/oval nuclei which are small to moderately sized 

with occasional nucleoli and indentations from intracytoplasmic mucin-containing vacuoles. 

The cells are highly uniform and monotonous and pagetoid growth can occasionally occur 

whereby the proliferating neoplastic cells grow above the basement membrane undermining 

the normal epithelial cell lining [73]. 

 

The degree of distention within the lobular units distinguishes LCIS and ALH. In LCIS greater 

than half of the acini within the TDLU are distended by the proliferation of neoplastic cells with 

at least 8 cells across each acinus. In contrast ALH is characterised by minimal distension 

with neoplastic cells filling less than half of the acini [73]. An important variant of LCIS is 

pleomorphic lobular carcinoma in situ (pLCIS). Here the architecture of the lesion and cellular 

discohesion is the same as that observed in cLCIS yet the cells themselves are larger, with 

high-grade (grade 3) pleomorphic nuclei as well as more abundant cytoplasm [73]. In addition, 

areas of central necrosis and calcification are frequently observed. Mitoses including atypical 

forms can also be seen, yet these are very rare in cLCIS [73].  

 
PLCIS is less frequently ER+ compared to cLCIS and expresses HER2 more frequently [73]. 

In the past differentiating pLCIS from high-grade ductal carcinoma in situ (DCIS) has been 

challenging in view of their morphological similarities yet advances in immunohistochemistry 

(IHC) have made this achievable, in particular the use of E-cadherin IHC, as E-cadherin 

expression is normally absent in pLCIS and present in DCIS [73].  
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There is limited data assessing the clinical behaviour of pLCIS, yet it is widely considered to 

represent a more aggressive variant of LCIS, with a higher risk of progression to ILC [73]. 

Based upon this, the UK NHS Breast Screening Programme together with the European 

Society of Medical Oncology recommend that pLCIS should be managed the same as DCIS 

instead of cLCIS, given its molecular and biological profile [75]. Florid LCIS (FLCIS) is no 

longer recognised as an LCIS subtype but previously was defined as an architectural variant 

of LCIS that has the histological and radiographic appearance of solid DCIS, but lacking E-

cadherin expression [76]. 

 

1.5.2 Invasive Lobular Carcinoma  
 

The majority of ILCs are classed histologically as classic ILC but other subtypes have been 

identified based on varying architectural patterns (solid, alveolar, tubulo-lobular) and 

cytological features (pleomorphic ILC) [1, 5, 73, 77]. A ‘mixed-group’ defines cases containing 

an admixture of the classic type with one or more additional subtypes [73, 78]. Together the 

classic and mixed subtypes account for the majority (75%) of all ILCs. In addition, distinct from 

the mixed lobular group, 3 - 5% of all invasive breast cancers show mixed features of IC-NST 

and lobular differentiation and are termed ‘mixed ductal-lobular tumours’ [73].  

 

In classic ILC, tumour cells are small, uniform and lack cohesion, with round or notched oval 

nuclei. Intra-cytoplasmic lumina, containing mucin inclusions may also be present. Classic ILC 

shares the same cytological features as cLCIS with which it is associated in 58 - 98% of cases 

[73]. The characteristic pattern of growth of classic ILC involves the infiltration of single files of 

tumour cells or individually dispersed single cells throughout the stroma, with minimal 

disturbance of the normal tissue architecture, or desmoplastic reaction [73, 78].  This lack of 

desmoplastic stromal response enables ILCs do go clinically undetected such that patients 

present at a later stage than IC-NST. It also makes them challenging to diagnose radiologically 

using standard mammography, and difficult to obtain clear resection margins upon surgical 

excision [79]. Another well-recognised growth pattern of classic ILC is a ‘targetoid pattern’ 

whereby invading tumour cells arrange in a concentric manner around normal ducts. Mitoses 

are infrequent in classic ILC and lymphovascular invasion is uncommon [73]. 

 

The same characteristic cells of classic ILC are seen in the solid, alveolar, and tubulo-lobular 

variants, but these tumours differ in their architectural patterns. Solid ILC is characterised by 

sheets of tumour cells and a higher rate of mitosis than classic ILC and has also been 

associated with significantly worse survival outcomes than classic ILC [73, 80]. Alveolar ILC 
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is characterised by globular aggregates of at least 20 cells as opposed to single files and 

shows the highest rate of ER positivity [73, 78]. The tubulo-lobular variant is a rare subtype 

showing an admixture of a tubular growth pattern and small uniform cells arranged in a linear 

pattern and has an excellent prognosis [73, 78, 81].  

 

Pleomorphic ILC is defined by WHO as a subtype that retains the distinctive growth pattern of 

classic ILC but shows greater cellularity and a greater degree of cellular atypia and 

pleomorphism than the classic form [73, 78]. There is nuclear enlargement, marked variability 

in the size and shape of the nuclei, hyperchromasia (darker staining) and prominent nucleoli 

may also be seen. Moreover pleomorphic ILC is characterised by the presence of nuclei > 4 

times the size of a lymphocyte or equivalent to that of high-grade DCIS [73, 78]. Apocrine or 

histiocytoid differentiation and signet-ring cells may also be seen and it is also associated with 

more frequent mitoses. This pattern is also frequently associated with pLCIS [73, 78]. A 

summary of the histological appearances of the various ILC subtypes is provided in Figure 

1.2: 

 
Figure 1.2: ILC Subtype Histology: Representative H&E sections showing the range of different 
histological appearances of ILC: A) Classic ILC, with arrows depicting the characteristic small, round 
uniform tumour cells B) Concentric, targetoid growth pattern of classic ILC around a vessel C) 
Pleomorphic ILC showing the single file growth pattern with greater nuclear pleomorphism D) Black 
arrow indicates a prominent nucleolus and red arrow shows an atypical mitosis and nuclear 
pleomorphism observed in pleomorphic ILC E) Alveolar ILC F) Solid ILC G) Histiocytoid ILC H) Signet 
cell ILC I) Apocrine ILC - adapted from [82]. 
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1.5.3 Immunohistochemistry (IHC) in ILC 
 

Loss of E-cadherin expression is an important diagnostic feature of ILC and is also observed 

in LCIS. The mis-localisation of p120-catenin from the membrane to the cytoplasm is an 

additional positive IHC marker for ILC [83-86]. This combination can be used to aid in the 

diagnosis of cases where it is difficult to distinguish between ILC and IC-NST on H&E (Table  

2, Figure 1.3). 

 

 
Table 1.2: Differences in IHC staining patterns between IC-NST and ILC [83, 84] 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Figure 1.3: Differential IHC staining patterns in IC-NST and ILC: Left panel shows IC-NST with 
positive membranous staining for both E-cadherin and p120-catenin and right panel shows ILC with 
loss of E-cadherin expression and cytoplasmic staining for p120-catenin [87] 
 
IHC findings must be interpreted with caution since a reported 10 - 16% of ILCs (and most 

ductal-lobular tumours) retain or show ‘aberrant’ E-cadherin expression, characterised by 

reduced membranous staining intensity, or partial, granular, fragmented membranous staining 

or cytoplasmic staining [86, 88]. In these cases, it is hypothesised that the E-cadherin binding 

complex is dysfunctional due to underlying CDH1 alterations or aberrant loss of catenin 

binding proteins [88, 89].  

Tumour Type E-cadherin p-120 catenin
ILC absence of staining cytoplasmic

IC-NST membranous membranous

ILCIC-NST

E-cadherin

H&E

p120 catenin
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1.6 Molecular subtyping, hormone and HER2 status in ILC 
 

Based upon hormone receptor status and the level of Ki-67 expression (a proliferation marker 

assessed using IHC) breast cancers including ILC can be grouped into molecular subtypes, 

including  luminal A (ER/PR+, HER2-, Ki-67 < 14%); luminal B (ER/PR+, HER2+/-, Ki-67 > 

14%); HER2-enriched (ER-, PR-, HER2+) and TNBCs (ER-, PR-, HER2-) [90]. The basal-like 

subtype refers to TNBCs showing expression of basal markers (e.g. CK5/6) [91]. The vast 

majority of ILCs fall into the luminal A molecular subtype [49, 92]. 

 

ER+ breast cancer accounts for 70% of breast cancer and is defined by oestrogen receptor 

positivity as assessed through IHC [93]. ER+ breast cancers may also be PR+ or PR-. 

Oestrogen and progesterone are steroid hormones, secreted by the ovaries which play 

essential roles in the female reproductive system and whose levels change within the breast 

tissue throughout puberty, pregnancy, lactation and during the menopause [94]. In ER+ 

disease, the epithelial tumour cells retain the oestrogen receptor which is ordinarily present in 

the normal breast epithelium forming the mammary glands. The oestrogen receptor itself is a 

transcription factor which upon activation through binding of its corresponding ligand 

(oestrogen) translocates to the nucleus. Here it binds to DNA, regulating gene expression [94]. 

Ultimately the interaction between oestrogen and its receptor leads to signalling which drives 

the transcription and proliferation of the epithelial cells. Approximately 90% of ILCs are ER+ 

and 60 - 70% are PR+ [49, 92]. Rates of ER positivity are therefore higher than in IC-NST 

which are ER+ in 70% of cases [93]. 

Human epidermal growth factor receptor 2 (HER2) is amplified and the protein overexpressed 

in a reported 20 - 25% of breast cancers, and this confers an aggressive tumour behaviour 

[95, 96]. HER2+ tumours have been associated with higher rates of recurrence and increased 

mortality [97, 98], although in an era of effective HER2 targeted therapies, survival outcomes 

are approaching those of luminal disease [99]. In classic ILC HER2 mutations and 

amplifications are rare, yet reported rates are higher in pleomorphic ILC, with a mutation rate 

of 32% based on the TCGA dataset and reported amplification/overexpression rates of 19 - 

33%  [100-103]. The HER2 gene is situated on the long arm of chromosome 17 [104, 105]. 

The encoded protein is a 185-kDa transmembrane tyrosine kinase receptor and a member of 

the epidermal growth factor receptor family along with 3 other receptors (EGFR (HER1), HER3 

and HER4) [104-106]. The HER2 extracellular domain does not have a known ligand unlike 

other epidermal growth factor receptors and its activation results from the formation of homo 

and heterodimers [97, 105].. These dimers lead to the phosphorylation of tyrosine kinase 

residues present within the cytoplasmic domain of the receptor which provide docking sites 
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for proteins which in turn activate the mitogen activated protein kinase (MAPK) and 

phosphatidylinositol triphosphate kinase (PI3K) signalling pathways [97, 105]. This leads to 

cell-cycle progression and proliferation [97, 105]. In clinical practice patients are tested for 

HER2 status since this has implications for clinical management, identifying candidates for 

anti-HER2 therapy. IHC assessing HER2 expression at the protein level is commonly used 

and fluorescence in situ hybridization (FISH), can also be used which assesses for gene 

amplification. In many centres IHC analysis is used in the first instance, with FISH testing 

reserved for cases with equivocal results on IHC [107, 108].   

Tumours which lack the expression of ER, PR and HER2 are known as triple-negative breast 

cancers (TNBCs). TNBC It is a highly heterogeneous disease which accounts for 10 - 15% of 

all breast cancers [109]. TNBCs in general are more common in younger patients and those 

with BRCA mutations. They are usually high grade, biologically aggressive and associated 

with poor outcomes [110, 111]. In terms of molecular subtype, the majority (80%) show a 

basal-like transcriptomic profile [112-114]. TN-ILCs are rare, reported to account for 1 - 1.4% 

of TNBCs based on two recent analyses using SEER and NCDB databases and for 1 - 2% of 

ILCs [115, 116]. 

A recent study assessed a series of primary triple-negative (TN) ILCs (n = 38), comparing 

clinical, histological, and molecular features of these tumours to TN-IC-NST (n = 76) and ER+ 

ILCs (n = 76). TN-ILC patients were significantly older than ER+ ILC (p = 0.002) and TN-IC-

NST patients (p < 0.001) [68]. At the histological level, TN-ILCs were more frequently 

pleomorphic, with pleomorphic ILCs accounting for 50% of cases (p = 0.003). They were also 

of higher nuclear grade than ER+ ILCs (p = 0.009). IHC showed that TN-ILCs expressed basal 

markers (e.g. EGFR, SOX10 CK5/6) less frequently than TN-IC-NST (p < 0.001) [68]. In 

contrast positivity for the androgen receptor (AR) was more frequent in TN-ILC (p < 0.001). At 

a molecular level, TN-ILCs also showed distinct transcriptomic profiles, with increased AR 

signalling, as well as alterations in the phosphatidylinositol-3-kinase (PI3K) signalling pathway 

and an enrichment for HER2 mutations (present in 26.9% of cases). Survival outcomes were 

also significantly poorer in TN-ILCs compared to ER+ ILCs [68]. Overall these rare, clinically 

aggressive tumours predominantly form part of the luminal androgen receptor subtype, which 

accounts for 10 - 15% of TNBCs and is characterised by AR protein expression [117], and 

they harbour genomic alterations which are relevant for targeted therapeutic approaches. 
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1.7 Pleomorphic ILC: An aggressive ILC variant 
 

Pleomorphic ILC is a rare histological form of breast cancer and an uncommon subtype of 

ILC. It accounts for approximately 15% of ILCs and less than 1% of all invasive breast cancers 

[77, 118]. Whilst classic ILCs are generally ER/PR+, HER2- and have low Ki-67 scores, [1, 5, 

77], reported rates of ER and PR positivity are lower in pleomorphic ILC, HER2 amplification 

is found in 19 - 33% of cases  [100-103] and Ki-67 scores are generally higher than classic 

ILC [1, 69, 77, 119]. In addition, 12.5- 22.7% of pleomorphic cases are negative for ER, PR 

and HER2 (i.e. TNBC) [77, 120-122]. These less favourable biomarkers, together with various 

molecular alterations observed at higher frequency in pleomorphic ILC (e.g. TP53 and HER2 

mutations) [101, 102, 123, 124], contribute to the more aggressive clinical nature of these 

tumours compared to classic ILC. They present at a more advanced stage, with larger, higher-

grade tumours and higher rates of lymphovascular invasion, lymph node involvement and 

distant metastases [69, 77, 125]. Relatively higher numbers of patients require a mastectomy 

as opposed to more localised breast-conserving surgery (BCS) and patients show higher rates 

of recurrence [69, 125].  

 

Earlier studies using small pleomorphic ILC cohorts conclude that pleomorphic ILC is 

associated with worse OS and disease-free survival (DFS) than classic ILC and this has been 

supported by some larger more recent studies [69-72]. However, others, when adjusting for a 

range of other prognostic factors have found that pleomorphism alone in not an independent 

predictor of worse outcome [126-129]. Nevertheless, nuclear pleomorphism is a key 

component of histological tumour-grade which itself has been significantly associated with 

BCSS and DFS [128, 130, 131]. The recognition of this histological subtype and the 

development of our existing knowledge of this rare tumour type is therefore still highly relevant. 
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1.8 Therapeutic Strategies in ILC  

The clinical management of ILC varies depending on the stage at diagnosis and on the tumour 

biology. Despite representing a distinct disease entity, ILC is generally managed the same as 

IC-NST. 

1.8.1 Role of Surgery 
 
For surgical resection of the tumour in primary ILC, many patients undergo mastectomy which 

removes the entirety of the affected breast. The alternative option is BCS in the form of a wide-

local excision, which involves removing only the tumour with a margin of normal tissue, in 

combination with postoperative radiotherapy. Mastectomy has been considered preferable for 

larger and multicentric/multifocal tumours whilst BCS is an alternative option in patients with 

early-stage unifocal tumours. As previously discussed, ILCs are generally larger with higher 

rates of multicentricity/multifocality at diagnosis compared to IC-NST. Moreover, the reduced 

fibrotic reaction in ILC and diffusely infiltrative growth pattern creates difficultly for surgeons in 

establishing the gross extent of disease at surgery and creates concerns about the potential 

for positive margins following BCS. For these reasons studies have demonstrated that 

mastectomy rates tend to be higher in ILC compared to IC-NST. For example, when the clinical 

management and outcomes of 4140 ILC patients were compared to 45,169 IC-NST patient, 

mastectomy rates appeared to be significantly higher in the ILC group (p < 0.0001).  

Interestingly, studies show that mastectomy and BCS result in comparable outcomes in terms 

of locoregional and DMFS, and BCSS in ILC patients [132].  Even in patients presenting with 

larger tumours (≥ 4 cm), a recent cross-sectional multivariate analysis was performed in a 

cohort of 180 ILC patients who were treated with either mastectomy (n = 150) or BCS (n = 30) 

and showed no significant difference in recurrence free survival at 5 or 10 years in patients 

undergoing BCS vs mastectomy (p = 0.88, p = 0.65 respectively) [133]. Despite this, ILC 

patients who receive BCS often require re-excision of breast tissue in order to obtain clear 

surgical margins as positive surgical margins following BCS are reported in up to 60% of cases 

[134]. In this situation the options are a re-excision lumpectomy or completion mastectomy.  
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1.8.2 Radiotherapy 
 
 
Radiotherapy is a treatment approach using X-rays to kill cancer cells by inducing DNA 

damage, in particular double strand DNA breaks which result from the high energy of x-rays. 

This leads to cell death as the tumour cells lack the ability to quickly repair the DNA damage 

[135, 136]. In breast cancer radiotherapy is commonly used in the adjuvant setting following 

surgical removal of the primary to reduce the likelihood of local recurrence. It can also be used 

in the metastatic setting in order to enable the effective palliation of metastases which are 

symptomatic [137].  

 

Radiotherapy is the standard of care for early-stage breast cancers. As previously described 

mastectomy rates have been reported to be higher in ILC compared to IC-NST, often due to 

concerns about the likelihood of obtaining clear surgical margins, potential tumour recurrence 

in the same breast and the higher risk of contralateral disease. A retrospective study 

investigated the rates of local-regional recurrence, contralateral breast cancers and DSS in 

ILC vs IC-NST patients who were treated with BCS followed by radiotherapy and showed that 

there were no significant differences in the rates of these outcomes in ILC vs IC-NST [138]. 

This suggests that this treatment strategy is appropriate in ILC patients with early-stage 

disease. In addition, post-mastectomy radiation among ILC patients has been shown to be 

just as effective as in IC-NST leading to improvements in local recurrence rates and survival 

outcomes [139].  

ILC is more frequently multifocal compared to IC-NST and therefore ILC histology has been 

an exclusion criterion for trials assessing partial breast irradiation (PBI) and this approach is 

not recommended for ILC patients [140]. A retrospective review conducted at a single 

institution assessing the use of PBI found higher rates of ipsilateral breast cancer recurrence 

among ILC patients [141]. There have been two large hypofractionated radiotherapy trials 

which enrolled early-stage breast cancer patients, ‘FAST-Forward’ (NCT04148586) [142] and 

‘The UK Standardisation of Breast Radiotherapy (START)’ trial [143], however rates of local 

recurrence have not been reported according to histological breast cancer subtype. 
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1.8.3 Chemotherapy 
 

Chemotherapies have been used since the 1940’s in oncology with the primary goal of 
inhibiting tumour cell proliferation, invasion, and metastasis [144]. Tumours which are highly 

proliferative show greater responses to chemotherapy compared to tumours with low 

proliferation rates (such as ILCs) [145]. However additional factors can contribute to 

chemotherapy induced tumour cell death such as a high degree of genomic instability, DNA 

repair defects and mitochondrial priming [146-148]. Moreover, chemotherapy-induced cell 

death can activate and drive an immune response promoting anti-tumour immunogenicity 

[149, 150].  

Chemotherapy encompasses a range of different drugs with different mechanisms of action 

[144]. It may be used in the neoadjuvant, adjuvant, combined and metastatic settings. 

Neoadjuvant therapy refers to treatment given before surgery with the aim of downstaging and 

reducing the size of large tumours. This enables BCS as opposed to mastectomy [144, 151]. 

It also provides the unique opportunity to measure early in-vivo responses to systemic therapy. 

Neoadjuvant chemotherapy is a therapeutic option for the management of locally-advanced 

operable and primarily non-operable breast tumours.  

When clinical outcomes following the use of neoadjuvant chemotherapy have been assessed 

in multiple retrospective studies, it is evident that ILC patients derive less benefit from 

neoadjuvant chemotherapy than IC-NST patients [34, 152-155]. For example, a large 

retrospective study examined the surgical benefit and chemotherapy sensitivity of 1895 

patients who had presented with stage I–III, ER+ breast cancer and who had been treated 

with neoadjuvant systemic chemotherapy [152]. The study included 177 ILC patients and the 

most frequently used treatment regimen was a combination of a taxane and anthracycline, 

which was used at comparable rates in ILC and IC-NST patients. Following systemic therapy, 

a significant downstaging compared to baseline was observed in both histological types (p < 

0.001) however significantly lower numbers of ILC patients had a reduction in tumour T stage 

(reflecting tumour size) compared to IC-NST patients (41% vs 64% respectively, p < 0.0001) 

[152]. Positive or near (≤ 2 mm) tumour surgical resection margins were significantly more 

prevalent in the ILC group (19% vs 11%, p < 0.001).  As a result, rates of BCS were lower in 

ILC compared to IC-NST patients (19% vs 34%; p < 0.001) and breast histology was an 

independent predictor of the use of mastectomy in multivariate analysis (p = 0.01). When 

pathological complete response (pCR) rate was assessed, the ILC group showed significantly 

lower pCR rates compared to IC-NST (3.5% vs 14%, p < 0.001) in univariate analysis, yet in 

multivariate analysis, statistical significance was lost [152].  
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A further study assessed pCR rates following neoadjuvant chemotherapy in ILC vs IC-NST 

and concluded that significantly lower pCR rates were observed in ILC [34]. The study included 

1,034 stage II/III patients who participated in 6 clinical trials. It included 122 (12%) ILC patients 

and 912 (88%) IC-NST patients, who were all treated with anthracycline-based neoadjuvant 

chemotherapy, and an additional 33.5% of patients also received taxane-based 

treatment.  The ILC group showed lower rates of pCR (3% vs 15%; p < 0.001) and showed 

increased numbers of residual involved axillary lymph nodes following therapy (41% vs 26% 

> 3 involved nodes; p = 0.001) [34]. A further study assessed the impact of chemotherapy 

sequence in relation to surgery in node-positive ILC patients and showed that chemotherapy 

administered in the neoadjuvant setting was associated with worse survival outcomes 

compared to adjuvant therapy [156].  

Adjuvant therapy is treatment administered following surgery, with the intention of eliminating 

or at least suppressing the growth of occult tumour cells or micro-metastases [144]. 

Synergistic strategies are commonly employed, using combinations of chemotherapeutic 

agents. In breast cancer, combinations can typically include fluorouracil, cyclophosphamide, 

doxorubicin, paclitaxel and docetaxel [157]. Combinations of drugs with differing mechanisms 

of action as well as non-overlapping toxicities are chosen to reduce the likelihood of the 

development of resistant clones and reduce toxicities [144].  

A large study evaluated the use of adjuvant chemotherapy in non-metastatic ILC (n = 3685) 

and IC-NST (n = 19,609) [158]. Patients were treated either with adjuvant endocrine therapy 

alone, or with a combination of adjuvant hormonal therapy and chemotherapy. Whilst in the 

IC-NST patients the 10-year OS rate was higher in the patient group that received additional 

chemotherapy (74% vs 69% p < 0.0001), this was not the case in ILC, with comparable OS 

rates in those patients who received the chemotherapy and hormone therapy combination and 

those who were treated with endocrine therapy alone (66% vs 68% respectively, p = 0.45) 

[158]. This therefore suggests that the use of adjuvant chemotherapy provides no additional 

benefit for primary ILC patients receiving endocrine therapy, in contrast to patients with IC-

NST.  

The low chemosensitivity of ILC is accounted for by its hallmark biological characteristics 

including its low histological grade, oestrogen receptor positivity and low proliferation rate as 

assessed through Ki-67 IHC. Lack of chemosensitivity contributes to residual tumour volumes 

in ILC which present a risk for disease recurrence. Prognostic biomarkers are therefore 

important to accurately identify which ILC patients are most likely to derive long-term clinical 
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benefit from these toxic agents, given that chemotherapy is associated with a range of 

unpleasant side-effects and long-term complications [159, 160]. In the metastatic setting, it is 

generally restricted for patients who have become resistant to endocrine therapy or among 

patients with rapidly progressing visceral involvement and extensive symptomatic disease  

[31, 161-163]. 

1.8.4 Endocrine Therapy 
 
 
Endocrine therapies are a class of targeted treatment which aim to block the signalling of the 

oestrogen receptor [164]. The use of endocrine therapy is a pivotal strategy in the treatment 

of both early and advanced-stage ER+ breast cancers, such as ILC. There are three main 

approved classes of treatment which target the oestrogen signalling pathway: selective 

oestrogen receptor modulators (SERMs), selective oestrogen receptor degraders (SERDs) 

and aromatase inhibitors (AIs) [164]. These may be administered with or without ovarian 

suppression.  

SERMs are oestrogen receptor ligands which competitively bind to the oestrogen receptor, 

displaying antagonist or agonist effects depending on the target tissue. They are used in the 

treatment of both pre- and postmenopausal ER+ breast cancer patients [165]. In the breast 

they have an anti-oestrogenic antagonist effect, thus inhibiting oestrogen-dependent 

proliferation. The SERM-bound oestrogen receptor binds to oestrogen response elements and 

downregulates transcriptional activity by associating with co-repressors [165]. In contrast, 

SERMs show agonist activity in bone, and tamoxifen, the most used SERM, shows agonist 

activity in the uterus, increasing the risk of endometrial cancer. Its anti-oestrogen effects on 

platelets increase the risk of arterial and venous thrombosis [166].  

SERDs have dual effects and act by both antagonising the oestrogen receptor transcriptional 

activity and promoting its degradation [167]. It acts as a pure antagonist of the oestrogen 

receptor and has been shown to have a greater affinity for the receptor compared to tamoxifen 

[168]. Fulvestrant was the first SERD developed and approved for use in ER+ breast cancer. 

for metastatic patients who had progressed on prior endocrine therapy with tamoxifen, or an 

AI and it has demonstrated efficacy in these patients. Importantly SERDs are more clinically 

effective than alternative endocrine therapies in the context of oestrogen receptor 1 (ESR1) 

mutation related endocrine therapy resistance [169]. Fulvestrant presents a challenge relating 

to the lack of oral bioavailability of the drug, meaning it must be administered by slow 

intramuscular injection [169]. However, more recently oral SERDs have been developed, and 

the FDA has given approval for an oral SERD elacestrant to be used in ER+, HER2- metastatic 
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breast cancer patients with ESR1 mutations who have already received at least one line of 

prior endocrine therapy [169]. This approval was based upon results of the phase III 

EMERALD study (NCT03778931) [170].  

 

AIs such as anastrozole, letrozole, and exemestane, are used in the treatment of 

postmenopausal ER+ breast cancer patients, including ILCs. They work by blocking the 

conversion of androgens to oestrogens in non-ovarian tissues reducing the levels of systemic 

oestrogen [171]. In ER+ breast cancer adjuvant AIs have been shown to significantly decrease 

the risk of disease recurrence following curative treatment, and they are also used as standard 

first-line treatment among ER+ metastatic patients. There has been some evidence that they 

are superior to tamoxifen in terms of long-term efficacy and safety among postmenopausal 

women with early-stage disease based on the results of the ATAC trial (Arimidex, Tamoxifen, 

Alone or in Combination) which assessed the use of Arimidex (anastrozole), tamoxifen and 

the combination among this patient group [172]. The development of resistance to AIs is 

frequently associated with ESR1 mutations which result in ligand-independent activation of 

the oestrogen receptor [173]. Among premenopausal and perimenopausal patients, ovarian 

suppression using a luteinizing hormone releasing hormone agonist is used to decrease 

circulating levels of oestrogen. Ovarian suppression facilitates AI use among high-risk younger 

patients as it blocks intrinsic oestrogen production, enabling AI use where this is considered 

superior to tamoxifen treatment for further risk reduction [174].  

Given that ILC is predominantly ER+, the use of neoadjuvant endocrine therapy has been 

considered. A small retrospective study assessing the use of the AI letrozole in 61 ER+ ILC 

patients with large tumours (T4) or locally advanced (N2) disease showed that neoadjuvant 

endocrine therapy resulted in a mean reduction in tumour size of 66% at a 3-month time point, 

resulting in a rate of successful breast conservation of 81%  [175]. This suggests that 

neoadjuvant endocrine therapy may be more effective than chemotherapy in ILC patients with 

large tumours who desire BCS [175].  Indeed an ongoing randomized phase III clinical trial is 

assessing the use of neoadjuvant endocrine therapy in ER+ HER2- postmenopausal breast 

cancer patients with stage II and III disease including ILC patients. The ALTERNATE trial 

(NCT01953588) is assessing the use of fulvestrant, the combination of fulvestrant and 

anastrozole, with anastrozole monotherapy for reduction of tumour shrinkage [176] .  

In the adjuvant setting, studies have demonstrated that treatment with adjuvant endocrine 

therapy in early-stage ER+ breast cancers (including ILC) results in significant improvements 

in DFS and OS [177, 178]. The standard approach involves the use of SERMs e.g. tamoxifen 
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among premenopausal patients and AIs in postmenopausal patients [179]. The use of AIs 

over tamoxifen results in superior DFS in postmenopausal patients and a group of high-risk 

premenopausal patients when given together with ovarian suppression [180].  

 

Equally, adjuvant endocrine therapy represents the pillar in the treatment of metastatic ER+ 

ILC patients, often in combination with a CDK4/6 inhibitor. Previous work has suggested that 

the differential benefit of AIs over tamoxifen is greater in ILC compared to IC-NST [33]. 

However, a meta-analysis was recently presented at the San Antonio Breast Cancer 

Symposium 2021 which included a total of 7415 patients who were part of the TEAM, BIG 1-

98 and the ‘Arimidex, Tamoxifen, Alone or in Combination’ (ATAC) trials, and the differential 

efficacy of AIs over tamoxifen in ILC compared to IC-NST was not confirmed. Although AIs 

appear to be superior to tamoxifen in the treatment of ILC, the meta-analysis failed to support 

a more pronounced effect among ILC patients compared to IC-NST [181].  
 
With regards to premenopausal ER+ breast cancer patients, the ‘Suppression of Ovarian 

Function Trial’ (NCT00066690) [182] as well as the ‘Tamoxifen and Exemestane Trial’ 

(NCT00066703) [183] demonstrated that among patients with high-risk tumours, ovarian 

suppression can be advantageous, resulting in significant improvements in DFS and OS [180]. 

The use of ovarian suppression specifically in premenopausal ILC patients has not been 

studied, possibly due to the low incidence of ILC among younger women. 

 

1.8.5 Targeted therapy: CDK4/6 Inhibition 
 
Targeted therapies are pharmacological agents designed to inhibit tumour growth, cause 

tumour cell death, and ultimately limit the metastatic potential of a tumour. However unlike 

traditional chemotherapy, targeted therapies are designed to interfere with very specific 

proteins which are driving tumorigenesis [184]. The targeting of specific molecular alterations 

which are unique to a particular cancer may be a superior strategy than broad-based 

treatments and advances have enabled the molecular analysis of individual patients’ tumours 

and the tailoring of treatments based upon this. Targeted cancer therapies encompass three 

main groups: small molecule inhibitors, monoclonal antibodies, and immunotoxins [184]. 

 

CDK4/6 inhibitors are small molecule inhibitors which represent a key group of targeted 

therapies for ER+ patients and they include palbociclib, ribociclib and abemaciclib. In breast 

cancer as well as other cancer types, deregulation of various components of the cyclin 

D1/CDK4/6/Retinoblastoma (Rb) signalling pathway results in unchecked cellular proliferation 

and tumour growth  [185, 186]. CDK4 and CDK6 are cyclin D-specific kinases which 
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phosphorylate the retinoblastoma protein. CDK4/6 inhibitors target the cell-cycle machinery 

and interrupt intracellular and mitogenic hormone signalling pathways which drive the growth 

and proliferation of tumour cells  [185, 186]. They work by blocking the G1/S cell-cycle 

checkpoint where CDK4 and CDK6 are activated by D-type cyclins, resulting in cell-cycle 

arrest [185, 186]. They have also been shown to cause DNA damage and replication stress 

resulting in long-term cell-cycle withdrawal [187].  

 

CDK4/6 inhibitors have revolutionised the treatment of metastatic ER+ breast cancer with 

proven efficacy in both the endocrine-sensitive [188-190] and endocrine-resistant [191-195] 

disease settings. Significant improvements in OS have been observed in both premenopausal 

and postmenopausal patients and these improvements appear to be independent of the 

endocrine therapy partner [193, 196-199]. As a result, the use of CDK4/6 inhibitors in 

combination with endocrine therapy has become standard of care for metastatic ER+ patients, 

including ILCs. More recent evidence suggests a significant survival benefit of CDK4/6 

inhibitors in ER+ HER2+ patients [200, 201].  

 

In the context of early-stage disease, based on the results of the monarchE phase III trial 

[202], the FDA recently approved the use of abemaciclib in combination with endocrine 

therapy for adjuvant treatment of patients with ER+ HER2- early-stage node-positive disease 

at high risk of recurrence. The differential benefit in ILC and IC-NST was not assessed. 

Interestingly, two further trials; PENELOPE-B [203] and the ‘Palbociclib Collaborative Adjuvant 

Study’ (PALLAS) [204] assessed the addition of the CDK4/6 inhibitor palbociclib to adjuvant 

endocrine therapy in ER+, HER2- early breast cancers (high-risk patients in PENELOPE-B) 

and failed to demonstrate significant clinical benefit from Palbociclib [203, 204].  

 

PALOMA-2 was the only trial which has reported outcomes specifically in ILC patients 

demonstrating a significant improvement in progression-free survival (PFS) in metastatic ILC 

patients receiving the CDK4/6 inhibitor palbociclib and letrozole (AI) vs letrozole alone [188]. 

A pooled analysis of the trials assessing CDK4/6 use in metastatic ER+ disease, also showed 

that the addition of CDK4/6 inhibitors resulted in significant improvements in PFS among ILC 

patients [205]. A further pooled analysis of 3 trials which included ILC patients, assessed the 

use of CDK4/6 inhibitors in combination with fulvestrant and showed a survival benefit from 

the addition of CDK4/6 inhibitors [206].  A separate study pooled data from 5 phase III trials of 

CDK4/6 inhibitors with either an AI in the 1st-line or fulvestrant in the 2nd-line setting and 

showed that the addition of a CDK4/6 inhibitor resulted in a similar benefit in ILC patients as 

IC-NST [205]. Overall CDK4/6 inhibitors represent a powerful additional class of agent in the 
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context of ER+ breast cancers including ILC, although the development of treatment 

resistance poses a therapeutic challenge. 

 

1.8.6 HER2 Targeted therapy 
 

One of the more studied targets in breast cancer is the receptor tyrosine kinase, HER2. In the 

late 1990’s trastuzumab (Herceptin), a human monoclonal antibody was approved as the first 

HER2 targeted therapy [207]. It binds to the extracellular domain of the HER2 receptor with 

high affinity and specificity, thus preventing HER2-mediated signalling [208].  It also facilitates 

antibody-dependent cell-mediated cytotoxicity which is driven by natural killer (CD56+) 

immune cells, resulting in the death of HER2+ cells [209]. Several other HER2 targeted 

therapies have since been approved. Furthermore, antibody-drug conjugates such as ado-

trastuzumab emtansine have been developed. These are novel treatments which combine the 

benefits of specifically targeting the tumour cell surface antigens through the antibody 

component, with the additional cell killing from the high-potency cytotoxic chemotherapy 

component, thus reducing peripheral side-effects of chemotherapy [210]. 

 

Trastuzumab emtansine (T-DM1) was the first antibody-drug conjugate targeting HER2 which 

received approval for HER2+ patients with advanced disease and more recently it has been 

approved in high-risk HER2+ patients with early-stage disease who have residual disease 

following neoadjuvant therapy [210, 211]. Trastuzumab deruxtecan (T-DXd) was subsequently 

approved for metastatic HER2+ patients who have previously received at least two lines of 

previous anti-HER2 treatments [210]. Interestingly a recent clinical trial (NCT03734029) 

showed that trastuzumab deruxtecan led to significantly longer PFS and OS compared to 

chemotherapy among HER2-low metastatic patients (defined as 1+ on IHC or 2+ on IHC with 

negative FISH results) who had received one or two lines of previous chemotherapy [212]. It 

has therefore been approved for this use [212].  

 

Small molecule tyrosine kinase inhibitors also present a therapeutic option for HER2+ patients 

[213]. For example, neratinib, lapatinib, tucatinib and pyrotinib have shown promising results 

in phase III trials demonstrating efficacy either as monotherapy or in combination with other 

anti-HER2 treatments or chemotherapy in early-stage disease and the metastatic setting [214-

219]. Evidence suggests that patients who progress whilst being treated with trastuzumab 

may derive some benefit from a HER2-targeted tyrosine kinase inhibitor with or without 

trastuzumab [217, 220] suggesting a separate mechanism of action of these drugs [221, 222]. 
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HER2 mutations and amplifications are extremely rare in classic ILC but show higher 

frequency in pleomorphic ILC, occurring in a reported 32% and 19 - 33% of cases respectively 

[100-103]. HER2 positivity has been identified as an independent prognostic factor that is 

associated with poor survival outcomes in ILC [80]. Despite this, there are few studies 

assessing the level of benefit derived from anti-HER2 targeted therapies specifically in ILC.  

The degree of benefit derived from therapy with adjuvant trastuzumab in ILC was studied in a 

retrospective analysis which used results from the international randomised phase III 

Herceptin Adjuvant (HERA) trial [223-225]. The study compared treatment with 1 or 2 years 

of trastuzumab to observations (following conventional chemotherapy) among women with 

HER2+ early-stage breast cancer. Results showed that therapy with adjuvant trastuzumab for 

1 year following chemotherapy was associated with a significant improvement in DFS 

compared to observation and 2 years of treatment offered no additional benefit [225]. The 

study findings resulted in the drug being used as standard of care in HER2+ patients with early 

disease in the adjuvant setting [224]. ILCs accounted for 5.5% of patients included in the study 

and of these, 97 received a year of trastuzumab therapy whilst the remaining 90 were assigned 

to the observation group. Among the IC-NST subgroup, 1611 patients received a year of 

trastuzumab therapy whilst 1602 patients were assigned to the observation group. There were 

no differences in the pattern of disease recurrence or in the degree of benefit derived from 

trastuzumab therapy between the two histological patient groups [223]. Whilst the study did 

not further categorize ILCs into the various histological ILC subgroups, one would hypothesise 

that a large proportion of these tumours showed pleomorphic ILC histology given the higher 

rate of HER2 alterations in this subtype. Importantly the study highlights that ILC as a 

histological diagnosis is not synonymous with HER2- disease and therefore it is important that 

HER2 testing takes place in ILC. Treatment with a year of adjuvant trastuzumab offers benefit 

to patients diagnosed with early-stage, HER2+ ILC and the level of benefit from the treatment 

is the same as for patients with IC-NST [223-225]. 

1.8.7 Additional Targeted therapies 
 

Additional pathways which are frequently activated in breast cancer that are being studied for 

the development of targeted drug therapies, especially in the context of endocrine and anti-

HER2 therapy resistance. For example, the PIK3/AKT signalling pathway is one of the most 

frequently altered pathways in breast cancer with genomic alterations affecting the pathway 

observed in approximately 70% of cases [226]. This signalling cascade plays a major role in 

driving tumour cell growth, survival and motility and has been associated with resistance to 
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endocrine therapy, anti-HER2 therapy and chemotherapy [227, 228]. PIK3CA mutations are 

found in around 40% of all ER+, HER2- patients [229] and the PI3Kα-specific inhibitor alpelisib 

has been developed, with early trials showing effective anti-tumour activity in heavily pre-

treated endocrine therapy resistant patients with advanced disease [230]. In addition, the AKT 

inhibitor, capivasertib is in clinical trials and has also shown clinically meaningful benefit in 

combination with fulvestrant in ER+ HER2- locally advanced or metastatic disease in patients 

who have progressed on endocrine therapy alone [231]. Whilst these trials did not report 

outcomes specifically in ILC patients, genomic alterations affecting this pathway are higher in 

ILC compared to IC-NST [32], and capivasertib has been shown to induce a dose-dependent 

inhibition of growth and survival of human and mouse ILC cell lines [232]. ILC patients would 

therefore theoretically appear to be ideal candidates for these targeted treatments. 

Inhibitors of mTOR are also being used to treat a range of cancers, including subsets of breast 

cancer patients. Everolimus targets the mTORC1 complex, which is frequently dysregulated 

in endocrine therapy resistant breast cancers. When used in combination with the AI 

exemestane, it has shown substantial clinical benefit among postmenopausal women with 

ER+/HER2- metastatic disease who have progressed on AIs alone based upon the results of 

the phase III BOLERO-2 trial [233]. When ILC patients (n = 144) were studied as a subgroup 

within the trial, patients still demonstrated a significant benefit from the addition of everolimus, 

with outcomes similar to those of the IC-NST patients [234]. 

1.8.8 Immunotherapies 
 
 
One of the hallmarks of cancer is its ability to evade an effective anti-tumour host immune 

response [235]. Cancer immunotherapy refers to approaches which modify the host’s immune 

system and stimulate components of the immune system to generate an effective anti-tumour 

immune response [236]. The advent of immunotherapies, in particular immune-checkpoint 

inhibitors (ICIs) has revolutionised the clinical management of a range of solid malignancies.  

ICIs block immunosuppressive receptors e.g. cytotoxic T-lymphocyte–associated protein 4 

(CTLA-4), programmed cell death 1 (PD-1) and its corresponding ligand, programmed death-

ligand 1 (PD-L1) [237]. PD-1 is expressed on the surface of a range immune cell subsets, 

including T and B lymphocytes, natural killer cells, macrophages, and subsets of dendritic cells 

[238, 239]. The expression of PD-1 on naïve T cells is induced upon activation of the T-cell 

receptor (TCR) [240]. PD-1 expression therefore diminishes in the absence of TCR signalling 

however it is maintained upon chronic activation from a specific persistent epitope target, for 

example tumour neoantigen, and in the context of chronic viral infection [241]. PD-L1, is 
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expressed on tumour cells as well as immune cells [238]. The PD-1/PD-L1 pathway together 

with a subset of immunosuppressive FOXP3+ CD4+ T cells called regulatory T cells, are both 

of critical importance in terminating immune responses. They help defend against self-reactive 

effector T cells which could be pathogenic and thus are key in preventing autoimmunity, 

ensuring that the threshold for T-cell activation is high enough to prevent this [238]. However, 

this pathway is hijacked by tumour cells and the binding of PD-L1 expressed on tumour cells 

or infiltrating immune cells to PD-1 on T cells impairs TCR signalling as well as CD28 co-

stimulation of T-cell activation, resulting in dampening down of an appropriate anti-tumour 

immune response and tumour escape [238, 242, 243].	

By blocking immunosuppressive receptors and ligands ICIs help prevent these interactions 

thus preventing tumour-mediated immune inhibition, promoting an inflammatory immune 

microenvironment, and maintaining anti-tumour T-cell driven immune response. ICIs which 

have been approved include the anti-PD-1 antibodies such as pembrolizumab and nivolumab, 

anti-PD-L1 antibodies for example avelumab and atezolizumab and the anti–CTLA-4 

antibodies ipilimumab and tremelimumab [238]. In breast cancer, the strongest data to support 

the use of ICIs exists for TNBC patients, who account for just 1 – 2% of ILCs and are often 

pleomorphic ILCs  [115, 116]. 

Early trials (KEYNOTE-012 and KEYNOTE-086) assessed the use of pembrolizumab given 

as monotherapy among metastatic TNBC patients and showed promising results, especially 

in the first-line setting and among patients with high PD-1 or PD-L1 tumour expression [244-

246]. Further trials assessed the use of ICIs given as a combination with traditional 

chemotherapy in order boost the host immune response. KEYNOTE-355 evaluated the use of 

the PD-1 inhibitor pembrolizumab in combination with chemotherapy in patients with advanced 

TNBC [247]. Results showed an improved PFS and OS among patients whose tumours 

expressed PD-L1 with a combined positive score (CPS: total number of PD-L1+ tumour cells, 

lymphocytes and macrophages divided by the number of all viable tumour cells x 100) of 

greater than or equal to 10 [247]. Based on this the combination was approved in 2020 as 

first-line treatment for metastatic TNBC patients with CPS ≥ 10 [248]. In early-stage TNBC, 

based on the results of the large phase III KEYNOTE-522 trial, the addition of pembrolizumab 

to standard chemotherapy was approved for neoadjuvant treatment of previously untreated 

patients with stage II/III disease, regardless of PD-L1 status [249]. 

In HER2+ patients, numerous early phase trials have assessed the use of ICIs given in 

combination with trastuzumab or trastuzumab-based antibody-drug conjugates in patients with 

metastatic disease [250-252]. They reported responses mainly in patients with PD-L1+ 
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tumours. IMpassion050, a phase III trial, evaluated the use of chemotherapy in combination 

with HER2-targeted antibodies with or without the PD-L1 inhibitor atezolizumab in 454 HER2+ 

patients with localised disease [253]. Overall, the addition of atezolizumab appeared to have 

no effect on pCR rates even among the PD-L1+ population. An evaluation of event-free 

survival (EFS) is ongoing [253]. ASTEFANIA [254] and APTneo [255] are two ongoing phase 

III trials assessing the use of ICIs the HER2+ breast cancer. 

In the ER+/HER2- disease setting, which encompasses the vast majority of ILCs, the phase 

Ib trial KEYNOTE-028, assessed the use of pembrolizumab given as a single agent to 25 

heavily pre-treated patients with ER+/HER2- metastatic breast cancer [256]. One of the 

inclusion criteria was that the level of PD-L1 expression within the tumour immune 

microenvironment as assessed by the CPS had to be greater than or equal to 1. An overall 

response rate (ORR) of 12.0% was reported and the median response duration was 12 

months. Twenty percent of participants experienced immune-related adverse events which 

were mainly grade 1 - 2. Ongoing phase III trials assessing the efficacy of ICIs in the ER+ 

breast cancer population include CHECKMATE 7FL, KEYNOTE-B49 and KEYNOTE-756 

[257-259]. Overall reduced immunogenicity and low levels of infiltrating T lymphocytes within 

the tumour microenvironment present a challenge to the potential success of ICIs in breast 

cancer, especially in ER+ disease which is characterised by low levels of infiltrating immune 

cells and as it stands, ICIs have not received approval for the treatment of ER+ breast cancers. 

Importantly these trials have not reported response rates separately for ILC and IC-NST. The 

GELATO trial (NCT03147040) is the first clinical immunotherapy trial conducted exclusively in 

metastatic ILC patients [260] and will be discussed further in section 1.9. 

Throughout the course of these studies a range of biomarkers have been under investigation 

to effectively predict ICI response. When PD-L1 is considered, phase III trials assessing the 

uses of ICIs in early-stage TNBC, showed an increase in pCR rates irrespective of PD-L1 

status, yet PD-L1 positivity was associated with higher pCR rates [249, 261]. However in the 

metastatic setting, responses to atezolizumab and pembrolizumab have been shown to 

depend upon the level of PD-L1 expression [247, 262]. Whilst high levels of tumour infiltrating 

lymphocytes (TILs) have been shown to be predictive of response to neoadjuvant 

chemotherapy in TNBC and HER2+ breast cancer, their predictive role regarding response to 

ICIs is less clear and no definitive conclusions have been drawn on their value in this setting 

[263].  

Additional biomarkers of interest to predict ICI response across a range of solid tumours 

include the level of tumour mutational burden (TMB). This is defined as the number of 

nonsynonymous mutations per megabase of DNA and it is used as a proxy measure of 
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neoantigen burden [264]. Tumours with a high TMB have been associated with improved 

clinical responses to ICIs. Pembrolizumab has been approved by the FDA as a treatment for 

all solid tumours with a TMB ≥ 10 mutations/megabase assessed using a specific assay 

(FoundationOne CDx assay). This was based upon results of the KEYNOTE-158 study [265]. 

This was a single-arm, phase II multi-cohort study evaluating the use of pembrolizumab for 

previously treated unresectable or metastatic non-colorectal solid tumours which were 

deficient in DNA mismatch repair (dMMR) therefore having high microsatellite instability (MSI-

H) and harbouring thousands of somatic mutations encoding potential neoantigens [265]. 

Breast tumours however were not included in the study.  

Whilst high TMB has shown promise as a predictive marker in cancers such as non-small cell 

lung cancer [266], and malignant melanoma [267], its applicability in breast cancer is 

somewhat limited by the fact that breast cancers are generally characterised by a low TMB, 

especially ER+ disease, and overall there is limited data on its predictive and prognostic role 

in this setting. There is also extensive ongoing work to identify specific immune cell gene 

expression signatures associated with response to ICIs including a 27-gene RT-qPCR 

immuno-oncology gene expression assay [268] designed to identify high-risk patients with 

early breast cancer who may derive benefit from ICIs. 

 

1.9 Clinical trials in ILC 
 
 

Historically there has been a paucity of clinical trials focusing on ILC. However there are 

currently several ongoing clinical trials specifically in ILC. These are in both the early-stage 

and metastatic settings (Table 4).  

 

A landmark study identified synthetic lethality between E-cadherin deficiency and the inhibition 

of the tyrosine kinase ROS1 [269], which led to the ROLO non-randomized phase II clinical 

trial (NCT03620643), assessing the ROS1 inhibitor crizotinib in combination with fulvestrant 

in patients with metastatic E-cadherin defective ILC [270]. Currently, crizotinib has been 

approved for the treatment of ROS1 mutated non-small cell lung cancer. The primary study 

endpoints are response rate as assessed by RECIST criteria as well as safety/tolerability 

[270]. 

 

A further trial, the ROSALINE trial (NCT04551495), is assessing ROS1 inhibition together with 

endocrine therapy among early-stage ILC patients [271]. ROSALINE is a non-randomized, 

single-arm neoadjuvant trial assessing the combination of the AI letrozole and entrectinib, a 
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small molecule which inhibits both ROS-1 and ALK. The trial involves 4 months of the 

treatment combination in patients with early-stage disease, followed by surgery and the 

primary endpoint is residual cancer burden [271]. 

 

An additional trial including early-stage ILC patients is the ‘Endocrine Response in Women 

with Invasive Lobular Carcinoma’ trial (NCT02206984) [272]. Previous studies have 

demonstrated that adjuvant endocrine therapy results in significant improvements in PFS and 

OS among ER+ breast cancer patients with early-stage disease. Among postmenopausal 

women and a subset of high-risk premenopausal patients who are treated using a combination 

of endocrine therapy with ovarian suppression, AIs have been shown to result in superior DFS 

compared to tamoxifen [33, 180]. In ILC the differential benefit of AIs over tamoxifen has been 

shown to be greater in ILC compared to IC-NST suggesting that endocrine therapy 

approaches have differential efficacy in ILC and IC-NST [33]. The ‘Endocrine Response in 

Women with Invasive Lobular Carcinoma’ trial (NCT02206984) is a window trial assessing 3 

alternative endocrine therapy approaches in early-stage postmenopausal women prior to 

surgery. Patients are randomized to receive either the AI anastrozole, tamoxifen or fulvestrant 

for 21 days prior to surgery. The primary endpoint is change in the level of expression of Ki67. 

 
In ER+, HER2- metastatic breast cancer, CDK4/6 inhibitors in combination with endocrine 

therapy have been shown to result in significant improvements in DFS and OS. The efficacy 

of CDK4/6 inhibitors in early-stage ER+ disease is not fully understood, although early reports 

from the phase III monarchE trial show that 2 years of treatment with adjuvant abemaciclib in 

high-risk lymph-node positive patients, results in significant improvements in DFS [202]. 

PELOPS is an open-label phase II trial (NCT02764541) assessing the efficacy of neoadjuvant 

palbociclib combined with endocrine therapy for the treatment  ER+ early-stage breast cancer 

[273]. It involves an initial ‘window phase’ which assesses whether letrozole or tamoxifen is 

more effective in the treatment of ILC, before the ‘treatment phase’ whereby participants are 

randomised to receive endocrine treatment +/- palbociclib, and the primary endpoint is pCR.  

 

In the advanced disease setting, the GELATO trial (NCT03147040) is a non-randomized 

single arm, phase II trial among ILC patients with metastatic disease [260]. It is the first clinical 

immunotherapy trial conducted exclusively in metastatic ILC patients. In the study participants 

who have endocrine therapy resistant disease (in ER+ cases) and who have had a maximum 

of 2 lines of previous palliative chemotherapy, receive a combination of carboplatin, an 

alkylating agent (12 cycles) and atezolizumab, a PD-L1 inhibitor (starting from the 3rd cycle of 

carboplatin) until disease progression or intolerability. The primary endpoint is PFS at the 6-

month time point, as assessed by RECIST [260]. Since the majority of ILCs are ER+ and 
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generally characterised by a low level of immune infiltrate, such features would predict poor 

response rates. First results of the trial show that of 23 evaluable patients, 4 were progression-

free at 6 months therefore meeting the first-stage primary endpoint. One patient had an 

ongoing response and 2 patients had commenced therapy but not yet reached the endpoint. 

Four of the 21 patients showed partial responses. In addition, 2 patients had stable disease, 

producing a clinical benefit rate of 29%. Interestingly when hormone-receptor status was 

considered, 4 of the patients receiving clinical benefit had triple-negative disease, whilst only 

5 of the original 23 ILC patients had triple-negative disease. Moreover, the level of stromal 

TILs did not appear to be associated with clinical benefit. Overall, these first results suggest 

an efficacy of PD-L1 inhibition in metastatic ILC, predominantly in those patients with triple-

negative disease. 

 
As previously described, patients with ILC can harbour HER2 alterations including mutations 

and amplifications which are rare in classic ILC and more prevalent in the pleomorphic 

subtype. SUMMIT (NCT019539926) is a phase II basket study, for patients who have 

advanced solid cancers harbouring somatic HER2 mutations (without HER2 amplification). In 

the ER+ breast cancer arm, participants with previous CDK4/6 inhibitor therapy are randomly 

allocated to receive either i) neratinib (a tyrosine kinase inhibitor), trastuzumab (a monoclonal 

anti-HER2 antibody) and fulvestrant, or ii) trastuzumab and fulvestrant or iii) fulvestrant alone. 

Among ER+ patients without previous CDK4/6 inhibitor therapy, patients receive neratinib, 

trastuzumab and fulvestrant [274]. ORR measured by RECIST is the primary endpoint [274]. 

Whilst the study includes all ER+ breast cancers, an early report demonstrates that almost 

half of breast cancer patients included in the study show lobular histology, consistent with the 

higher frequency of HER2 mutations observed in metastatic ILC compared to IC-NST.  An 

early report showed that of 13 heavily pre-treated ER+ breast cancer patients receiving the 

combination of neratinib, trastuzumab and fulvestrant, 5 patients had a partial response 

resulting in an ORR of 39%. The combination was well-tolerated and shows a promising ORR 

and based on this the cohort has been therefore expanded to include 50 patients. The results 

are awaited [275]. 
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Table 1.3: Summary of ongoing clinical trials in ILC [260, 271-274] 

 

 

 

 
 
 
 

 

 

 

 

 

 

 

 
  

Trial Name Phase Trial Description

ROSALINE trial (NCT04551495) II This trial assesses the efficacy of the ROS1 inhibitor, entrectinib, as a treatment 
combination with letrozole, as neoadjuvant therapy in earlier stage(1-3) ILC.

‘Endocrine response in women 
with invasive lobular carcinoma’ 

trial (NCT02206984)
II

This trial seeks to optimise and refine adjuvant endocrine therapy specifically in ILC in 
postmenopausal women with ER+ve disease. Patients receive one of three anti-oestrogen 
neoadjuvant treatments (anastrozole, fulvestrant or tamoxifen) and relative changes in Ki67 

IHC staining are used as a marker of response. 

GELATO trial (NCT03147040) II This trial investigates responses to immunotherapy in ILC, in the form of a PD-L1 inhibitor; 
atezolizumab in combination with chemotherapy (carboplatin) in metastatic ILC.

PELOPS trial (NCT02764541) II
This trial assesses the effect of neoadjuvant palbociclib with endocrine therapy in ER+ve 

early stage breast cancer. It includes an initial ‘window phase’ aimed at determining 
whether letrozole or tamoxifen is more effective in ILC, prior to the ‘treatment phase’.

SUMMIT (NCT019539926) II

This trial is for patients with advanced solid cancers harbouring somatic HER2 mutations, 
and assesses responses to anti-HER2 therapy. ER+ breast cancer patients (of which ILC 

patients account for almost a half) are randomly allocated to receive either i) neratinib, 
trastuzumab and fulvestrant, ii) trastuzumab and fulvestrant or iii) fulvestrant alone. 
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1.10 Molecular Characteristics of ILC 
 
Three large studies have comprehensively characterised ILC at the molecular level and 

provided new insights into the multi-omic landscape of ILC and its differences from IC-NST 

[32, 276, 277]. 
 

1.10.1 Genomic Features of ILC 
 

1.10.1.1 E-cadherin 
 
The hallmark feature of ILC is loss of E-cadherin expression, observed in 85 - 95% of cases 

[5]. E-cadherin is a calcium-dependent transmembrane glycoprotein that mediates cell to cell 

adhesion in epithelial tissues. Its loss is responsible for the discohesive morphology of ILC. 

Loss of expression of E-cadherin can result from mutation of the CDH1 gene and 

heterozygous loss of chromosome 16q (where CDH1 is located), resulting in complete loss of 

the protein. Loss of function mutations in CDH1 are found in 50 - 65% of ILCs [32, 276]. They 

are considered to be an early event, often being identified in accompanying LCIS [1]. In 

addition, the dysregulated expression of catenin-binding proteins (α, β, γ and p120-catenin), 

which are responsible for anchoring E-cadherin to the membrane and actin cytoskeleton, is 

another mechanism for E-cadherin loss in ILC [89, 278]. Previous reports have described 

promoter hypermethylation and resultant down-regulation of CDH1 expression in 21 – 77% of 

ILC cases [85, 279]. However, the epigenetic silencing of CDH1 in ILC was not supported by 

a more recent molecular characterisation of 127 ILCs from the TCGA dataset which found that 

reduced expression of E-cadherin was not associated with DNA promotor hypermethylation 

at CDH1 [32]. It was also not supported by a recent study which assessed the molecular 

heterogeneity of E-cadherin expression in ILC, performing whole genome sequencing and 

methylation profiling in a cohort of cases, which found no CDH1 promotor methylation [280]. 

Deleterious germline mutations affecting CDH1 have been shown to be causative of hereditary 

diffuse gastric cancer (HDGC) and ILC where they confer a risk of ILC development of up to 

42% [281]. 
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1.10.1.2 Additional Mutations and Copy-number alterations 
 

After CDH1, gain of function mutations in PIK3CA are the second most frequently observed 

mutation found in a reported 34.8% - 48% of ILC cases [32, 277]. In fact, mutations in 

phosphatidylinositol 3-kinase (PIK3CA), phosphatase and tensin homologue (PTEN), or 

protein kinase B (AKT1) have been found in over half of ILCs and at a higher frequency to 

molecular subtype-matched IC-NST, resulting in an enriched phosphatidylinositol 3-kinase 

pathway in ILC [32, 282]. The majority of ILCs are of the luminal A molecular subtype, and 

therefore a direct comparison of luminal A ILC and luminal A IC-NST was performed using 

samples from the TCGA dataset to identify ILC-specific features (Figure 1.4) [32]. ILC was 

enriched for inactivating PTEN alterations (14% ILC vs. 3% IC-NST), runt-related transcription 

factor 1 (RUNX1) mutations (10% ILC vs. 3% IC-NST) and forkhead box protein A1 (FOXA1) 

mutations (7% ILC vs. 2% IC-NST) [32]. FOXA1 mutations were also reported at a similar rate 

of 9% in an additional large ILC cohort [276]. PTEN loss was associated with increased AKT 

phosphorylation, and this was highly activated in ILC. ILC was also distinguished from IC-NST 

by its lower frequency of GATA3 mutations (5% ILC vs. 20% IC-NST, Figure 1.4) [32]. GATA3 

and FOXA1 are both important transcriptional regulators of ER activity [283, 284]. These 

findings therefore suggest a preferential requirement for distinct modulators of ER activity in 

ILC and IC-NST and the mutually exclusive roles of FOXA1 and GATA3 in the development 

of the two distinct disease entities. 

 

Of clinical significance, actionable mutations have been reported in ILC with 

HER2 and HER3 mutations identified in a cohort of 170 ILCs (including several different ILC 

histological subtypes) at rates of 5.1% and 3.6% respectively [276]. These mutations were 

enriched in the ‘mixed non-classic’ histological subtype although of note a ‘pleomorphic’ 

category was not included and thus pleomorphic ILCs would have been included in the mixed 

non-classic group. ‘Mixed non-classic’ is not currently used as an ILC histological subtype. In 

addition, AKT1 mutations were identified in 4.1% of cases presenting an additional potential 

therapeutic target in a small proportion of ILCs [276]. Interestingly patients harbouring HER2 

and AKT1 mutations showed an increased risk of early disease recurrence [276] and for HER2 

mutations, worse overall prognosis [285]. This further highlights the need to target these 

aberrations to help improve clinical outcomes for these patients. As previously described, 

higher rates of HER2 alterations are reported in pleomorphic ILCs. A lobular specific 

prognostic gene expression signature has identified that as well as HER2 and AKT1 

mutations, HER3, TP53 and ROS1 mutations in ILC primary tumours are also associated with 

poor prognosis [286]. 
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With regards to copy number alterations (CNAs), as well as loss of chromosome 16q, deletions 

of 8p23-p21, 11q14.1-q25, 13q, gains of chromosome 1q, 8q, 11p, 16p and high-level 

amplifications at 1q32, 8p12 (FGFR1 locus) and 11q13 (CCND1 locus) are also genomic 

features widely reported in ILC [1, 32, 276]. Interestingly 1q gains have been associated with 

a better clinical outcome, whilst 17q12 and 11p gains have been associated with worse 

outcome [276].  

 

Table 4 summarises the reported rates of somatic mutations in LCIS, ILC and metastatic ILC 

from various studies. Of note, the rates of mutations in TP53, HER2 and ESR1, appear to 

increase with increasing disease severity in the in situ, invasive and metastatic settings, thus 

highlighting the role of these mutations in driving an aggressive tumour biology. There is 

however an ongoing need to identify additional genomic alterations present in the primary 

tumours of ILC patients which may be predictive of aggressive tumour behaviour and early 

relapse. This would enable the identification at outset of those patients requiring additional 

treatments to prevent, or at least delay the onset of disease metastases. 
 
 

Table 1.4: Somatic mutations in LCIS, ILC and metastatic lobular carcinoma- adapted from [36]. 
1: Lee et al [287], 2: Harrison et al [288], 3: Shamir et al [289], 4: Ciriello et al [32], 5: Michaut et al 
[277], 6: Desmedt et al [276], 7: Rosa-Rosa et al [101], 8: Zhu et al [103], 9: Richard et al [290], 10: 
Pareja et al [291], 11: Sokol et al [292] 
 
 
 

1        2          3          4          5          6            7          8                 9  10                   11 
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Figure 1.4: Molecular determinants of ILC from the TCGA dataset [32] 
A) Histopathological breast cancer subtypes: invasive breast cancer of no special type (IC-NST), 
invasive lobular (ILC), mixed ductal-lobular (Mixed), and other-type (Other) carcinoma 
B) Recurrently mutated genes (MutSigCV2) in ILC 
C) Comparison of the alteration frequency for 153 recurrent genomic alterations in ILC versus IC-NST 
D) Comparison of the alteration frequency for 153 recurrent genomic alterations in ILC Luminal A versus 
IC-NST Luminal A 
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1.10.2 Genomic Features of Pleomorphic ILC 
 

Pleomorphic ILC represents a molecularly heterogenous subgroup of ILC. Studies show 

higher rates of mutations in TP53, KMT2C, ISR2, MAP3K1, NCOR1, NF1, TBX3, ARID1A and 

ARID1B in pleomorphic ILC compared to classic ILC [101, 103, 293]. Indeed, TP53 and ISR2 

mutations, loss of ARID1A expression and amplification of PIK3CA and CCND1 have been 

associated with progression from in situ to invasive disease and/or lymph node metastases 

[101, 103]. In addition, HER2 alterations are also more frequent in pleomorphic ILC. Analysis 

of the genomic features of 31 pleomorphic ILC from TCGA showed that 32% had activating 

HER2 mutations and 19% had HER2 amplifications [100]. Rates of 

amplification/overexpression have reported in up to 33% of cases in other small pleomorphic 

ILC cohorts [100-103]. In contrast HER2 alterations are rare in classic ILC with no cases 

having activating HER2 mutations in the TCGA cohort and just one case showing HER2 

amplification (Figure 1.5) [100]. This is clinically relevant as HER2 alterations can be targeted 

therapeutically suggesting subsets of pleomorphic ILC patients may derive benefit from 

targeted adjuvant anti-HER2 treatment. Moreover, HER2 mutation analysis may be important 

in identifying HER2 mutated pleomorphic ILC patients who do not show HER2 amplification 

who could also benefit from such treatment. For example one study showed that 6 of 39 

(15.4%) grade 3 HER2- tumours in fact harboured at least one activating HER2 mutation [294]. 

Further clinical trials are required to better understand how and when to therapeutically target 

the HER2 pathway in relevant ILC patient subsets, particularly pleomorphic ILC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.5: HER2 alterations in classic vs pleomorphic ILC: Histology, IHC and FISH in classic and 
pleomorphic lobular carcinomas A1) Histology and A2) corresponding IHC staining for HER2 in classic 
ILC case showing negative HER2 staining on IHC B1) Histology and B2) corresponding IHC staining 
for HER2 in a pleomorphic ILC case showing strongly positive HER2 staining C1) Histology and C2) 
corresponding IHC staining for HER2 in a pleomorphic ILC case showing equivocal HER2 staining but 
HER2 FISH demonstrated amplification. Taken from [32] 
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1.10.3 Genomic Features of Other ILC Subtypes 
 
 

A range of mutations and CNAs have also been associated with other ILC subtypes. An 

enrichment of HER2, TP53, and ARID1A mutations was observed in solid ILC together with 

11p and 6q25.1 (ESR1) gains and 1p36.22 (ARID1A) deletions [276]. The alveolar subtype 

was associated with 11q13.3 (CCND1) and 11q14 (PAK1) gains and the ‘mixed non-classic’ 

type was associated with HER2 and TP53 mutations [276].  

  

Based on the identification that specific molecular alterations are associated with the various 

subtypes of ILC, a multi-step model of the evolution of classic ILC and its morphological 

variants has been proposed which suggests that these commonly arise on a background of 

normal epithelium through the acquisition of various genomic alterations (Figure 1.6) [1]. 

 

 
Figure 1.6: Multistep model of the evolution of classic ILC and its morphological variants 
(ALH = Atypical Lobular hyperplasia, CLCIS – Classic lobular carcinoma in situ, PLCIS = Pleomorphic 
in situ, FLCIS = Florid in situ). Taken from [1]   
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1.10.4 Mutational drivers of endocrine resistance and metastases in 
ILC 

 
Since the occurrence of de novo metastatic ILC is rare and a large proportion of patients even 

with early-stage tumours receive subsequent postoperative treatment in the form of hormonal 

therapy and/or chemotherapy, distinguishing between metastasis-specific and therapy-

induced mutations is challenging since they go hand in hand.  

 

1.10.4.1 ESR1 
 

ESR1 mutations have been associated with resistance to endocrine therapy and disease 

relapse in breast cancer and a recent study compared the frequency of ESR1 mutations 

between IC-NST and ILC patients using metastatic samples from MSKCC-IMPACT (n = 595 

IC-NST and n = 116 ILC) and circulating tumour DNA from the SoFEA and PALOMA-3 trials 

(n = 416 IC-NST and n = 76 ILC). This found no differences in the prevalence and distribution 

of ESR1 mutations between IC-NST and ILC [295]. Interestingly a separate study assessed 

CNAs in a cohort of 70 primary ILCs (n = 70) and identified gains and amplifications in 14% 

and 10% of cases respectively and these alterations were significantly associated with 

subsequent disease recurrence [296]. When metastatic ILC lesions have been assessed, a 

significant enrichment of ESR1 copy number gains has been identified in bone metastatic 

deposits [297]. 

 

1.10.4.2 Additional Genomic Alterations 
 
Hybrid-capture-based genomic profiling of 180 ILC and 191 ER+ IC-NST metastatic biopsies 

identified an enrichment of ESR1 alterations in both ILC and IC-NST metastases in relation to 

the primary breast specimens, yet NF1 alterations were only enriched in the ILC metastases 

[292]. Interestingly there was also a significant increase in TMB in metastatic ILC biopsies 

compared to both primary ILCs and metastatic IC-NSTs [292]. A further retrospective study 

assembled a multicentric series of matched primary and metastatic samples from 94 ER+ ILC 

patients and performed targeted sequencing and whole-genome sequencing to identify 

mutations and CNAs. Matched primary tumour and metastasis analysis identified mutations 

(AKT1, ARID1A, ESR1, ERBB2, or NF1) as well as CNAs (NF1 deletions, PTEN deletions, 

CYP19A1 amplifications) which were unique to the metastases in 22% (7/32) and 19% (4/21) 

of cases, respectively. This reflects the molecular heterogeneity and clonal evolution in ILC, 

with distinct mutational repertoires in the primary tumour and metastatic lesions.   
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An assessment of the genomic landscape of 692 advanced ER+ breast cancers, which 

included post-treatment biopsies in the neoadjuvant and metastatic settings was carried out 

using the MSK-IMPACT targeted gene panel. This identified an enrichment of not only ESR1 

but also HER2 and NF1 mutations in post hormone treatment vs pre-treatment ILC samples 

[173]. Hotspot mutations in HER2 as well as loss of function mutations of NF1 were over twice 

as common in post-treatment samples. Of note, ESR1 mutations were mutually exclusive with 

ERBB2 and NF1 mutations [173]. Based upon the genomic alterations identified in refractory 

lesions, the endocrine therapy resistant tumours were grouped into 4 categories: those 

harbouring ESR1 mutations (accounting for 18%), alterations affecting the MAPK signalling 

pathway (affecting 13%) and mutations involving MYC (accounting for 9%).  In the remaining 

60% of cases the underlying mechanisms of resistance were unknown (Figure 1.7) [173]. This 

suggests that disease recurrence and endocrine therapy resistance is not fully explained by 

genomic alterations and that other features, such as transcriptomic heterogeneity may play a 

key role. Tumour subclones with unique transcriptomic profiles which confer a survival 

advantage may be critical in driving disease progression under the selective pressure of 

endocrine therapy. 

 

 
Figure 1.7: Mechanisms of resistance to endocrine therapy in hormone receptor positive breast 
cancer: A) Genomic alterations affecting ER+ tumours which are resistant to endocrine therapy B) 
Frequency of alterations affecting the MAPK pathway in tumours following endocrine therapy. Taken 
from [173] 
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1.10.5 Transcriptomic Features of ILC  
 

Clustering analyses of mRNA expression levels has been used to identify gene expression 

subtypes of ILC in two large independent ILC cohorts: the Rational Therapy for Breast Cancer 

(RATHER) consortia and TCGA (n = 106 and n = 144 respectively) [32, 277]. Two and three 

gene expression subtypes were identified in these cohorts (RATHER: immune-related and 

hormone-related subtypes TCGA: immune-related, reactive, and proliferative subtypes). Of 

note both included an ‘immune-related’ subtype. This subtype was associated with 

overexpression of various chemokine and interleukin transcripts, macrophage-associated 

signalling, and TCR gene expression signatures in the TGCA cohort [32]. In the RATHER 

cohort the immune-related subtype was also associated with mRNA up-regulation of PD-L1, 

PD-1 and CTLA-4 and these tumours were associated with higher TILs assessed 

histologically [277]. However, these two separate ‘immune’ subtyping approaches failed to 

identify the same ILC cases when they were applied to the same dataset [282]. The RATHER 

‘hormone-related’ subtype was associated with higher levels of oestrogen and progesterone 

receptors, oestrogen receptor target genes, up-regulation of cell-cycle genes as well as 

epithelial to mesenchymal transition (EMT) [277]. The TCGA 60-gene classifier identified that 

a ‘reactive-like’ subtype was characterised by a strong microenvironment and/or cancer 

fibroblast signalling, and the ‘proliferative’ subtype was associated with increased expression 

of cell-cycle proteins [32]. 

 

When these subtypes were correlated with clinical outcome, there was no significant 

difference in survival outcomes between the two RATHER gene expression subtypes [277]. 

In the TCGA analysis, the ‘reactive-like’ subtype was associated with an improved prognosis 

compared to the ‘proliferative’ subtype [32]. These studies have highlighted the transcriptomic 

heterogeneity of ILC.   
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1.10.6 Molecular Prognostication   
 
 

In the clinical setting prognostication of breast cancers is completed using standard 

clinicopathological information most notably with the Nottingham Prognostic Index Plus 

(NPI+). This prognostic index uses tumour size, tumour grade, lymph node status, in addition 

to hormone (ER, PR, HER2) status [298]. However, the value of this index specifically within 

the context of ILC is not clear, since the majority of ILCs are grades 1 or 2, and they are also 

predominantly ER/PR+ and HER2-. As a result, the majority of ILCs fall within the ‘good to 

moderate’ NPI category and there is little to differentiate between ILCs which will have poor 

outcomes and those with better outcomes, and therefore it would appear to require further 

refinement for ILC [298]. 

 

Several molecular signature-based tests are available commercially yet none of these account 

for tumour morphology in their algorithms. Their prognostic value in the context of ILC is only 

starting to emerge with some variable yet promising results. For example, the Genomic Grade 

Index (GGI/MapQuantDx™) panel has been demonstrated to be superior to grade alone in 

ILC and reclassed certain pleomorphic ILCs to a lower risk group, whilst upgrading some 

classic ILC cases to higher groups as a result of their genomic grade [299]. The clinical value 

of MammaPrint®, used to assess risk of recurrence in early-stage breast cancers, has been 

shown in node-negative ILC [300]. Prosigna® is another commercially available diagnostic 

test using the PAM50 intrinsic subtypes to produce a risk of recurrence score which has been 

shown to provide additional prognostic value in patients with ILC [301]. The EndoPredict test, 

EPClin [302], has also been shown to be highly prognostic in node positive and negative ILC 

patients [303]. On the other hand, the clinic value of OncotypeDx®, a 21-gene test used to 

guide decisions on the potential benefits to be derived from chemotherapy, remains less clear 

in ILC [304-306]. 

 

Recently the first gene signature has been created for specifically prognosticating ILC patients 

[286]. LobSig is a 194-gene signature which uses in silico integrative analysis combining 

genome copy number and transcriptomic data. It has been shown to outperform the non-ILC 

specific signatures in univariate and multivariate analysis [286] In particular, it demonstrated 

significant value in grade 2 ILC cases which are clinically difficult to prognosticate, for example 

it predicted clinical outcome for patients identified as moderate-risk (using the NPI+ Index) in 

the METABRIC cohort with 94.6% accuracy. It therefore demonstrates its potential to offer a 

clinically relevant prognostic tool in ILC.  
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1.11 The Tumour Microenvironment 
 

A tumour does not simply consist of a collection of malignant cells, but instead represents a 

heterogeneous network of diverse resident and infiltrating host cells. The tumour cells can 

stimulate a range of different cellular, molecular, and physical changes in their local tissues 

[307]. The tumour microenvironment (TME) describes a highly complex and constantly 

evolving entity. The overall composition of a TME can vary between differing tumours but the 

hallmark components include immune cells, stromal cells, endothelial cells, as well as 

extracellular matrix [307]. The TME is not considered to represent a silent bystander in 

tumorigenesis, but instead can actively promote cancer progression [307].  

In the early stage of tumour growth, a highly dynamic and reciprocal interplay develops 

between tumour cells and various elements of the TME which ultimately supports the survival 

of tumour cells, local invasion, and resultant metastatic spread [307]. To counteract and 

overcome hypoxic and acidic conditions, the TME coordinates a strategy which facilitates 

angiogenesis thus helping to restore an adequate supply of oxygen and nutrients and ensuring 

the removal of metabolic wastes [307]. Tumours can further become infiltrated with a diverse 

range of different immune subpopulations which can either promote or hinder tumour 

progression [307, 308].  

Tumour cells also recruit important supporting cells from the surrounding tissue stroma to 

assist in promoting key steps of solid tumour formation. Stromal composition shows diversity 

between different tumour types, but key stromal cells include fibroblasts, cancer-associated 

fibroblasts (CAFs), vascular endothelial cells, adipocytes, and stellate cells [307] (Figure 

1.8). Following recruitment to the TME, stromal cells can secrete a range of cytokines and 

growth factors which influence tumour cell proliferation, angiogenesis, invasion, and 

metastasis [307]. 
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Figure 1.8: The role of stromal cells in promoting tumour progression: Schematic representation 
summarising the dynamic relationships and interplay between various stromal cells and cancer cells 
which promote and facilitate tumorigenesis. Image taken from [307] 
 

 

1.11.1 Cancer-associated fibroblasts (CAFs)  

Cancer associated fibroblasts (CAFs) represent a large component of the tumour stroma and 

have essential roles in facilitating crosstalk between tumour cells and other elements of the 

TME [307]. They represent a diverse stromal population, commonly arising from resident 

fibroblasts. CAFs may also arise from adipocytes, pericytes, stellate cells, endothelial cells as 

well as bone-marrow derived mesenchymal stem cells [307]. Following injury, resident tissue 

fibroblasts are induced to become myofibroblasts, which play an active role in wound healing 

for example they develop contractile properties, secretory phenotypes and promote the 

formation of extracellular matrix [307]. In 1986 tumours were described as ‘wounds that do not 

heal’ [309]. Within the TME, tumour cells and some stromal cells actively secrete transforming 

growth factors e.g. TGF-β, PGDF and FGF2 which result in the conversion of fibroblasts into 

CAFs. The accumulation of CAFs in the TME has been associated with poor outcomes in a 

range of cancer types [307]. 

CAFs can shape the TME by facilitating tumour proliferation and metastasis, promoting 

angiogenesis, extra-cellular matrix remodelling and by promoting an immunosuppressive 
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microenvironment. For example, CAFs secrete TGF-β, which is required for epithelial-

mesenchymal transition enabling epithelial tumour cells to develop migratory and invasive 

properties and it also promotes angiogenesis [307]. Moreover the secretion of MMP-3 by CAFs 

results in the degradation of E-cadherin thus promoting tumour cell invasion [307].  

In breast cancer CAFs have been shown to arise from several cell types and promote breast 

cancer progression through the secretion of various cytokines, generation of exosomes, 

release of nutrients, reshaping of the extracellular matrix, and through the suppression of the 

anti-tumour functions of various immune cells [310]. Moreover, CAFs have become 

therapeutic targets in breast cancer and treatments targeting CAFs are in clinical trials [310]. 

Interestingly ILC has been shown to have a distinct tumour microenvironment compared to 

IC-NST and is characterised by a more pronounced growth of CAFs as well as endothelial 

cells involved in angiogenesis [311]. Furthermore, an in-depth characterisation of human ILC 

stroma at the transcriptomic level has identified significant differences in the stromal gene 

expression signatures in ILC vs IC-NST with a range of genes which are involved in extra 

cellular matrix regulation being more highly expressed in the stromal cells vs tumour epithelial 

cells in ILC, but not in IC-NST or normal breast tissue [312].  
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1.12 Heterogeneity of the immune microenvironment in cancer 
 
 
The tumour immune microenvironment is increasingly recognised to play a key role in 

modulating tumorigenesis and enabling effective tumour clearance and targeting the immune 

system using Immunotherapy is revolutionising the management of multiple solid 

malignancies [313, 314]. The composition of the immune microenvironment and the presence 

of immune subpopulations involved in the innate and adaptive immune responses varies 

depending on tumour location and histological subtype. Studies associate most immune 

subsets with either pro or anti-tumoral functions (Figure 1.9). Mouse models have shown that 

myeloid lineage leukocytes, such as dendritic cells, myeloid-derived suppressor cells and 

tumour-associated macrophages (TAMs), play a key role in shaping the nature of the immune 

microenvironment. Depending on the factors that these cell populations secrete, they can lead 

to the formation of either an immunostimulatory pro-inflammatory anti-tumoral 

microenvironment or rather a ‘wound healing’ immunosuppressive pro-tumoral milieu. T 

lymphocytes which infiltrate the tumour microenvironment into these opposing settings are 

therefore either activated or suppressed. Another key immune cell subpopulation, TAMs, can 

either be polarized towards anti-tumoral M1-like or pro-tumoral M2-like functional phenotypes 

and this is regulated through their interactions with T cells. The cellular interactions and cross-

talk between these various immune subpopulations are key in shaping the nature of the 

tumour immune microenvironment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.9: Immune cell subpopulations within the tumour immune microenvironment: the 
immune microenvironment consists of a diverse range of immune subpopulations. The relative 
proportions of these cells type can tip the balance between tumour suppression and tumour progression 
- Adapted from [308] 

 
  

1Salgado, R et al Ann Oncol (2015)

Immune cells in Cancer
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1.12.1 The role of Tumour Infiltrating Lymphocytes (TILs) 
 

Traditionally at the histological level, immunogenicity is assessed by the quantification of 
lymphocytes. Lymphocytes represent a diverse population of immune cells with a range of 

functions. There are two main types of lymphocyte: T lymphocytes and B lymphocytes. They 

are involved in the adaptive/antigen-specific immune response. Morphologically they are 

indistinguishable and are small cells (8 -10 microns) which possess a large nucleus containing 

dense hetero-chromatin and a cytoplasmic border with few mitochondria and ribosomes [315]. 

It is therefore impossible to further characterise them into lymphocyte subpopulations based 

on H&E alone. Once activated through their interactions with antigenic stimuli, they may 

enlarge through an increase in their cytoplasm and organelle number [316]. Lymphocytes are 

responsible for presenting receptors (T-cell receptors and B-cell receptors) for antigenic 

recognition with a diverse range of different specificities expressed on their surfaces. The 

genes encoding these receptors undergo a series of DNA recombinations, providing them with 

huge phenotypic diversity [316]. Humoral immunity otherwise known as antibody-mediated 

immunity, depends on B cells, which can transform into plasma cells. Plasma cells are 

responsible for the production of antibodies. B cells also Involved in antibody-presentation and 

the production of cytokines [317].  

Cellular immunity requires T lymphocytes. T lymphocytes play a key role in immune 

surveillance and the development of the adaptive immune response against infection and 

cancer [318]. T lymphocytes are classed as either CD4+ or CD8+ cells. CD8+ T cells respond 

to peptide sequences present on the surface of antigen presenting cells and contribute to an 

inflammatory immune microenvironment. They are responsible for mediating cell contact-

dependent cytotoxicity of tumour cells through the release of various cytotoxins such as 

perforin and  granzymes which trigger the caspase cascade leading to apoptosis as well as 

through the secretion of cytokines such as interferon γ (IFNγ) and tumour necrosis factor α 

(TNFα) [319, 320]. Memory CD8+ T cells survive long-term and undergo rapid proliferation 

and acquisition of effector function upon re-exposure to a specific antigen [321].  

In contrast CD4+ T cells represent a highly versatile, polyfunctional cell group that exhibit a 

diverse repertoire of effector functions and show phenotypic plasticity and heterogeneity 

subject to various context-specific and microenvironmental factors [322, 323]. They are central 

coordinators of the adaptive immune response and can differentiate into a diverse range of 

functional subtypes to help effector immune populations. A key function of CD4+ T cells is to 

help CD8+ cytotoxic T cells via direct and indirect mechanisms. Once activated CD4+ T cells 

secrete interleukin-2 (IL-2), which in turn directly activates CD8+ cytotoxic T cells which 

express CD25, the high-affinity IL-2 receptor α subunit. This drives CD8+ cytotoxic T cell 
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differentiation, proliferation, and effector function [323]. In addition CD4+ T cells offer indirect 

help to CD8+ cytotoxic T cells by maintaining and supporting pro-inflammatory dendritic cells 

which themselves provide activating signals to CD8+ cytotoxic T cells [322].  

An important CD4+ T cell population in the context of the tumour immune microenvironment 

is regulatory T-cells. These cells are characterised by the expression of the master 

transcription factor forkhead box protein P3 known as FOXP3 and they contribute to an 

immunosuppressive microenvironment [324]. Ordinarily, they play critical roles in maintaining 

self-tolerance, thus preventing auto-immune disease, however in the context of cancer, they 

suppress an appropriate anti-tumour response therefore promoting tumour progression 

[324]. Multiple meta-analyses have found an association between high levels of FOXP3 TILs 

and higher tumour grade, lymph node involvement and poor survival outcomes [325-327] in 

ER+ breast cancer although in multivariate analysis regulatory T-cell levels were not an 

independent prognostic factor [328, 329]. 

 

1.12.2 The role of Macrophages in cancer 
 
 
Macrophages are myeloid cells which form a key element of the innate immune response. 

They originate from monocyte precursor cells in the blood and differentiate under the influence 

of various growth factors and cytokines within the tissues that they infiltrate [330, 331]. They 

are a heterogenous cells population with a diverse range of functions which include exogenous 

antigen presentation, phagocytosis, and immunomodulation.	 M1-like and M2-like 

macrophages show different metabolic characteristics and distinct gene expression and 

immunohistochemical profiles. M1-like macrophages promote and contribute to inflammation 

in response to pathogens and tumour cells, contributing to tumour suppression. They secrete 

inflammatory cytokines such as IL-12, IFNγ, TNFα and nitric oxide synthase [331]. They are 

characterised by the expression of CD68 and CD64 among other IHC markers [332]. In 

contrast M2-like macrophages create an immunosuppressive microenvironment promoting 

tissue repair and tumour progression through the secretion of range of anti-inflammatory 

cytokines e.g. IL-4, IL-10 and IL-13 [333]. They are characterised by the expression of high 

levels of CD206, and CD163 [332]. Macrophage polarisation describes the process by which 

macrophages, under the influence of different microenvironmental signals and stimuli become 

the distinct M1-like and M2-like phenotypes. M1-like macrophages can switch to an M2-like 

phenotype and vice versa under the influence of various microenvironmental factors, such as 

cytokine secretion, hypoxia, infection, and inflammation [332]. TAMs are generally considered 
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to represent M2-like type phenotype macrophages promoting tumour progression through a 

range of mechanisms (Figure 1.10). 

 
Figure 1.10: Tumour associated M2-lke macrophages contribute to tumour progression through 
a range of mechanisms: these include promotion of angiogenesis, invasion and metastases, cancer 
stem cell formation and through the promotion of an immunosuppressive tumour microenvironment. 
 

1.12.3 The Immune Landscape in ILC 
 

Breast cancer has previously been classed as a relatively weakly immunogenic tumour, yet 

there is growing evidence that subsets of breast cancers are associated with significant 

numbers of TILs, and that their quantification holds prognostic and predictive value  [313, 314]. 

In TNBC and HER2+ disease increased TILs are associated with improved DFS and with 

higher response rates to neoadjuvant therapy [313, 314, 334-338].  

 

The prognostic significance of TILs in ER+ breast cancer is less clear [338]. ER+ tumours are 

generally characterised by lower TILs than TNBC and ER-/HER2+ disease, and ILCs show 

lower TILs than IC-NST [337]. In addition, low levels of stromal TILs are seen in ILC 

metastases, with the ‘mixed non-classic’ histologies showing higher levels [282]. Furthermore, 

no significant differences in TILs levels have been observed between different ILC metastatic 

sites [290]. 

 

Two recent studies have studied TILs in large cohorts of ILC and identified that a subset of 

cases show high levels of stromal TILs [282, 339]. Moreover, high TILs scores (defined as 

stromal TILs score > 10% [282] and > 5% [339] in the two studies respectively) were 

associated with younger patient age, lymph node involvement and more proliferative tumours 

in the first study [282], as well as a range of poor prognostic factors and worse OS and DFS 
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in the second (Figure 1.11) [339]. When ILC histological subtypes were considered, one study 

showed that compared to classic ILC, significantly lower TILs were present in alveolar ILC (p 

= 0.02) and higher levels in ‘mixed non-classic’ ILC (p < 0.001) [282]. A distinct pleomorphic 

group was not defined in these studies. These studies suggest that the role of TILs contrasts 

that observed in TNBC and HER-2 positive disease.  

 

A more recent study examined phenotypic, transcriptional, and functional diversity in cohort of 

primary untreated ER+ ILCs (n = 87) and IC-NSTs (n = 94) using flow cytometry, multiplexed 

IHC and single cell RNA sequencing technologies [340]. This revealed that macrophages, 

rather than T cells, were the predominant immune subpopulation infiltrating the tumour bed in 

ILC and the most transcriptionally diverse immune subpopulation between ILC and IC-NST 

[340]. Multiplexed IHC revealed a higher proportion of macrophages in ILC, with this immune 

subpopulation accounting for 82% of the immune infiltrate within the tumour and 50% within 

the stromal compartment, compared to IC-NST, where the macrophages contributed to less 

than 50% of the immune infiltrate in both tumour and stromal compartments [340]. Cell 

quantification data showed that the increased proportion of macrophages in ILC resulted from 

reduced T cell counts as opposed to expansion of the macrophage immune subset [340]. 

 
Overall, there is an increasing body of work providing new insights into ILC within the immune-

oncology space. There is however an ongoing need to delineate the significance of the 

immune microenvironment within different ILC subtypes, especially pleomorphic ILC.  

Moreover, there is a need to further characterise TILs into the various immune subpopulations, 

as it may be the quantification of specific immune subpopulations which determines clinical 

outcome, or indeed their spatial location, rather than the simple quantification of TILs identified 

histologically. These findings will provide a strong foundation for the development of future 

clinical trials assessing the efficacy of immunotherapy in clinically aggressive, immunogenic 

ILCs. 
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Figure 1.11: TILs are associated with poor survival in ILC: Kaplan–Meier (KM) plot showing IDFS 
of ILC patients stratified according to tumour TILs quantification: negative (n = 239), ≤ 5% (n = 185), > 
5% (n = 35). Taken from [339] 

 

1.13  Project aims 
 

There is a significant unmet clinical need in aggressive ILCs. To improve the treatment options 

and clinical outcomes for these patients, there is a need to characterise the transcriptomic and 

immune heterogeneity in aggressive ILCs, to enable the development of novel molecular and 

immune therapies with accompanying biomarker stratification for treatment. 

To address this unmet need, the purpose of this PhD is to characterise the transcriptional and 

immune heterogeneity in clinically aggressive ILCs including pleomorphic ILC. The key aims 

of the project are to: 

 

1) Identify the molecular drivers of clinically aggressive ILC 

2) Evaluate the immune landscape and prognostic associations in ILC 

3) Map the heterogeneity of immune infiltrate in pleomorphic ILC 

4) Map the sub-clonal heterogeneity of metastatic ILC 
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2. Chapter 2: Methods  
 

2.1 Clinical samples 
 

A retrospective series of primary untreated ILC tumours (n = 163) was obtained with 

appropriate ethical approval using two independent FFPE retrospective ILC cohorts: an ILC 

cohort from the KHP tissue bank with detailed clinical outcome and treatment data (n = 149), 

(REC Number: 12/EE/0493), and cases collected through the GLACIER study (n = 14) with 

outcome data provided by Public Health England (MREC 06/Q1702/64). All patients provided 

written consent for the use of material for research purposes. Appropriate representative 

formalin-fixed paraffin-wax embedded (FFPE) tissue blocks were chosen based upon their 

histology reports. Haematoxylin and eosin (H&E) sections of each case were reviewed by two 

independent histopathologists (Dr Ioannis Roxanis, consultant breast histopathologist, the 

Institute of Cancer Research, and myself) to confirm the ILC histological subtype and tumour 

content. ILCs were classed as classic, pleomorphic, solid, alveolar, mixed with a pleomorphic 

component, and mixed without a pleomorphic component. For the purposes of the analysis 

pleomorphic cases encompassed pleomorphic and mixed cases with a pleomorphic 

component, whilst non-pleomorphic cases encompassed classic, solid, alveolar and mixed 

cases without a pleomorphic component. Patients were stratified based on clinical outcome 

data into those with ‘early relapse’, (defined as relapse within 3 years of initial diagnosis), ‘late-

relapse’ (relapse after 6 years of initial diagnosis), ‘intermediate’ relapse (relapse between 3 

and 6 years of initial diagnosis) and ‘no-relapse’. An anonymised summary table of the clinical 

features of the cohort is provided in Supplementary Table 1. 

2.2 Validation of histological classification using digital pathology 
 
 
I performed an objective assessment of nuclear size using QuPath (an open-source platform 

for the analysis of pathology images [341]) in a subset of pleomorphic and non-pleomorphic 

ILCs. A total of 200 - 250 representative tumour cells were selected in each case and nuclei 

were segmented using StarDist, a cell detection algorithm that utilises star-convex shape 

priors for microscopy images [342]. Segmentation was achieved using the publicly available 

model “he_heavy_augment”. An average (mean) nuclear size and the standard deviation of 

nuclear size was calculated for each case. Tumour cell nuclear size and standard deviation of 

nuclear size were compared between histologically defined pleomorphic and non-pleomorphic 

cases using a Mann-Whitney U test. 
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2.3 DNA extraction  
 
 
I performed DNA extraction of 95 ILCs (52 pleomorphic and 43 non-pleomorphic cases) at the 

Research and Innovation Hub in Cancer, King’s College London. James Rosekilly (KHP tissue 

bank) prepared 10 x 10μm FFPE tissue sections per tumour case and I used needle 

macrodissection to enrich for tumour content. Genomic DNA from the FFPE tissue sections 

was extracted using QIAamp FFPE Tissue Kit (Qiagen, Manchester, UK) according to the 

manufacturer's instructions. I assessed DNA quantity using the Qubit Fluorometer (Fisher 

Scientific, Loughborough, UK). 

 

2.4 Targeted DNA sequencing 
 
Next Generation Sequencing (NGS) took place at The Centre for Molecular Pathology, The 

Royal Marsden NHS Foundation Trust, Sutton. Ninety-five samples were sequenced using a 

targeted, custom-designed capture panel (RMH200Solid panel) consisting of 233 cancer 

related genes (Supplementary Table 2). Library preparation was performed by Paula Proszek, 

Sabri Jamal and Ridwan Shaikh. NGS libraries were prepared from 200 - 400ng of DNA using 

the KAPA HyperPlus Kit (Kapa Biosystems, Wilmington, MA, USA) and IDT UDI 8bp adapters 

(Integrated DNA Technologies, Coralville, USA), following the manufacturer’s protocol. 

Sequencing was performed on a NovaSeq6000 (Illumina, San Diego, CA, USA) with 100bp 

paired end reads and v1 chemistry.  

 

Data was analysed using an in-house pipeline (MDIMSv4) by aligning reads to the reference 

genome build GRCh37/Hg19 followed by the marking of PCR duplicates and calculation of 

various quality control (QC) metrics using Picard v2.8.1. Copy number was calculated using 

an in-house developed pipeline utilising Picard tools. Segmentation was performed using the 

R package DNAcopy v1.64.0. A log2 ratio > 1 is considered an amplification while < 0.5 is a 

suspected deletion. 

 

Manta v1.2.2 [343] and Pindel v0.2.5b8 [344] were used for the detection of structural variants. 

GATK was used for variant calling using MuTect2 [345]. Variant Call Format (VCF) files from 

unpaired samples were annotated using Personal Cancer Genome Reporter v.0.6 (PCGR) 

and checked manually on IGV. A minimum variant allele depth x 10 and Variant Allele 

Frequency (VAF) threshold of 5% were applied. Low frequency mutations with VAF < 5% were 

subsequently assessed by myself in the sequencing data. Splice variants were included if 

within +/- 2bp from the exon boundary and silent variants were excluded, unless known to 



 69 

impact exon expression. GnomAD was used to remove SNPs of germline origin excluding 

SNPs with a total population frequency >10-4. Mutational load was calculated as the total 

number of nonsynonymous mutated bases in the tumour genome divided by the Mb of the 

genome covered [346]. 

 

2.5 RNA extraction 
 
 
I performed RNA extraction of 47 pleomorphic ILCs (KHP pleomorphic cohort) at the Research 

and Innovation Hub in Cancer, King’s College London. Tissue needle macro dissection was 

used to enrich for tumour content and 10 x 10μm FFPE tissue sections (prepared by James 

Rosekilly, KHP tissue bank) were used per case. RNA from FFPE tissue sections was 

extracted using QIAamp FFPE Tissue Kit (Qiagen, Manchester, UK) according to the 

manufacturer's instructions. I assessed RNA quantity using the Qubit Fluorometer (Fisher 

Scientific, Loughborough, UK). 

 

2.6 RNA sequencing of KHP pleomorphic cohort 
 
 
Next Generation Sequencing (NGS) took place at The Genomics Facility, the Institute of 

Cancer Research, Sutton. A total of 250 -1000ng of RNA, from the 47 samples was treated 

with TurboDNase (Invitrogen, #AM2239) to remove genomic DNA contamination. Ribosomal 

RNA was then removed from the samples using the NEBNext rRNA Depletion Kit (NEB, 

#E6310X) following the manufacturer’s instructions. From the resulting RNA, strand-specific 

libraries were created using NEBNext Ultra II Directional RNA Library Prep Kit for Illumina 

(NEB, #E7760) on the Agilent Bravo (option B). Final libraries were quantified using 

TapeStation (Agilent) and qPCR (Roche, #KK4835), then clustered at a molarity of 300pM. 

Sequencing was performed on an Illumina NovaSeq 6000 using PE x 100 cycles v1.5 

chemistry, to achieve coverage of 100 million reads per sample. 

 

2.6.1 KHP dataset RNA sequencing data processing 
 

RNA sequencing generated 25.6 to 143.8 million paired-end reads per sample (n = 47). Library 

quality was assessed using FastQC, FastQ Screen [347] and MultiQC (v1.9) [348] .Reads 

were trimmed using Trim Galore (v0.6.6). Paired-end reads (100bp) were aligned to the 

human reference genome GRCh38, using STAR 2.7.6a (PMID: 23104886) with quantMode 
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GeneCounts and --twopassMode basic alignment settings. GENCODE (v22) was used for 

feature annotations.  

 

2.6.2 KHP dataset RNA sequencing data analysis 
 

2.6.2.1 Differential gene expression analysis 
 

Differential mRNA abundance analysis was performed using R package edgeR (v3.34.0) [349] 

in R statistical programming environment (v4.1.0) by Shaun Tan (BCR bioinformatics team). 

Genes with low expression were filtered out using edgeR’s function ‘filterByExpr()’ with 

parameters: min.count = 5 and min.prop = 0.5. Raw counts were normalised using edgeR’s 

TMM (trimmed mean of M-values) method and differential mRNA abundance was performed 

using the quasi-likelihood (QL) F-test using the model ~0 + group. ENSEMBL gene identifiers 

were annotated with gene symbols using the R package org.Hs.eg.db (v3.10.0) [350]. TPM 

normalised counts were transformed to log2 counts per million (CPM) for visualisations and 

survival modelling. 

Differential gene expression analysis was performed in 45 samples. Two of the 47 samples 

which were sequenced were excluded due to inadequate follow-up required to define relapse 

status. Differential gene expression was compared in relapse (n = 24) vs no relapse (n = 21) 

and early (n = 11) vs late relapse (n = 6), Using the transformed log2 CPM, top hits of the 

differentially expressed genes were visualised in both volcano plots and heatmaps. Genes 

were considered as significantly differentially expressed if they fulfilled both a p-value 

threshold of 0.001 and a log2 fold change threshold of at least ±1. 

 

2.6.2.2 Univariable survival analysis 
 

Potential prognostic genes associated with survival in the pleomorphic KHP discovery cohort 

were first identified using univariable survival analysis. Genes associated with overall survival 

(OS) and metastasis free survival (MFS) were identified independently. Two of the 47 patients 

in the cohort presented with de novo metastatic disease and were excluded from survival 

analysis. Clinical and gene expression data in the remaining 45 pleomorphic samples was 

used. To account for potential clinical factors, age, tumour stage and lymph node status were 

adjusted for when conducting the analysis. To limit the extent of the survival data, a cut-off of 
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10 years was applied. Prognostic genes were identified if they fulfilled an un-adjusted p-value 

criteria of < 0.05. 

 

2.6.2.3  Random Forest model training  
 
 
Random Forest survival modelling was conducted by Shaun Tan (BCR bioinformatics team) 

using R version 4.1.0 with the R package randomforestSRC [351] and the rfsrc function to 

create a classifier specific to pleomorphic ILCs. This approach was conducted to validate the 

genes identified in univariable survival analysis from the KHP discovery cohort, on external 

published datasets (SCAN-B [352], TCGA [32] and METABRIC [353]), which included both 

OS and MFS associated genes. The training set used the gene expression data of the selected 

genes from univariable survival analysis and each of the sample’s survival data. To ensure 

that the trained model could be applied to the published datasets, only the gene expression 

data common among the KHP discovery cohort and the 3 published datasets was used. Gene 

expression data from OS and MFS associated genes were trained with OS and MFS outcomes 

respectively. To obtain the most accurate model, optimization was performed prior to 

validation in the published datasets. Parameters that were optimized for were the number of 

trees (ntree), node size (nodesize) and the number of variables to randomly sample at each 

split (mtry). Other parameters used but were not optimized for were sampling without 

replacement (“swor” for samptype) and a 75/25 train/test split (sampsize). Seed 42 was used 

to enable consistency when producing results. 

 

The optimal number of trees was first determined by varying the number of trees and fixing 

the other set of parameters. Mtry and node size were fixed to the square root of the number 

of genes and 10 respectively. Out-of-bag (OOB) error rates produced by the model for the 

different number of trees used were plotted on a line plot to identify the point at which the OOB 

error rates have stabilised. It is at this point that the optimal number of trees was chosen. With 

optimal number of trees identified, a grid search was performed on node size and mtry to 

identify the optimal parameters. Node size ranging from 3 to 10 and increasing by 1 each time 

was used, while mtry ranging from the square root of the number of genes to 1/3 of the genes 

and increasing by 1 each time was used. 

 

Once the optimal parameters were identified, the random forest model was trained using these 

parameters on data from KHP discovery cohort.  
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2.6.2.4 Validation in independent purified ILC datasets  
 
 
Because of the highly pure nature of the KHP discovery cohort due to tissue macrodissection 

of the tumour cells prior to RNA sequencing, there was a possibility that the random forest 

modelling prediction would perform poorly on unpurified validation datasets, as they are more 

heterogenous containing signal from non-tumour cells in addition to tumour cells. To ensure 

the robustness of the model, in-silico purification of the gene expression data in the 3 

published validation datasets was performed using the ISOpureR package [354]. 

 

The purified gene expression data of the validation datasets were then fed into the random 

forest model to predict risk scores. associated with each sample in the published datasets. 

These risk scores are mortality values that represent estimated risk for each individual and 

were calibrated to the scale of the number of events of the KHP discovery cohort. Risk scores 

obtained from the model were then divided into tertiles, ranging from 0 - 33%, 34 - 66% and > 

66%. The 3 groups of risk scores were then used in a cox-proportional hazards model to 

evaluate the ability of predicted risk scores to accurately determine survival outcomes up to a 

10-year cut-off period. P-values of the different risk groups shown are relative to the 0 - 33% 

group. A trend test p-value was also calculated to determine if the survival of the different 

groups followed a specific trend. Additionally, Kaplan-Meier (KM) plots were generated 

alongside the cox statistics to visualize the survival outcomes in the 3 groups. Validation of 

OS and MFS genes were only performed on OS data in the published datasets, as only OS 

data was present, except for SCAN-B. In SCAN-B, MFS genes were also validated on MFS 

outcomes.  

 

2.7  RNA sequencing of non-pleomorphic ILCs  
 
Fifteen non-pleomorphic (all classic) ILCs were characterised at the RNA level using the HTG 

Molecular Diagnostics Transcriptome panel. Of these cases, 5 patients relapsed early (< 3 

years of primary diagnosis) and 10 patients relapsed late (> 6 years after primary diagnosis). 

The HTG panel provides coverage of most human mRNA transcripts including isoforms and 

interrogates 19,616 targets using FFPE tissue sections. For each case an H&E and 5μm thick 

unstained FFPE tissue section were prepared by James Rosekilly (KHP tissue bank). I 

annotated the H&Es identifying areas of tumour content of at least 50% and a minimum tumour 

area of 11 mm2 was selected per case, as per the HTG protocol. Annotated H&Es and 

unstained tissue sections were shipped to HTG Molecular Diagnostics (Tucson, Arizona) and 
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the annotated H&Es were used to select the tumour areas for sequencing on the 

corresponding unstained tissue section. 

 

The samples together with an HCT-15 control technical replicate were randomized prior to 

placement on the HTG EdgeSeq sample plate to reduce any potential intra-plate biases during 

processing. The samples were randomized by HTG.  Samples were processed in accordance 

with the manufacturer’s recommendations, HTG EdgeSeq processing (instrument method). 

Samples were transferred to a standard 96-well micro-titre plate, referred to as the sample 

plate.  

  

Target capture was performed by the HTG EdgeSeq chemistry. Briefly, the nuclease 

protection probes (NPPs) were added to the lysed samples in the sample plate in excess 

amount and hybridized to the target messenger RNA (mRNA). An S1 nuclease was 

subsequently added to digest non-hybridized RNA and excess NPPs, thus producing a 

stoichiometric amount of target mRNA NPP duplexes. After the S1 digestion was complete, 

the processed sample was transferred to a new 96-well micro-titre plate with a v-bottom, 

referred to as the stop plate, and S1 digestion was terminated by the addition of a termination 

solution followed by heat denaturation of the S1 enzyme.  

 

2.7.1 Library preparation and sequencing 
 

Each processed sample from the stop plate was used as a template to set up polymerase 

chain reaction (PCR) reactions with specially designed primers, referred to as tags. These 

tags share common sequences that are complementary to 5’-end and 3’-end “wing” 

sequences of the probes and common adaptors required for cluster generation on an Illumina 

sequencing platform. In addition, each tag contains a unique barcode that was used for sample 

identification and multiplexing. HTG developed 12 forward and eight reverse primer tags and 

therefore all samples were simultaneously analysed on an Illumina sequencing platform. The 

library was prepared using a PCR with OneTaq (New England Biolabs) and EdgeSeq PCR 

tag primers (HTG molecular). Following the PCR, a clean-up procedure was performed with 

AMPure clean-up beads (Beckman). The library was then quantified in with Accuclear 

fluorescent dye (Biotium) and a Molecular Devices SpectraMax plate reader. All samples and 

controls were quantified in triplicate.  

 

Following quantification, the HTG Library Calculator software was used to ensure that there 

was a sufficient concentration of sample for library pooling and to determine the appropriate 



 74 

dilutions for building the library pool. All samples processed within the study had sufficient 

PCR product to be pooled for sequencing.  The HTG Library Calculator also determined the 

volume and specific type of denaturation reagents to be used for the library. The library was 

denatured by adding 0.2N NaOH to the library tube. The tube was then vortexed, spun down, 

and incubated for five minutes at room temperature. Cold HT1 buffer (Illumina) was added to 

the library tube, followed by the addition of 200mM Tris pH 7.4 to neutralize the NaOH. The 

sample was vortexed and spun down.  

 

PhiX control adaptor-ligated library was spiked in at a concentration of 12.5pM to the pooled 

library. The library was vortexed and spun down for a final time. The denatured library was 

loaded (1,300µL) into the appropriate well of the NextSeq sequencing cartridge. The 

concentration of the pooled library loaded on the NextSeq flow cell was 1.7pM.    

 

The sequencing was performed on the Illumina NextSeq 550 sequencer in accordance with 

manufacturer’s recommendations but also including two HTG custom sequencing primers. 

The sequencing data on mRNA expression of target genes was imported into HTG EdgeSeq 

Parser software for alignment and quantification of the reads. The HTG EdgeSeq Reveal 

Application was utilized to quality check and normalize the data.   

 

2.7.2 Post-sequencing quality control (QC) 
 
Post-sequencing QC metrics (QC0, QC1, QC2, and QC3) were used to detect four different 

types of sample failure. QC0 detects degraded RNA or poor quality / quantity samples, by 

assessing the percentage of overall reads being allocated to the positive process control probe 

for each sample. QC1 detects samples with insufficient read depth; this is evaluated by setting 

the cut-off at the minimum number of reads that can be allocated to each sample for the data 

set to be repeatable. QC2 detects samples with minimal expression variability, which is 

determined by the median log2 counts per million (CPM) for negative control probes. QC3 

detects samples with elevated gDNA background, which is caused by incomplete digestion of 

gDNA by the DNase enzyme.  

 

2.7.3 Data processing and analysis 
 

Data was returned from the sequencer in the form of demultiplexed FASTQ files, with four files 

per original well of the assay. The HTG EdgeSeq Parser was used to align the FASTQ files to 
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the probe list to collate the data. Data are provided as data tables of raw, QC raw, log2 CPM 

and median normalized data.  

 

The data was processed by Syed Haider and Hui Xiao (BCR bioinformatics team). mRNA 

profiling was performed by using the HTG Transcriptome Panel which contains 19,616 probes 

including 4 positive process control probes, 100 negative process control probes, 22 genomic 

DNA probes, 92 external RNA control consortium (ERCC) probes, and 19,398 probes specific 

to human mRNA transcripts. 

 

The raw counts of human mRNA specific probes were kept for analysis of gene expression. 

Probes with minimum counts lower than 10 in more than 30% of samples in the cohort were 

filtered out. The probe counts were then normalised by using the trimmed mean of M-values 

(TMM) method implemented in R package edgeR to correct library size biases between 

samples. The normalised probe counts were transformed into log2 CPM. 

 

Differentially expressed genes (DEGs) between the early relapse (< 3 years) and late relapse 

(> 6 years) groups were identified based on the normalised counts by using quasi-likelihood 

negative binomial generalized log-linear model (implemented in R package edgeR) with the 

FDR threshold of 5%. An unadjusted p-value threshold of p < 0.001 and log2FC +/-1 were 

used to identify significantly differentially expressed genes. 

  
Cancer Hallmarks was used for pathway analysis which was performed using gene set 

enrichment analysis (GSEA) via the ‘fgsea’ library in R. Genes were ranked according to their 

signed p-values in which the signs were defined by the changing directions (up-regulation as 

‘+’ and down-regulation as ‘-’). 10000 gene permutations were used to calculate statistical 

significance for pathways. P-values were adjusted by false discovery rate (FDR) for multiple 

test correction. An adjusted p-value of 0.05 was required for statistical significance of a cancer 

hallmark pathway. 
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2.8  Differential gene expression in the TCGA dataset 

  
Differential gene expression was performed in pleomorphic vs non-pleomorphic ILCs from 

TCGA [32]. This first involved the identification of pleomorphic cases using QuPath. 

 

2.8.1 Identification of pleomorphic cases in TCGA  
 
Image analysis was performed by Chris Starling (Breast Cancer Now Histopathology facility) 

using QuPath, an open-source platform for the analysis of pathology images [341]. Colour 

vectors were corrected for each image using QuPath’s automated pre-processing tool. 

Tumours were annotated using the “Simple Tissue Detection” plugin and nuclei were detected 

with StarDist [342] using the publicly available model “he_heavy_augment”. Nuclear features 

were calculated using the “Intensity Features” plugin with a pixel size of 0.5µm, tile size 25µm 

and a Haralick distance of 1 with 32 bins. To remove false detections, a minimum optical 

density of haematoxylin (HxOD) was set at 0.15 and maximum and minimum nuclear areas 

were set at 250µm2 and 15µm2 respectively and these were removed from the analysis. 

 

Nuclei with a circularity of < 0.85 were classified as “Stroma”. Of the remaining cells, those 

with a nuclear area > 35µm2 were classified as “Tumour”, those with nuclear area < 20µm2 

were classified as “Immune cells” and the remaining cells were classified as “Other”. The mean 

and standard deviation (SD) HxOD of all cells classified as “Tumour” in each image was 

calculated. This was compared with the value of each cell in the image classified as “Other”. 

For lightly stained images (those with a HxOD mean + SD < 1) the HxOD threshold was set 

at mean + 1.5 SD. For strongly stained images (HxOD mean + SD > 1) the HxOD threshold 

was set to mean + SD. Those cells classed as “Other” with HxOD below the threshold were 

classed as “Tumour” and those above as “Immune cells.” 

 

A threshold for pleomorphic tumour cell nuclear area was set at 100µm2 based on four times 

the average size of a lymphocyte [78]. Those “Tumour” cells above this threshold were 

classified as “Tumour: Positive” and those below as “Tumour: Negative”. To remove false 

positives the mean and SD of all pleomorphic cells in each image was calculated. Any cell 

classified as pleomorphic (“Tumour: Positive”) with an HxOD more than 2 SD below the mean 

was analysed for Haralick entropy (F8) in the nuclear haematoxylin staining. Those cells with 

entropy > 6.5 were considered true detections. Those with entropy < 6.5 were considered too 

“smooth” and represented false positives. The data was then used to calculate the proportion 
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of pleomorphic tumour cells (tumour cells with nuclear areas > 100µm2) and the density of 

pleomorphic cells per mm2 of tumour tissue calculated. 

 

2.8.2 Differential gene expression based on histology in TCGA  
 
Differential gene expression was performed in pleomorphic (n = 36) vs non-pleomorphic (n = 

143) ILC by Shaun Tan (BCR bioinformatics team). Hormone status information was available 

for some of the patients and using this a further analysis was performed in ER+/HER2- 

pleomorphic (n = 17) vs ER+/HER2- non-pleomorphic (n = 71) cases. A linear model fit and 

empirical Bayes moderation was used to determine the differentially expressed genes. Top 

differentially expressed gene hits were then identified if they fulfilled the criteria of an adjusted 

p-value threshold < 0.05 and log2FC +/-1.5.  

 
 

2.9 Histological Assessment of TILs 

 
TILs were histologically characterised using the ‘Salgado’ scoring method in which TILs are 

reported for the stromal compartment only with the ‘Salgado’ score representing the 

percentage of the stromal area occupied by TILs (Figure 2.1) [308]. TILs were quantified by 

two independent histopathologists (Dr Ioannis Roxanis, consultant breast histopathologist, the 

Institute of Cancer Research, and myself) and an average of the scores was used for analysis. 
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Figure 2.1: Salgado scoring methodology: Diagrammatic representation of the standardised 
methodology used to quantify stromal TILs in breast cancer [308]. 
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2.10 Association of stromal TILs with clinical outcome 

Univariable survival analysis using a cox-proportional hazards model was performed on the 

KHP cohort with stromal TILs used as an independent variable. This analysis was conducted 

to identify the association between stromal TILs scores MFS and OS. Separate analysis was 

performed on pleomorphic and non-pleomorphic patients. Seven patients with de novo 

metastases were removed prior to survival analysis. The follow-up time was truncated at 15 

years, therefore patients with metastatic events occurring after 15 years were censored. 

For analysis of TILs scores, each individual stromal TILs score was categorised as either ≤ 

5% or > 5%. Univariable survival analysis was conducted on these TILs score categories to 

identify association with MFS and OS. Clinical covariates such as tumour stage (T1, T2, and 

T3), lymph node status (negative: 0, positive: > 0) and hormone status of the tumour were 

adjusted for (triple negative+ HER2 positive: 1, others: 0). To visualise survival outcomes KM 

plots were generated.  

2.11 NanoString GeoMx® Digital Spatial Profiling (DSP) 
 
 
NanoString GeoMx® DSP was performed on 20 pleomorphic ILCs with at least 5% stromal 

TILs. FFPE blocks were sectioned at 6 µm thickness, and sections mounted on adhesive, 

positively charged slides (SuperFrost Plus™ adhesion slides, Epredia™). Multiple tumour 

sections were placed on each NanoString DSP slide. Seven NanoString DSP slides were used 

in total, with a total of 20 ILCs. After sectioning, air-dry sections were shipped to NanoString 

at ambient temperature. 

The slides were deparaffined and subjected to antigen retrieval procedures. Tissue sections 

were co-incubated with fluorescent-labelled antibodies as morphology markers: Pan-

Cytokeratin (PanCK, epithelial), CD45 (pan-immune), CD3 (T-cell) and syto83 (DNA). The 

slides were also incubated with photocleavable oligonucleotide-labelled primary antibodies 

targeting 71 immuno-oncology markers from the NanoString GeoMx® Human Immuno-

Oncology (IO) Panel, 3 housekeeping targets and 3 negative controls (Supplementary Table 

3). Once the staining was complete, slides were loaded onto the GeoMx DSP instrument, and 

scanned producing a digital fluorescent image of the tissue. Individual regions of interest 

(ROIs) were then selected. Twelve ROIs were selected per slide. These were selected based 

on the presence of abundant CD45+ cells (immune cells) in proximity to PanCk+ cells (tumour 

cells). 
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ROIs were segmented into the tumour and immune cell compartments, producing two distinct 

areas of interest (AOIs) and oligos from the immune cell (CD45+ve) compartment were 

selected to be released upon exposure to UV light. Photocleaved oligos were collected via 

microcapillary aspiration and dispensed into a 96-well plate, then hybridized to 4-color, 6-spot 

optical barcodes and digitally counted in the nCounter system (NanoString). Digital counts 

from barcodes corresponding to protein probes were normalized to internal spike-in controls 

(ERCCs), and then normalized to signal-to-noise ratio (SNR) calculated based on the mean 

of the 3 negative controls. A SNR < 1 was considered non-specific background. Therefore, 

only those proteins markers were included in the analysis whereby SNR > 1 in at least three 

ROIs was observed. Given that this was a small discovery cohort relaxed statistical thresholds 

of p < 0.1 and log2FC +/- 0.585 were used to identify significantly differentially expressed 

immune-oncology proteins between patient comparison groups. 
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2.12  Immunohistochemistry (IHC)  
 
 
CD68 IHC was performed in 54 pleomorphic and 78 non-pleomorphic ILCs. The staining was 

completed by James Rosekilly (KHP tissue bank) using 3 - 4μm thick whole FFPE tissue 

sections. Slides were incubated with anti-CD68, rabbit monoclonal antibody 1:1000, 

EPR13501 (Abcam, UK), using the Dako-Autostainer Link 48 with the EnVision FLEX kit 

according to the manufacturer’s instructions (Agilent Technologies, UK). Human breast, tonsil, 

appendix, prostate, and kidney tissue were used as positive controls. Stromal cells were used 

as an internal positive control. CD68 staining was scored by me using QuPath [341]. A pixel 

classifier was trained to recognise DAB staining using Random Trees methodology at high 

resolution. 

 

Dual IHC was performed in 35 pleomorphic ILCs. Eighteen patients relapsed and 17 patients 

did not relapse. FFPE sections which were 4µm thick were stained on a Ventana Discovery 

plus (Roche). Epitopes were unmasked at 95oC and high pH for 64 minutes. After endogenous 

peroxide enzymes were blocked, sections were incubated in CD163 primary antibody (Abcam) 

diluted 1:500 with casein protein block for 32 minutes at room temperature. The primary was 

detected using UltraMap anti-Rabbit HRP polymer (Roche) for 8 minutes at room temperature 

and visualised with DAB (ChromoMap - Roche). Antibodies were stripped at 100oC, low pH, 

for 8 minutes and any remaining peroxidase enzymes were blocked again. The second 

primary, CD68 (Merck Millipore), was applied at 1:500 with protein block for 32 minutes at 

room temperature. This was detected using UltraMap anti-Mouse HRP polymer (Roche) for 8 

minutes and visualised with Discovery Green (Roche) for 32 minutes with the green substrate 

followed by 16 minutes with the activator. Slides were counterstained with Haematoxylin for 4 

minutes and blued in blueing reagent. The liquid coverslip was removed with detergent and 

sections dehydrated, cleared, and mounted. 

 

Slides were digitised using a Nanozoomer XR (Hamamatsu) using a x 20 dry objective and 

the ndpi images imported into QuPath (Bankhead, 2017). Colour vectors were set manually 

to Haematoxylin (0.785 0.525 0.328), DAB (0.453 0.493 0.742), and Green (0.733 0.337 

0.591) with background 8-bit RGB values 231, 236 and 227.  

 

Images were manually annotated with green staining classified as ‘M1’, DAB staining as ‘M2’, 

and cells negative for both markers as “Other”. Whitespace was classified as “*Ignore”. These 

annotations were used to train a pixel classifier using Random Trees at a resolution of 1.81 

µm/pixel and utilising all multiscale features. The area occupied by each stain was used to 
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calculate the proportion of M1 and M2 macrophages in each tumour. A Mann-Whitney U test 

was used to study differences in M2/M1 ratios in relapsing vs non relapsing patients. 

Univariable survival analysis using a cox-proportional hazards model was performed on the 

CD68 IHC cohort with CD68 scores used as an independent variable. This analysis was 

conducted to identify the association between CD68 scores and MFS and OS. Separate 

analysis was performed on pleomorphic and non-pleomorphic patients. Seven patients with 

de novo metastases were removed prior to survival analysis. The follow-up time was truncated 

at 15 years, therefore patients with metastatic events occurring after 15 years were censored. 

Clinical covariates such as tumour stage (T1, T2, and T3), lymph node status (negative: 0, 

positive: > 0) and hormone status of the cancer were adjusted for (triple negative + HER2 

positive: 1, others: 0). CD68 scores were split into tertiles. The tertiles of the scores were then 

used in univariable survival analysis to identify any association with MFS and OS. KM plots 

depicting the outcomes seen in the different CD68 score levels were plotted. 

Univariable survival analysis using a cox-proportional hazards model was performed to assess 

M2/M1 ratio in the KHP cohort with M2/M1 ratio used as an independent variable to assess 

any association with MFS. The tertiles of the M2/M1 ratios were used and KM curves plotted. 

2.13  NanoString GeoMx® Whole Transcriptome Atlas (WTA) 
 
 
NanoString GeoMx® WTA was performed on 10 pleomorphic ILCs with at least 4% stromal 

TILs. Blocks were sectioned at 6 µm thickness, and sections mounted on adhesive, positively 

charged slides. Three tumour sections were placed on each NanoString slide. Three 

NanoString slides were used in total. After sectioning, air-dry sections were sent to the 

Genome Centre, Queen Mary, University of London at ambient temperature. 

The slides were deparaffined and subjected to antigen retrieval procedures. They were stained 

with RNA scope probes and GeoMx DSP oligo-conjugated RNA detection probes. The RNA 

in situ hybridization (ISH) probes were conjugated to unique DNA indexing-oligonucleotides 

(DSP barcodes) via a UV photocleavable linker. The slides were also co-incubated with 

fluorescent-labelled visualization antibodies: Pan-Cytokeratin (PanCK, epithelial cell marker), 

CD45 (pan-immune), alpha smooth muscle actin (α-SMA, cancer-associated fibroblast) and 

syto83 (DNA).  

Slides were subsequently loaded onto the GeoMx DSP instrument and scanned producing a 

digital fluorescent image of the tissue. Individual ROIs were then selected. ROIs were selected 

based on the presence of areas of tumour cells, immune cells, and cancer-associated 
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fibroblasts (CAFs). Six ROIs (3 ‘immune hot’ and 3 ‘immune cold’) were selected per tumour 

resulting in 18 ROIs per slide. ROIs were segmented into 3 AOIs for each ‘immune-hot’ ROI 

which were CD45+ (immune), a-SMA+ (CAF) and PanCK (tumour) compartments and 2 AOIs 

per ‘immune-cold’ ROI which were a-SMA+ (cancer-associated fibroblast) and PanCK 

(tumour) compartments. Following selection of the ROIs and segmentation into AOIs the DSP 

barcodes were UV cleaved and collected. The photocleaved oligos were collected via 

microcapillary aspiration and dispensed into a 96-well plate. During the library preparation, the 

DSP barcodes were tagged with their ROI location and subsequently sequenced on an 

Illumina sequencer. The DNA oligonucleotide sequences contained ROI indices which 

mapped them back to their tissue location, an RNA target identification sequence which 

matched them to their ISH probes, and a unique molecular identifier (UMI) to deduplicate 

reads. Sequenced oligonucleotides were processed and imported back into the GeoMx DSP 

analysis software for integration with the slide images and ROI selections for spatially-resolved 

RNA expression.  

Bioinformatics pre-processing was performed using the NanoString GeoMx DSP analysis 

software. ROIs with < 5% detected genes were removed. Genes that were detected in < 5% 

of ROIs were also removed. ROI-level whole transcriptome profiles were upper-quartile (Q3) 

normalised and subsequently used for statistical analysis. For statistical analysis, gene 

expression data were modelled using linear mixed effect models with patient as a random 

effect (R package lmerTest v3.1-3) and variable of interest (e.g. immune hot or cold) as a fixed 

effect. Deconvolved cell type estimates in METABRIC and TCGA breast cancers were 

calculated using consensusTME [355]. This was performed by Syed Haider (BCR 

Bioinformatics team). 

2.14 Macrophage co-culture experiments  
 

THP-1 cells, a human leukaemia monocytic cell line, were cultured in suspension in 

RPMI+10% FBS. ILC cell line MDA-MB-134 previously tagged with red fluorescent protein and 

luciferase (MM134-RFP-Luc2) were cultured as previously described [356]. THP-1 cells were 

differentiated by the addition of phorbol 12-myristate 13-acetate (PMA) (Sigma, UK) 10ng/ml 

for 24hrs. Cells were then polarised by the addition of IFN-y (20ng/ml) and LPS (100ng/ml) 

into M1-like and IL-4 (20ng/ml) and IL-13 (20ng/ml) to M2-like macrophage phenotypes 

(cytokines from Peprotech, UK) [357]. Unpolarized macrophages (M0) were also used as a 

control. 
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ILC cell line MDA-MB-134 previously tagged with red fluorescent protein and luciferase 

(MM134-RFP-Luc2) were cultured as previously described [356]. MM134-RFP-Luc2 and 

polarised THP-1 cells were collected by using cell scrapers to detach cells from the 10cm 

dishes and 1 × 10^6 cells resuspended in 1 ml of serum free media. THP-1 cells were tagged 

with a green lipophilic dye (cat no: KH67GL-1KT) and combined with ILC cells in a ratio of 

2000:5000 in 30μl/well of a 96-well Ultra Low Attachment plate (Corning, UK). The plates were 

centrifuged at 300g for 5 minutes and incubated at 37oC and with 5% atmospheric CO2 for 5 

days. Spheroids were imaged at 12-hour intervals on the Incucyte® S3 System. N = 3 

biological replicates were performed. 

 

2.15: Single nuclei sequencing of MM134-RFP-Luc2 primary mouse 
mammary glands and metastases  
 

2.15.1 Generation of primary and metastatic MM134-RFP-Luc2 ILC 
lesions 
	
All the experiments were performed in accordance with Swiss guidelines for animal safety by 

George Sflomos (ISREC-Swiss Institute for Experimental Cancer Research). NOD.Cg-

Prkdcscid Il2rgtm1Wjl/SzJ and NSG-EGFP (JAX stock #021937) mice were purchased from 

Jackson Laboratories and further expanded in EPFL with a 12-h-light-12-h-dark cycle, 

controlled temperature and food and water ad libitum. Eight to 12-week-old female mice were 

anesthetized by intraperitoneal injection with xylazine 10 mg/kg and ketamine 90 mg/kg 

(Graeub AG) and intraductally injected into the 3rd and the 4th pair of glands with 5-8 ul of 

PBS containing 400,000 cells. Luciferase-based imaging was performed with Xenogen IVIS 

Imaging System 200 (Caliper Life Sciences) in accordance with the manufacturer’s protocols 

and used to monitor individual mammary glands. At sacrifice (11 months 20 days after MIND 

injection), engrafted mammary glands were harvested, and carcinomas were viably frozen. In 

brief, freshly surgically resected xenograft tissues (1-2 mm3 pieces) were transferred into 1ml 

prewarmed (37 degrees) freezing mix of 95% Fetal Bovine Serum and 5% DMSO in a cell 

culture cryovial and shipped to ICR on dry ice. 

 

2.15.2  10x sample preparation and sequencing  

Frozen tissue was weighed and cut into small pieces using a chilled razor blade on dry ice 

and transferred into a 7ml douncer (Millipore Sigma, cat. no. D9063) on ice. 1 mL of cold lysis 

buffer comprising 0.32M Sucrose, 5mM CaCl2, 3mM Mg (Ac)2, 20mM Tris-HCl pH 7.5, 0.10% 
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Triton X-100, 0.1mM EDTA pH 8.0, DEPC Water, 40U/mL RNase Inhibitor (Millipore Sigma, 

cat. No. 3335402001) was added to the douncer for 5-minute lysis. The tissue was 

homogenized tissue with 2 - 5 strokes with the loose pestle (pestle A) and 2 - 5 strokes with 

the tight pestle (pestle B). After the 5-minute lysis, nuclei were pelleted by spinning at 40C for 

10 minutes at 800 x g. The supernatant was removed, and the nuclei pellet was resuspended 

with 2 ml of wash buffer comprising 1 x PBS, 1% BSA, and 0.1U/uL RNase Inhibitor. 

Centrifugation and resuspension with wash buffer was repeated for a total of 2 washes. After 

the second wash, the nuclei suspension was filtered using a 40um Flowmi cell strainer 

(Millipore Sigma, cat. no. BAH136800040).  

The nuclei suspension was stained with 4′,6-diamidino-2-phenylindole (DAPI) for 

(Fluorescence-activated cell sorting) FACS sorting. DAPI positive nuclei was collected and 

debris and nuclei aggregates within the DAPI positive gating was excluded. After FACS, sorted 

nuclei was spun down at 4C for 10 minutes at 800 x g. Nuclei counting was done using a 

haemocytometer (Thermo Fisher, cat. no. 22-600-100). Following counting, the appropriate 

volume for each sample was calculated for a target capture of 10,000 cells and loaded onto 

10x single cell G chip.  After droplet generation, samples were transferred to a pre-chilled PCR 

strip tube (MJS BioLynx, cat. no. US14024700) and incubated overnight in a Veriti 96-well 

thermal cycler (Thermo Fisher). The next day, sample cDNA was recovered using Recovery 

Agent provided by 10x and subsequently cleaned up using a Silane DynaBead mix as outlined 

by the user guide 3’ Reagent Kits v3.1. Purified cDNA was amplified for 11 cycles before being 

cleaned up using SPRIselect beads (Beckman Coulter, cat. no. B23318). Samples were run 

on a Bioanalyzer (Agilent Technologies) to determine cDNA concentration. cDNA libraries 

were prepared as outlined by the Single Cell 3’ Reagent Kits v3.1 user guide with modifications 

to the PCR cycles based on the calculated cDNA concentration. 

The molarity of each library was calculated based on library size as measured bioanalyzer 

(Agilent Technologies) and qPCR amplification data (Roche, cat. no. 07960140001). Samples 

were sequenced on Illumina’s NovaSeq 6000 with the following run parameters: Read 1 – 28 

cycles, read 2 – 90 cycles, index 1 – 10 cycles and index 2 – 10 cycles.  

 

2.15.3 Data analysis 
 

The data was analysed by Syed Haider and Fatemeh Ahmadi Moughari (BCR Bioinformatics 

team). Reads were mapped to the combined human hg38 and mouse mm10 reference 

genome using CellRanger V6 [358] to quantify the reads for each of the cells. The cells were 

labeled as human & mouse cells based on their proportion of reads mapped to either of 
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species. The downstream analysis was performed in 3 main steps: preprocessing, individual 

sample analysis and cross-sample analysis. In the preprocessing step mouse cells were 

removed, to focus on the human ILC tumour cells. Cells with less than 1500 or more than 

32000 reads (Unique Molecular Identifier - UMI counts) were removed to remove outliers. 

Cells with high number of reads mapping to the mitochondrial genome were removed. Doublet 

cells were detected using both scDblFinder and DoubletFinder methods, and cells that were 

called as the doublet by both methods were removed. Genes that were not expressed in at 

least 90% of cells (zero-inflated genes) were removed. 

Each sample was then analyzed using Seurat R package V4 [359] and were normalized using 

SCTransform V1 [360]. The top 50 principal components were used for Uniform Manifold 

Approximation and Projection (UMAP) visualization and clustering. Clustering was performed 

using the Louvian algorithm [361] with default parameters. To find the shared transcriptional 

patterns between samples, the CIDER meta-clustering algorithm was used [362]. This 

approach was chosen as previous studies have widely used batch effect correction-based 

integration to find clusters that are shared between samples. However, applying batch effect 

correction methods to integrate only epithelial cells removes true biological signals and over-

corrects the data. It has been shown that batch correction methods rarely lead to analysis 

improvement [363]. To overcome this CIDER, a meta-clustering method that does not require 

batch effect correction was used. Instead, it uses batch covariate modelling to compute 

similarities between initial clusters [362]. It computes the pairwise similarity of the initial 

clusters and runs the hierarchical clustering on the similarity matrix to define the meta-clusters; 

i.e. each meta-cluster is composed of a group of initial clusters that are very similar to each 

other and lass similar to the rest.  

Next to gain further insights into the gene expression profiles of each individual CIDER meta-

cluster, the markers of the individual meta-clusters were defined by the aggregation of markers 

of the constituent subclusters. Firstly, the markers of the subclusters were computed by 

running differential gene analysis on each individual sample, using the Wilcoxon rank test with 

a fold change threshold of 1.25 and an adjusted p-value < 0.05. The markers from all 

subclusters of a meta-cluster were then aggregated using an adjusted combined p-value 

using Benjamini-Hochberg [364]. Genes with adjusted combined p-values < 0.01 were 

considered and ranked as the top markers of the meta-clusters.   
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3. Chapter 3: Identification of molecular drivers of clinically 
aggressive ILCs 

 
 

3.1 Background 
 

ILC as a special breast cancer subtype is recognised for its propensity to cause late disease 

recurrence whereby patients relapse several years after primary diagnosis. This is attributed 

to the presence of dormant disseminated cancer cells which are distributed away from the 

primary tumour and exist as minimal residual disease following primary surgery. They have 

the ability to rest dormant for several years and during this time they can develop genetic and 

epigenetic features which subsequently result in aggressive tumour growth and overt 

metastases at distant sites [65]. However despite this, there is a subset of ILC patients who 

are treated for primary disease but relapse early (< 3 years of initial diagnosis) despite 

standard of care treatment as well as patients who present with metastatic disease (de novo 

metastases). These patients have clinically aggressive disease and limited treatment options, 

representing a clinically unmet need. The molecular drivers of the aggressive disease biology 

are poorly understood in these patients. Moreover within ILC itself, the rare histological 

subtype pleomorphic ILC is associated with clinically aggressive disease with numerous 

studies associating pleomorphic histology with a range of poor prognostic features and early 

disease recurrence [69-72, 77, 125]. 

 
Despite advances in the understanding of the molecular features of ILC as a special breast 

cancer subtype, as well as rarer subtypes such as pleomorphic ILC, histological analysis 

remains the most frequently and widely used method for the diagnosis of these tumours. A 

major challenge which exists within the field of diagnostic pathology including the diagnosis of 

ILC, is inter-observer variability. This refers to the degree of variation in the diagnostic 

interpretations of two or more independent pathologists when the same case is analysed [365]. 

Studies suggest that inter-observer variability appears to be greater in cancer diagnostics 

compared to non-neoplastic lesions [366, 367]. Moreover, the degree of variability can depend 

upon the tumour type and frequency. Interestingly breast and gynaecological tumours and 

less common tumour types show greater levels of inter-observer variability compared to skin, 

gastrointestinal tumours and more frequently occurring tumour subtypes [367-369]. Given that 

pleomorphic ILC is a breast tumour, and an uncommon tumour accounting for less than 1% 

of all invasive breast cancers, which general pathologists are unlikely to be presented with on 

a regular basis, the degree of inter-observer variability in the diagnosis of this rare tumour type 
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would be relatively high, although no large studies have specifically assessed this. One small 

study assessed inter-observer variability in the diagnosis of 5 pleomorphic ILCs among 17 

pathologists with varying levels of experience and showed that the level of agreement for 

pleomorphic ILC failed to exceed substantial concordance [370]. Given the clinically more 

aggressive nature of pleomorphic ILC compared to the more common classic ILC, the correct 

diagnosis of these lesions remains important, as it identifies an ILC patient subset who may 

require closer follow-up or more intensive or prolonged treatment.  

 

Over recent years there has been progress and increased interest in the use of digital 

pathology and Artificial Intelligence (AI) techniques which provide new opportunities for 

addressing the challenge of inter-observer variability in diagnostic pathology. AI approaches 

use diagnostic algorithms to contribute to histological diagnosis in a range of malignancies 

[371, 372]. Such approaches typically rely on supervised machine learning, whereby software 

is first trained to recognise specific tissue components. Many manually annotated tumour 

features are needed for machine learning based classification which can therefore be time-

consuming. Whilst digital image analysis techniques are starting to be used in diagnostic 

pathology, they have been adopted more widely in radiology [373]. The low levels of 

digitization of the diagnostic workflow in many pathology laboratories, together with a 

reluctance from some pathologists to replace the traditional microscope is the reason for this 

[374]. However with the development of digital slide scanners, which enable fast whole slide 

scanning, digital pathology is becoming adopted in a growing number of pathology 

departments [372, 375]. Digital image analysis when incorporated into the standard 

histopathology workflow, together with the use of AI techniques, helps to overcome inter-

observer variability and standardise the diagnostic process, challenging the use of the human 

eye alone as the gold standard. QuPath is an example of a bioimage analysis software tool 

for digital pathology image analysis, providing a platform with a range of algorithms and image 

analysis applications for the study of complex and heterogenous tissue images [341]. One 

such application which QuPath offers, is a measurement of nuclear size across a tumour which 

can aid in distinguishing pleomorphic from non-pleomorphic ILCs. 

 

ILC has been previously characterised at the molecular level as detailed in chapter 1. However 

studies which have thoroughly assessed distinct ILC subtypes, notably pleomorphic ILC are 

limited with very small pleomorphic ILC patient numbers. They have previously concluded that 

in addition to an enrichment of HER2 alterations, pleomorphic ILCs show higher rates of 

mutations in TP53, KMT2C, ISR2, MAP3K1, NCOR1, NF1, TBX3, ARID1A and ARID1B 

compared to classic ILC [101, 103, 293]. When metastatic ILC on the whole is considered, 

including all ILC histological subtypes, hybrid-capture-based genomic profiling of 180 ILC 
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matched primary and metastatic biopsies identified an enrichment of ESR1 alterations in ILC 

metastases in relation to the primary breast specimens, as well as an enrichment of 

NF1 alterations in the metastases [292]. A further study using a multicentric series of matched 

primary and metastatic samples from 94 ER+ ILC patients identified mutations (AKT1, 

ARID1A, ESR1, ERBB2, or NF1) as well as CNAs (NF1 deletions, PTEN deletions, 

CYP19A1 amplifications) which were unique to the metastases in 22% (7/32) and 19% (4/21) 

of ILCs respectively, reflecting molecular heterogeneity and clonal evolution in ILC [290].  

 

At the gene expression level, distinct ILC gene expression subtypes have been identified in 

the Rational Therapy for Breast Cancer (RATHER) consortia and TCGA cohort (n = 106 and 

n = 144 respectively) [32, 277]. Two and three gene-expression subtypes were identified in 

these cohorts (RATHER: immune-related and hormone-related subtypes TCGA: immune-

related, reactive, proliferative subtypes). Interestingly both included an ‘immune-related’ 

subtype as further detailed in chapter 1. However, these two separate ‘immune’ subtyping 

approaches failed to identify the same ILC cases when they were applied to the same dataset 

[282]. Moreover there was no significant difference in survival outcomes between the two RATHER 

gene-expression subtypes [277].  

 

So far published studies have not explicitly profiled pleomorphic tumours. There is therefore a 

need to understand drivers of clinically aggressive disease among ILCs at both the genomic 

and transcriptomic level to potentially identify high-risk ILC patients. 

 

3.2 Chapter Aims 

Overall the purpose of this chapter is to: 

1) Characterise somatic driver mutations in aggressive ILCs. 

 

2) Characterise the transcriptomic features associated with aggressive ILC. 
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3.3 Results 
 

3.31 Pleomorphic ILCs show an association with early disease 
recurrence  
 
In the first instance, a cohort of 64 cases classed as ILC from the KHP tissue bank were 

reviewed histologically by two independent pathologists (Dr Ioannis Roxanis and myself). Most 

of the histology reports for these cases classed them as ‘lobular carcinomas’ without further 

details on ILC subtype histology. This reflects the age of the samples, since many of the cases 

were from the early 90s and refinements to the pathology reporting classifications have 

occurred over time such that nowadays more detailed classifications for ILC exist (see chapter 

1). The cases selected were relapsing ILC patients and the initial aim was to assess any 

association between the onset of relapse (early vs late) and the level of immune infiltrate. 

 

Upon histological review, 10/64 (15.6%) showed pleomorphic histology which is consistent 

with reported incidence rates of pleomorphic ILC [77, 118]. The remainder of cases were non-

pleomorphic, and mainly classed as classic ILC (Supplementary Table 1). One pleomorphic 

patient presented with de novo metastatic disease as did 6 non-pleomorphic cases. After 

excluding the de novo metastatic patients, when the time from primary diagnosis to disease 

recurrence was compared in pleomorphic (n = 9) vs non-pleomorphic patients (n = 48), the 

pleomorphic patients showed significantly shorter periods between primary disease and 

metastasis (p = 0.0390, Mann-Whitney U test, Figure 3.1). When a 3 years cut off was used 

to define early relapse, a higher proportion (4/9 - 44.4%) of pleomorphic patients relapsed 

early compared to non-pleomorphic (11/48 - 22.9%) patients although this difference was not 

statistically significant (p = 0.223, Fisher’s exact test). 

 

 

 

 

 

 

 

 
 
Figure 3.1: Pleomorphic ILCs relapse earlier than non-pleomorphic ILCs: Scatterplot showing time 
between primary diagnosis and disease recurrence in pleomorphic (n = 9) vs non-pleomorphic (n=48) 
ILC (p = 0.0390, Mann-Whitney U test). 
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3.32 Digital histopathology assessment in an extended ILC cohort 
 

Having identified in a small metastatic ILC cohort that pleomorphic histology appears to be 

associated with shorter time intervals between primary diagnosis and recurrence and given 

that pleomorphic ILC is a rare and understudied tumour type, a larger cohort of pleomorphic 

ILCs from patients with and without disease recurrence was subsequently requested and 

reviewed from the KHP tissue bank as well as pleomorphic ILC cases collected through the 

GLACIER study. In addition, further non-pleomorphic ILC cases from patients without disease 

recurrence were also acquired from the KHP tissue bank (Supplementary Table 1). In total an 

ILC study cohort of 163 patients with a range of different clinical outcomes was reviewed 

histologically as summarised in Table 3.1. Throughout the project, these cases were subject 

to a range of different histological and molecular based assessments (Figure 3.2).  

 

A range of different ILC subtypes were identified, including classic (52.1%), pleomorphic 

(33.7%), mixed - without a pleomorphic component (5.52%), mixed with a pleomorphic 

component (4.91%), solid (1.84%) and alveolar (1.84%). Consistent with the WHO diagnostic 

criteria, the classic cases were characterised by small, uniform discohesive cells, with round 

or notched oval nuclei and occasional intra-cytoplasmic lumina, arranged as single files or 

individually dispersed cells throughout the stroma with minimal disturbance of the normal 

tissue architecture, or desmoplastic reaction (Figure 3.3 A, B, D). Associated LCIS was 

occasionally seen (Figure 3.3 C). In contrast pleomorphic cases were identified based upon a 

greater degree of cellular atypia and pleomorphism than the classic and other subtypes. They 

showed nuclear enlargement and greater variability in the size and shape of the nuclei, with 

the presence of nuclei > 4 times the size of lymphocytes, hyperchromasia and occasional 

prominent nucleoli (Figure 3.3 E - F). Pleomorphic LCIS, more frequent mitoses and 

lymphovascular invasion were also features identified in cases classed as pleomorphic ILC 

(Figure 3.3 G - H). The rare solid and alveolar cases were identified by the presence of solid 

sheets and globular aggregates of tumour cells respectively (Figure 3.3 I - J). Mixed lesions 

showed an admixture of the classic type with one or more additional subtypes (Figure 3.3 K - 

L). 
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Figure 3.2: Overview of study workflow: Consort diagram summarising study workflow using 
combined KHP and GLACIER ILC cases (n = 163). 
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Correlation of findings with clinical outcome



 93 

 
Table 3.1: Clinicopathological features of the extended ILC cohort 

Parameter Number (n)

ILC tumour samples 163
Histological subtype
  Classic ILC 85
  Pleomorphic ILC 55
  Mixed ILC without pleomorphic component 9
  Mixed ILC with pleomorphic component 8
  Solid ILC 3
  Alveolar ILC 3
Average patient age (years) 59.8
Disease relapse status at 15-year follow-up
   No Relapse 76
   Relapse 83
     < 3 years of primary diagnosis 34
     3 - 6 years after primary diagnosis 22
     > 6 years after primary diagnosis 26
    Onset unknown 1
Inadequate follow-up 4
Tumour size 
   ≤ 20 mm 39
   > 20 mm, ≤ 50 mm 92
   > 50 mm 31
   Unknown 1
Number of involved lymph nodes

0 74
   1 – 3 41
   4 – 9 27
   ≥ 10 19
Sites of metastases 
   Bone 51
   Liver 18
   Pleura 18
   Skin 15
   Peritoneum 11
   Lung 10
   Brain 3
   Meningeal 2
   Mediastinal 2
   Brachial Plexopathy 2
   Other / Unknown 20
Tumour grade
   I 3
   II 97
   III 27
   Unknown 36
Oestrogen (ER) Status
   ER+ 151
   ER- 8
   Unknown 4
Progesterone (PR) Status
   PR+ 102
   PR- 48
   Unknown 13
HER2 Status
   HER2+ 11
   HER2- 127
   Unknown 25
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Figure 3.3: Histological subtypes and features of the ILC cohort: A) Classic ILC case at low power 
showing characteristic single file pattern B) Classic ILC case at high power showing uniform cells with 
small round nuclei C) Classic LCIS identified in a classic ILC case D) Classic ILC case where tumour 
cells show abundant intracytoplasmic lumina E) Pleomorphic ILC case at low power showing single file 
and single cell infiltrative pattern with greater cellular atypia than classic ILC F) Pleomorphic ILC case 
at higher power showing nuclear pleomorphism and prominent nucleoli G) Pleomorphic LCIS with 
central necrosis and surrounding invasive pleomorphic ILC H) Lymphovascular invasion (LVI) identified 
in a pleomorphic ILC case I) Alveolar ILC showing aggregates of tumour cells J) Solid ILC K) Mixed ILC 
without a pleomorphic component showing classic and alveolar areas L) Mixed ILC with a pleomorphic 
component showing solid and pleomorphic areas. 
 

 

To objectively assess and confirm the histological diagnoses made of pleomorphic and non-

pleomorphic ILC, a subset of 25 pleomorphic and 25 non-pleomorphic cases were further 

assessed using QuPath [341] (Table 3.2). A total of 200 - 250 representative tumour cells 

were selected in each case and nuclei were segmented using StarDist, a cell detection 

algorithm [342]. Cases which were identified histologically as pleomorphic showed a 

significantly higher nuclear size compared to the subset of cases identified as non-

pleomorphic (p < 0.0001, Mann-Whitney U test, Figure 3.4 A). Moreover, cases identified as 

pleomorphic showed greater variability in nuclear size (pleomorphism) with a significantly 

higher standard deviation in nuclear size across the tumour cells assessed for each of the 

pleomorphic cases compared to the non-pleomorphic cases (p < 0.0001 Mann-Whitney U test, 

Figure 3.4 B).  
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Table 3.2: Nuclear size and standard deviation of nuclear size results for 25 pleomorphic and 25 
non-pleomorphic ILCs assessed using QuPath. 
 

Case Histology (pleomorphic = 1/ 
non-pleomorphic = 0) Average nuclear size (μm) Standard deviation of 

nuclear size

3117 1 37.37 17.84
9068 1 44.10 25.39
9252 1 47.75 18.60
9894 1 45.07 22.07

TG00506 1 40.31 14.66
TG01139 1 50.87 23.62
TG01189 1 38.72 11.44
TG02222 1 46.79 16.71
7756 1 42.94 17.31
3117 1 36.60 17.10
9350 1 59.66 26.32

17011789 1 41.22 15.44
TG01941 1 44.93 19.93
TG01958 1 50.04 25.02
TG01964 1 64.24 23.45
TG02006 1 40.34 13.86
TG02072 1 44.77 19.42
TG02166 1 43.08 17.07
TG02210 1 43.51 19.44
17015028 1 45.79 23.48
17020462 1 39.93 16.40
17023387 1 79.74 33.64
17037789 1 57.85 24.48
17047324 1 50.63 18.16
17051586 1 53.83 23.85
684 0 25.81 8.99
758 0 21.24 7.33
759 0 30.31 12.16
843 0 27.47 10.69
1190 0 30.68 11.36
1529 0 23.52 8.66
1605 0 34.03 11.17
137 0 35.34 12.71
245 0 27.46 11.77
144 0 27.64 11.04
1867 0 32.01 10.52
2272 0 27.21 9.50
5817 0 31.54 12.07
6389 0 37.61 13.38
6813 0 27.02 8.47
7490 0 38.62 14.80
8785 0 25.86 9.71
9005 0 30.82 11.33
9129 0 26.43 9.85
9353 0 29.40 11.15
9423 0 27.29 12.74
9573 0 25.09 10.94
10293 0 35.32 13.21

17037705 0 26.83 11.01
4148/17020161 0 31.33 10.91
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Figure 3.4: Pleomorphic ILCs show increased nuclear size and variability: A) Scatterplot 
comparing the average tumour cell nuclear size in pleomorphic (n = 25) vs non-pleomorphic (n = 25) 
ILC showing significantly greater nuclear size in pleomorphic ILC (p < 0.0001, Mann-Whitney U test) B) 
Scatterplot comparing the degree of variation (standard deviation) in nuclear size in pleomorphic (n = 
25) vs non-pleomorphic (n = 25) ILC showing significantly greater nuclear size variation in pleomorphic 
ILC (p < 0.0001, Mann-Whitney U test) C) QuPath selection of tumour cells and assessment of nuclear 
size in representative pleomorphic and non-pleomorphic cases: top panel shows pleomorphic case at 
i) low (x 10) and ii) high (x 40) power with cells segmented to identify nuclear area, bottom panel shows 
non-pleomorphic case at iii) low (x 4) and iv) high (x 30) power with cells segmented to identify nuclear 
area. 
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Figure 3.2: Pleomorphic ILCs show increased nuclear size and variability
in nuclear size compared to non-pleomorphic ILC: A) Scatter plot
comparing the average tumour cell nuclear size in pleomorphic (n = 25) and
non-pleomorphic (n = 25) showing significantly greater nuclear size in
pleomorphic ILC (p < 0.0001, Mann-Whitney test) B) Scatter plot comparing
the degree of variation (standard deviation) in nuclear size in pleomorphic (n =
25) and non-pleomorphic (n = 25) showing significantly greater nuclear size
variation in pleomorphic ILC (p < 0.0001, Mann-Whitney test) C) QuPath
selection of tumour cells and assessment of nuclear size in representative
pleomorphic and non-pleomorphic cases: top panel shows pleomorphic case
at i) low ( x 10 ) and ii) high ( x 40 ) power with cells segmented to identify
nuclear area, bottom panel shows non-pleomorphic case at iii) low ( x 4 ) and
iv) high ( x 30 ) power with cells segmented to identify nuclear area
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Figure 3.2: Pleomorphic ILCs show increased nuclear size and variability
in nuclear size compared to non-pleomorphic ILC: A) Scatter plot
comparing the average tumour cell nuclear size in pleomorphic (n = 25) and
non-pleomorphic (n = 25) showing significantly greater nuclear size in
pleomorphic ILC (p < 0.0001, Mann-Whitney test) B) Scatter plot comparing
the degree of variation (standard deviation) in nuclear size in pleomorphic (n =
25) and non-pleomorphic (n = 25) showing significantly greater nuclear size
variation in pleomorphic ILC (p < 0.0001, Mann-Whitney test) C) QuPath
selection of tumour cells and assessment of nuclear size in representative
pleomorphic and non-pleomorphic cases: top panel shows pleomorphic case
at i) low ( x 10 ) and ii) high ( x 40 ) power with cells segmented to identify
nuclear area, bottom panel shows non-pleomorphic case at iii) low ( x 4 ) and
iv) high ( x 30 ) power with cells segmented to identify nuclear area
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3.33 Pleomorphic ILC is associated with earlier disease recurrence  
 
Following the initial analysis in the original 64 relapsing ILCs which identified an association 

between pleomorphic ILC histology and earlier onset of disease recurrence, an assessment 

was next made of this association in the extended ILC cohort having acquired further case 

numbers for assessment. 

 

Nine patients (2 pleomorphic and 7 non-pleomorphic) presented with de novo metastatic 

disease and were not included in the analysis. Among patients presenting with primary 

disease, using a 15-year follow-up time, 24 pleomorphic patients and 50 non-pleomorphic 

patients developed disease recurrence. The median time to recurrence in the pleomorphic 

group was 2.63 years (IQR: 1.36 - 6.09 years) compared to 4.63 years (IQR: 2.86 - 8.28 years) 

in the non-pleomorphic group. Overall the pleomorphic patients relapsed significantly earlier 

than the non-pleomorphic patients (p = 0.0456, Mann Whitney U test, Figure 3.5A). Given that 

pleomorphic ILCs have higher rates of ER- and HER2+ disease, further analysis was 

performed excluding ER- and HER2+ cases, and cases for whom this information was 

unavailable. The median time to recurrence in the remaining 15 ER+/HER2- pleomorphic ILCs 

was 2.22 years (IQR: 1.36 – 8.40 years) compared to 4.63 years (IQR: 2.86 - 8.28 years) in 

the 50 ER+/HER2- non-pleomorphic cases. Overall the difference in time to relapse between 

ER+/HER2- pleomorphic and non-pleomorphic ILCs did not reach statistical significance (p = 

0.0970, Mann Whitney U test Figure 3.5B), suggesting that earlier relapse observed in 

pleomorphic ILC is driven by hormone status rather than nuclear pleomorphism. 

 
Figure 3.5: Pleomorphic ILC is associated with earlier disease recurrence in relapsing ILC: A) 
Scatterplot comparing time to disease recurrence in relapsing pleomorphic (n = 24) vs non-pleomorphic 
(n = 50) ILCs (p = 0.0456, Mann-Whitney U test) B) Scatterplot comparing time to disease recurrence 
in ER+/HER2- relapsing pleomorphic (n = 15) vs non-pleomorphic (n = 50) ILCs (p = 0.0970, Mann-
Whitney test). 
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3.34 Pleomorphic ILC is distinct at the genomic level 
 

Ninety-five samples (52 pleomorphic and 43 non-pleomorphic) were sequenced using a 

targeted, custom-designed capture panel (RMH200 v2 panel) consisting of 233 cancer related 

genes (Supplementary Table 2). This identified differences between the two ILC histological 

subtypes at the genomic level with respect to the frequency of mutations and copy number 

alterations (CNAs) (Figure 3.6, 3.7). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6: Pleomorphic ILC is distinct from non-pleomorphic ILC at the genomic level: Heatmap 
summarising the mutations and copy number alterations observed in 95 ILC including 43 non-
pleomorphic cases and 52 pleomorphic cases. 
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Figure 3.7: Pleomorphic ILC differs from non-pleomorphic ILC in the frequency of mutations 
observed: Longtail barchart showing the frequency of mutations in A) pleomorphic (n = 52) and B) non-
pleomorphic ILC (n = 43) (genes mutated in fewer than two patients in each subtype are excluded). 
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Pleomorphic ILC had significantly higher rates of TP53 and FAT1 mutations and significantly 

lower rates of PIK3CA mutations compared to non-pleomorphic ILC (Table 3.3). Of the 12 

pleomorphic patients with TP53 mutations 9 were either ER- or HER2+ and when the 

frequency of TP53 mutations only in ER+/HER2- pleomorphic (n = 32) vs non-pleomorphic (n 

= 43) ILCs was completed there was no significant difference according to histology (p = 0.645, 

Fisher’s exact test). 

 

Table 3.3: Number and percentage of TP53, FAT1 and PIK3CA mutations in pleomorphic vs non-
pleomorphic ILC (% represents the percentage of cases within each histological subtype, p-
value represents pleomorphic vs non-pleomorphic frequency comparison using the Fisher’s 
exact test). 
 
 
Consistent with previous studies which report higher rates of HER2 alterations in pleomorphic 

vs non-pleomorphic ILC [100-103], when CNAs were considered, HER2 amplifications were 

present in 7/52 (13.5%) of pleomorphic cases compared to 0/43 (0%) of non-pleomorphic 

cases (p = 0.0150, Fisher’s exact test, Table 3.4), although no significant difference was 

observed in the HER2 mutation frequency. When analysis was performed assessing 

mutations with a variant allele frequency (VAF) < 5%, a further pleomorphic case harboured 

a low frequency HER2 mutation with VAF 1.4%. Additionally, CDK12 alterations (mutations 

and/or CNA’s) were observed only in pleomorphic ILCs (Table 3.4), with 6/7 patients also 

harbouring HER2 amplifications, (Table 3.5). 
 

Table 3.4: Number and percentage of HER2 and CDK12 alterations in pleomorphic vs non-
pleomorphic ILC (% represents the percentage of cases within each histological subtype, p-value 
represents pleomorphic vs non-pleomorphic frequency comparison using the Fisher’s exact test, 
*altered encompasses CDK12 amplifications (n = 5) and mutations (n = 2), mutations with VAF > 5% 
only are included). 
 

Gene Mutation status Pleomorphic (n) Non-pleomorphic (n) Total (n) p-value

mutant 12 (23.1%) 2 (4.7%) 14
wild-type 40 (76.9%) 41 (95.3%) 81
mutant 6 (11.5%) 0 (0%) 6

wild-type 46 (88.5%) 43 (100%) 89
mutant 14 (26.9%) 24 (55.8%) 38

wild-type 38 (73.1%) 19 (44.2%) 57

0.0179

0.0304

0.0061

TP53

FAT1

PIK3CA

Gene Mutation status Pleomorphic (n) Non-pleomorphic (n) Total (n) p-value

mutant 4 (7.69%) 1 (2.33%) 5
wild-type 48 (92.3%) 42 (97.7%) 90
amplified 7 (13.5%) 0 (0%) 7

non-amplified 45 (86.5%) 43 (100%) 88
altered* 7 (13.5%) 0 (0%) 7
wild-type 45 (86.5%) 43 (100%) 88

HER2

HER2

CDK12

0.373

0.015

0.015
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Table 3.5: Summary of overlap between CDK12 and HER2 alterations in pleomorphic ILC (% 
represents the percentage of the column totals i.e. the % of total CDK12 altered and wild-type cases 
harbouring or not harbouring HER2 alterations). 
 

3.34.1 Pleomorphic ILCs have a higher mutational load 
 
Aside from specific mutations alone, an assessment was next made to establish if pleomorphic 

ILC differs from non-pleomorphic ILC in terms of the total mutational load. The number of 

mutations (per Mb of the sequencing panel) was calculated for each tumour case and 

compared between pleomorphic (n = 52) and non-pleomorphic (n = 43) cases. This showed a 

significantly higher mutational load in pleomorphic ILCs (p < 0.0001, Mann-Whitney U test, 

Figure 3.8A). To control for hormone status, and the fact that pleomorphic ILCs show a higher 

rate of ER- and HER2+ disease, a further analysis was completed excluding ER- and HER2+ 

cases. Again a significantly higher tumour mutational load was observed in the ER+/HER2- 

pleomorphic (n = 32) vs non-pleomorphic (n = 43) ILCs (p < 0.0001, Mann-Whitney U test, 

Figure 3.8B). 

Figure 3.8: Pleomorphic ILCs have a higher mutational load than non-pleomorphic ILC: A) 
Scatterplot comparing the number of mutations (per Mb of panel) in pleomorphic (n = 52) vs non-
pleomorphic ILC (n = 43) B) Scatterplot comparing the number of mutations (per Mb of panel) in 
ER+/HER2- pleomorphic (n = 32) vs non-pleomorphic ILC (n = 43). 
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Given that pleomorphic ILC is characterised by a larger nuclear size than non-pleomorphic 

ILC, and that pleomorphic cases have a significantly higher mutational load than non-

pleomorphic ILC, an assessment was next made to establish any direct relationship between 

the number of mutations and nuclear size in ILC. To do this nuclear size was accurately 

assessed in the patients with mutational data using QuPath [341]. Some cases had to be 

excluded due to suboptimal staining on H&E which resulted in inaccurate cell-detection. 

Overall mutational load and nuclear size were compared in a total of 59 ILCs (26 pleomorphic 

and 33 non-pleomorphic cases). This showed a statistically significant positive correlation 

between tumour mutational load and average nuclear size (ρ = 0.411, P = 0.001, Spearman 

correlation test).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9: Tumour mutational load is positively correlated with nuclear size in ILC: Scatterplot 
showing a positive correlation between the number of mutations (per Mb of panel) and average nuclear 
size (assessed using QuPath) in 59 ILCs (ρ = 0.411, P = 0.001, Spearman correlation test). 
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3.34.2 FGFR1 alterations are associated with relapse in pleomorphic 
ILC  
 

Having identified differences in the genomic landscape based upon ILC histological subtype, 

an assessment was next made to determine if any specific genomic alterations held prognostic 

significance in pleomorphic and non-pleomorphic ILC. Within the pleomorphic group, long-

term follow-up data was available for 49/52 patients. Of the 49 patients, 24 had disease 

recurrence and 25 were recurrence-free at censorship. Of the 49 patients with outcome data, 

FGFR1 alterations were observed in relapsing patients only. Three relapsing patients had 

FGFR1 amplifications and a further 2 patients had FGFR1 mutations (Figure 3.10, Table 3.6) 

resulting in an overall rate of FGFR1 alterations of 20.8% in the relapsing group, compared to 

an absence of FGFR1 alterations in non-relapsing patients (p = 0.0223, Fisher’s exact test). 

Of the relapsing patients with FGFR1 alterations, 2 relapsed early (< 3 years), 1 had 

intermediate relapse (>3 years, ≤ 6 years), 1 had late relapse (> 6 years), and the remaining 

patient relapsed but the specific date of relapse was unavailable. Aside from FGFR1, no other 

genomic alterations were associated with outcome in the pleomorphic ILCs. Follow-up data 

was available for 42/43 non-pleomorphic ILCs and there were also no genomic alterations 

associated with relapse among these patients (Figure 3.11). 

 

 
Table 3.6: Number of patients with FGFR1 alterations and clinical outcome in pleomorphic ILC: 
(% represents the percentage of the row totals). 
 

FGFR1 mutation or 
amplification (n) FGFR1  wild-type (n) Total (n)

Relapse (n) 5 (20.8%) 19 (79.2%) 24
No-relapse (n) 0 (0%) 25 (100%) 25

Total (n) 5 44 49
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Figure 3.10: FGFR1 alterations are associated with relapse in pleomorphic ILC: Heatmap 
assessing association between genomic alterations and clinical outcome in 49 pleomorphic ILCs with 
clinical outcome data, showing a higher frequency of FGFR1 alterations in relapsing vs non-relapsing 
patients (p = 0.0223, Fisher’s exact test) (U = unknown onset of relapse, EARLY-R = early relapse, 
INT-R = intermediate relapse, LATE-R = late relapse). 
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Figure 3.11: No genomic alterations are significantly associated with clinical outcome in non-
pleomorphic ILC: Heatmap summarising the mutations and CNAs observed in 42 non-pleomorphic 
ILCs with clinical outcome data (Early – R = early relapse, INTERMEDIATE – R = intermediate relapse, 
LATE – R = late relapse, NO – R = no relapse). 
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3.35  Identification of a prognostic gene expression risk predictor in 
pleomorphic ILC 
 
Given that aside from FGFR1 alterations, no other genes appeared to be associated with 

clinical outcome from the targeted DNA sequencing, an assessment of the transcriptomic 

landscape of clinically aggressive ILCs was next made to better understand the drivers of 

aggressive disease biology at the gene expression level. To do this a multi-pronged approach 

was undertaken (Figure 3.12).   
 

 
Figure 3.12: Overview of RNA study workflow: Consort diagram summarising study workflow to 
assess the transcriptomic features of aggressive ILCs. 
 

Given that there are no publicly available RNA datasets derived specifically from pleomorphic 

ILC, a cohort of 47 pleomorphic ILCs from the KHP ILC cohort was assembled and subject to 

RNA sequencing (Table 3.7). The tumours were needle macro-dissected from FFPE-derived 

tissue sections prior to RNA extraction and sequencing to enrich for tumour epithelial-cell 

content. Univariable survival analysis in the KHP discovery cohort was first performed in 45 
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samples (2 de novo metastatic patients were excluded from survival analysis). This identified 

157 and 394 genes which were significantly associated with OS and MFS respectively, using 

an unadjusted p-value threshold of < 0.05. Of these 134 OS genes and 356 MFS genes were 

common between the KHP and validation datasets (Supplementary Table 6, 7). 

 

 
Table 3.7: Clinical features of KHP pleomorphic ILC RNA cohort 
 

 

 

Parameter Number (n)

Pleomorphic ILC tumour samples 47
Average patient age (years) 59.5
Disease relapse status at 15-year follow-up
   No Relapse 25
   Relapse 22
de novo metastatic 2
     < 3 years of primary diagnosis 9
     3 - 6 years after primary diagnosis 7
     > 6 years after primary diagnosis 3
    Onset unknown 1
Tumour size 
   ≤ 20 mm 12
   > 20 mm, ≤ 50 mm 27
   > 50 mm 8
Number of involved lymph nodes

0 18
   1 – 3 15
   4 – 9 9
   ≥ 10 5
Sites of metastases 
   Bone 11
   Liver 2
   Pleura 2
   Abdominal (not liver) 2
   Peritoneum 2
   Lung 1
   Skin 1
   Brain 1
   Brachial Plexopathy 1
   Other / Unknown 4
Tumour grade
   II 23
   III 20
   Unknown 4
Oestrogen (ER) Status
   ER+ 36
   ER- 7
   Unknown 4
Progesterone (PR) Status
   PR+ 29
   PR- 11
   Unknown 7
HER2 Status
   HER2+ 7
   HER2- 36
   Unknown 4
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Sixty-seven of the 134 OS genes were also included within the 356 MFS genes. Enrichr [376] 

was used to study the pathways associated with the 134 OS and 356 MFS genes. Pathways 

associated with the 134 OS genes identified in the ‘WikiPathway 2021 Human’ database 

included TGF-beta receptor signaling and interleukin-1 signaling (Table 3.8). There were no 

statistically significant pathways identified within the 356 MFS genes using an adjusted p-

value < 0.05. 

 

 
Table 3.8: Pathways enriched in 134 OS genes from ‘WikiPathway 2021 Human’ database 
 

A random forest model was used to validate the genes identified in univariable survival 

analysis from the KHP discovery cohort. The validation cohorts were TCGA (n = 161), 

METABRIC (n = 109) and SCAN-B (n = 917).  The KHP training set used the gene expression 

data of the selected genes from univariable survival analysis and each of the sample’s survival 

data. To ensure that the trained model could be applied to the published validation datasets, 

only the gene expression data common among the KHP discovery cohort and the 3 published 

datasets was used. Gene expression data from OS and MFS associated genes were trained 

with OS and MFS outcomes respectively. To obtain the most accurate model, optimization 

was performed prior to validation in the published datasets (see methods). Once the optimal 

parameters were identified, the random forest model was trained using these parameters on 

data from KHP discovery cohort.  

 
Because of the highly pure nature of the KHP discovery cohort due to tissue macrodissection 

of the tumour cells prior to RNA sequencing, there was a possibility that the random forest 

modelling prediction would perform poorly on unpurified validation datasets, as they are more 

heterogenous containing signal from non-tumour cells in addition to tumour cells. To ensure 

the robustness of the model, in-silico purification of the gene expression data in the 3 

published validation datasets was performed using the ISOpureR package [354]. 

 

The purified gene expression data of the validation datasets were then fed into the random 

forest model to predict risk scores. associated with each sample in the published datasets. 

These risk scores estimated risk for each individual and were calibrated to the scale of the 

number of events of the KHP discovery cohort. Risk scores obtained from the model were 

then divided into tertiles, ranging from 0 - 33%, 34 - 66% and > 66%. The 3 groups of risk 

scores were then used in a cox-proportional hazards model to evaluate the ability of predicted 

Pathway Adjusted p-value
TGF-beta Receptor Signaling WP560 0.004273

TGF-beta receptor signaling in skeletal dysplasias WP4816 0.004273
Structural Pathway of Interleukin 1 (IL-1) WP2637 0.02133
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risk scores to accurately determine OS up to a 10-year cut-off period, since only OS survival 

data was available for all of the validation cohorts. The risk predictor derived from the 356 

MFS genes validated as a predictor of OS in TCGA (p = 0.002), METABRIC (p = 0.004) and 

SCAN-B (p = 0.018) (Figure 3.13 I, iii, v). The risk predictor derived from the 134 OS did not 

validate as a predictor of OS in TCGA (p = 0.07) but did validate in METABRIC (p = 0.022) 

and SCAN-B (p = 0.015) (Figure 3.13 ii, iv. vi).  
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Figure 3.13: Prognostic KHP risk predictor validates in independent ILC cohorts: P-values of the 
different risk groups shown are relative to the 0 - 33% group. Lower-case p denotes the trend test p - 
value used to determine if the survival of the different groups followed a specific trend. Kaplan-Meier 
(KM) plots show OS in the 3 risk groups in i) TCGA for risk scores derived from KHP MFS genes (p = 
0.002, trend test) and ii) TCGA for risk scores derived from KHP OS genes (p = 0.07, trend test) iii) 
METABRIC for risk scores derived from KHP MFS genes (p = 0.004, trend test) and iv) METABRIC for 
risk scores derived from KHP OS genes (p = 0.022, trend test) v) SCAN-B for risk scores derived from 
KHP MFS genes (p = 0.018, trend test) and ii) SCAN-B for risk scores derived from KHP OS genes (p 
= 0.015, trend test). 
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3.36 Transcriptomic differences are identified between early and late 
relapsing pleomorphic ILCs 

Next focusing on the relapsing patients within the KHP pleomorphic ILC cohort (n = 24) 

differential gene expression analysis was performed to identify transcriptomic differences 

between tumours of patients with early vs late relapse. Of the 24 relapsing pleomorphic 

patients within the cohort 11 relapsed early (< 3 years of primary diagnosis) and 6 relapsed 

late (> 6 years after primary diagnosis). Patients with intermediate relapse (> 3 years, < 6 

years) were excluded. Using an unadjusted p-value < 0.001 and a log2FC+/-1, 7 genes were 

identified as differentially expressed between early and late-relapsing patients (Figure 3.14, 

Table 3.9). High expression of three genes; CBX2, CSPG4 and TG were significantly 

associated with early-relapse patients, and four genes; IGFBP5, ENSG00000232931.4, ATP8 

and MUC19 with late-relapse. Of these genes IGFBP5 was present in the 134 genes 

associated with OS from the univariable survival analysis which were used to train the random 

forest model and showed an association with improved survival (coefficient: -0.296, p = 

0.0134). 

 

 

 

 

Table 3.9: Differentially expressed genes in early vs late relapse in the KHP pleomorphic ILC 
cohort: blue = higher expression in early relapse, red = higher expression in late relapse. 

 

 

 

 

 

Gene logFC p-Value
IGFBP5 -3.90 0.000001

ENSG00000232931.4 -3.26 0.000015
ATP8 -2.48 0.000360
MUC19 -6.72 0.000724
CBX2 4.50 0.000859
CSPG4 3.49 0.000461
TG 6.32 0.000676
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Figure 3.14: Differentially expressed genes between early and late relapsing pleomorphic ILCs:  
A) Volcano plot showing 7 differentially expressed genes in early (n = 11) vs late (n = 6) relapsing 
pleomorphic ILCs (red data points show genes more highly expressed in late relapse and blue data 
points show genes more highly expressed in early relapse). B) Heatmap showing the same 7 
differentially expressed genes according to onset of disease relapse. 
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3.37 Transcriptomic differences are identified between early and late 
relapsing non-pleomorphic ILCs 
 
Having identified transcriptomic features of aggressive pleomorphic ILCs an assessment was 

next made of the transcriptomic features of aggressive non-pleomorphic ILCs in a cohort of 

15 relapsing non-pleomorphic ILCs from the KHP ILC cohort (Table 3.10) using the HTG 

Molecular Diagnostics Transcriptome panel which provides coverage of most human mRNA 

transcripts including isoforms and interrogates 19,398 targets using FFPE tissue sections. 

This platform was used as it was free having won a competition to trial the panel. Five patients 

relapsed early, and 10 patients relapsed late. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
 
 
 
Table 3.10: Clinical features of KHP non-pleomorphic ILC RNA cohort 

Parameter Number (n)

Non-pleomorphic ILC tumour samples 15
Average patient age (years) 52.2
Disease relapse status at 15-year follow-up
   Relapse 15
   No relapse 0
Onest of relapse:
     < 3 years of primary diagnosis 5
     > 6 years after primary diagnosis 10
Tumour size 
   ≤ 20 mm 2
   > 20 mm, ≤ 50 mm 11
   > 50 mm 2
Number of involved lymph nodes
0 7

  1 – 3 6
  4 – 9 2
  ≥ 10 0
Sites of metastases 
   Bone 11
   Skin 4
   Liver 3
   Pleura 3
   Abdominal (not liver) 1
   Lung 1
   Brain 1
   Brachial Plexopathy 1
   Leptomeninges 1
   Other / Unknown 3
Tumour grade
   II 14
   III 1
Oestrogen (ER) Status
   ER+ 15
   ER- 0
Progesterone (PR) Status
   PR+ 12
   PR- 3
HER2 Status
   HER2+ 0
   HER2- 15
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I annotated the H&Es identifying areas of tumour content of at least 50% and a minimum 

tumour area of 11 mm2 was selected per case, as per the HTG protocol (Figure 3.15). These 

were then used to select the tumour areas for sequencing on the corresponding unstained 

tissue section.  

 

Overall using an unadjusted p-value threshold of p < 0.001 and log2FC +/-1, 21 genes were 

identified as significantly differentially expressed between early and late relapsing patients. 

Fifteen genes were more highly expressed in early relapse and 6 genes more highly 

expressed in late relapse (Figure 3.16, Table 3.11). There was no overlap between the 21 

differentially expressed genes and those associated with OS and MFS in the pleomorphic 

KHP cohort. 

 

 
Figure 3.15: Tumour area selection for HTG RNA sequencing: Top panel shows i) low power image 
of representative late relapse case tumour area selection and ii) higher power (x10) view of selected 
tumour area. Bottom panel shows iii) low power image of representative early relapse case tumour area 
selection and ii) higher power (x10) view of selected tumour area. 
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Figure 3.16: Twenty-one genes are differentially expressed in early vs late relapsing non-
pleomorphic ILC: A) Volcano-plot and B) heatmap showing 15 genes more highly expressed in early 
relapse and 6 genes more highly expressed in late relapse (unadjusted p < 0.001 and log2FC +/-1, red 
data points show genes more highly expressed in late relapse and blue data points show genes more 
highly expressed in early relapse). 
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Table 3.11: Fifteen genes more highly expressed in early relapsing non-pleomorphic ILCs 
 
 

3.37.1 Early relapse is associated with cell-cycle, interferon, TNF-α 
and ER signalling pathways in non-pleomorphic ILC 
 
Cancer hallmarks was used for gene set enrichment analysis (GSEA) via the ‘fgsea’ library in 

R [377]. This identified an enrichment of pathways associated with cell cycle (G2M checkpoint 

/ E2F targets), interferon gamma (IFN-γ), interferon alpha (IFN-α), TNF-α and oestrogen 

signalling pathways in early vs late relapse (using an adjusted p-value < 0.05). Pathways 

enriched in late relapse included epithelial – mesenchymal transition, myogenesis, apical 

junction and coagulation (Table 3.12). 

 

Gene logFC p-value

GRPR -3.769 0.00093
IRX1 -2.891 0.00076

PHACTR1 -2.324 0.00013
MME -1.915 0.00060

AJUBA -1.517 0.00042
NFIX -1.441 0.00070

PPP6R3 1.054 0.00023
NUCB2 1.065 0.00082
KMT5B 1.097 0.00067

FAM102B 1.169 0.00078
TLE2 1.177 0.00032

CPT1A 1.245 0.00027
PKIB 1.471 0.00030

NR4A2 1.514 0.00039
B4GAT1 1.704 0.00031
CCND1 1.945 0.00088

MAPK8IP1 2.790 0.00057
ATP1A3 4.437 0.00046

VTN 4.829 0.00066
RUNDC3A 6.957 0.00037

SPANX_Family 8.406 0.00087
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Table 3.12: Eleven pathways associated with onset of relapse in non-pleomorphic ILC using 
Cancer Hallmarks database. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pathway Adjusted p-value Normalised 
enrichment score

Epithelial-mesenchymal transition 0.00200 -2.70
Myogenesis 0.00200 -1.66

Apical junction 0.00660 -1.51
Coagulation 0.01215 -1.57

Estrogen response - late 0.01033 1.51
G2M checkpoint 0.00200 1.80

E2F targets 0.00200 1.84
Interferon gamma response 0.00200 1.88
Interferon alpha response 0.00200 2.35
Estrogen response - early 0.00246 1.72

TNF-α signalling via NF-κB pathway 0.00430 1.59

Higher in 
late 

relapse

Higher in 
early 

relapse
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3.38  Pleomorphic ILCs show higher expression of genes involved in cell 
differentiation and androgen biosynthesis 
 
Having identified transcriptomic differences between patients with differing clinical outcomes 

in separate KHP pleomorphic and non-pleomorphic cohorts, an assessment was next made 

to establish any differences between pleomorphic and non-pleomorphic ILCs at the gene 

expression level irrespective of clinical outcome, in an independent cohort; TCGA. This well-

annotated dataset was used as it provides histological images of the tumour cases for review. 

Given that ILC histological subtype information was not available for the cases, digital 

pathology technology with QuPath, was used to determine which cases were pleomorphic and 

non-pleomorphic based on an assessment of tumour cell nuclear size. Pleomorphic nuclei 

were identified as 75 – 250 μm2 in size, thus > 4 times the size of an average lymphocyte, in 

keeping with the WHO histological criteria for pleomorphic ILC [73, 78] (Figure 3.17). This 
approach identified 36 pleomorphic and 143 non-pleomorphic cases. 

Figure 3.17: Digital pathology technology identifies pleomorphic ILCs from TCGA: Top panel: i) 
H&E and ii) corresponding QuPath image identifying cell types based on nuclear size and circularity in 
a pleomorphic ILC case containing red nuclei ≥ 75 μm indicating nuclear pleomorphism iii) H&E and iv) 
corresponding QuPath image showing a non-pleomorphic case with an absence of red nuclei 
suggesting a lack of nuclear pleomorphism 
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Having identified the pleomorphic ILCs from the TCGA dataset, differential gene expression 

analysis was performed in the pleomorphic (n = 36) vs non-pleomorphic (n = 143) cases. Top 

differentially expressed genes were identified if they fulfilled the criteria of an adjusted p-value 

threshold < 0.05 and log2FC +/-1.5. Overall there were 37 significantly differentially expressed 

genes between the ILC histological subtypes (Figure 3.18, Table 3.13). None of the 37 

differentially expressed genes were included in the significant genes associated with OS and 

MFS in the KHP pleomorphic cohort. 

 

 
Figure 3.18: Pleomorphic ILCs show higher expression of 12 genes: Heatmap showing 37 
significantly differentially expressed genes (DEGs) in pleomorphic (n = 36) and non-pleomorphic (n = 
143) ILCs from the TCGA dataset identified histologically using QuPath. 
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PRSS21
OBP2B
SLC5A1
AK5
NTN4
KRT23
ANKRD30A
LRP2
SERPINA11
DLX2
PROL1
C2orf40
TCN1
ABCA8
PI16
PDZK1
STC2
SP5
TRPA1
NCRNA00052
VSTM2A
PAX7
CGA
PSCA
HOXB13
SOX2
ACTL8
CXCR2P1
MYBL2
UBE2C

−4 −2 0 2 4

Differentially expressed genes (Pleomorphic − Non−pleomorphic)

Histology
Pleomorphic Non−pleomorphic

Pleomorphic ILCs are unique at the transcriptomic level• Differential gene expression in
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(n = 143) ILC

• 37 significantly differentially expressed 
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• Pathways enriched in pleomorphic ILC 
are predominantly cell cycle/proliferation 
based
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Table 3.13: Differentially expressed genes in pleomorphic vs non-pleomorphic ILC from TCGA: 
(blue = genes more highly expressed in pleomorphic ILC, red = genes more highly expressed in non-
pleomorphic ILC). 
 

 

 

Gene logFC adjusted p-value

UBE2C 1.566 6.88E-07
MYBL2 1.694 8.36E-07
ACTL8 1.835 1.59E-06
PSCA 2.157 0.00045

CXCR2P1 1.584 0.00259
SOX2 1.633 0.00543
TRPA1 1.716 0.00899
CGA 1.821 0.00959
PAX7 1.532 0.01013

NCRNA00052 1.531 0.01441
HOXB13 1.934 0.01651
VSTM2A 2.357 0.01846
HCG4 -1.636 4.36E-07
NTN4 -1.513 1.56E-06
STC2 -2.075 5.95E-06
CAPN8 -1.718 0.00012
LRP2 -2.156 0.00020
LY6G6C -1.689 0.00028

SERPINA11 -1.876 0.00028
ABCA8 -1.549 0.00031
KRT23 -1.617 0.00050
C2orf40 -1.768 0.00062

ANKRD30A -1.886 0.00068
AK5 -1.529 0.00073
SP5 -1.522 0.00086

SLC7A4 -2.014 0.00096
TCN1 -2.252 0.00185
PRSS21 -1.608 0.00247
VSIG2 -1.698 0.00325

SCGB2A2 -2.744 0.00345
PI16 -1.670 0.00454

SLC5A1 -1.652 0.00554
SCGB1D2 -2.340 0.01236
DLX2 -1.558 0.01808
PROL1 -1.828 0.02020
PDZK1 -1.654 0.02071
OBP2B -1.837 0.03110
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Enrichr [376] was used to study the pathways associated with the twelve genes which were 

more highly expressed in the pleomorphic ILCs. This identified pathways associated with cell 

differentiation, G2M checkpoint and androgen biosynthesis (Table 3.14). 

 

 

 
 
 
 
 
Table 3.14: Seven pathways enriched in pleomorphic ILC from ‘BioPlanet 2019’ database. 
 

To control for hormone status given that pleomorphic ILCs show a higher rate of ER- and 

HER2+ disease, and to determine if nuclear size and pleomorphism alone are reflective of 

underlying differentially expressed genes. an assessment was next made of the differences 

between ER+/HER2- pleomorphic (n = 17) and non-pleomorphic (n = 71) ILCs at the gene 

expression level. This identified 18 genes which were significantly differentially expressed 

between ER+/HER2- pleomorphic and non-pleomorphic ILC (Figure 3.19, Table 3.15). There 

was no overlap with these genes and those included in the significant genes associated with 

OS and MFS in the KHP pleomorphic cohort. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.19: ER+/HER2- pleomorphic ILCs show differences from non-pleomorphic ILC at the 
gene expression level: Heatmap showing 18 differentially expressed genes (DEGs) in ER+/HER2- 
pleomorphic (n = 17) and non-pleomorphic (n = 71) ILCs from the TCGA dataset identified histologically 
using QuPath. 
 
 
 
 

Pathway Database Adjusted p-value
Cell differentiation pathway BioPlanet 2019 0.0029

Glycoprotein hormones BioPlanet 2019 0.0472
Mineralocorticoid biosynthesis BioPlanet 2019 0.0472

Thyroxine biosynthesis BioPlanet 2019 0.0472
Androgen biosynthesis BioPlanet 2019 0.0472

Hormone ligand-binding G-protein coupled receptors BioPlanet 2019 0.0472
Peptide hormone biosynthesis BioPlanet 2019 0.0472

G2-M Checkpoint MSigDB Hallmark 0.0123
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Cell differentiation pathway BioPlanet 2019 0.0029

Glycoprotein hormones BioPlanet 2019 0.0472
Mineralocorticoid biosynthesis BioPlanet 2019 0.0472

Thyroxine biosynthesis BioPlanet 2019 0.0472
Androgen biosynthesis BioPlanet 2019 0.0472

Hormone ligand-binding G-protein coupled receptors BioPlanet 2019 0.0472
Peptide hormone biosynthesis BioPlanet 2019 0.0472

G2-M Checkpoint MSigDB Hallmark 0.0123
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Differential gene expression analysis was also completed in HER2+ pleomorphic ILC (n = 7) 

and non-pleomorphic HER2+ ILC (n = 17). However no genes that fulfilled the statistical 

thresholds (adjusted p-value < 0.05, log2FC +/-1.5) due to lack of statistical power. 
 

 
 
Table 3.15: Eighteen differentially expressed genes in ER+/HER2- pleomorphic vs non-
pleomorphic ILC from TCGA: (blue = genes more highly expressed in pleomorphic ILC, red = genes 
more highly expressed in non-pleomorphic ILC). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Gene logFC adjusted p-value

CCDC135 1.54 0.0192
TTC29 1.60 0.0204

LOC100130933 1.54 0.0210
FAM72A 1.53 0.0210
TOP2A 1.62 0.0270
ZBBX 1.60 0.0294

NCRNA00052 2.42 0.0328
CDC20B 3.23 0.0330
DNAH11 1.62 0.0331
FOXN4 1.67 0.0349

C1orf194 1.70 0.0358
DNAI1 1.76 0.0369

TUBA4B 1.70 0.0383
ARMC3 1.96 0.0386
TEKT1 1.84 0.0447

C20orf85 2.01 0.0453
LY6K 1.97 0.0453

LY6G6C -1.98 0.0296
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3.4 Discussion 
 
 
The main aims of this chapter were to identify drivers of clinically aggressive ILCs at the 

genomic and transcriptomic levels. An assessment of any differences based upon ILC 

histological subtype was also made, given that pleomorphic ILCs are characterised by 

clinically aggressive disease. Histological assessment of the cohort was first made and the 

use of QuPath highlighted the benefit of digital pathology approaches, in confirming the initial 

histological classification, showing higher nuclear size and variability in nuclear size among 

pleomorphic cases. 

 

At the genomic level, targeted sequencing of a cohort of pleomorphic and non-pleomorphic 

ILCs enabled the identification of alterations which firstly occur more frequently in pleomorphic 

ILC, as a distinct histological subtype. These included a higher frequency of TP53 and FAT1 

mutations and a lower frequency of PIK3CA mutations. TP53 mutations have previously been 

shown in numerous studies to occur at higher frequency in pleomorphic ILC  [100, 101, 103, 

293]. When the rate of TP53 mutations was compared only in ER+/HER2- pleomorphic vs 

non-pleomorphic ILCs statistical significance was lost, suggesting that higher rates observed 

in pleomorphic ILC are driven by the higher rates of triple-negative and HER2+ disease rather 

than nuclear pleomorphism alone. 

 

Less is known about FAT1 mutations in the context of pleomorphic ILC. FAT1 (FAT Atypical 

Cadherin 1) is a member of the cadherin superfamily, a group of integral membrane proteins. 

It has previously been associated with cancer cell proliferation with loss of function mutations 

associated with progression of cancers of the head and neck [378]. In breast cancer loss of 

FAT1 has been associated with resistance to CDK4/6 therapy [379]. Specifically in ILC, FAT1 

mutations have been shown to occur at higher frequency in metastatic lesions compared to 

primary disease [291]. This may suggest that the acquisition of FAT1 mutations in primary 

tumour subclones results in greater metastatic potential of these subclones and clinically 

aggressive behaviour, which is consistent with the finding of higher rates of FAT1 mutations 

in pleomorphic ILC, an aggressive variant, which is significantly associated with earlier disease 

relapse in our cohort and wider studies.  

 

In addition, HER2 amplifications and CDK12 alterations (amplifications and missense 

mutations) were observed only in the pleomorphic cases. A higher frequency of HER2 

amplifications and mutations in pleomorphic ILC has been consistently reported in previous 

studies [100-103], yet this is not the case for CDK12 alterations. Cyclin-dependent kinase 12 
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(CDK12) is a key transcription-associated cyclin-dependent kinase (CDK) with diverse roles 

in regulating gene transcription, translation, cell cycle progression and cell proliferation, DNA 

damage response and RNA splicing [380]. In breast cancer it displays both pro-tumoral and 

anti-tumour effects among different tumour types. For example in HER2+ disease it promotes 

tumour growth [381] whilst in TNBCs, it has tumour suppressor functions [382, 383]. Whilst 

the presence of CDK12 alterations was not of prognostic significance in the KHP cohort, they 

significantly co-occurred with HER2 alterations. Interestingly this has also been demonstrated 

in a previous study which used IHC to assess the occurrence and distribution of CDK12 protein 

expression in independent breast cancer cohorts, correlating expression with genomic status 

and clinical outcome [382]. The study showed that CDK12 was positively correlated with HER2 

positivity, although was not an independent predictor of worse outcome, consistent with the 

findings from the KHP cohort. The co-occurrence of these alterations results from the fact that 

CDK12 has been shown to map to the smallest region within the HER2 amplicon [384, 385].  

 

Whilst CDK12 alterations were not prognostic, FGFR1 alterations were significantly 

associated with the development of disease relapse among the pleomorphic patients. FGFR1 

(Fibroblast Growth Factor Receptor 1) is a member of the Fibroblast Growth Factor family, 

which consists of 4 receptors and 18 ligands [386]. FGFR1 amplifications occur in 

approximately 10% of breast cancers and have been associated with poor prognosis [387]. A 

study assessing FGFR1-amplified breast cancers, showed that FGFR1 expression is strongly 

correlated with FGFR1 copy number and that the overexpression of FGFR1 leads to the 

enhanced ligand-dependent as well as ligand-independent signalling [388]. In addition, 

FGFR1 amplification was shown to occur more frequently in luminal B type breast cancers 

[388]. In the KHP cohort 60% of FGFR1 altered tumours were ER+ and PR- and hence 

consistent with a luminal B phenotype. Furthermore FGFR1 amplification has been shown to 

mediate endocrine therapy resistance in ER+ breast cancer [389] providing rationale for 

FGFR1 blockade.  A recent phase IIa clinical trial (RADICAL; NCT01791985) assessed the 

use of AZD4547 (a selective inhibitor of FGFR 1, 2 and 3) with an aromatase inhibitor in 52 

unselected ER+ metastatic breast cancer patients with resistance to endocrine therapy [390]. 

It showed some level of activity, with an objective response rate of 5% meeting the study end-

point and 6 differentially-expressed genes were identified which differentiated those deriving 

benefit from the addition of AZD4547 [390]. Going forward larger trials are required to establish 

the benefit of FGFR1 inhibition in FGFR1 amplified breast cancers, particularly in rare 

subtypes such as pleomorphic ILC, for whom this alteration appears to be associated with 

disease relapse in the KHP cohort. 
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Whilst FGFR1 alterations were associated with disease relapse in pleomorphic ILC, there 

were no other prognostic genes within both the pleomorphic and non-pleomorphic patients. 

Therefore an assessment of the transcriptomic landscape of clinically aggressive ILCs was 

next made to better understand the drivers of aggressive disease biology at the gene 

expression level. Whilst previous studies have identified unique gene expression subtypes in 

ILC [32, 277], they have not consistently shown prognostic significance or categorised patients 

based on ILC histological subtype. Therefore an assessment of pleomorphic ILCs at the gene 

expression level was completed using the KHP pleomorphic cohort enabling a better 

understanding of the transcriptomic landscape of this clinically aggressive ILC subtype. 

Importantly, whilst bulk RNA gene expression data is usually characterised by low tumour 

purity for ILC, due to the high stromal component of ILCs, tissue needle macrodissection prior 

to sequencing ensured a high tumour content within the cohort, ideal for studying pleomorphic 

ILC tumour cell specific signal. Survival analysis and the study of significant OS and MFS 

genes through the use of a random forest model, enabled the generation of prognostic risk 

scores within the KHP pleomorphic ILC discovery cohort which further validated as predictors 

of OS in matched purified and deconvolved ILC validation cohorts; TCGA, METABRIC and 

SCAN-B.  

 

Differential gene expression analysis identified significantly up-regulated genes in early 

relapsing pleomorphic ILC patients, including CSPG4, TG and CBX2. CBX2 (Chromobox 2), 

encodes a component of the polycomb multiprotein complex, and has previously been shown 

to be upregulated in breast cancer, with high expression associated with worse survival 

outcomes [391] which is consistent with higher expression in early relapse within the 

pleomorphic ILCs. Higher expression of genes such as ATP8, MUC19 and IGFBP5 were 

associated with the later onset of disease recurrence among relapsing pleomorphic ILC 

patients. Consistent with the finding of higher IGFBP5 expression being associated with later 

onset of relapse, a study using IHC for IGFBP5 in a cohort of 153 ER+ breast cancers, showed 

that low levels were associated with tamoxifen resistance and shorter overall survival times 

[392].  

 

Finally, digital pathology approaches enabled the identification of pleomorphic ILCs in the 

TCGA dataset and differential gene expression analysis and pathway enrichment analysis 

identified cell-cycle pathways and androgen biosynthesis as pleomorphic-enriched pathways. 

Studies suggest that triple-negative ILCs have unique transcriptomic profiles and are 

characterised by increased androgen-receptor signalling [68], and therefore increased 

androgen signalling in pleomorphic ILC vs non-pleomorphic ILC may reflect underlying higher 

rates of triple-negative disease in pleomorphic vs non-pleomorphic histology. 
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Overall the work in this chapter has characterised and identified differences between 

pleomorphic and non-pleomorphic ILC at the genomic level, further identifying an association 

with FGFR1 alterations and clinically aggressive disease in pleomorphic ILC. In addition it has 

identified transcriptomic features associated with aggressive ILCs and survival analysis in the 

KHP pleomorphic cohort has generated a prognostic gene expression risk predictor which 

validates in larger independent ILC cohorts. 
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4. Chapter 4: Evaluation of the immune landscape and 
prognostic associations in ILC 

 

4.1 Background 
 
 
Over the last decade there has been growing interest in understanding and targeting the 

immune system as a therapeutic strategy in a range of solid malignancies. In particular, the 

use of immunotherapy has revolutionised the treatment options and clinical outcomes in 

multiple tumour types, including non-small cell lung cancer [393], malignant melanoma [394] 

and cancers of the head and neck [395]. Despite this, immunotherapy has proven to be less 

clinically effective in breast cancer. Only a small proportion of patients appear to derive some 

degree of benefit from immunotherapies, and these are predominantly in heavily pre-treated 

patients or TNBCs [244-247, 249] 

Despite some clinical benefit being provided by immunotherapy in subsets of TNBC patients, 

ER+ disease, which includes most ILCs, accounts for the majority (70%) of breast cancer 

cases [93] and there is therefore a need to better understand the immune microenvironment 

in ER+ disease and specifically ILC and the possible role for immune-based treatments in 

these patients. There are multiple ongoing phase III trials assessing the efficacy of ICIs in the 

ER+ breast cancer population including CHECKMATE 7FL, KEYNOTE-B49 and KEYNOTE-

756 [257-259] as well as the phase II GELATO trial specifically in ILC patients [260]. These 

will help elucidate the potential role of immunotherapy in ER+ disease as currently there are 

no approved immunotherapies for these patients. However alongside this, there is a 

fundamental need to better understand the nature of the immune microenvironment in ILC, 

particularly in clinically aggressive tumours such as pleomorphic ILC. 

ER+/HER2- breast cancers such as ILC are generally considered ‘immune-cold’ tumours 

meaning they are characterised by a lower level of immune infiltrate compared to TNBCs and 

HER2+ tumours [396]. Importantly, the presence and abundance of neoantigen-specific T 

lymphocytes have been strongly implicated as playing a critical role in generating an effective 

response to ICIs. TNBCs are characterised by a more inflammatory tumour microenvironment 

compared to ER+ breast cancer, with a higher number of stromal TILs, CD8+ T lymphocytes 

and a higher level of expression of immune-related genes [397-399]. 

Additional factors explain why ER+ breast cancers respond less well to ICIs compared to 

TNBCs. TMB is a continuous variable and studies show that it can range from 0.001Mut/Mb 
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to over 1000Mut/Mb) across and within adult solid malignancies [400-402]. Whilst the TMB of 

breast cancer is classed as intermediate, with a median mutation rate of 2.63Mut/Mb [401, 

403]. there is a relatively lower TMB in ER+ breast cancer compared to TNBCs [404, 405]. A 

higher TMB is associated with a higher number of neoantigens within the tumour 

microenvironment, or ‘neo-antigen load’ [14]. The recognition of tumour-specific neoantigens 

by T-cell receptors results in the initiation of an immune response driving cytotoxic T 

lymphocytes into the vicinity of the tumour promoting tumour cell death [14]. 

A histological assessment of the level of stromal TILs has been shown to hold prognostic and 

predictive value in the context of TNBC and HER2+ disease where increased TILs are 

associated with improved DFS and with higher response rates to neoadjuvant chemotherapy 

[313, 314, 334-338]. Some studies also suggest an association between a high level of TILs 

and response to anti-HER2 therapy in HER2+ breast cancers [406-408]. The quantification of 

stromal TILs therefore represents a useful and informative additional piece of information in a 

histology report, providing an indication of lymphocyte-based tumour immunogenicity at no 

additional diagnostic cost. However the prognostic relevance of TILs in ER+ breast cancer 

including ILC is less clear [338]. ER+ tumours are generally characterised by lower TILs than 

TNBC and ER-/HER2+ disease, and a large retrospective analysis interestingly showed that 

ER+ ILCs have a lower level of TILs compared to ER+ IC-NST [337]. Moreover, although 

showing a higher TMB, a low level of stromal TILs is seen in ILC metastases compared to the 

primary tumour, although a higher level has been identified in the previously used ‘mixed non-

classic’ histology [282]. There have been no significant differences in the level of TILs 

identified between the different ILC metastatic sites [290]. 

 

Two main studies have previously characterised TILs using large retrospective ILC cohorts 

and identified that a small subset of cases have a relatively high level of stromal TILs [282, 

339]. When associations with clinical outcome were assessed, high TIL scores (defined as > 

10% [282] and > 5% [339] in the two studies respectively) were associated with younger 

patient age, lymph node involvement and more proliferative tumours in the first study [282], 

although in multivariate analysis, stromal TILs were not an independent predictor of worse 

outcome. In the second study high stromal TILs were associated with a range of poor 

prognostic features and worse OS and DFS [339]. When ILC histological subtypes were 

considered, the first study identified a significantly lower level of TILs in alveolar ILC (p = 0.02) 

and higher levels in ‘mixed non-classic’ ILC (p < 0.001) [282]. A distinct pleomorphic group 

was not defined in these studies. Overall, the results of these studies would therefore suggest 

that the role of TILs in ILC is different to that observed in TNBC and HER2+ disease, being 

instead associated with more clinically aggressive tumours. However the levels of stromal TILs 
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in pleomorphic ILC and their prognostic significance has not been explicitly assessed and 

there is a need to characterise the immune landscape at the histological level particularly in 

pleomorphic ILC and to better understand whether stromal TILs hold prognostic significance 

in this clinically aggressive ILC subtype. 

 

4.2 Chapter Aims 
 

Overall the purpose of this chapter is to: 

 

3) Assess the abundance of stromal TILs in ILC and assess whether this differs between 

pleomorphic and non-pleomorphic cases, and according to hormone receptor status. 

 

4) Assess the correlation between stromal TILs and genomic alterations in ILC. 

 

5) Establish any associations between the level of stromal TILs and clinical outcome in 

pleomorphic and non-pleomorphic ILC. 
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4.3 Results 

 

4.31 ILCs are characterised by a low level of stromal TILs 
 
To gain a global picture of the immunogenicity of ILC, stromal TILs were quantified in the entire 

KHP ILC cohort at the histological level. The cohort consisted of a combination of pleomorphic 

(n = 63) and non-pleomorphic cases (n = 100). The median TIL score for the entire cohort (n 

= 163) was 2.5% (IQR: 1.5% - 4.5%). A previous study quantifying TILs in primary ILC 

assigned cases to low (≤ 5%), intermediate (> 5 and ≤ 10%) and high (> 10%) TIL groups 

[282]. In the KHP ILC cohort the majority (81.6%) of cases fell in the ‘low’ TIL group, 14.1% in 

the ‘intermediate’ and 4.3% in the ‘high’ TIL groups respectively (Figure 4.1).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1: ILCs are characterised by low levels of stromal TILs: A) Bar chart showing the relative 
proportions of ILC cases within each TIL score category (n = 163: 81.6%, 14.1% and 4.29% of cases 
fall into the low, intermediate and high TIL score groups respectively) B) Representative H&E sections 
showing cases with TIL scores in the low (case 9129 scoring 1%), intermediate (case 1155 scoring 
7.5%) and high (case 5817 scoring 17%) TIL score categories (stromal TILs are depicted by arrows, 
magnification x 10). 
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Figure 3.3: ILCs are characterised by low immune infiltrates: A) Bar chart
showing the relative proportions of ILC cases within each TILs assessment
category (n = 163: 81.6%, 14.1% and 4.29% of cases fall into the low,
intermediate and high TILs assessment groups respectively) B)
Representative H&E sections showing cases with TILs scores in the low (case
9129 scoring 1%), intermediate (case 1155 scoring 7.5%) and high (case
5817 scoring 17%) TILs score categories (Arrows indicate stromal TILs,
magnification x10)
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4.32 Pleomorphic ILC is characterised by a higher level of stromal TILs  
 
Next stromal TIL scores were compared between pleomorphic (n = 63) and non-pleomorphic 

ILCs (n = 100). Heterogeneity with respect to the degree of immune cell infiltration was 

observed in both pleomorphic (Figure 4.2A) and non-pleomorphic histological subtypes. The 

median TIL score in the pleomorphic group was 4% (IQR: 2.0% - 6.5%) and in the non-

pleomorphic ILC group was 2% (IQR:1.0% - 3.375%). Overall, there was a significantly higher 

level of stromal TILs in the pleomorphic vs non-pleomorphic ILC cases (p < 0.0001, Mann-

Whitney U test, Figure 4.2B). A higher proportion of pleomorphic cases fell in the ‘intermediate’ 

and ‘high’ TIL groups [282] compared to the non-pleomorphic cases (Figure 4.2D, Table 4.1).  

 

 
Table 4.1: Summary of the proportion of ILC cases falling in each stromal TIL score category 
 

Within the pleomorphic group there were higher numbers of ER- and HER2+ cases compared 

to the non-pleomorphic group (pleomorphic group: ER- cases: n = 8, HER2+ cases: n = 8, 

non-pleomorphic group: ER- cases: n = 0, HER2+ cases: n = 3). To control for hormone status, 

a further analysis was completed assessing the level of stromal TILs in ER+, HER2- 

pleomorphic (n = 37) vs non-pleomorphic ILCs (n = 83). Patients for whom ER and HER2 

status was unavailable were excluded from this analysis. This again showed a significantly 

higher level of stromal TILs in pleomorphic vs non-pleomorphic tumours (p = 0.0119, Mann-

Whitney U test, Figure 4.2C). A linear regression model with TIL levels as the outcome further 

demonstrated that pleomorphic ILCs were associated with a significantly higher level of TILs 

compared to non-pleomorphic ILCs (p = 0.0165, β = 2.12), after adjusting for clinical 

covariates such as tumour stage (T1, T2, T3), hormone status (1 = HER2+ or TNBC, 0 = 

others), and lymph node status (1 = positive, 0 = negative). Interestingly in mixed tumours 

containing classic and pleomorphic areas heterogeneity in the immune infiltrate was observed 

with denser infiltrates generally observed in the pleomorphic tumour regions (Figure 4.3). 

 

TILs score (%) Pleomorphic 
(% of cases)

Non-pleomorphic  
(% of cases)

Entire cohort
(% of cases)

less than equal 5 68.3 90.0 81.6
>5 less than equal 10 25.4 7.0 14.1

>10 6.3 3.0 4.3

TIL 
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Figure 4.2: Pleomorphic ILC is more immunogenic than non-pleomorphic ILC at the histological 
level: A) Representative H&E sections from pleomorphic ILC cases showing low, intermediate and high 
TIL scores (stromal TILs are depicted by arrows, magnification x10) B) Scatter plot showing individual 
TIL scores for pleomorphic (n = 63) and non-pleomorphic ILC (n = 100) showing significantly higher TIL 
scores in the pleomorphic group (p < 0.0001, Mann-Whitney U test) C) Scatter plot showing individual 
TIL scores for ER+ HER2- pleomorphic (n = 37) vs non-pleomorphic ILC (n = 83) showing significantly 
higher TIL scores in the pleomorphic group (p = 0.0119, Mann-Whitney U test) D) Bar chart showing 
relative proportions of pleomorphic (n = 63) and non-pleomorphic (n = 100) ILCs falling into each TIL 
score category showing higher proportions of pleomorphic ILCs in the intermediate and high TIL score 
groups. 
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Figure 4.3: Heterogeneity of the immune infiltrate at the histological level in ILC: A) 
Representative mixed ILC case containing classic and pleomorphic ILC components at low and high 
power indicating the different areas B) QuPath image of the same case showing immune cells (blue) 
and tumour cells (red) indicating a higher density of immune cells in the pleomorphic area. 
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4.33 Classic and alveolar subtypes have lower TILs than pleomorphic 
ILC 
 

Given that the non-pleomorphic cases were classified histologically as classic (n = 85), solid 

(n = 3), alveolar (n = 3) and mixed non-pleomorphic ILCs (n = 9), further analysis was 

completed to assess for differences in TIL scores between pleomorphic ILC and these 

additional histological subtypes as summarised in Table 4.2. Classic and alveolar ILCs 

showed significantly lower stromal TILs compared to the pleomorphic ILCs (p < 0.001 and p 

= 0.0141) whilst no significant differences were observed between the solid and mixed non-

pleomorphic ILCs and the pleomorphic group. However this analysis was limited by small 

numbers. Overall no significant differences in TIL scores were identified between classic ILC 

and the other non-pleomorphic ILC subtypes (Table 4.3), in contrast to previous reports that 

found lower levels of TILs in the alveolar subtype compared to classic ILC [282]. 

Table 4.2: Summary of comparisons of stromal TIL scores between non-pleomorphic ILC 
subtypes and pleomorphic ILC 
 

Table 4.3: Summary of comparisons of stromal TIL scores between non-pleomorphic ILC 
subtypes and classic ILC 
 

 

 

 

 

 

 

 

 
 
 

ILC histological subtype Number of 
cases

Median TILs 
score (%) Interquartile range  (%)

TILs score comparison to 
pleomorphic ILC (n = 63) 

p - value (Mann-Whitney U test)
Pleomorphic 63 4.0 2.0 - 6.5 NA

Classic 85 2.0 1.0 - 3.5  < 0.0001
Solid 3 3.0 1.0 - 3.0 0.249

Alveolar 3 1.0 0.0 - 2.0 0.0141
Mixed without pleomorphic component 9 3.0 1.0 - 5.75 0.374

TIL

ILC histological subtype Number of 
cases

Median TILs 
score (%) Interquartile range  (%)

TILs score comparison to classic 
ILC (n = 85) 

p - value (Mann-Whitney U test)
Alveolar 3 1.0 0.0 - 2.0 0.127

Solid 3 3.0 1.0 - 3.0 0.915
Mixed without pleomorphic component 9 3.0 1.0 - 5.75 0.462

TIL
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4.34 The level of stromal TILs is not influenced by hormone status in ILC 
 

Given that stromal TIL levels are known to be higher in TNBC and HER2+ disease, the 

association between hormone status and immune infiltrate in pleomorphic and non-

pleomorphic ILC was assessed. ER status information was available for 59 of 63 pleomorphic 

patients (51 (86.4%) ER+ and 8 (13.6%) ER-). The median TIL score in ER+ patients was 

4.0% compared to 5.75% in the ER- group. There was no significant difference in stromal TIL 

scores between the ER+ and ER- groups (p = 0.1843, Mann-Whitney U test, Figure 4.4A). All 

the non-pleomorphic cases were ER+ (n = 100). HER2 receptor status was available for 52 

pleomorphic patients and of these 8 (15.4%) were HER2+. The median stromal TILs score in 

the HER2+ group was 6% compared to 4% in the HER2- group. There was no significant 

difference in stromal TIL scores according to HER2 status (p = 0.1059, Mann-Whitney U test, 

Figure 4.4B). Within the non-pleomorphic group HER2 status information was available for 86 

patients and of these 3 cases (3.49%) were HER2+. These were all classed histologically as 

classic ILCs. There was no difference in the level of TILs between the HER2+ and HER2- 

classic ILC patients (p = 0.2499, Mann-Whitney U test). 

  

Figure 4.4: Stromal TILs are not associated with hormone status in pleomorphic ILC: A) Scatter 
plot showing TIL scores for pleomorphic ILC patients with ER+ (n = 51) vs ER- (n = 8) disease showing 
no difference in TIL scores between these two groups (p = 0.1843, Mann-Whitney U test) B) Scatter 
plot showing TIL scores for pleomorphic ILC patients with HER2+ (n = 8) vs HER2- (n = 44) disease 
showing no difference in TIL scores between these two groups (p = 0.1059, Mann-Whitney U test). 
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4.35 TP53 and ARID1A mutations are associated with the level of stromal 
TILs in pleomorphic ILC 
 
Having found no differences in the level of stromal TILs according to hormone status in the 

cohort, we next sought to establish any associations between the level of stromal TILs and 

the presence of frequently occurring genomic alterations in pleomorphic (n = 52) and non-

pleomorphic ILC (n = 43). We previously identified a significantly higher rate of TP53 mutations 

as well as higher TILs in pleomorphic vs non-pleomorphic ILC. Within the pleomorphic group, 

TP53 mutant tumours (n = 12) were associated with a significantly higher level of stromal TILs 

compared to TP53 wild-type cases (n = 40) (p = 0.0358, Mann-Whitney U test, Figure 4.5A, 

C, Table 4.4). Among non-pleomorphic ILC, TP53 alterations were less common and there 

was no difference in the level of stromal TILs in patients with TP53 alterations (n = 2 mutations, 

n = 1 deletion) and TP53 wild-type cases (n = 40) (p = 0.895, Mann-Whitney U test, Table 

4.4). 

 

When ARID1A mutation status was considered, significantly lower stromal TILs were present 

in ARID1A mutant (n = 8) compared to wild-type (n = 44) pleomorphic ILCs (p = 0.0118, Mann-

Whitney U test, Figure 4.5B, C, Table 4.4). ARID1A mutations were less common in non-

pleomorphic ILC and there was no difference in stromal TILs between ARID1A mutant (n = 2) 

and wild-type (n = 41) cases (p = 0.2735, Mann-Whitney U test, Table 4.4). 

 
A further assessment was made of any association between the level of stromal TILs and 

genomic alterations affecting CDH1, HER2 and the PIK3CA/AKT1/PTEN signalling pathway 

which showed no differences in the level of stromal TILs according to these alterations in both 

pleomorphic and non-pleomorphic ILC (Table 4.4). 

 

 
 
Table 4.4: TILs and genomic alterations in pleomorphic and non-pleomorphic ILC: Summary table 
showing associations between the frequency of genomic alterations (mutations and CNAs) and the 
level of stromal TILs in pleomorphic and non-pleomorphic ILC (p - value is from the Mann-Whitney U 
test, with blue box indicating significant results). 
 

Comparison Group: 
(altered vs wild-type)

No of 
cases

Median TIL 
score (%)

Interquartile range  (%) p - value 

CDH1 32 vs 16 4.00 vs 3.75 2.00 - 5.875 vs 2.125 - 7.00 0.8100
PIK3CA/AKT1/PTEN 21 vs 31 5.00 vs 4.00 2.75 - 6.75 vs 1.50 - 7.00 0.1320

HER2 10 vs 42 3.25 vs 4.00 1.375 - 8.875 vs 2.00 - 6.625 0.7440
TP53 12 vs 40 5.75 vs 3.25 4.00 - 9.25 vs 2.00 - 5.50 0.0358

ARID1A 8 vs 44 2.00 vs 4.25 1.125 - 3.635 vs 2.50 - 7.00 0.0118
CDH1 30 vs 13 2.00 vs 2.00 1.375 - 3.625 vs 1.00 - 6.25 0.8480

PIK3CA/AKT1/PTEN 25 vs 18 2.00 vs 2.00 1.00 - 4.25 vs 1.375 - 5.625 0.5660
TP53 3 vs 40 2.00 vs 2.00 1.00 - 5.00 vs 1.125 - 4.375 0.8950
HER2 2 vs 41 2.00 vs 2.00 2.00 - 2.00 vs 1.00 - 4.75 0.8680

ARID1A 2 vs 41 4.00 vs 2.00 3.00 - 5.00 vs 1.00 - 4.25 0.2740

Pleomorphic ILC 
(n = 52)

Non-pleomorphic ILC
(n = 43)
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Figure 4.5: TP53 and ARID1A mutations are associated with the level of stromal TILs in 
pleomorphic ILC: A) Scatter plot showing significantly higher stromal TILs in TP53 mutant (n = 12) vs 
wild-type (n = 40) pleomorphic ILCs (p = 0.0358, Mann-Whitney U test) B) Scatter plot showing 
significantly lower stromal TILs in ARID1A mutant (n = 8) vs wild-type (n = 44) pleomorphic ILCs (p = 
0.0118, Mann-Whitney U test) C) Representative H&E images showing: top panel i) TP53 mutant case 
TG01725 with high stromal TILs (35%) compared to ii) TP53 wild-type case 17058347 with low stromal 
TILs (1.5%), bottom panel: iii) ARID1A mutant case 17051250 showing low stromal TILs (1%) and iv) 
ARID1A wild-type case 17011789 showing higher stromal TILs (10%) (stromal TILs are depicted by 
arrows). 
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4.36 There is no correlation between tumour mutational load and TILs 
 
 
Having assessed the association between stromal TILs and specific frequently occurring 

genomic alterations in ILC, an assessment was next made to establish whether the total 

mutational load correlates with the density of immune infiltrate in ILC. The level of infiltration 

by TILs has been hypothesized to reflect mutational load [270, 409, 410]. To better understand 

any association between the number of mutations in each tumour and stromal TILs, a 

Spearman’s rank test was performed in the pleomorphic and non-pleomorphic cases where 

mutational data was available (n = 96). This failed to show any significant correlation between 

the two variables in the ILC cohort (Spearman’s rank correlation coefficient (ρ) = -0.014, p = 

0.896, Figure 4.6).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6: There is no correlation between mutational load and stromal TILs in ILC: Scatter plot 
showing the correlation between the number of mutations and stromal TILs in each ILC tumour 
(Spearman’s rank correlation coefficient (ρ) = -0.014, p = 0.896, n = 96)  
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4.37 Stromal TILs are not associated with clinical outcome in the cohort 

Given that previous studies have associated a high level of stromal TILs with poor prognostic 

factors [282, 339] and worse survival outcomes in ILC in one study [339], an assessment was 

made of the association between the level of stromal TILs and clinical outcome in the KHP 

cohort. Univariable survival analysis using a cox-proportional hazards model was performed 

with stromal TILs used as an independent variable. For analysis of TIL scores, each individual 

score was categorised as either ≤ 5% or > 5%. Given that pleomorphic ILCs show higher 

stromal TILs compared to non-pleomorphic cases, a separate analysis was performed in 

pleomorphic and non-pleomorphic patients. Patients with de novo metastatic disease were 

removed prior to survival analysis and the follow-up time was truncated at 15 years, with 

patients with metastatic events occurring after 15 years being censored. Overall there was no 

difference in MFS between the patients with stromal TIL scores ≤ 5% vs > 5% in both 

pleomorphic (n = 61, p = 0.609, HR: 0.78, CI: 0.29 - 2.05, Figure 4.7A) and non-pleomorphic 

ILCs (n = 93, p = 0.372, HR: 0.61, CI: 0.21 - 1.79, Figure 4.7B). There was also no difference 

in OS between the patients with stromal TIL scores ≤ 5% vs > 5% in both pleomorphic (n = 

63, p = 0.205, HR: 0.55, CI: 0.21 - 1.39, Figure 4.7C) and non-pleomorphic ILCs (n = 100, p 

= 0.383, HR: 0.68, CI: 0.29 - 1.62, Figure 4.7D). 

As previously mentioned, 9 patients (2 pleomorphic and 7 non-pleomorphic) presented with 

de novo metastatic disease and were excluded from survival analysis. To analyse the immune 

infiltrate in these patients and other early relapsing ILCs compared to late relapsing patients, 

a comparison of stromal TIL scores in early (< 3 years) vs late (> 6 years) relapse was made, 

excluding patients without disease relapse. This showed no difference in stromal TIL scores 

between early relapsing (including de novo metastatic patients) and late relapsing patients in 

both pleomorphic (n = 21) and non-pleomorphic (n = 40) patients (p = 0.9965 and p = 0.3732 

respectively, Mann-Whitney U test, Figure 4.7E, F).  
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Figure 4.7: Stromal TILs are not associated with clinical outcome in the KHP cohort: A) KM graph 
showing the association between TILs and MFS in pleomorphic ILC using TILs groups ≤ 5% and >5% 
(n = 61, p = 0.609, HR: 0.78, CI: 0.29 - 2.05) B) KM graph showing the association between TILs and 
MFS in non-pleomorphic ILC (n = 93, p = 0.372, HR: 0.61, CI: 0.21 - 1.79) C) KM graph showing the 
association between TILs and OS in pleomorphic ILC (n = 63, p = 0.205, HR: 0.55, CI: 0.21 - 1.39) D) 
KM graph showing the association between TILs and OS in non-pleomorphic ILC (n = 100, p = 0.383, 
HR: 0.68, CI: 0.29 - 1.62) E) Scatter plot showing TILs in early vs late relapsing pleomorphic ILCs (n = 
21, p = 0.9865, Mann-Whitney test) F) Scatter plot showing TILs in early vs late relapsing non-
pleomorphic ILCs (n = 40, p = 0.3732, Mann-Whitney test). 
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4.4 Discussion 
 
Characterising a cohort of ILCs histologically with a particular focus on pleomorphic ILC 

reveals new insights into the immune landscape of this histologically rare, poorly understood 

and clinically aggressive ILC subtype.  

 

Consistent with previous studies [282, 339], when using stromal TILs as a measure of tumour 

immunogenicity, this work shows that ILCs are generally a weakly immunogenic tumour type 

with the majority of the combined pleomorphic and non-pleomorphic cohort falling into the low 

TIL score group. However a minority of all cases fell into the high TIL score group suggesting 

that a subset of ILCs is more immunogenic. Interestingly a lower proportion of ILCs fell into 

the ‘high’ (> 10%) TIL score group (4.3%) compared to a previous study which classified 15% 

of ILCs as having stromal TILs > 10%. This may be reflective of differences in the proportions 

of the different ILC histological subtypes within the two different cohorts but may also reflect 

some degree of inter-observer variability in TIL scoring by different pathologists in different 

centres. Nevertheless, it is important to recognise the wider context, that ‘immune-hot’ or 

‘lymphocyte-predominant’ breast cancers (LPBCs), which are generally TNBCs, are defined 

by stromal TIL scores > 50% [411] and therefore even the small proportion of ILCs with TIL 

scores > 10% are still relatively weakly immunogenic compared to LPBCs and indeed none of 

the ILCs studied in the KHP ILC cohort showed stromal TILs > 50%.  

 

Previous studies assessing TILs classified ILCs based upon architectural features e.g. classic, 

solid, alveolar, and mixed, however at the cytological level pleomorphic cases were not 

explicitly identified or studied [282, 339]. The results presented in this chapter provide new 

insights into the immune landscape of pleomorphic ILC and show that it is associated with a 

significantly higher level of stromal TILs compared to non-pleomorphic ILC and this holds true 

after having controlled for pleomorphic-enriched hormonal phenotypes (ER-/HER2+ patients).  

 

When the other ILC histological subtypes were considered, a previous large study identified a 

significantly lower level of stromal TILs in alveolar ILC compared to classic ILC [282]. Whilst 

this association was not observed in the KHP cohort, the presence of only 3 alveolar cases in 

the cohort resulted in a lack of power to detect significant differences. This was also true for 

the other uncommon subtypes in the cohort including solid and mixed non-pleomorphic 

tumours and therefore small numbers of the rarer ILC subtypes represents a limitation of this 

part of the study. 
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TNBCs and HER2+ breast cancers are characterised by a higher level of stromal TILs 

compared to ER+ tumours [396]. Consistent with the fact that the vast majority of non-

pleomorphic ILCs are of a luminal A phenotype, in the KHP ILC cohort all the non-pleomorphic 

cases were ER+ and just 3 cases were HER2+. Consistent with the higher rates of TNBCs 

and HER2+ disease in pleomorphic ILC, higher numbers of these cases were observed in the 

pleomorphic group. Interestingly within the pleomorphic group there was no association 

between hormone status and the level of immune infiltrate. A previous study quantifying 

stromal TILs in 614 ILCs found that ER- negative tumours (but not HER2+ tumours) were 

associated with a higher level of stromal TILs [282]. However the study did not identify 

pleomorphic cases, and since pleomorphic ILC shows higher rates of ER- tumours [77], it is 

possible that here ER- tumours were more indicative of pleomorphic histology which itself is 

associated with higher stromal TILs rather than specifically ER status, which is what has been 

identified in this work. A larger number of ER- and HER2+ cases would help further with 

establishing any association between hormone status and TILs in pleomorphic ILC since the 

KHP cohort is limited by relatively small numbers of these cases. 

 

Whilst hormone status did not show an association with stromal TILs in the KHP ILC cohort, 

analysis at the genomic level identified that TP53 mutations are associated with a denser 

stromal lymphocytic infiltrate in pleomorphic ILC. Interestingly TP53 mutations have previously 

been shown to promote immunogenicity in breast cancer [412] although not directly at the 

histological level and not previously in ILC or pleomorphic ILC, a rare, clinically aggressive 

subtype, where higher rates of TP53 alterations are observed. A recent study compared the 

level of enrichment of 26 immune signatures, which reflected the activities of a diverse range 

of immune cells and their associated pathways, between TP53 mutant and TP53 wild-type 

breast cancers using a range of different PAM-50 breast cancer cases from the TCGA and 

METABRIC datasets [244]. The TP53-mutant tumours exhibited significantly stronger immune 

signatures in almost all of the 26 signatures analysed [412]. The findings from the KHP ILC 

cohort are therefore consistent with this and suggest that in pleomorphic ILC TP53 mutations 

promote immunogenicity which is reflected at the histological level. 

 

Aside from individual genomic alterations, when the total mutational load was considered, 

whilst pleomorphic ILCs had a significantly higher mutational load and higher stromal TILs 

compared to non-pleomorphic ILC, there was no direct correlation between tumour mutational 

load and the level of stromal TILs in the ILC cohort. A previous study assessed tumour 

mutational load and correlation with TILs in a cohort of 62 advanced breast cancers and found 

a significant positive correlation between these two variables [413]. However the study cohort 

only contained 6 ILCs with the remainder of cases consisting mainly of ER+ and triple-negative 
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IC-NSTs [413]. The findings through sequencing of the larger KHP ILC cohort (n = 95) and 

correlation with stromal TILs suggest that in ILC, as a special histological breast cancer 

subtype, the level of stromal TILs cannot be considered to accurately represent the underlying 

level of mutational load of the tumour. 

	
As previously discussed, there are several ongoing phase III trials assessing the efficacy of 

ICIs in the ER+ breast cancer population include CHECKMATE 7FL, KEYNOTE-B49 and 

KEYNOTE-756 [257-259]. Furthermore specifically in ILC, the phase II GELATO trial is 

assessing the efficacy of atezolizumab in heavily pre-treated patients with advanced disease 

[260]. Studying the associations between baseline stromal TILs and clinical response to 

checkpoint inhibition specifically in the ILC patients within these trials will help elucidate the 

clinical relevance and utility of stromal TILs assessment in ILC as an adjunct to more 

frequently used assessments of tumour immunogenicity such as PD-L1 expression, as 

assessed through IHC.  

Overall the characterisation of the immune landscape in ILC at the histological level in this 

chapter, with a particular focus on pleomorphic cases, has provided new insights into the 

relatively enhanced immunogenicity of this rare histological ILC subtype, as well as 

associations with genomic alterations. The work has further highlighted that the level of 

stromal TILs assessed at the gross histological level does not appear to hold prognostic 

significance in both pleomorphic and non-pleomorphic ILC. 
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5. Chapter 5: Mapping the heterogeneity of the immune 
infiltrate in pleomorphic ILC 

 
 

5.1 Background 

Based upon the quantification of stromal TILs as a measure of tumour immunogenicity, the 

majority of ILCs are weakly immunogenic, or ‘immune-cold’ with only small subsets of ILC 

patients, including pleomorphic ILCs showing relatively higher stromal TILs. However, despite 

this there appears to be evidence that at least a subset of ILCs is more immunogenic aside 

from stromal TILs alone. For example, ‘immune-related’ gene-expression subtypes have been 

identified in ILC patients from the RATHER and TCGA cohorts (n = 106 and n = 144 

respectively) [32, 277].  

There is an increased recognition that given the complexity and heterogeneity of the tumour 

immune microenvironment, considering stromal TILs alone is a relatively simplistic approach. 

The tumour immune microenvironment represents a highly dynamic network of interactions 

between various lymphoid and myeloid lineage cell subpopulations of the innate and adaptive 

immune systems, including T and B lymphocyte subsets, dendritic cells, and macrophages 

[308, 414, 415]. The abundance of immune subpopulations and their interactions can either 

create an inflammatory microenvironment which favours suppression of the tumour or an 

immuno-suppressive microenvironment which promotes tumour progression.  

In a recent study, the phenotypic, transcriptional and functional diversity of TILs was 

investigated in a cohort of primary untreated ER+ ILCs (n = 87) and IC-NSTs (n = 94) using 

flow cytometry, multiplexed IHC and single cell RNA sequencing technologies [340]. This 

identified that macrophages, rather than T lymphocytes, were the predominant immune 

subpopulation infiltrating the tumour bed in ILC and the most transcriptionally diverse immune 

subpopulation between the ILC and IC-NST [340]. Tumours with abundant macrophages but 

minimal stromal TILs would be considered ‘immune-cold’ based on traditional assessments of 

histological immunogenicity quantifying stromal TILs, although this may not be accurate given 

that macrophages represent a key additional immune subpopulation with diverse roles in the 

complex tumour immune microenvironment. However macrophages and their prognostic 

significance has not been characterised in pleomorphic ILC and there is a need to better 

understand their presence and prognostic associations in this clinically aggressive tumour 

type and in particular the significance of the presence of M1-like and M2-like macrophages. 
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Whist M1-type macrophages contribute to an inflammatory immune microenvironment 

favouring tumour suppression, M2-type macrophages contribute to an immuno-suppressive 

microenvironment [332]. 

 

Another key element of the tumour immune microenvironment to consider is spatial 

heterogeneity. Immunity typically functions through intercellular contacts and through short-

distance cytokine communications and therefore understanding the spatial location of immune 

cells with respect to tumour cells and other immune subpopulations can offer a framework for 

understanding the unique ILC disease biology and for identifying potential predictive 

biomarkers associated with clinical outcome [416]. Immune cells themselves may be arranged 

individually dispersed throughout the tumour or alternatively as clusters. Tertiary lymphoid 

structures (TLSs) are ectopic lymphoid aggregates, located in non-lymphoid tissues [26].  

They are composed of T cell rich areas, B cells and supporting dendritic cells and are 

responsible for driving an antigen-specific immune response. They typically develop in 

inflamed tissues, being associated with chronic inflammation, autoimmune conditions, and 

malignancy [26]. They recruit and activate TILs therefore acting as a site of immune response 

activation within the tissue microenvironment [28]. In the context of cancer, they have attracted 

interest as being associated with improved outcomes in some cancers, including in TNBC and 

HER2+ breast cancer [29, 30]. In addition, they have been associated with improved 

responses to immunotherapies and there is growing interest in the possibility of targeting TLSs 

to enhance treatment responses [27]. However, the presence of TLSs has not been studied 

in pleomorphic ILC. Immune-related spatial analysis is emerging as a new type of cancer 

research for studying tumour immune heterogeneity from a spatial perspective. 

Given the diverse functions of TILs within the tumour immune microenvironment there is a 

need to further characterise TILs into the various immune subpopulations in ILC, and to 

establish their prognostic significance particularly in pleomorphic ILC, a histologically more 

immunogenic yet understudied ILC subtype. With the development of immune-related spatial 

analysis technologies, there is a need to better understand the spatial organisation of immune 

cells and any prognostic associations in pleomorphic ILC. Moreover given the growing 

evidence that macrophages are a more dominant immune subpopulation than TILs in ILC, 

with diverse functions depending on whether they have been polarised to an M1-like or M2-

like phenotype, there is a need to study their presence further in ILC and establish any 

prognostic associations as well as any differences in the levels of macrophages between 

pleomorphic and non-pleomorphic ILC.  
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5.2 Chapter Aims 

Overall the purpose of this chapter is to: 

1) Evaluate the prognostic associations of the immune microenvironment in aggressive 

ILCs. 

 

2) Assess the spatial significance of the various immune subpopulations. 

 

3) Functionally assess the role of immune subpopulations associated with aggressive 

ILCs. 
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5.3 Results 
 

5.31 Pleomorphic ILCs show heterogeneity in the composition and 
spatial organisation of the immune infiltrate 
 

The abundance of immune subpopulations was assessed at the protein level in a high-plex 

unbiased manner using the NanoString Digital Spatial Profiling (DSP) platform. Review of the 

NanoString tumour H&Es (Figure, 5.1 & 5.2) and immunofluorescent (IF) images showing the 

selected morphology markers, guided the selection of regions of interest (ROIs) (Figure 5.3). 

ROIs were selected based on CD45 and Pan-Cytokeratin (PanCk) morphology marker 

staining with immune rich tumour regions selected. Eighty-four ROIs were represented in 7 

NanoString slides (Table 5.1). One of the original 20 tumours (TG02210 on slide 7) was 

excluded due to poor tissue adherence to the slide. Visualisation and quantification of 

morphology markers demonstrated heterogeneity and variability in immune cell densities, 

immune cell subtypes, and tumour cell content across each ROI, within and between tumours 

(Figure 5.4).  

 

Seventy-one protein markers (excluding controls) were measured across each ROI 

(Supplementary Table 3). Normalized counts of each target relative to non-specific counts 

(background) were evaluated. Some non-immune markers were captured in the analysis 

despite selecting quantification of the immuno-oncology proteins in CD45+ve areas only. This 

occurred if there was overlap between immune cells and epithelial cells within the selected 

immune compartment. Given that protein expression was being characterised exclusively in 

immune cells, the non-immune markers were excluded from the analysis. Quantification of the 

71 immuno-oncology protein markers further demonstrated immune heterogeneity across 

ROIs (Figure 5.5A). Principal component analysis showed that ROIs clustered based on 

patient but not slide location (Figure 5.5B, 5.5C). 
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Table 5.1: Clinical details and outcome data for pleomorphic ILC DSP cohort: (For hormone 
status: NA = unavailable information, 0 = negative, 1 = positive. For onset of relapse: 1 = early relapse 
< 3 years, 2 = late relapse > 6 years, 3 = no relapse, NA = relapse but onset unknown). 
 
 
 
 
 
 

Study ID ER PR HER2
Stromal 

TILs score 
(%)

lymph 
nodes (n)

Size
 (mm) Grade

Age at 
diagnosis

(years)

Onset 
of 

relapse
1355 1 0 0 7 2 22 2 62.5 2

17011789 1 1 0 10 0 40 3 47.9 3
17013592 1 1 0 5 6 40 3 57.2 1
17014363 1 0 1 7 22 40 3 53.9 1
17015028 1 1 0 8 0 60 3 79.7 3
17018625 1 1 0 7 8 50 2 47.3 3
17021357 0 0 0 5.5 NA 30 NA 53.5 3
17023306 0 0 1 8.5 33 30 3 58.1 1
17013387 1 0 NA 7 1 60 3 67.3 2
17025981 1 1 1 5 2 50 3 88.1 1
17047324 1 1 0 16 33 40 2 66.6 1
17051586 0 0 0 7 0 10 2 66.1 2
17055238 1 1 0 7.5 0 40 2 80.5 3
17055645 0 0 0 6 0 10 2 43.4 2
17057784 0 0 0 4.5 11 40 2 60.8 3
TG01139 1 1 0 5.5 3 40 2 49.4 3
TG01725 NA NA 1 35 1 11 3 42.7 3
TG01958 0 NA 0 10 5 2 2 34.3 3
TG02166 1 1 0 5 0 40 3 56.1 NA
TG02210 1 1 0 6.5 0 13 3 57.5 3

SLIDE 7

SLIDE 1

SLIDE 2

SLIDE 3

SLIDE 4

SLIDE 5

SLIDE 6
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Figure 5.1: Selection of 10 x 13mm tumour regions of pleomorphic ILCs on the NanoString DSP 
slides: Representative slide showing three 10 x 13mm areas selected from individual tumour cases 
(left to right: 17014363, 17015028, 17018625) for slide 2 to capture the most immunogenic areas. 
Multiple selected tumour areas were then orientated on each NanoString DSP slide. 
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Figure 5.2: Review of tumour H&Es identifies immune rich areas for NanoString DSP: A) 
Representative example showing three individual tumour cases from slide 2 (left to right: 17014363, 
17015028, 17018625) on a single NanoString DSP slide B) Histological review of the tumour sections 
was used to select the areas with the most immune cells as potential ROIs prior to visualization with 
morphology markers C) High power images of individual immune rich areas selected for each tumour 
case. 
 

 

 

 

 

 

 
 

B

A

C
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Figure 5.3: Morphology marker Immunofluorescence (IF) imaging enables selection of immune 
rich tumour regions: A) Representative H&E showing three individual tumour cases from slide 2 
(superior to inferior: 17018625, 17015028, 17014363) on a single NanoString DSP slide with 
immunogenic areas identified by black circular annotations prior to live image viewing B) Live IF image 
showing morphology markers (PanCk = green, CD45 = yellow, CD3 = red, DNA = blue) and all ROIs 
selected upon review of the live image (additional ROIs were selected during review of the live IF images 
and immune rich areas identified on H&E did not always directly correlate exactly with the most 
immunogenic areas on live image review, since this was a subsequent tumour tissue section, and there 
were also subtle differences in tissue orientation between the H&E and live IF image). 
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Figure 5.4: Representative IF NanoString DSP imaging demonstrates immune heterogeneity 
across selected ROIs: A) IF image of slide 1 (Superior to inferior: 17013592, 17011789, 1355) showing 
morphology markers: PanCK (green), CD45 (yellow), CD3 (red), DNA (blue)  and 12 selected ROIs B) 
IF images showing individual ROIs with CD45, CD3 and DNA channels and underlying bar charts 
showing normalised morphology marker counts across each individual ROI for CD45 and CD3 C) IF 
images showing individual ROIs with PanCK, CD45 and DNA channels and underlying bar charts 
showing normalised morphology marker counts across each individual ROI for PanCK and CD45. 
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Figure 5.5: Heterogeneity in the expression of immuno-oncology proteins is observed across 
ROIs: A) Normalised counts of immuno-oncology protein markers across selected ROIs B) Principal 
component analysis assessing for slide effect: individuals factor map assessing clustering of ROIs 
based upon slide location (individual datapoints represent ROIs with ROIs colour-coded based upon 
slide location) C) Principal Component analysis assessing for patient effect: individuals factor map 
assessing clustering of ROIs based upon patient (individual datapoints represent ROIs with ROIs are 
colour-coded based upon patient). 
 
 
 
 
 
 

Figure 4.5: Heterogeneity in the expression of immuno-oncology
proteins is observed across ROIs: A) Normalised counts of immuno-
oncology protein markers across selected ROIs B) Principal Component
analysis assessing for slide effect: Individuals factor map assessing clustering
of ROIs based upon slide location. Each individual datapoint represents an
ROI with ROIs colour-coded based upon slide location C) Principal
Component analysis assessing for patient effect: Individuals factor map
assessing clustering of ROIs based upon patient. Each individual datapoint
represents an ROI with ROIs are colour-coded based upon patient

Normalized counts of individual immuno-oncology markers across ROIs
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5.32 CD11c+ cells are associated with improved outcome in pleomorphic 
ILC 
 
A linear mixed model was used to assess differential protein expression in i) relapse (n = 10) 

vs no-relapse (n = 9) and ii) early (n = 5) vs late (n = 4) relapsing patients. Given that this was 

a small discovery cohort, relaxed statistical thresholds were applied (un-adjusted p < 0.1, LFC 

+/- 0.585) which found a significant enrichment of CD11c+ cells in patients who did not relapse 

vs those that did (p = 0.0533, LFC = -0.657, Figure 5.6A). CD11c is widely established as a 

marker of dendritic cells but is also expressed on monocytes, M1-like macrophages, 

granulocytes and memory B cells [417, 418]. In the early vs late relapse comparison CD11c+ 

cells were not significantly differentially expressed between the two patient groups (p = 0.348, 

LFC = -0.257, Supplementary Table 4). 

 

No other significantly differentially expressed immuno-oncology proteins were identified 

between relapsing and non-relapsing pleomorphic ILC patients (Table 5.2). Non-immune 

markers e.g. HER2 were not studied further given that CD45+ areas only were sequenced 

and non-immune signal reflects overlap between immune and epithelial cells. 

 

5.33 CD68+ cells are associated with early onset of disease relapse in 
relapsing patients  
 
Comparing early (n = 5) vs late (n = 4) relapsing patients, a significantly higher level of CD68+ 

cells was observed in patients who relapsed early (p = 0.0553, LFC = 1.608, Figure 5.6B). 

CD68 is a pan-macrophage marker expressed on both M1-like and M2-like macrophages. 

CD68 levels were not significantly differentially expressed in the relapse vs no-relapse 

comparison (p = 0.731, LFC = 0.172). When CD163, a marker of M2-like macrophages was 

considered, there was no difference in CD163 levels in the relapse vs no relapse group (p = 

0.767, LFC = 0.151) and in the early vs late relapse group (p = 0.321, LFC = 0.842). No other 

immune proteins were significantly differentially expressed between the two groups (Table 

5.3). Next an average M2/M1 ratio was calculated for each patient based upon the levels of 

CD163 (M2-like) to CD80 (M1-like) protein expression across all the ROIs from each patient. 

There was no difference in the M2/M1 ratios between relapse (n = 10) and no-relapse (n = 9) 

(p = 0.7802, Mann-Whitney U test), and between early (n = 5) and late relapse (n = 4) (p = 

0.7302, Mann-Whitney U test, Supplementary Table 5). 
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Figure 5.6: CD11c+ cells are enriched in no-relapse patients and CD68+ cells are enriched in 
early relapsing patients: A) Volcano-plot showing differential expression of proteins from the 
NanoString DSP panel in no-relapse (n = 9) vs relapse (n = 10). CD11c+ cells were more highly 
expressed in no-relapse (p = 0.0533, LFC = -0.657 B) Volcano-plot showing differential expression of 
proteins from the NanoString DSP panel in early (n = 5) vs late (n = 4) relapse. CD68+ cells were more 
highly expressed in patients who relapsed early (p = 0.0553, LFC = 1.608) (red dots show statistically 
significant proteins). Non-immune significantly differentially expressed proteins e.g. S100B were 
excluded from further analysis. Non-significant non-immune related protein labels are excluded for 
visualisation purposes. 
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Table 5.2: Function of 5 differentially expressed immune protein markers in pleomorphic ILC 
tumours of patients with and without disease relapse [419-426] 
 

 
Table 5.3: Function of 5 differentially expressed immune protein markers in pleomorphic ILC 
tumours of patients with early and late relapse [422, 426-429] 
 
 
 
 
 
 
 
 
 

 

  

Protein Cell type / function Logfold change p-value

CD11c Dendritic cells / M1 macrophages / monocytes / memory B cells -0.657 0.053

CD8 Cytotoxic T cells -0.529 0.170

CD3 All T lymphocytes -0.430 0.259

IDO1 Suppression of effector T cells and natural killer (NK) cells, activation of 
regulatory T cells and myeloid derived suppressor cells (MDSCs) -0.414 0.431

CD20 B lymphocytes -0.554 0.436

Relapse vs no relapse

Protein Cell type / function Logfold change p-value

CD68 Macrophages 1.608 0.055

CD127 Memory and effector T cells -0.895 0.109

IDO1 Suppression of effector T cells and natural killer (NK) cells, activation of 
regulatory T cells and myeloid derived suppressor cells (MDSCs) -1.308 0.114

CD8 Cytotoxic T cells -0.595 0.188

CD14 Monocytes, granulocytes and macrophages 0.530 0.241

Early vs late relapse
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5.34 TP53 mutations are associated with higher levels of CD56+ cells 
 
Next an assessment was made to establish any correlation between the presence of the 

frequently observed genomic alterations in pleomorphic ILC and the levels of the major 

immune subpopulations. These immune subpopulations of interest included T cells (CD3+), 

cytotoxic T cells (CD8+), helper T cells (CD4+), B cells (CD20+), macrophages (CD68+) and 

natural killer cells (CD56+). Targeted sequencing data was available for 18 of the 19 patients 

included in the study. The levels of these immune subpopulations were compared between i) 

CDH1 mutant vs wild-type patients ii) PIK3CA/PTEN/AKT mutant vs wild-type iii) HER2 

amplified/mutant vs wild-type and iv) TP53 mutant vs wild-type. This showed significantly 

higher normalised counts of CD56+ cells in TP53 mutant (n = 6) vs wild-type (n = 12) patients 

(p = 0.0135, Mann-Whitney U test). There were no other significant differences between the 

levels of the major immune cell populations and subpopulations (Table 5.4). 

 

 
Table 5.4: Associations between genomic alterations and the normalised counts of immune cell 
populations in the NanoString DSP cohort: This identified significantly higher normalised counts of 
CD56+ cells in TP53 mutant (n = 6) vs wild-type (n = 12) patients (p = 0.0135, Mann-Whitney U test) (* 
denotes p value < 0.05). 
 
 
 
 
 
 
 

Comparison Group No of cases Median SNR normalised 
expression counts 

p - value 
(Mann-Whitney U test)

CDH1  altered vs wild-type CD3 13 vs 5 4.949 vs 4.570 0.6331
CDH1  altered vs wild-type CD8 13 vs 5 5.019 vs 4.359 0.3359
CDH1  altered vs wild-type CD4 13 vs 5 4.747 vs 4.751 > 0.9999

CDH1  altered vs wild-type CD20 13 vs 5 4.414 vs 5.416 0.5028
CDH1  altered vs wild-type CD68 13 vs 5 3.385 vs 3.908 0.3873
CDH1  altered vs wild-type CD56 13 vs 5 1.973 vs 2.092 0.3359

PIK3CA/PTEN/AKT  altered vs wild-type CD3 11 vs 7 4.833 vs 5.320 0.1509
PIK3CA/PTEN/AKT  altered vs wild-type CD8 12 vs 7 4.486 vs 5.081 0.4252
PIK3CA/PTEN/AKT  altered vs wild-type CD4 13 vs 7 4.310 vs 5.204 0.0853

PIK3CA/PTEN/AKT  altered vs wild-type CD20 14 vs 7 4.414 vs 4.437 0.4789
PIK3CA/PTEN/AKT  altered vs wild-type CD68 15 vs 7 3.404 vs 3.209 0.7242
PIK3CA/PTEN/AKT  altered vs wild-type CD56 16 vs 7 2.008 vs 2.035 0.5962

HER2  altered vs wild-type CD3 3 vs 15 5.219 vs 4.930 0.3603
HER2  altered vs wild-type CD8 3 vs 15 4.655 vs 5.019 > 0.9999
HER2  altered vs wild-type CD4 3 vs 15 5.204 vs 4.310 0.2500
HER2  altered vs wild-type CD20 3 vs 15 4.437 vs 4.134 0.5735
HER2  altered vs wild-type CD68 3 vs 15 4.502 vs 3.385 0.4265
HER2  altered vs wild-type CD56 3 vs 15 2.253 vs 2.008 0.4265
TP53  altered vs wild-type CD3 6 vs 12 5.134 vs 4.907 0.5532
TP53 altered vs wild-type CD8 6 vs 12 5.094 vs 4.731 0.8201
TP53  altered vs wild-type CD4 6 vs 12 4.868 vs 4.251 0.3355
TP53  altered vs wild-type CD20 6 vs 12 3.886 vs 4.431 0.8916
TP53  altered vs wild-type CD68 6 vs 12 3.943 vs 3.282 0.0831
TP53  altered vs wild-type CD56 6 vs 12 2.185 vs 1.861 0.0135*
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5.35 The spatial organisation of immune cells is not associated with 
clinical outcome in the KHP pleomorphic cohort 
 
One of the key advantages of NanoString DSP technology is that it provides morphological 

context rather than quantification data alone. Therefore having assessed differential 

expression of the various immune proteins between patients with varying clinical outcomes, 

an assessment was next made of the spatial organisation of the immune cells and any 

prognostic associations.   

 

During H&E review and ROI selection, heterogeneity with respect to the spatial organisation 

of immune cells was noted (Figure 5.7A). Some tumours were characterised by well-

developed and organised lymphoid structures in association with tumour cells whilst other 

showed a significantly more diffuse infiltrate characterised by single immune cells dispersed 

throughout the tumour and stroma. To further understand the prognostic significance of the 

degree of spatial clustering of immune cells, each individual ROI was analysed in turn using 

the IF images containing the morphology markers and the proportion of the total CD45+ cells 

that were forming clusters or immune cell aggregates was quantified. Given that each patient’s 

tumour contained multiple ROIs, an average cluster proportion score was calculated for each 

patient (Table 5.5). The cluster proportions were then compared between patients with and 

without disease relapse. The hypothesis was that patients without disease relapse would have 

higher cluster scores than relapsing patients given that TLSs have previously been associated 

with improved outcomes in solid tumours [29, 30]. However there was no difference in the 

degree of clustering of immune cells between relapsing (n = 10) and non-relapsing patients (n 

= 9) (p = 0.9556, Mann-Whitney U test, Figure 5.7B).  

 

Previous studies have shown that the size and degree of maturation of TLSs can be of 

prognostic significance in cancer [20-25]. TLSs in the tumour microenvironment can vary from 

small aggregates of B lymphocytes to more organised lymphoid structures containing germinal 

centres [26]. There is no widely used cut-off for the numbers of immune cells required to define 

a TLS, although a recent study assessing TLSs in lung cancer proposed a methodology for 

automated detection and quantification of TLSs using H&Es which concluded that a minimum 

number of 45 lymphocytes was required to define a TLS [430] (although mature TLSs with 

germinal centres can contain several hundred cells). In the NanoString cohort few well-

established TLSs with germinal centres were present, yet there was still heterogeneity in the 

size of the immune clusters which were in association with tumour cells. Therefore to assess 

any association between immune cell cluster size and clinical outcome in the pleomorphic 
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cohort, the number of cells in the largest immune cell cluster was visually quantified for each 

patient and assigned to a cluster group (Table 5.5). Overall there was no difference in the size 

of the largest immune cell cluster between relapsing and non-relapsing patients (p = 0.9798, 

Mann-Whitney U test, Figure 5.7C). Given that a previous study determined that 45 

lymphocytes were required to define a TLS [430], using the immune cluster size cut-offs, 8/19 

(42%) of patients included in the NanoString DSP cohort had TLSs (immune clusters with > 

50 cells). There was no significant difference in the frequency of TLSs between relapsing and 

non-relapsing patients (p > 0.9999, Fisher’s exact test, Table 5.6). When the largest cluster 

size category of > 100 immune cells was considered, there was no difference in the frequency 

of large clusters between relapsing and non-relapsing patients (p > 0.9999, Fisher’s exact test, 

Table 5.7).  

 

Table 5.5: Clustering of immune cells and relapse status in each NanoString DSP patient: For 
onset of relapse: 1 = early relapse < years, 2 = late relapse > 6 years, 3 = no relapse, NA = relapse but 
onset unknown. For number of cells in largest cluster: 1 = no clusters, 2 = 20 - 50, 3 = 50 - 100, 4 = 
100). 

 

 

 

 

Study ID Onset of 
relapse

Average proportion of 
CD45+ cells forming 

clusters across ROIs (%)

Number of cells in 
largest cluster

1355 2 50 2
17011789 3 90 4
17013592 1 60 3
17014363 1 60 2
17015028 3 95 4
17018625 3 0 1
17021357 3 80 2
17023306 1 40 3
17013387 2 0 1
17025981 1 30 2
17047324 1 90 4
17051586 2 95 4
17055238 3 50 2
17055645 2 80 4
17057784 3 0 1
TG01139 3 90 2
TG01725 3 30 2
TG01958 3 90 4

SLIDE 7 TG02166 NA 0 1

SLIDE 6

SLIDE 1

SLIDE 2

SLIDE 3

SLIDE 4

SLIDE 5
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Table 5.6: Contingency table showing frequency of TLSs in relapse vs no-relapse: No difference 
in the frequency of TLSs was observed between relapsing and non-relapsing patients (p > 0.9999, 
Fisher’s exact test). 
 
 
 
 
 

 

Table 5.7: Contingency table showing frequency of immune clusters > 100 cells in relapse vs 
no-relapse: No difference in the frequency of clusters with > 100 cells was observed between relapsing 
and non-relapsing patients (p > 0.9999, Fisher’s exact test). 

clusters > 50 
cells

clusters < 50 
cells Total (n)

relapse (n) 4 6 10
no-relapse (n) 4 5 9

Total (n) 8 11 19

clusters > 100 
cells

clusters < 100 
cells Total (n)

relapse (n) 3 7 10
no-relapse (n) 3 6 9

Total (n) 6 13 19
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Figure 5.7: The spatial organisation of immune cells is not associated with disease relapse 
status: A) Top panel: H&E of case 17013592 with arrows showing organised lymphoid structures / 
aggregates (depicted by arrows) and IF images of two corresponding selected ROIs from the case. 
Bottom panel: H&E of case TG01725 showing a scattered and diffuse infiltrate of immune cells 
throughout the tumour and IF images of two corresponding ROIs from the case (PanCK = green, CD45 
= yellow, CD3 = red, DNA = blue) B) Scatterplot showing the average % of CD45+ cells forming clusters 
across ROIs per patient C) Scatterplot showing the number of cells in the largest immune cluster per 
patient: 1 = no clusters, 2 = 20 - 50, 3 = 50 - 100, 4 = 100). Figure 4.8: The spatial organisation of immune cells is not associated
with disease relapse status: A) Top panel: H&E of case 17013592 with
arrows showing organised lymphoid structures / aggregates (depicted by
arrows) and IF images of two corresponding selected ROIs from the case.
Bottom panel: H&E of case TG01725 showing a scattered and diffuse infiltrate
of immune cells throughout the tumour and IF images of two corresponding
ROIs from the case (PanCK = green, CD45 = yellow, CD3 = red, DNA = blue)
B) Scatterplot showing the average % of CD45+ cells forming clusters across
ROIs per patient C) Scatterplot showing the number of cells in the largest
immune cluster per patient with cluster groups summarized in associated table
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5.36 Pleomorphic ILCs contain more macrophages than non-
pleomorphic ILCs 
 
Having identified a significantly higher level of CD68+ cells in pleomorphic ILC patients with 

early disease relapse from the NanoString DSP cohort, an independent extended cohort of 

both pleomorphic and non-pleomorphic ILCs was used to validate this finding. CD68 IHC was 

performed in the KHP cohort in pleomorphic (n = 54) and non-pleomorphic (n = 78) ILCs. 

Unlike the Salgado stromal TILs scoring methodology which is a well-established standardised 

TILs scoring approach in breast cancer, there is no specific CD68 scoring methodology for 

breast tumours.  

 

The TILs scoring methodology focused only on stromal TILs as opposed to stromal and intra-

tumoral TILs as the assessment of stromal TILs is more reproducible. Intra-tumoral TILs are 

typically present at lower numbers and in fewer breast cancer cases and can be more 

challenging to identify on basic H&E [308]. Moreover the scoring of intra-tumoral TILs does 

not provide further prognostic information compared to stromal TILs alone. However when 

assessing CD68 in the cohort, given that there is no standardised methodology for CD68 

staining and little is known of the level of macrophage infiltration in ILC, particularly 

pleomorphic ILC, it was deemed appropriate to capture and quantify all CD68+ cells in the 

IHC analysis, therefore both intra-tumoral and stromal macrophages. 

 

QuPath digital pathology technology [341] was used to quantify the level of CD68 staining in 

selected representative ROIs of each case (Figure 5.8). Quantification of CD68 staining across 

the cohort showed heterogeneity in the level of macrophage infiltration. Overall when the entire 

CD68 ILC cohort was considered, pleomorphic ILCs showed significantly higher CD68 scores 

compared to non-pleomorphic cases (n = 132, p = 0.0002, Mann-Whitney U test, Figure 5.9A), 

which was maintained when just focussing on ER+/HER2- tumours (n = 33) vs ER+/HER2- 

non-pleomorphic (n = 64) ILCs (p = 0.0422, Mann-Whitney U test, Figure 5.9B-C). Of note, 

there was no significant difference in CD68 scores between ER+ and ER- pleomorphic ILCs 

(p = 0.1275, Mann-Whitney U test, Figure 5.10A). Additionally no significant difference was 

observed between CD68 scores in HER2+ (n = 7) and HER2- (n = 39) pleomorphic ILCs (p = 

0.0758, Mann-Whitney U test, Figure 5.10B).  
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Figure 5.8: Digital pathology quantification of CD68 staining for case 245: i) Low power (x4) H&E 
of a representative ILC tumour case and ii) corresponding CD68 IHC showing QuPath annotations of 
representative regions of interest (ROIs) iii) High power (x20) view within an ROI showing CD68 staining 
and iv) corresponding QuPath image which uses a pixel classifier to identify areas of positive CD68 
staining. 
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Figure 5.9: Pleomorphic ILCs show a higher level of macrophages compared to non-
pleomorphic cases: A) Scatterplot showing significantly higher CD68 scores in pleomorphic vs non-
pleomorphic cases (p = 0.0002, Mann-Whitney U test) and B) in ER+/HER2- pleomorphic vs non-
pleomorphic cases (p = 0.042, Mann-Whitney U test) C) i) H&E of pleomorphic case TG01725 and ii) 
corresponding CD68 IHC showing strong CD68 staining (17.6%) iii) H&E of non-pleomorphic case 3589 
and iv) corresponding CD68 IHC showing mainly absent staining (1.33%). 
 
 
 

Figure 4.10: Pleomorphic ILCs show higher levels of macrophages
compared to non-pleomorphic cases: A) Scatter plot showing significantly
higher CD68 scores in pleomorphic vs non-pleomorphic cases (p = 0.0002,
Mann-Whitney test) and B) in ER+/HER2- pleomorphic vs non-pleomorphic
cases (p = 0.042, Mann-Whitney test) C) i) H&E of pleomorphic case
TG01725 and ii) corresponding CD68 IHC showing strong CD68 staining
(17.6%) iii) H&E of non-pleomorphic case 3589 and corresponding CD68 IHC
showing mainly absent staining (1.33%)
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Figure 5.10: CD68 levels do not significantly differ according to hormone status in pleomorphic 
ILC: A) Scatterplot showing CD68 scores in ER+ (n = 46) vs ER- (n = 6) cases (p = 0.1275, Mann-
Whitney U test) B) Scatterplot showing CD68 scores in HER2+ (n = 7) vs HER2- (n = 39) pleomorphic 
ILCs (p = 0.0758, Mann-Whitney U test). 
 

 

5.37 CD68 levels are positively correlated with stromal TILs in ILC 
 

Previous analysis identified higher levels of both stromal TILs and macrophages in 

pleomorphic ILC. These immune subpopulations are distinct and morphologically different with 

lymphocytes being derived from the lymphoid cell-lineage, appearing as small cells (8 -10 

microns) which possess a large nucleus containing dense hetero-chromatin and minimal 

cytoplasm containing few mitochondria and ribosomes [315]. Macrophages are derived from 

the myeloid lineage and are round to oval in shape (10 – 30 microns) with an eccentrically 

located, oval / indented nucleus and much more abundant cytoplasm, which may appear as 

‘foamy’ due to the presence of numerous secondary lysosomes [330, 331].  

 

To better understand any association between the presence of stromal TILs and 

macrophages, a Spearman’s rank test was performed in the entire CD68 KHP cohort (n = 

132). This showed a statistically significant weakly positive correlation between CD68 levels 

and stromal TILs in the cohort (Spearman’s rank correlation coefficient (ρ) = 0.378, p = 7.9 x 

10-6, Figure 5.11A). Even when pleomorphic ILC alone was considered, patients with high 

TILs generally showed a high level of infiltration by macrophages whilst patients with low 

stromal TILs generally had low levels of macrophages (Figure 5.11B). 

 

 

 

Figure 4.11: CD68 levels do not significantly differ according to hormone
status in pleomorphic ILC: A) Scatterplot showing CD68 scores in HER2+
(n = 7) vs HER2- (n = 39) pleomorphic ILCs (p = 0.0758, Mann-Whitney test,

B) Scatterplot showing CD68 scores in ER+ (n = 46) vs ER- (n = 6) cases (p =

0.1278, Mann-Whitney test)
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Figure 4.11: CD68 levels do not significantly differ according to hormone
status in pleomorphic ILC: A) Scatterplot showing CD68 scores in HER2+
(n = 7) vs HER2- (n = 39) pleomorphic ILCs (p = 0.0758, Mann-Whitney test,

B) Scatterplot showing CD68 scores in ER+ (n = 46) vs ER- (n = 6) cases (p =

0.1278, Mann-Whitney test)
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Figure 5.11: CD68 levels are positively correlated with stromal TILs in ILC: A) Scatterplot showing 
correlation between CD68 and stromal TILs levels in entire KHP lobular cohort (n =132, Spearman’s 
rank correlation coefficient (ρ) = 0.378, p = 7.9 x 10-6) B) I) H&E of pleomorphic ILC case 
TG011725 with high stromal TILs (TILs score: 35%) and ii) high levels of macrophages (CD68 score = 
17.6) iii) H&E of pleomorphic case 17051250 with low stromal TILs (1%) and iv) minimal CD68 infiltrate 
(CD68 score = 0.986). 

Figure 4.12: CD68 levels are positively correlated with stromal TILs: A)
Scatterplot showing correlation between CD68 and TILs levels in entire lobular
cohort (n =132) B) I) H&E of pleomorphic ILC case TG011725 with high
stromal TILs (TILs score: 35%) and ii) high levels of macrophages (CD68
score = 17.6) iii) H&E of case 17015520 with low stromal TILs (1%) and iv)
minimal CD68 infiltrate (CD68 score = 0.986)
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5.38 High CD68 levels are not associated with poor clinical outcomes in 
the ILC validation cohort 

Univariable survival analysis using a cox-proportional hazards model was performed on the 

pleomorphic and non-pleomorphic ILC KHP validation cohorts to identify any association 

between CD68 scores and MFS/OS (n = 132). Seven patients with de novo metastases were 

removed prior to survival analysis and the follow-up time truncated at 15 years. CD68 scores 

were split into tertiles and clinical covariates e.g. tumour stage, lymph node status and 

hormone status were adjusted for. Overall there was no significant association between CD68 

levels and MFS in both pleomorphic ILC (n = 52, 34 - 66%: p = 0.473, HR: 0.64, CI: 0.19 - 

2.17, > 66%: p = 0.341, HR: 0.58, CI: 0.19 - 1.77, Figure 5.12A) and non-pleomorphic ILC (n 

= 73, 34 - 66%: p = 0.358, HR: 1.38, CI: 0.69 - 2.74, > 66%: p = 0.812, HR: 0.9, CI: 0.36 - 

2.21, Figure 5.12B). There was also no significant association between CD68 levels and OS 

in pleomorphic ILC (n = 54, 34 - 66%: p = 0.027, HR: 0.27, CI: 0.08 - 0.86, > 66%: p = 0.107, 

HR: 0.46, CI: 0.18 - 1.18, Figure 5.12C) and non-pleomorphic ILC (n = 78, 34 - 66%: p = 0.881, 

HR: 1.05, CI: 0.57 - 1.93, > 66%: p = 0.282, HR: 1.46, CI: 0.73 - 2.91, Figure 5.12D). 
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Figure 5.12: CD68 levels are not associated with survival outcomes in pleomorphic and non-
pleomorphic ILC: A) KM graph showing the association between CD68 levels and metastasis free 
survival in pleomorphic ILC using tertiles (n = 52, 34 - 66%: p = 0.473, HR: 0.64, CI: 0.19 - 2.17, > 66%: 
p = 0.341, HR: 0.58, CI: 0.19 - 1.77) B) KM graph showing the association between CD68 levels and 
metastasis free survival in non-pleomorphic ILC (n = 73, 34 - 66%: p = 0.358, HR: 1.38, CI: 0.69 - 2.74, 
> 66%: p = 0.812, HR: 0.9, CI: 0.36 - 2.21) C) KM graph showing the association between CD68 levels 
and overall survival in pleomorphic ILC (n = 54, 34 - 66%: p = 0.027, HR: 0.27, CI: 0.08 - 0.86, > 66%: 
p = 0.107, HR: 0.46, CI: 0.18 - 1.18) D) KM graph showing the association between CD68 levels and 
overall survival in non-pleomorphic ILC (n = 78, 34 - 66%: p = 0.881, HR: 1.05, CI: 0.57 - 1.93, > 66%: 
p = 0.282, HR: 1.46, CI: 0.73 - 2.91). 
  

CD68 and OS in pleomorphic ILC CD68 and OS in non-pleomorphic ILC

CD68 and MFS in non-pleomorphic ILC

0.0

0.2

0.4

0.6

0.8

1.0

Time (Years)
0 5 10 15

O
ve

ra
ll S

ur
viv

al
 P

ro
ba

bi
lity

>66%: HR = 1.46 (0.73 - 2.91), P = 0.282
34−66%: HR = 1.05 (0.57 - 1.93), P = 0.881

0−33%
34−66%
>66%

0−33% 32 26 16 6
34−66% 29 22 13 7
>66% 17 11 4 2

CD68 and MFS in pleomorphic ILC

0.0

0.2

0.4

0.6

0.8

1.0

Time (Years)
0 5 10 15

O
ve

ra
ll S

ur
viv

al
 P

ro
ba

bi
lity

>66%: HR = 0.46 (0.18 − 1.18), P = 0.107
34−66%: HR = 0.27 (0.08 − 0.86), P = 0.027

0−33%
34−66%
>66%

0−33% 12 8 4 2
34−66% 15 13 9 6
>66% 27 18 11 7

Figure 4.13: CD68 levels are not associated with survival outcomes in
pleomorphic and non-pleomorphic ILC: A) Kaplan-Meier graph showing
the association between CD68 levels and metastasis free survival in
pleomorphic ILC using tertiles (n = 52, 34 - 66%: p = 0.473, HR: 0.64, CI: 0.19
- 2.17, > 66%: p = 0.341, HR: 0.58, CI: 0.19 - 1.77) B) Kaplan-Meier graph
showing the association between CD68 levels and metastasis free survival in
non-pleomorphic ILC (n = 73, 34 - 66%: p = 0.358, HR: 1.38, CI: 0.69 - 2.74, >
66%: p = 0.812, HR: 0.9, CI: 0.36 - 2.21) C) Kaplan-Meier graph showing the
association between CD68 levels and overall survival in pleomorphic ILC (n =
54, 34 - 66%: p = 0.027, HR: 0.27, CI: 0.08 - 0.86, > 66%: p = 0.107, HR: 0.46,
CI: 0.18 - 1.18) D) Kaplan-Meier graph showing the association between
CD68 levels and overall survival in non-pleomorphic ILC (n = 78, 34 - 66%: p
= 0.881, HR: 1.05, CI: 0.57 - 1.93, > 66%: p = 0.282, HR: 1.46, CI: 0.73 - 2.91)

A B

0.0

0.2

0.4

0.6

0.8

1.0

Time (Years)
0 5 10 15

O
ve

ra
ll S

ur
viv

al
 P

ro
ba

bi
lity

>66%: HR = 0.73 (0.3 − 1.77), P = 0.49
34−66%: HR = 0.39 (0.14 − 1.09), P = 0.072

0−33%
34−66%
>66%

0−33% 12 8 4 2
34−66% 15 13 9 6
>66% 27 18 11 7

0.0

0.2

0.4

0.6

0.8

1.0

Time (Years)
0 5 10 15

O
ve

ra
ll S

ur
viv

al
 P

ro
ba

bi
lity

>66%: HR = 1.33 (0.7 − 2.53), P = 0.381
34−66%: HR = 0.98 (0.56 − 1.73), P = 0.948

0−33%
34−66%
>66%

0−33% 32 26 16 6
34−66% 29 22 13 7
>66% 17 11 4 2

C D

34-66%: HR = 0.27 (0.08 - 0.86), p = 0.027
>66%: HR = 0.46 (0.18-1.18), p = 0.107

34-66%: HR = 0.64 (0.19-2.17), p = 0.473
>66%: HR = 0.58 (0.19-1.77), p = 0.341

0-33%        12                       7                        3                        2  
34-66%       15                       9 8 4
>66%          25                      15                       9                        5  

0-33%        12                       8                        4 2  
34-66%       15                      13                       9                        6  
>66%         27                      15                      11                       7  

0-33%      31                      23 13                       5  
34-66%     28                      17                      10                       5
>66%       14                       9                        4                        1   

34-66%: HR = 1.38 (0.69-2.74), p = 0.358
>66%: HR = 0.9 (0.36-2.21), p = 0.812

34-66%: HR = 1.05 (0.57-1.93), p = 0.881
>66%: HR = 1.46 (0.73-2.91), p = 0.282

0-33%        32                       26 16                       6  
34-66%       29                       22                     13                       7  
>66%         17                       11                       4                       3  

0 5 10 15

1.0

0.8

0.6

0.4

0.2

O
ve

ra
ll 

su
rv

iv
al

 p
ro

ba
bi

lit
y

Time (years)
0 5 10 15

1.0

0.8

0.6

0.4

0.2

O
ve

ra
ll 

su
rv

iv
al

 p
ro

ba
bi

lit
y

Time (years)

0.00.0

0 5 10 15

1.0

0.8

0.6

0.4

0.2

O
ve

ra
ll 

su
rv

iv
al

 p
ro

ba
bi

lit
y

Time (years)

0.0

0 5 10 15

1.0

0.8

0.6

0.4

0.2

O
ve

ra
ll 

su
rv

iv
al

 p
ro

ba
bi

lit
y

Time (years)

0.0



 169 

5.39 High M2/M1 ratios are associated with relapse in pleomorphic ILC 
 
Having identified that pleomorphic ILC is characterised by higher levels of macrophages 

compared to non-pleomorphic ILC, an assessment was next made to determine whether the 

ratio of M2-like to M1-like macrophages holds prognostic significance in pleomorphic ILC. Dual 

IHC staining for CD68 (green), a pan-macrophage marker (which stains both M1-like and M2-

like macrophages) and CD163, an M2-like marker (brown) was performed on 18 relapsing and 

17 non-relapsing pleomorphic ILCs. QuPath was used to quantify the level of staining for both 

markers (Figure 5.13A). The ratio of M2-like to M1-like macrophages in representative regions 

was calculated for each tumour (Table 5.8). Twenty-one samples (60%) showed higher levels 

of M1-like compared to M2-like macrophages and the remaining fourteen samples (40%) 

showed higher levels of M2-like compared to M1-like macrophages. Overall significantly 

higher M2/M1 ratios were present in relapsing compared to non-relapsing pleomorphic ILC 

patients (p = 0.0449, Mann-Whitney U test).  

Univariable survival analysis using a cox-proportional hazards model was performed on 34 of 

the 35 patients for whom dual IHC was completed. One patient was excluded who presented 

with de novo metastatic disease. M2/M1 ratio was used as an independent variable to assess 

any association between M2/M1 ratio and MFS and M2/M1 ratios were split into tertiles. 

Clinical covariates such as tumour stage, lymph node status and hormone status were 

adjusted for. Overall, patients in the top tertile (67 - 100% of M2/M1 ratios) had significantly 

worse MFS compared to patients in the bottom tertile (0 - 33% of M2/M1 ratios) (p = 0.007, 

HR: 15.76, CI: 2.14 - 116.27, Figure 5.13B). The difference between the bottom and middle 

(34 - 66% of M2/M1 ratios) tertiles was not statistically significant (p = 0.25, HR: 2.78, CI: 0.49 

- 15.82, Figure 5.13B).  
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Table 5.8: M1 and M2-like macrophage scores and M2/M1 ratios in 35 pleomorphic ILCs: The % 
scores represent the % of green (CD68) and brown (CD163) staining for M1-like and M2-like 
macrophages respectively. NA refers to patients without relapse 
 

 
 
 

Study ID M1 % M2 % M2/M1
Time between 
diagnosis and 

relapse (years)
3117 2.63 0.93 0.35 3.03
9068 5.63 2.73 0.48 1.13

17013766 3.76 1.94 0.52 1.38
9894 2.95 2.16 0.73 0.00

17013509 2.45 1.84 0.75 9.20
17013387 3.17 2.39 0.75 5.32

1355G 4.57 3.56 0.78 12.92
3589 6.59 6.25 0.95 5.73

17023306 4.27 4.16 0.97 1.00
9350 6.61 6.82 1.03 1.94

17025981 2.93 3.49 1.19 1.07
2602 / 17024882 0.86 1.44 1.67 0.65

17058347 2.23 4.04 1.81 3.30
17056290 0.81 1.79 2.20 2.22
17058332 1.58 3.54 2.24 4.07
17014363 2.96 9.83 3.32 0.52
17051586 0.88 3.13 3.58 6.21
17013592 0.56 2.80 4.99 1.57
17055086 9.46 1.00 0.11 NA
17058082 1.92 0.47 0.24 NA
17006677 0.79 0.20 0.26 NA
17051250 0.28 0.09 0.31 NA
17041799 1.30 0.45 0.35 NA
17037739 4.88 2.05 0.42 NA
17007630 3.83 1.67 0.44 NA
17011975 1.70 0.99 0.58 NA
17057784 1.20 0.78 0.65 NA
17025943 2.44 1.84 0.76 NA
17004052 2.13 1.76 0.83 NA
17023387 12.24 11.08 0.91 NA
17022542 0.30 0.42 1.42 NA
17057789 3.26 4.77 1.46 NA
17056904 1.30 2.34 1.80 NA
17020041 4.31 9.88 2.29 NA
17054621 0.68 1.70 2.49 NA
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Figure 5.13: High M2/M1 ratios are associated with relapse in pleomorphic ILC: A) Top panel: 
representative no-relapse case 17055086 showing CD68 staining but almost absence of CD163 
staining on IHC (left) and corresponding QuPath image. Bottom panel: representative relapse case 
17058347 showing CD68 staining and a higher proportion of CD163 staining on IHC (left) and 
corresponding QuPath image. B) KM graph showing association between M2/M1 ratio scores and MFS 
in pleomorphic ILC (n = 34, 34 – 66%: p = 0.25, HR: 2.78, CI: 0.49 - 15.82, > 66%: p = 0.007, HR: 
15.76, CI: 2.14 - 116.27). 
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5.40 ILC spheroids show higher growth rates in the presence of M2-like 
vs M1-like macrophages 
 

Having identified that the presence of relatively higher levels of M2-like macrophages 

compared to M1-like macrophages is associated with disease recurrence in pleomorphic ILC, 

a 3D lobular co-culture experiment was next performed to further understand the growth rates 

of ILC cells using the cell line, MDA-MB-134, in the presence of M1-like and M2-like polarised 

macrophages when grown as spheroids. MDA-MB-134 cells are ER+/PR+/HER2-, 

characterised by the loss of E-cadherin and derived from a pleural effusion. They are 

commonly used as an ILC cell line [431]. 

 

Firstly, THP-1 cells, a human leukaemia monocytic cell line, were cultured in suspension in 

RPMI+10% FBS. MDA-MB-134 cells which had already been tagged with red fluorescent 

protein (RFP) and luciferase (Luc2) (MM134-RFP-Luc2) [356]. Cells were polarised into M1-

like and M2-like macrophages by the addition of various cytokines and then grown as 

spheroids with MM134-RFP-Luc2 cells (see methods).  

 

Firstly, when total spheroid size was considered, the spheroids containing M2-like 

macrophages were significantly larger than those containing M1-like macrophages (p = 

0.0344, 2-way ANOVA test, Figure 5.14A, B). Next to focus on the tumour cells alone and 

ensure that the difference in spheroid size was not attributed solely to an increased growth of 

M2-like compared to M1-like macrophages, the intensity of red staining, reflecting the RFP-

labelled tumour cells, was measured over time. This showed a significantly higher level of red 

intensity in the spheroids grown with M2-like compared to M1-like macrophages (p = 0.001, 

2-way ANOVA test, Figure 5.14C), suggesting that the M2-like macrophage promote faster 

growth of the tumour cells. 
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Figure 5.14: ILC spheroids show higher growth rates in the presence of M2-like vs M1-like 
macrophages: A: Representative Incucyte® images showing tumour cell (red) / macrophage (green) 
spheroids grown in the presence of M1-like (left) and M2-like macrophages (right) (MM134 = MM134-
RFP-Luc2 cells) B) Growth curve summarising the pooled average of all experiments (n = 3) showing 
significantly higher spheroid size when MM134-RFP-Luc2 cells are grown with M2-like vs M1-like 
macrophages (p = 0.0344, 2-way ANOVA test) C) Growth curve showing pooled average of all 
experiments (n = 3) showing significantly higher red intensity, reflecting tumour cell specific growth, 
when MM134-RFP-Luc2 cells are grown with M2-like vs M1-like macrophages (p = 0.001, 2-way 
ANOVA test). 
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5.41 Immune-hot and immune-cold tumour cells differ at the 
transcriptomic level in pleomorphic ILC 
 
Having studied the immune landscape with spatial context at the protein level using 

NanoString DSP, a whole transcriptome assessment was next made of the immune and 

tumour landscape with spatial context in pleomorphic ILCs (n =10) with the highest immune 

infiltrate (> 4% stromal TILs, Table 5.9). Slides were prepared with up to three tumours 

orientated on a single slide (Figure 5.15). Following slide preparation the unstained slides 

were subject to the NanoString whole transcriptome (WTA) workflow (Figure 5.16). During 

ROI selection ‘Immune-hot’ tumour regions, characterised by the presence of abundant 

immune cells and ‘immune-cold’ tumour regions, characterised by an absence of immune 

cells, were selected for each tumour. These regions were selected to also include cancer-

associated fibroblasts (CAFs). Six of the 10 cases had previously been characterised at the 

protein level using NanoString DSP. The morphology markers PanCK, CD45 and α-SMA were 

used to identify tumours cells, immune cells, and CAFs respectively (Figure 5.17). A total of 

76 ROIs were selected in 10 tumours across the 4 slides and each ROI was segmented into 

the separate PanCK+, α-SMA+ and CD45+ (if present) compartments producing distinct areas 

of interest (AOIs) (Figure 5.17). These distinct compartments/AOIs were then sequenced 

separately within each ROI producing distinct tumour cell, CAF, and immune cell 

transcriptomic data within each ROI. In total 182 distinct AOIs were sequenced. 
 

Table 5.9: Clinical details and outcome data for pleomorphic ILC NanoString WTA cohort: For 
ER, PR and HER2 0 = negative, 1 = positive. For onset of relapse: 1 = early relapse < years, 2 = late 
relapse > 6 years, 3 = no relapse 
 
 
 
 

Study ID ER PR HER2
Stromal 

TILs
 (%)

Lymph 
nodes

(n)

Size
 (mm) Grade

Age at 
diagnosis

(years)

Onset of 
relapse

17054621 1 1 0 4 1 32 3 51.7 2
17018625 1 1 0 7 8 50 2 47.3 3
1355 1 0 0 7 2 22 2 62.5 2

17004052 1 1 0 4 0 20 2 80.8 3
17013592 1 1 0 5 6 40 3 57.2 1
17011789 1 1 0 10 0 40 3 47.9 3
17058145 1 1 0 4 3 60 3 59.6 2
3117 1 1 0 5.5 1 17 2 78.0 1

17015028 1 1 0 8 0 60 3 79.7 3
17047324 1 1 0 16 33 40 2 66.6 1

SLIDE 4

SLIDE 1

SLIDE 2

SLIDE 3



 175 

 
Figure 5.15: Selection of 10 x 13mm tumour regions from pleomorphic ILCs orientated on 
NanoString Whole Transcriptome (WTA) slides: Representative case showing three 10 x 13mm 
areas selected from individual tumour cases (left to right: 1355, 17004052, 17013592) for slide 2 to 
capture the most immunogenic areas. Multiple selected tumour areas were then orientated on each 
NanoString WTA slide. 
 

 

 
Figure 5.16: NanoString WTA workflow: Diagrammatic representation of the GeoMx WTA workflow 
summarising 6 keys stages. Taken from [432]. 
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Figure 5.17: Selection and segmentation of immune-hot and immune-cold tumour regions of 
interest (ROIs): Top panel shows two distinct ROIs; left is an ‘immune-hot’ ROI characterised by the 
presence of CD45+ immune cells in addition to PanCK+ tumour cells and α-SMA CAFs and right 
showing an ‘immune-cold’ ROI characterized by the presence of PanCK+ tumour cells (green) and α-
SMA CAFs. Bottom panel shows the segmentation of an individual ‘immune-hot’ ROI into distinct 
PanCK+ tumour, α-SMA+ CAF and CD45+ immune cell compartments known as ‘areas of interest’ 
(AOIs). 
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Comparing the transcriptomic profiles between immune-hot and immune-cold tumour cells 

identified 20 significantly differentially expressed genes (log2FC+/- (1.25) and un-adjusted p < 

0.001, Table 5.10). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5.10: Twenty differentially expressed genes in immune-hot vs immune-cold tumour 
(PanCK+) cells. 
  

Gene Coefficient p - value adj.p-val

GATA3 0.325 0.0004976 0.201

GLUL 0.395 0.0002386 0.156

IER3 0.473 0.0007120 0.205

MRPS30 0.639 0.0001415 0.146

OR2T12 -0.391 0.0000009 0.011

OR4S1 -0.346 0.0001653 0.146

TBX18 -0.487 0.0001676 0.146

CLCNKB -0.390 0.0006174 0.201

HPSE2 -0.384 0.0005953 0.201

C18orf63 -0.425 0.0005324 0.201

P2RX7 -0.493 0.0001109 0.137

B3GALT2 -0.365 0.0000209 0.096

LIN7A -0.355 0.0009741 0.218

KLK2 -0.425 0.0002209 0.156

GDF11 -0.375 0.0006740 0.205

HOXB13 -0.414 0.0009616 0.218

NINJ2 -0.330 0.0000943 0.137

SMCO4 -0.388 0.0002157 0.156

ZNF530 -0.346 0.0000886 0.137

WDR86 -0.379 0.0007747 0.205
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Pathway enrichment (Enrichr [376]) identified pathways associated with interferon signalling 

and type-2 helper T lymphocytes in BioCarta 2016 (Table 5.11). 
 

 
Table 5.11: Pathways associated with 20 genes differentially expressed in immune-hot vs 
immune-cold tumour (PanCK+) cells 
 

 
5.42 HOXB13 is associated with poor prognosis in ILC 
 
Next, to assess the potential prognostic significance of the differentially expressed genes, their 

expression was assessed in well annotated ILC cohorts, METABRIC (n = 147) and SCAN-B 

(n = 386) and correlated with clinical outcome (excluding TNBC and HER2+ ILCs). Differential 

gene expression analysis was performed in METABRIC and SCAN-B to identify differentially 

expressed genes in the comparison groups; i) relapse vs no-relapse and ii) early (< 3 years) 

vs late (> 6 years) relapse. The prognostic significance of the 20 genes of interest identified 

from the NanoString WTA cohort were then assessed in METABRIC and SCAN-B. If the genes 

showed a log2FC+/-(1.25) and un-adjusted p < 0.05 in at least one of the two comparison 

groups in METABRIC or SCAN-B they were considered to be prognostically relevant. 

 

This analysis identified that HOXB13 which was expressed at significantly higher levels in 

immune-cold tumour cells in the NanoString WTA cohort, was associated with both relapse in 

the relapse vs no relapse comparison (LFC: 0.326, p = 0.007) and with early relapse in the 

early vs late relapse comparison (LFC: 0.996, p = 0.006) in SCAN-B (Table 5.12). Aside from 

HOXB13, of the 20 genes significantly differentially expressed in immune-hot and immune-

cold tumour cells in the NanoString WTA cohort, there were no other prognostic genes 

identified in METABRIC and SCAN-B. 
 
 

Pathway Adjusted p-value
Chaperones modulate interferon signaling pathway 0.0188

GATA3 participate in activating the Th2 cytokine genes expression 0.0188
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Table 5.12: Prognostic role of genes differentially expressed in immune-hot and immune-cold 
tumour regions assessed in SCAN-B: The table summarises the assessment of the prognostic 
significance of the 20 genes which were differentially expressed in immune-hot vs immune-cold tumour 
cells in the NanoString WTA cohort, in SCAN-B (n = 386). This identifies HOXB13 as associated with 
relapse (LFC: 0.326, p = 0.007) and early relapse (LFC: 0.996, p = 0.006) in the separate comparison 
groups highlighted in red. NA = gene not detected due to low levels. 
 

5.43 Immune-hot and immune-cold cancer-associated fibroblasts differ 
at the transcriptomic level in pleomorphic ILC 
 
ILC has been shown to have a distinct tumour microenvironment characterised by a more 

pronounced growth of CAFs compared to IC-NST [311]. CAFs can represent a large 

component of the tumour stroma and have essential roles in facilitating crosstalk between 

tumour cells and other elements of the TME including immune cells [307]. To study CAFs in 

pleomorphic ILC at the transcriptomic level, and differences between CAFs that are closely 

associated with immune cells (immune-hot) and those which are devoid of immune cells 

(immune-cold), differential gene expression analysis was performed in the α-SMA+ cells in 

immune-hot vs immune-cold ROIs, adjusting for patient effect. This identified 13 significantly 

differentially expressed genes between the immune-hot and immune-cold CAFs, using 

log2FC+/-(1.25) and un-adjusted p < 0.001 (Table 5.13). Pathway analysis identified that 

immune related pathways such as interferon and TNF-α signalling, IL-6/JAK/STAT3 signalling, 

and the inflammatory response were enriched in immune-hot CAFs (Table 5.14). 

 

Gene Coefficient P.Value adj.P.Val logFC P.Value adj.P.Val logFC P.Value adj.P.Val
OR2T12 -0.391 0.0000009 0.011 NA NA NA NA NA NA
OR4S1 -0.346 0.0001653 0.146 NA NA NA NA NA NA
TBX18 -0.487 0.0001676 0.146 -0.196 0.015 0.267 NA NA NA

CLCNKB -0.390 0.0006174 0.201 NA NA NA NA NA NA
HPSE2 -0.384 0.0005953 0.201 -0.301 0.001 0.144 -0.206 0.200 0.929

C18orf63 -0.425 0.0005324 0.201 NA NA NA NA NA NA
P2RX7 -0.493 0.0001109 0.137 0.074 0.205 0.647 NA NA NA

B3GALT2 -0.365 0.0000209 0.096 -0.028 0.144 0.570 NA NA NA
LIN7A -0.355 0.0009741 0.218 -0.229 0.138 0.565 -0.424 0.242 0.929
KLK2 -0.425 0.0002209 0.156 NA NA NA 0.242 0.344 0.929

GDF11 -0.375 0.0006740 0.205 NA NA NA 0.217 0.262 0.929
HOXB13 -0.414 0.0009616 0.218 0.326 0.007 0.218 0.996 0.006 0.757

NINJ2 -0.330 0.0000943 0.137 NA NA NA NA NA NA
SMCO4 -0.388 0.0002157 0.156 NA NA NA NA NA NA
ZNF530 -0.346 0.0000886 0.137 NA NA NA -0.158 0.102 0.908
WDR86 -0.379 0.0007747 0.205 -0.264 0.013 0.263 NA NA NA
GATA3 0.325 0.0004976 0.201 NA NA NA NA NA NA
GLUL 0.395 0.0002386 0.156 NA NA NA NA NA NA
IER3 0.473 0.0007120 0.205 -0.236 0.123 0.543 NA NA NA

MRPS30 0.639 0.0001415 0.146 NA NA NA NA NA NA

SCAN B relapse vs no relapse SCAN B early vs late relapse NanoString WTA cohort SCAN-B SCAN-B
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Table 5.13: Thirteen differentially expressed genes in immune-hot vs immune-cold CAFs (α-
SMA+ cells) 
 

 
Table 5.14: Pathways enriched in immune-hot CAFs (α-SMA+ cells) 
 
 

 
  

Pathway Adjusted p-value
Interferon Gamma Response 0.0001

IL-6/JAK/STAT3 Signaling 0.0070
Interferon Alpha Response 0.0070

UV Response Up 0.0146
TNF-alpha Signaling via NF-kB 0.0165

Inflammatory Response 0.0165

Gene Coefficient p-value adj p-val

A2M 0.654 0.0006694 0.613

ICAM1 0.526 0.0003061 0.613

TAP1 0.544 0.0001780 0.613

CD4 0.444 0.0006737 0.613

CXCL9 0.976 0.0000155 0.192

B2M 0.504 0.0003740 0.613

TGM2 0.591 0.0000802 0.497

GOLT1B 0.412 0.0009577 0.613

HEG1 0.476 0.0003719 0.613

MPEG1 0.443 0.0004787 0.613

HLA-DRA 0.657 0.0007907 0.613

KAZALD1 -0.447 0.0007889 0.613

KRTAP10-10 -0.346 0.0007389 0.613
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5.44 CXCL9 and GOLT1B are associated with poor prognosis in ILC 
 
CXCL9, which showed higher expression in immune-hot CAFs, was associated with disease 

relapse in the relapse vs no-relapse comparison in SCAN-B (LFC: 0.497, p = 0.034, Table 

5.15). GOLT1B was also more highly expressed in the immune-hot CAFs and showed a 

significant association with early disease relapse in SCAN-B (LFC: 0.407 p = 0.001, Table 

5.15).  

 

Table 5.15: Prognostic role of genes differentially expressed in immune-hot and immune-cold 
CAFs assessed in SCAN-B: The table summarises the assessment of the prognostic significance of 
the 13 genes which were differentially expressed in immune-hot vs immune-cold CAFs from the 
NanoString WTA cohort, in SCAN-B (n = 386). This identified CXCL9 as associated with relapse (LFC: 
0.497, p = 0.034) and GOLT1B as associated with early relapse (LFC: 0.407, p = 0.001) in the separate 
comparison groups highlighted in red. NA = gene not detected due to low levels. 
 

 

 

 

 

 

 

 

 

 

 
  

Gene Coefficient P.Value adj.P.Val logFC P.Value adj.P.Val logFC P.Value adj.P.Val
A2M 0.654 0.000669 0.613 -0.201 0.058 0.428 NA NA NA

ICAM1 0.526 0.000306 0.613 -0.062 0.441 1.000 NA NA NA
TAP1 0.544 0.000178 0.613 0.318 0.005 0.200 -0.338 0.214 1.000
CD4 0.444 0.000674 0.613 NA NA NA NA NA NA

CXCL9 0.976 0.000015 0.192 0.497 0.034 0.355 NA NA NA
B2M 0.504 0.000374 0.613 0.285 0.003 0.171 NA NA NA
TGM2 0.591 0.000080 0.497 NA NA NA 0.304 0.066 0.889

GOLT1B 0.412 0.000958 0.613 0.058 0.244 0.687 0.407 0.001 0.617
HEG1 0.476 0.000372 0.613 -0.113 0.197 0.638 -0.061 0.007 0.770

MPEG1 0.443 0.000479 0.613 NA NA NA 0.257 0.403 0.950
HLA-DRA 0.657 0.000791 0.613 -0.163 0.313 0.788 NA NA NA

NanoString WTA cohort SCAN-B relapse vs no relapse SCAN-B early vs late relapse 
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5.4 Discussion 
 
Having previously identified in the KHP ILC cohort that the majority of ILCs are characterised 

by low stromal TILs and given the limited efficacy of T-centric immunotherapies in ER+ disease 

including ILC, there is a need for a change in strategy in targeting the immune system to 

improve clinical outcomes for ILC patients. To do this, there has been a fundamental need to 

better understand the nature of the immune landscape beyond stromal TILs in ILC and 

specifically in pleomorphic ILC, a rare, clinically aggressive, and understudied tumour type. 
 
In this work, the use of NanoString DSP enabled the comprehensive characterisation of the 

immune microenvironment in a subset of histologically immunogenic pleomorphic ILCs at the 

protein level. This revealed the prognostic significance of two immune subpopulations, 

interestingly both of which are related to macrophages. Firstly, CD11c+ cells were significantly 

enriched in the tumours of patients who did not develop disease recurrence compared to 

relapsing patients. CD11c is a marker of multiple immune subpopulations including dendritic 

cells, M1-like macrophages, monocytes, and memory B cells [417, 418]. In further analysis 

within the relapsing patients, CD68, a pan-macrophage marker [433] which identifies both M1-

like and M2-like macrophages was associated with more clinically aggressive tumours and 

early disease recurrence.  

 

Consistent with the finding from NanoString DSP of higher CD68 levels in patients with early 

relapse, a previous study assessed the degree of macrophage infiltration in 100 breast 

cancers using CD68 IHC and correlated high levels of macrophages with poor prognostic 

features. These included larger tumour size and more advanced stage disease and high 

macrophage levels were also correlated with worse 5-year survival rates although it is unclear 

if the cohort included ILCs [434]. A further study assessed CD68, CD11c, and CD163 levels 

in a TMA of 367 breast cancers and correlated the level of all (CD68+), M1-like (CD11c+) and 

M2-like (CD163+) macrophages with a range of clinicopathological features and survival 

outcomes. They show that high levels of CD11c+ macrophages in the stroma were associated 

with significantly improved DFS as well as OS in breast cancer [435].   

         

In addition to being expressed in macrophage subsets, CD11c is a dendritic cell marker, with 

the NanoString DSP findings suggesting that high levels of dendritic cells within the 

pleomorphic ILC tumour microenvironment help mediate an effective anti-tumour response 

preventing disease relapse.  Dendritic cells are considered to have a key role in tumour-related 

immune reactions, acting as potent antigen-presenting cells. They recognise and process 

tumour antigens and present them to lymphocytes triggering a naïve T lymphocyte response, 
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and they are therefore critical in linking the innate and adaptive immune systems [436, 437]. 

Overall, given the limited size of the NanoString DSP cohort, further research and study of 

dendritic cells in larger ILC validation cohorts would be necessary to better understand any 

prognostic relevance of this immune cell population in ILC.  

 

Interestingly the NanoString early vs late relapse comparison identified that a pan-

macrophage marker, CD68, was expressed at significantly higher levels in early relapsing 

patient tumours. The assessment of CD68 levels in the wider KHP validation pleomorphic and 

non-pleomorphic cohorts firstly identified that pleomorphic ILC contains more macrophages 

than non-pleomorphic ILC which together with higher levels of stromal TILs, supports the 

notion that pleomorphic ILC is fundamentally a more immunogenic tumour than non-

pleomorphic ILC, and this is after having controlled for differences in the frequency of ER- and 

HER2+ disease between the two ILC histological subtypes.  

 

Whilst the total level of macrophages as assessed through CD68 IHC were not associated 

with clinical outcome in the KHP validation cohort, further analysis characterising the 

macrophages into M1-like and M2-like phenotypes, revealed that higher M2/M1 ratios were 

associated with significantly worse MFS in pleomorphic ILC, highlighting the relevance of the 

polarisation states of macrophages within the ILC tumour microenvironment and that the 

relative abundance of immunosuppressive M2-like compared to pro-inflammatory M1-like 

macrophages holds prognostic significance. A recent study assessing macrophages in ILC 

found that M1-like macrophages are more abundant than M2-like macrophages [340]. It is 

unclear if the cases in this study included rare ILC subtypes such as pleomorphic ILC, but the 

results from the pleomorphic KHP cohort showed that a significant proportion (40%) of cases 

had higher levels of M2-like than M1-like macrophages, suggesting that pleomorphic ILC could 

possibly contain a higher proportion of M2-like macrophages than non-pleomorphic ILC. 

Further dual IHC in the KHP non-pleomorphic cases will help address this question.  

 

In vitro studies assessing spheroid growth of ILC cell line MDA-MB-134 in the presence of M1-

like and M2-like macrophages showed a significantly higher growth rate of tumour cells in the 

presence of M2-like macrophages further supporting the concept that M1-like macrophages 

have tumour-suppressive properties, whilst M2-like macrophages have pro-tumoral 

properties. 

 

NanoString Whole transcriptome analysis in a subset of pleomorphic cases identified 

differences in gene expression between immune-hot and immune-cold tumour cells. HOXB13 

which was more highly expressed in the tumour cells in regions devoid of immune cells 
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compared to tumour cells closely associated with immune cells, was associated with poor 

outcomes in SCAN-B. HOXB13 (Homeobox protein Hox-B13) encodes a transcription factor 

which belongs to the homeobox gene family which are essential for embryonic development.  

It acts as part of a developmental regulatory system which provides cells with specific 

positional identities on the anterior-posterior axis [386]. A high HOXB13 to IL17BR (Interleukin 

17 Receptor B) expression ratio has been associated with an increased risk of disease relapse 

and poor outcomes in ER+ breast cancer patients [438, 439]. Furthermore, high levels 

expression of HOXB13 protein expression assessed with IHC were associated with resistance 

to tamoxifen therapy due to the suppression of ER and activation of the mTOR signalling 

pathway through IL-6 [440, 441]. 

 

Differential gene expression between immune-hot and immune-cold CAFs identified two 

genes; CXCL9 and GOLT1B, which appeared to hold prognostic significance in SCAN-B with 

high levels being associated with worse outcomes. CXCL9 (C-X-C Motif Chemokine Ligand 

9) encodes a cytokine that affects the growth, movement, or activation state of cells that 

participate in the immune or inflammatory response [386]. It is thought to be involved in 

immune cell migration and activation within the tumour microenvironment [442] and therefore 

higher expression is associated with more immune cells consistent with being more highly 

expressed in immune-hot ROIs. GOLT1B (Golgi Transport 1B) encodes a protein which is 

involved in positive regulation of I-kappaB kinase/NF-kappaB signalling and is located in the 

endoplasmic reticulum [386]. It has previously been associated with tumour progression 

through regulation of the immune microenvironment in breast cancer [443]. 

 

Overall the work in this chapter has characterised and provided new insights into the complex 

immune microenvironment in ILC at the protein and transcriptomic levels with spatial context 

and assessed the prognostic significance of these findings. 
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6. Chapter 6: Mapping the subclonal heterogeneity of 
metastatic ILC 

 
 

6.1 Background 
 

A clone is defined as an asexually reproducing population which shares the same ancestry 

and may be defined at different levels, for example a group of tumour cells which share the 

same genetics [444]. A subclone defines a cell group that has diverged away from its original 

clonal identity through the acquisition of new mutations [444]. Intra-tumoral heterogeneity is 

the presence of a diverse range of subclones within any given tumour which have a breadth 

of unique molecular profiles. These subclones can be genetically diverse and can have 

different gene expression profiles, epigenetic regulations, cell differentiation states and tumour 

microenvironmental requirements [444, 445]. In addition to genetic diversity, these non-

genetic factors are key to producing a highly complex and dynamic tumour cell population 

which is continuously developing through clonal evolution. Clonal evolution refers to 

continuous process of clonal expansion, genetic diversification and natural selection of 

subclones within an adaptive ecosystem [444]. Genetic changes and non-genetic factors 

which confer a selective advantage to a specific subclone may thus promote its dominance 

within the tumour cell population. Through successive rounds of tumour cell diversification and 

selection, enrichment of the fittest tumour subclone variants takes place resulting in a highly 

dynamic and adaptable tumour cell population which has the potential to drive disease 

progression and fuel therapy resistance [444, 445]. When a selective pressure is placed on a 

tumour through a therapeutic agent, distinct subclones with molecular profiles which confer a 

survival advantage evade cell inhibition or death and have the potential to drive progression. 

These cells may either inherently possess or acquire mechanisms of survival advantage 

through the process of clonal evolution [444, 445]. 

Temporal heterogeneity refers to molecular changes and differences between subclones over 

time [445]. Spatial heterogeneity refers to variation in the distribution of subclones within a 

given space or area in terms of their location and concentration [445]. As tumour subclones 

evolve at a molecular level over time, their spatial locations within the immune 

microenvironment with respect to various immune subpopulations as well stromal components 

such as cancer-associated fibroblasts may be key determining their survival potential. 
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Large scale genome analysis of primary breast cancers demonstrates that most mutations are 

found in only a small proportion of tumour cell subclones [446] and not evenly distributed 

spatially within individual tumours [447]. Metastatic breast cancers share most of their genomic 

alterations with the corresponding primary tumour, yet they may also exhibit additional 

mutations not detected in the primary, which may be subclonal in the primary [448-453]. 

Understanding the molecular profiles of these subclones may be important for developing new 

targeted treatments in ILC. Novel new approaches such as lineage tracing of tumour cells and 

single cell/nuclei DNA and RNA sequencing offer new opportunities to model this. 

 
Laboratory based models are critical in enabling a better understanding of the unique biology 

of ILC. However the number of well-established and useful ILC tumour models in limited given 

the lower incidence of ILC compared to IC-NST, lower numbers of ILC patients included in 

clinical trials and also the intrinsic features of ILC which means they fail to easily transplant 

and grow as organoids [431]. Only a few ILC cell lines have been studied extensively [431]. 

ILC cell lines tend to grow at a significantly slower rate than their IC-NST counterparts, and 

few are derived from primary tumours, with the majority being derived from sites of metastatic 

disease e.g. ascites or pleural effusions [431]. Moreover, from a demographic perspective 

most are derived from Caucasian patients. Whilst clinically the majority of ILCs are of a luminal 

A phenotype (ER+, PR+, HER2+), few of the available ILC models express the oestrogen 

receptor. The loss of E-cadherin is a defining feature of ILC and consistent with this, the 

majority of the ILC cells lines harbour a pathogenic CDH1 mutation [431]. However whilst 

TP53 mutations are rare in ILC, the commonly used ILC cells lines show mutant TP53 [431].  

 

ILC cell lines can also be grown in 3D culture in the form of organoids, spheroids and 

organotypic cultures from tumour slices or co-cultures. Growth in these formats more 

accurately represents the intra-tumoral heterogeneity and mechanical, biochemical and 

spatial features of the tumour compared to growth in 2D format [431]. ILC tumour tissue from 

patients can also be established as a model of organoids, known as patient derived organoids 

(PDOs), which better preserve the original genomic features of the primary tumour [431]. A 

limitation of 2D and 3D-based models is that they lack the complex tumour-stromal interactions 

which are a key feature of ILC.  

 

The generation of mouse models which accurately recapitulate the unique features of ILC and 

its metastatic spread has also been challenging. ILCs can be modelled using xenografts which 

involve tumour cells growing in immunodeficient mice and these models have helped to reveal 

important features of ILC disease relapse and mechanisms of treatment resistance [431]. 

There are four main routes of injection which have been used to generate xenografts which 
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include systemic (intracardiac/intracarotid injections), local (e.g. renal capsule, intra-bone 

marrow, intracranial), beneath the skin (subcutaneous/intradermic) and orthotopic (mammary 

fat pad or inside the milk ducts using the mouse intraductal model). Xenograft models include 

cell line derived xenografts and patient-derived xenografts (PDXs) whereby fresh primary or 

metastatic tumour tissue is directly implanted into an immunocompromised mouse. The 

advantage of PDXs is that they retain the intra-tumoral heterogeneity, genetics and 

polyclonality of the original patient tumour. The biggest challenge in the development of ILC 

PDXs is the significantly lower engraftment rate of ER+ tumours such as ILC compared to 

triple-negative and HER2+ breast cancers [431]. Furthermore given that ILCs are generally 

slow-growing, ILC xenografts are equally notoriously slow to grow. Currently there are few ILC 

PDXs that been reported. 

 
The modelling of ER+ breast cancers in vivo has presented challenges due to its specific 

microenvironmental requirements. It has proven challenging to accurately recapitulate the 

nature of human ER+ breast cancers since cell line xenografts require non-physiological 

hormonal supplements which can be poorly tolerated [454] and PDXs are difficult to establish. 

Traditionally ER+ tumour cells have been grafted into the mouse mammary fat pads. However 

this has been shown to induce TGFβ/SLUG signalling and results in differentiation of the cells 

into a basal-like as opposed to luminal phenotype [455]. The mouse intra-ductal (MIND) model 

involves the grafting of tumour cells directly into the mouse milk ducts and has been shown to 

suppress SLUG, enabling the tumour cells to grow and develop initially in situ within the ducts 

under the influence of physiological hormones, retaining a luminal phenotype thus more 

closely recapitulating human disease [455]. Intraductal ER+ PDXs have been shown to be re-

transplantable and genomically stable [455]. The MIND model therefore offers new 

opportunities for the modelling of ER+ breast cancers including ILC in the context of 

physiological hormone levels and initial in situ growth of tumour cells. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1: Mouse intraductal model: Schematic diagram comparing fat pad and intraductal 
microenvironments for the injection of ER+ breast cancer cells [455] 

1

Mouse Intraductal (MIND) Model vs Fat Pad Injection

Fat pad MIND
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6.2 Chapter Aims 
 

Overall the purpose of this chapter is to: 

 

1) Determine if subpopulations of ILC tumour cells that are transcriptionally rewired to 

become metastatic pre-exist in the primary tumour. 

 

2) Determine if these subclones hold prognostic/predictive significance in clinical cohorts 

of ILC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  



 189 

6.3 Results 
 
 

6.31 ILC MM134 brain metastatic lesions show an enrichment of cell 
motility and migration related pathways 
 

To help determine if aggressive subclones of ILC tumour cells which are transcriptionally 

rewired to become metastatic pre-exist in the primary tumour, a single nuclei RNA sequencing 

experiment was performed using the ILC cell line MDA-MB-134. Tumour cells were RFP and 

luciferase labelled (MM134-RFP-Luc2) and 400,000 cells were injected intraductally using the 

MIND model into each of the 3rd and 4th mammary glands. Following a 12-month period, well-

defined metastatic lesions had formed in the mice, at classical sites of ILC metastatic spread 

including the ovaries and brain (Figure 6.2). To study transcriptional diversity among the 

primary tumours and metastatic lesions and help identify gene expression pathways enriched 

in metastatic disease, 3 primary tumours (1 left primary and 2 right primaries), the brain and 

ovaries were extracted from one such mouse and single nuclei sequencing performed in the 

separate lesions (see methods, Figure 6.2, Table 6.1).  

 

 

Table 6.1: Pre-processing of primary and metastatic samples: Table summarises the number of 
cells and genes at each stage of the filtering process during pre-processing. Primary L = left primary 
mammary gland, Primary R1 = right primary mammary gland 1, Primary R2 = right primary mammary 
gland, Ovary L = left ovary, Ovary R = right ovary. Note the number of human cells remaining post 
filtering in the ovarian metastasis samples were low, and thus not analysed further. 
 

 

 

 

Sample Initial 
number 
of cells

Human 
cells

After read 
filter

After 
mitochondrial 

filter

After 
doublet 

filter

% cells 
kept

Initial 
number 
of genes

Selected 
genes

Primary L 8315 8193 7716 7643 7317 0.88 25321 15612
Primary 

R1
7499 7367 7152 7077 6772 0.9 25772 16480

Primary 
R2

11633 11483 9955 9820 9194 0.79 27414 17249

Brain 
metastasis

7348 7204 6837 6178 5992 0.81 25248 16302

Ovary L 8065 1231 441 441 441 0.05 18601 17255
Ovary R 5706 793 220 220 220 0.04 17849 15846
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CIDER based clustering (see methods) identified 11 META-clusters (Figure 6.3, 6.4). When 

the proportion of contribution of the brain metastases sample to each CIDER meta-cluster was 

considered, meta-cluster 11 showed the highest contribution of the brain metastases (Figure 

6.4). Next to gain further insights into the gene expression profiles of each individual CIDER 

meta-cluster, the markers of the individual meta-clusters were defined by the aggregation of 

markers of the constituent subclusters (see methods). Overall, within meta-cluster 11 there 

were 14 genes identified as the top markers of the meta-cluster, 5 of which were non-protein 

coding/RNA genes. Using these top markers of meta-cluster 11, Enrichr [376] was used to 

assess the gene expression pathways enriched in the meta-cluster using the ‘Gene Ontology; 

biological processes’ (GO-DB) database which identified an enrichment of pathways 

associated with cell motility and migration (Table 6.2). 

 
 
 
 
 
 
 
 
 
 
Table 6.2: Gene expression pathways enriched in CIDER meta-cluster 11 
 

 

 

 

 

 

 

 

Pathway Adjusted p-value
Regulation of cellular component movement 0.0107

Cytoskeleton organisation 0.0162
Tissue development 0.0162

Cell migration 0.0162
Cell locomotion 0.0162

Regulation of intracellular signal transduction 0.0162
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Figure 6.2: Design of MM134-RFP-Luc2 single nuclei RNA sequencing experiment: A) Schematic 
summarising the experiment workflow starting with intraductal injection of MM134-RFP-Luc2 cells using 
the MIND model followed by extraction of invasive tumour-containing primary glands and metastatic 
brain and ovarian lesions 12 months post initial injection. This is then followed by the generation of 
single cells from the tissue samples and single nuclei RNA sequencing of the pooled samples B) IVIS 
imaging showing positive signal in the ovaries, mammary glands and brain 12 months post-injection. 
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Figure 6.3: Single nuclei RNA sequencing of nuclei from 48,566 single cells: Cells were isolated 
from mouse mammary glands, ovaries and brain metastatic lesions following injection of MM134-RFP-
Luc2 cells using the MIND model. Single nuclei uniform manifold approximation and projection (UMAP) 
plots for visualisation of all samples in one space (without batch effect) colour-coded by: A) individual 
tissue samples B) CIDER clusters C) cell cycle phase D) Bar chart showing the number of cells (left) 
and proportion of cells (right) falling into each cluster based upon cell cycle phase.  
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Figure 6.4: Cluster 11 shows a high contribution from metastatic brain lesions:  A) Dendrogram 
highlighting in bold where cluster 11 is located, the composition of cluster 11, and the height of C11 in 
the in the dendrogram (the lower the height, the more robust the cluster is) B) UMAP (without batch 
effect) colour coded by individual tissue samples C) UMAP for CIDER clusters highlighting location of 
cells in cluster 11 only  D) Bar chart showing the number of cells (left) and proportion of cells (right) 
falling into each cluster based upon each tissue sample with pink box indicating cluster 11 which is 
enriched in brain metastases E) Bar chart summarising pathways enriched in cluster 11. 
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6.32 GCNT2 is associated with early relapse in ILC 
 
 
Having identified the genes which were more highly expressed in meta-cluster 11 which was 

accounted for largely by metastatic brain tumour subclones, an assessment was next made 

of the prognostic significance of these genes in two well-annotated general ILC cohorts SCAN-

B (n = 386) and METABRIC (n = 148) and the KHP pleomorphic ILC cohort (n = 47), using 

mRNA abundance data comparing differential gene expression in relapse vs no-relapse and 

early (< 3 years) vs late (> 6 years) relapse. This identified GCNT2 as significantly associated 

with early relapse in METABRIC (LFC = 0.363, p = 0.029) and the KHP pleomorphic cohort 

(LFC = 3.086 p = 0.045) using statistical thresholds of log2FC (1.25) and un-adjusted p < 0.05. 

IQGAP2 showed differing results in METABRIC and the KHP cohort, associated with early 

relapse in METABRIC (LFC = 0.505, p = 0.035) but with late relapse in the KHP pleomorphic 

cohort (LFC = -1.901, p = 0.031, Table 6.3). 

 

Table 6.3: Assessment of the prognostic significance of 14 genes associated with metastatic 
lesions in SCAN-B, METABRIC and the KHP pleomorphic ILC cohort: (NA = not detected, red 
boxes indicate significant results). 
 

 

 

 

 

  

Gene logFC P.Value logFC P.Value logFC P.Value logFC P.Value logFC P.Value logFC P.Value
UNC5C NA NA -0.056 0.037 NA NA -0.045 0.232 NA NA NA NA

IQCJ-SCHIP1 -0.179 0.007 -0.056 0.037 NA NA -0.045 0.232 NA NA NA NA
AL139383.1 NA NA NA NA NA NA NA NA NA NA NA NA

GCNT2 NA NA -0.123 0.175 0.434 0.546 0.363 0.029 NA NA 3.086 0.045
STARD13 -0.146 0.068 NA NA -0.002 0.998 -0.397 0.101 -0.244 0.351 -0.002 0.998

TPRG1 -0.412 0.059 NA NA -0.849 0.401 -0.338 0.238 -1.183 0.036 -0.849 0.401
IQGAP2 NA NA -0.181 0.162 -0.066 0.897 0.505 0.035 NA NA -1.901 0.031
BCAS1 NA NA 0.206 0.176 -0.910 0.292 0.173 0.474 -0.361 0.335 -0.910 0.292

COLEC12 NA NA -0.155 0.408 -1.617 0.132 NA NA NA NA -1.617 0.132
SEMA5A -0.262 0.005 NA NA -0.379 0.705 NA NA NA NA -0.379 0.705

MIR4713HG NA NA NA NA NA NA NA NA NA NA NA NA
LINC02613 NA NA NA NA NA NA NA NA NA NA NA NA
LINC01948 NA NA NA NA NA NA NA NA NA NA NA NA
LINC00882 -0.089 0.129 NA NA NA NA NA NA -0.133 0.403 NA NA

SCAN-B
relapse vs no 

relapse

METABRIC 
relapse vs no 

relapse

KHP 
relapse vs no 

relapse

METABRIC
 early vs late 

relapse

SCAN-B 
early vs late 

relapse 

KHP
 early vs late 

relapse
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6.33 Molecular barcoding is used to study the evolution of tumour 
metastases in ILC  
 

The preliminary single nuclei sequencing data highlighted that subpopulations of cells already 

possess the transcriptional features that are enriched in metastasis (i.e. are ‘transcriptionally 

primed’). However, from these profiling studies alone it not possible to determine if subclones 

are selected for in a stochastic manner. One way to address this question is to use lineage 

tracing (cellular barcoding) to assess if metastatic lesions harbour enrichment of the same 

cellular barcode when injected from the same starting barcoded population. If genetically 

defined subclones pre-exist and have a selective advantage, these should be enriched in 

multiple metastatic lesions. If this process is random, different barcodes should be observed 

in different metastatic lesions, which then maybe suggestive of epigenetic plasticity governing 

metastasis, whereby all cells have the potential to acquire the transcriptional alterations that 

enable them to spread.  

 

To study this a barcoding experiment was designed (Figure 6.5), which involved the 

transduction of a starter population of MM134-RFP-Luc2 cells with Cellecta’s CloneTracker™ 

Lentiviral Barcode Libraries [456], in order to genomically label each cell with a uniquely-

identifiable short nucleotide sequence (barcode). This resulted in a starter population whereby 

each cell had a unique barcode. Given that the barcodes become genomically integrated, they 

are heritable and therefore the progeny of each starter population cell contain the same 

sequence enabling the tracing of the clonal expansion of each starting population cell. The 

barcoded cells were selectable using puromycin since the barcodes also contained a 

puromycin-resistance selection marker and a multiplicity of infection of 5% was used (Figure 

6.4). Barcoded cells were further expanded and 400,000 cells injected using the MIND method 

into the 3rd and 4th right and left mammary glands of 30 mice. Two died during surgery.  

 

To assess whether the tumour cells had successfully engrafted, one mouse (mouse 704) was 

sacrificed day 19 post initial injection which confirmed the presence and in situ growth of the 

MM134-RFP-Luc2 cells in the mammary ducts. Lamin AC IHC was used to confirm that cells 

were of human origin and immunofluorescence imaging used to confirm the presence of RFP+ 

cells (Figure 6.6). IVIS signal in the glands of the remaining mice was performed every 3 

weeks thereafter (Figure 6.7). 
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Figure 6.5: Experimental design of ILC barcoding experiment: Schematic diagram summarising 
the initial design of the MM134-RFP-Luc2 in vivo lineage tracing experiment. 
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Figure 6.6: Barcoded MM134-RFP-Luc2 cell line in vivo growth in mouse 704 19 days following 
injection using the MIND model: Schematic diagram showing the selection of mouse with positive 
IVIS gland signal day 19 post intraductal injection, and representative H&E showing in situ tumour cell 
growth, IHC showing positive Lamin AC staining confirming growth of cells of human origin, and RFP 
imaging confirming MM134-RFP-Luc2 cells localized within the mammary ducts. 
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Figure 6.7: Barcoded MM134-RFP-Luc2 form primary tumours in vivo following intraductal 
injection: A) IVIS imaging of a representative mice in the cohort day 217 - 219 post injection B) 
Schematic diagram showing representative mice summarising the level IVIS signal within each gland. 
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6.34 The ILC starting population is dominated by a low number of 
barcodes 
 
Following sacrifice of mouse 704 19 days post injection, and DNA extraction from IVIS signal 

positive sites, barcode presence and diversity was assessed in the mammary glands (3rd left, 

4th left) and lymph nodes (3rd right and 4th left) in addition to the parental starting cells and a 

barcoded IC-NST cell line control (MCF7). This showed that the MM134-RFP-Luc2 starting 

population itself had a significant skew and appeared to be dominated by a small number of 

barcodes rather than a rich barcode diversity that the experiment was designed to contain, as 

evidenced in the cumulative frequency plot (Figure 6.8A). Greater diversity was observed in 

some other glands such as the 3rd left mammary gland and 4th right lymph node (Figure 6.8B, 

C). 

 

Further DNA was extracted and sequenced from the mammary glands of 8 independent 

sacrificed mice with positive IVIS signal together with a repeat of the initial parental starting 

cells prior to injection (Figure 6.9). This showed some diversity of barcode in some glands 

e.g., 731 3rd right (Figure 6.9 A) and 705 4th left (Figure 6.9 E) but significant skew towards a 

low number of dominant barcodes in other samples (Figure 6.9 G, H) including the starting 

population (Figure 6.9 I). 



 200 

 
Figure 6.8: Low barcode diversity is present in the barcoded MM134-RFP-Luc2 starting 
population: Cumulative frequency plots showing barcode diversity in: A) barcoded MM134-RFP-Luc2 
starting population prior to injection (green) B – E) mouse 704 mammary gland tumours and IVIS 
positive lymph nodes (blue) and F) a barcoded IC-NST control, MCF7 (yellow). This control shows a 
rich diversity of barcodes. Two frequency plots per sample reflect PCR amplification from the same 
sample on different dates and the concentration of DNA used is summarised above each graph. 
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Figure 6.9: Heterogeneity in barcode diversity is observed among further primary mammary 
glands: Cumulative frequency plots showing barcode diversity in A) Mouse 731 3rd right gland B) Mouse 
730 4th right gland C) Mouse 717 3rd right gland D) Mouse 724 4th left gland E) Mouse 705 4th left gland 
F) Mouse 702 3rd right G) Mouse 730 4th right gland H) Mouse 701 3rd left gland I) barcoded MM134-
RFP-Luc2 starting population prior to injection (green). Note significant skew of barcodes in G) – I). 
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6.4 Discussion 
 
 

Overall the preliminary work in this chapter has demonstrated the utility of single nuclei 

sequencing as a novel approach for identifying subclonal transcriptomic alterations which 

drive aggressive tumour behaviour in an ILC MIND in vivo model, which may otherwise go 

undetected when using traditional bulk RNA sequencing approaches. This initial experiment 

only used one ILC cell line and one site of metastatic spread (brain metastases). Further work 

will be completed going forward using additional ILC cells lines and further ILC metastatic sites 

to gain further insights into the drivers of metastatic disease in ILC at the single nuclei level 

and to assess transcriptomic differences between subclones driving relapse at different ILC 

metastatic sites. The findings will be compared to bulk data generated from similar ILC MIND 

in vivo models. 

 

The experiment also identified challenges specific to the metastatic site of study, since for the 

ovarian metastases there was a high level of contamination of mouse stromal cells identified 

at the pre-processing stage with a very small proportion of human cells remaining for analysis.  

Fluorescence-activated cell sorting (FACS) will be a useful approach going forward for 

removing mouse contaminant cells, particularly in the context of ovarian lesions. A further 

limitation of the experiment was that by performing single nuclei as opposed to single cell 

sequencing, some transcripts located in the cytoplasm would have been lost, although the 

approach does have some advantages over single cell sequencing [457] in that it provides a 

less biased cell coverage and does not seem to suffer cellular isolation based transcriptional 

artifacts. Further it can be used with archived frozen tissue which is practically useful.  

 

When the prognostic significance of the genes enriched in brain metastases were assessed 

in larger ILC cohorts including the KHP pleomorphic ILC cohort, GCNT2 was identified as 

significantly associated with early relapse (< 3 years of primary diagnosis) in both METABRIC 

and the KHP pleomorphic ILC cohorts. GCNT2 (Glucosaminyl (N-Acetyl) Transferase 2) 

encodes a branching enzyme which converts linear into branched poly-N-

acetyllactosaminoglycans. It is responsible for the formation of the blood group I antigen and 

is associated with the development and maturation of erythrocytes [386]. It has been shown 

to be over-expressed among highly metastatic breast cancer cell lines and associated with a 

metastatic phenotype in breast tumour samples [458]. Interestingly in the KHP pleomorphic 

cohort the patient whose tumour had the highest level of expression of GCNT2 relapsed early 

with brain metastases. Further functional in vivo studies have demonstrated that it enhances 

cell detachment and tumour cell adhesion to endothelial cells, and promotes cell migration 
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and invasion, as well as being involved in epithelial to mesenchymal transition (EMT) [458]. 

Further experiments will be useful in assessing if this gene is consistently enriched in brain 

metastatic lesions and whether it is expressed in other ILC metastatic sites. 

Lineage tracing is an approach which has the potential to gain further insights into the 

metastatic process in ILC in vivo models, which cannot be performed in patients, as replicates 

can be used in the in vivo setting. A limitation however is that the mice used are 

immunodeficient and therefore this eliminates the effect of the immune system on the 

metastatic process and interactions between aggressive tumour subclones and various 

immune subpopulations cannot be studied. Whilst the barcoding element of the experiment in 

this chapter using the barcoding approach for lineage tracing did not work out as planned, the 

experiment demonstrated that the MIND approach worked effectively, and it provides a basis 

for future in vivo lineage tracing experiments in metastatic ILC.  

Overall, the work in this chapter has mapped the sub-clonal heterogeneity of metastatic ILC 

by using novel single nuclei RNA sequencing approaches and identied that GCNT2, a gene 

significantly more highly expressed in ILC brain metastatic lesions compared to the primary 

tumour, is also associated with early disease relapse in independent ILC cohorts. This 

experiment provides a foundation for future ILC single nuclei experiments. The barcoding 

experiment also provides a foundation for future work. Having identified the transcriptomic 

profiles of aggressive ILC tumour subclones driving metastases in the in vivo models, their 

spatial locations will be further assessed in the human patient tumours from the NanoString 

WTA analysis, to better understand their interactions and crosstalk will other tumour, stromal 

and immune cell populations. 
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7. Chapter 7: Discussion  
 

7.1 Discussion and future perspectives 
 
Invasive Lobular Carcinoma (ILC) is the second most common histological subtype of breast 

cancer accounting for 10 - 15% of all cases. It is a unique disease entity with distinct 

histological appearances, molecular alterations and clinicopathologic features. A subgroup of 

ILC patients have clinically aggressive disease with metastases occurring early (< 3 years) 

after primary diagnosis. In addition a rare ILC subtype pleomorphic ILC, is also associated 

with more aggressive tumours and early relapse. Overall these patients have limited treatment 

options, representing a clinically unmet need. There has been a need to better understand the 

molecular basis and transcriptional drivers of aggressive disease biology in ILC, as well as the 

ILC immune landscape to help identify potential new drug targets to improve clinical outcomes 

for these patients.  

 

To address this unmet need, the purpose of this PhD was to characterise the transcriptional 

and immune heterogeneity in clinically aggressive ILCs including pleomorphic ILC. The key 

aims of the project were to: 

 

1) Identify the molecular drivers of clinically aggressive ILC 

2) Evaluate the immune landscape and prognostic associations in ILC 

3) Map the heterogeneity of immune infiltrate in pleomorphic ILC 

4) Map the sub-clonal heterogeneity of metastatic ILC 

 

These were addressed as follows (Figure 7.1): 

 

Aim 1: Identify the molecular drivers of clinically aggressive ILC 
Genomic alterations were characterised through targeted sequencing of a cohort of 

pleomorphic and non-pleomorphic ILCs with a range of different clinical outcomes. This 

identified differences between pleomorphic and non-pleomorphic ILCs at the genomic level 

and an association between FGFR1 alterations and disease relapse in pleomorphic ILC. The 

transcriptomic features of aggressive ILCs were characterised in an independent pleomorphic 

ILC cohort (KHP cohort) whereby tissue needle macro-dissection resulted in a high tumour 

cell content. A prognostic gene expression signature derived from this discovery cohort 

validated in multiple independent matched purified and deconvolved ILC cohorts. 
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Transcriptomic features of clinically aggressive non-pleomorphic ILCs were also 

characterised. 

 
Aim 2: Evaluate the immune landscape and prognostic associations in ILC 
The immune landscape was characterised in a cohort of pleomorphic and non-pleomorphic 

ILCs at the histological level through the quantification of stromal TILs. This showed that 

generally ILCs are characterised by low stromal TILs, but a subset of cases contains higher 

levels. Moreover pleomorphic ILC is associated with higher levels of stromal TILs than non-

pleomorphic ILC and this was after having controlled for higher rates of ER- and HER2+ 

disease in pleomorphic ILC. Prognostic associations were assessed through survival analysis 

in separate pleomorphic and non-pleomorphic cohorts which showed that the level of stromal 

TILs does not hold prognostic significance in ILC. 

 

Aim 3: Map the heterogeneity of immune infiltrate in pleomorphic ILC 
The heterogeneity of the immune infiltrate in pleomorphic ILC was mapped using NanoString 

Digital Spatial (DSP) technology which enabled the further characterisation of stromal TILs 

into the various immune subpopulations in a subset of histologically immunogenic pleomorphic 

ILCs as well as the study of their spatial locations. Validation work using IHC revealed the 

prognostic significance of the ratio of M2-like to M1-like macrophages within the tumour 

microenvironment in pleomorphic ILC where high M2/M1 ratios are associated with worse 

metastasis free survival. Moreover co-culture experiments assessing the rate of spheroid 

growth of ILC cell-line MDA-MB-134 cells in the presence of M1-like and M2-like macrophages 

further demonstrated that the presence of an M2-like macrophage phenotype promotes 

enhanced tumour cell growth. A further NanoString whole transcriptome (WTA) experiment 

using a subset of histologically immunogenic pleomorphic ILCs revealed differences at the 

transcriptomic level between i) immune-hot and immune-cold tumour cells and ii) immune-hot 

and immune-cold CAFs. Analysis in independent ILC cohorts identified differentially 

expressed genes between these groups which are associated with relapse in independent ILC 

cohorts (HOXB13, CXCL9 and GOLT1B). 

 

Aim 4: Map the sub-clonal heterogeneity of metastatic ILC 
The sub-clonal heterogeneity of metastatic ILC was mapped using novel single nuclei RNA 

sequencing approaches. Single nuclei from matched primary and metastatic lesions from an 

ILC in vivo model using MDA-MB-134 cells was performed and the genes and pathways 

enriched in brain metastatic lesions identified. Their prognostic significance was assessed in 

independent ILC cohorts which identified that GCNT2 was associated with early disease 

relapse in independent ILC cohorts. Assessment within the pleomorphic ILC KHP cohort 
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revealed that the patient with the highest GCNT2 expression in their primary tumour also 

developed early relapse and brain metastases. This work provides a foundation for future ILC 

single nuclei experiments. Additionally, an ILC barcoding experiment using MDA-MB-134 cells 

was completed providing a foundation for future work to help determine if subpopulations of 

ILC tumour cells that are transcriptionally rewired to become metastatic pre-exist in the primary 

tumour. 

Figure 7.1: Unravelling the transcriptomic and immune heterogeneity in aggressive ILCs 
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7.2 Clinical Utility of findings 
 

7.2.1 Immune heterogeneity in aggressive ILCs  
 
Overall the work characterising the immune landscape in the KHP cohort has highlighted the 

relevance of macrophages in ILC and importantly their phenotypes in shaping the nature of 

the tumour immune microenvironment. Results showing that the ratio of M2-like to M1-like 

macrophages holds prognostic significance in pleomorphic ILC, suggests that rather than 

focusing solely on T-centric therapies, treatments targeting immunosuppressive M2-like 

macrophages may represent an important additional immune-based therapeutic strategy in 

ILC and may enhance responses to ICIs by promoting T cell infiltration into the tumour 

microenvironment.  

 

Previous studies have focused on distinguishing between stromal and intra-tumoral locations 

of macrophages and prognostic associations. For example a recent study performed survival 

analysis in 30 ILC multiplex IHC cases and showed that higher tumoral but not stromal M1-

like macrophages were associated with improved DFS [340]. However the work in this PhD 

suggests that regardless of spatial location the total relative abundance of M2-like compared 

to M1-like macrophages is key in shaping the tumour immune microenvironment in 

pleomorphic ILC and that this can tip the balance towards an immunosuppressive 

microenvironment favouring tumour progression and disease recurrence, or an inflammatory 

microenvironment favouring tumour suppression. This is useful given that it can be challenging 

and involves a degree of subjectivity to accurately distinguish the stromal and tumoral 

locations of immune cells in ILC, a tumour which is characterised by a diffusely infiltrative, 

single-file type growth pattern with a high stromal component. Further work, characterising 

M1-like and M2-like macrophages in larger pleomorphic and non-pleomorphic cohorts will 

provide further insights into these findings. 

 

Moreover the work in this PhD has revealed that pleomorphic ILCs appear to be more 

immunogenic tumours than non-pleomorphic ILCs, characterised by higher levels of 

macrophages and stromal TILs as well as by an increased mutational load. Furthermore, 

correlation analysis demonstrated some degree of positive correlation between stromal TILs 

and CD68+ cells suggesting a possible degree of crosstalk between the two immune 

subpopulations. Indeed M1-like macrophages are known to promote T cell infiltration, and 

have the ability to present antigens, produce T cell stimulating cytokines (IL-12 and IL-23) and 

activate pro-inflammatory type-I T lymphocyte responses [333]. Overall given the apparent 
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enhanced immunogenicity of pleomorphic ILCs compared to non-pleomorphic cases, these 

patients may represent ideal candidates for treatments targeting the immune-system. 

 

Studies suggest that the abundance and polarisation states of macrophages within the tumour 

microenvironment are closely associated with the clinical efficacy of ICIs [2, 3]. Moreover a 

range of different approaches for the targeting of tumour-associated macrophages (TAMs), 

(considered to represent M2-like phenotypes), are currently being studied in clinical trials. 

These are often given in combination with ICIs or chemotherapy and one such approach is 

the reprogramming of M2-like macrophages into M1-like phenotypes through various drugs 

including Toll-like receptor agonists to promote a more inflammatory immune 

microenvironment [4]. Other approaches include inhibiting the recruitment of macrophages 

using agents targeting the CCL2/CCR2 axis and TAM depletion using kinase inhibitors and 

antibodies targeting the CSF-1/CSF-1R signalling pathway [4]. In TNBC, preclinical work has 

shown that chemotherapy combined with macrophage Inhibition resulted in T and B 

lymphocyte Infiltration, and a stronger anti-tumour effect and more tumour regressions 

compared to chemotherapy alone [5]. The work in this project suggests that ILC patients, 

whose tumours contain high levels of macrophages, especially pleomorphic ILCs and patients 

whose tumours contain high M2/M1 ratios, should be considered for such treatments in clinical 

trials. 

 

Moreover previous studies characterising stromal TILs in ILC cohorts [339, 400] concluded 

that high levels of stromal TILs (>5% [339] and >10% [282] in the two studies respectively), 

are associated with a range of poor prognostic features and worse survival outcomes in one 

study [339]. The results of these studies would therefore suggest that it may be clinically 

relevant for the diagnostic histopathologist to report the level of stromal TILs in ILC at 

diagnosis. However these studies did not identify pleomorphic cases. In this PhD the work has 

provided further clarity and demonstrated that pleomorphic ILCs contain higher stromal TILs 

than non-pleomorphic ILCs but that stromal TILs alone are not independent predictors of 

worse outcome in both pleomorphic and non-pleomorphic ILC. The work in this project 

therefore suggests that the diagnostic reporting of the level of stromal TILs in ILC is not 

prognostically relevant. 

 

7.2.2 Prognostic gene expression signature 
 
By characterising transcriptomic heterogeneity in the first pleomorphic only ILC RNA cohort, 

the project identified drivers of aggressive disease behaviour at the gene expression level in 
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this histologically rare and understudied yet clinically aggressive ILC subtype. Whilst previous 

studies using unpurified bulk RNA sequencing data from ILC patients in the RATHER and 

TCGA datasets (n = 106 and n = 144 respectively) [32, 277] identified distinct ILC gene 

expression subtypes, the RNA work in this project offers the advantage of the fact that the 

tumours were needle macro-dissected prior to RNA extraction and sequencing, increasing the 

tumour purity and tumour epithelial cell signal, whilst traditional bulk RNA sequencing data in 

ILC is typically characterised by a low tumour purity due to the large stromal component which 

is characteristic of ILC. Moreover distinct gene expression subtypes were not prognostically 

relevant in the RATHER cohort [277]. In the TCGA analysis, a ‘reactive-like’ subtype was 

associated with an improved prognosis compared to the ‘proliferative’ subtype [32], although 

the third ‘immune’ subtype showed no prognostic significance. Furthermore whilst both 

cohorts identified an ‘immune’ subtype, these two separate ‘immune’ subtyping approaches 

failed to identify the same ILC cases when they were applied to the same dataset [282].  

 

The work in this PhD through RNA sequencing, survival analysis and modelling of the KHP 

pleomorphic ILC cohort, enabled the generation of a clinically relevant prognostic gene 

expression signature which validated as predictive of overall survival in larger independent 

general ILC cohorts. These datasets were purified and deconvolved prior to validation to 

match the discovery cohort more accurately.   

 

In an era where molecular based prognostic gene expression-based test such as 

OncotypeDx® and Prosigna® are becoming mainstream in many centres to guide clinical 

decision making, there has been a need for prognostic gene expression signatures specific 

for ILC, which is molecularly and clinically distinct from IC-NST for which most of the existing 

tests are designed. Recently LobSig, a 194-gene signature has been the first gene signature 

created for specifically prognosticating ILC patients [286]. However the work in this PhD has 

generated the first lobular signature based on signal derived predominantly from tumour 

epithelial cells. In future work it will be useful to compare the KHP signature to other breast 

cancer prognostic signatures such a LobSig and to study the underlying biology of the genes 

comprising the KHP signature and how they differ from the other signatures which are based 

on bulk tissue samples. Moreover further work will help decipher if this could be used in 

combination with an immune-based assessment of the tumour immune microenvironment, 

quantifying M2-like and M1-like macrophage phenotypes, which could be used to accurately 

predict outcome in ILC and identify patients who may require more intensive treatment or 

closer follow-up. 
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7.3 New insights into the transcriptomic and immune landscape of 
aggressive ILCs 
 
One of the key opportunities of this PhD project was the chance to use novel technologies to 

gain new insights into the transcriptomic and immune heterogeneity of clinically aggressive 

ILCs. NanoString DSP enabled the characterisation and spatial assessment of immune 

subpopulations at the protein level, whilst NanoString WTA technology enabled new insights 

into the transcriptomic features of immune cells, tumour cells and CAFs at the gene expression 

level.  

 

Traditionally there has been a focus on the prognostic relevance of TILs in breast cancer, and 

the NanoString DSP immuno-oncology panel enabled the characterisation of a broader and 

diverse range of different immune subpopulations aside from lymphocytes alone. The findings 

failed to show any prognostic significance of lymphocyte subpopulations instead highlighting 

the relevance of macrophages within the context of pleomorphic ILC turning the focus onto 

this immune population. Interestingly the predominance of macrophages in ILC was recently 

highlighted in a study which assessed a cohort of 87 ILCs and 94 treatment-naive IC-NSTs 

which showed that macrophages rather than T cells, represent the main immune cell 

population in ILC accounting for 82% and 50% of the tumour and stromal compartments 

respectively, compared to 49% and 35% in IC-NST [340]. The technology also enabled spatial 

analysis which showed that the spatial aggregation of immune cells does not appear to hold 

prognostic significance in pleomorphic ILC. 

 

In the NanoString WTA experiment, in addition to immune cells, tumour cells and CAFs were 

also characterised at the transcriptomic level in pleomorphic ILC. Differential gene expression 

between immune-hot and immune-cold tumour cells identified that HOXB13 was more highly 

expressed in immune-cold tumour cells and this gene was associated with poor prognosis in 

SCAN-B.  The comparison between immune-hot and immune-cold CAFs identified two genes; 

CXCL9 and GOLT1B, which appeared to hold prognostic significance in SCAN-B with high 

levels being associated with worse outcomes. CXCL9 has previously been shown to act 

directly on tumour cells which express the CXCR3 receptor, and this interaction promotes 

tumour cell migration as well as epithelial mesenchymal transition, promoting metastases 

[442], consistent with the poor outcomes observed in SCAN-B. In other solid tumour types, 

e.g. pancreatic cancer, CXCL9 has been shown to be expressed modestly by CAFs and has 

also been associated with increased numbers of T cells and immune rich areas [459].  
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GOLT1B has previously been associated with tumour progression through regulation of the 

immune microenvironment in breast cancer [443]. A recent study showed that increased 

GOLT1B expression was associated with the infiltration of a range of different immune cell 

populations including macrophages, dendritic cells and T cell subpopulations as well as 

immune checkpoint proteins [443]. Its expression was negatively correlated with overall 

survival in patients with increased regulatory T cells and decreased type 2 helper T cells [443]. 

The results from the NanoString WTA experiment highlight that CAFs also express GOLT1B 

in pleomorphic ILC and its expression appears to be associated with an enhanced immune 

infiltrate. Overall these findings provide a foundation for future studies interrogating the 

transcriptional landscape of CAFs, tumour and immune cells in clinically aggressive ILCs. 

Important limitations of both the NanoString DSP and the NanoString WTA experiments 

include firstly the small numbers of patients included in both experiments meant that there was 

reduced statistical power to detect differences between the various comparison groups and 

the low number of patients included is reflective of the high cost of such technologies. 

Furthermore a limitation of both platforms is that they are unable to offer single cell resolution 

including co-expression of specific proteins or spatial information at a single cell level, limiting 

the understanding of cell-to-cell interactions. In terms of practical issues, poor tissue 

adherence of the breast tumours to the NanoString slides due the inherent nature of breast 

tissue (with a high fat component) meant that in both experiments a couple of tumours 

detached from the slides during the initial stages prior to ROI selection. This meant that repeat 

sections had to be taken, and the original design of the experiment which allocated specific 

combinations of tumours to each slide, was disrupted. In terms of data analysis there is also 

a lack of standardisation on the approaches for normalisation of the data and data analysis. 

7.4 Conclusion 
 
In conclusion this PhD has characterised the transcriptomic and immune heterogeneity in 

clinically aggressive ILCs. RNA sequencing in a pleomorphic only ILC cohort identified drivers 

of clinically aggressive disease in pleomorphic ILC at the gene expression level and enabled 

the generation of a prognostic gene expression which validated as a predictor of overall 

survival in larger general ILC cohorts. Characterisation of the immune landscape at the 

histological level identified that ILCs are generally immune cold tumours yet a subgroup shows 

higher stromal TILs. Moreover pleomorphic ILCs are characterised by higher stromal TILs than 

non-pleomorphic ILCs, yet stromal TILs do not hold prognostic significance in both 

pleomorphic and non-pleomorphic ILC.  
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Further characterisation and spatial assessment of immune subpopulations in pleomorphic 

ILC using NanoString DSP showed an association between increased levels of macrophages 

and early relapse. Although this did not validate in larger ILC cohorts, dual IHC identified that 

the relative proportions of M2-like to M1-like macrophages holds prognostic significance in 

pleomorphic ILC with high M2/M1 ratios predictive of worse metastasis free survival. 

Preliminary co-culture experiments further support the concept that M2-like macrophages 

have pro-tumour effects on ILC cells promoting faster growth of ILC spheroids compared to 

M1-like macrophages. These experiments provide a foundation for future co-culture 

experiments to better understand the cross-talk and interplay between these two cell types. 
NanoString WTA analysis identified differences at the transcriptomic level between immune 

hot and immune cold tumour cells and immune hot and immune cold CAFs and differentially 

expressed genes associated with prognosis in independent ILC cohorts. Finally, a further 

preliminary experiment using novel single nuclei sequencing approaches identified genes 

enriched in ILC brain metastatic lesions providing a foundation for future work to understand 

transcriptomic drivers of disease relapse at a subclonal level. 
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8. Supplementary Tables 

CASE ID

Pleomoprhic 
(1) / non 

pleomorphic 
(0)

Histology 
TILs 

score  
(%)

ER 
(0/1)

PR 
(0/1)

HER2 
(0/1)

lymph 
nodes 

(n)

size 
(mm) grade

Age at 
diagnosis 

(years)

Mets / 
no mets 

(1/0)

Time between 
diagnosis and 
mets (years)

137 0 classic 4 1 1 0 24 100 2 69.2 1 15.88
144 0 classic 2 1 0 0 0 60 2 43.5 1 1.98
245 0 classic 1 1 1 0 0 150 2 79.5 1 0.00
672 0 classic 2.5 1 1 0 0 20 2 42.8 1 8.40
684 0 solid 3 1 1 0 18 25 3 44.2 1 0.22
758 0 classic 7.5 1 1 0 2 24 2 56.1 1 15.05
759 0 classic 1 1 1 0 10 30 2 66.0 1 8.40
843 0 classic 5 1 1 0 2 28 3 41.7 1 6.87

1046 0 classic 4.5 1 0 0 23 18 2 47.5 1 12.74
1155 0 classic 7.5 1 1 0 2 50 2 61.5 1 2.21
1190 0 classic 2 1 1 0 5 47 2 52.3 1 9.32

1355G 1 pleomorphic + apocrine 7 1 0 0 2 22 2 62.5 1 12.92
1529 0 classic 3 1 1 0 6 28 2 38.8 1 5.31
1605 0 classic 2.5 1 0 0 0 25 2 67.8 1 4.69
1867 0 classic 3 1 1 0 2 40 2 60.1 1 3.46
2229 0 classic 3 1 1 0 1 22 2 56.3 1 0.81
2272 0 classic 2 1 1 0 6 50 2 69.3 1 5.20
2422 0 classic 3 1 1 0 5 30 2 72.8 1 6.48
3117 1 pleomorphic 5.5 1 1 0 1 17 2 78.0 1 3.03
3160 0 classic 2 1 1 0 0 50 2 61.7 1 0.00
3589 1 pleomorphic 1 1 1 0 12 120 2 39.2 1 5.73
4035 0 classic 5 1 1 0 0 50 2 59.2 1 12.20
4860 0 classic 2 1 0 0 0 30 2 75.2 1 2.60
5817 0 classic 17 1 1 0 0 30 2 54.5 1 0.00
6389 0 classic 13.5 1 0 0 1 30 2 78.9 1 6.81
6700 0 classic 5 1 0 0 0 30 2 47.3 1 3.57
6813 0 classic 1.5 1 1 0 5 70 2 51.9 1 4.44
7414 0 classic 2.5 1 0 0 0 50 2 65.6 1 12.35
7490 0 classic 2 1 0 0 0 44 2 52.2 1 2.17
7570 0 classic 0.5 1 1 0 0 40 2 58.9 1 4.13
7756 1 pleomorphic 0.5 1 0 0 0 25 2 59.0 1 8.39
8207 0 classic 3.5 1 1 0 0 20 2 50.1 1 11.70
8268 0 classic 2 1 1 0 1 25 2 61.6 1 8.24
8301 0 mixed - classic and solid 7.5 1 1 0 0 35 2 33.6 1 0.00
8327 0 classic 4.5 1 1 0 5 30 2 56.8 1 3.20
8353 0 classic 2 1 1 0 0 60 2 49.6 1 3.67
8620 0 classic 1 1 1 0 1 18 NA 54.0 1 6.96
8627 0 mixed solid and alveolar apocrine cells 12 1 0 0 8 25 2 69.1 1 1.59
8699 1 pleomorphic 4.5 1 1 0 0 30 3 40.8 1 1.36
8780 0 classic 2 1 0 0 0 20 2 57.1 1 0.00
8785 0 classic 1 1 1 0 6 25 2 58.1 1 0.00
9005 0 classic 3.5 1 1 0 0 40 2 43.2 1 8.09
9068 1 pleomorphic 42.5 1 0 0 1 40 3 45.5 1 1.13
9072 0 classic and alveolar - mixed 4 1 1 0 5 40 2 44.9 1 6.07
9129 0 classic 1 1 1 0 2 60 2 42.5 1 12.07
9165 0 alveolar not pleomorphic 0 1 0 0 0 20 2 58.9 1 1.85
9252 0 classic and alveolar and solid - mixed 3 1 1 0 6 30 2 48.7 1 3.15
9314 0 classic and alveolar and solid - mixed 1 1 1 0 1 80 2 23.1 1 2.95
9326 0 classic 1 1 0 0 0 20 2 55.1 1 3.78
9350 1 pleomorphic 1.5 1 1 0 0 70 2 59.1 1 1.94
9353 0 classic 1.5 1 1 0 5 35 2 69.5 1 4.57
9423 0 classic 1.5 1 1 0 0 60 2 52.1 1 14.50
9536 0 classic 3.8 1 1 0 0 30 2 54.6 1 3.43
9573 0 classic 2 1 1 0 0 25 2 52.3 1 7.73
9894 1 pleomorphic and solid 2 1 1 0 0 28 2 61.7 1 0.00
10293 0 classic 5 1 0 0 10 150 2 74.7 1 2.20

17011789 1 pleomorphic 10 1 1 0 0 40 3 47.9 0 NA
17013387 1 pleomorphic 7 1 0 NA 1 60 3 67.3 1 5.32
17013509 1 pleomorphic and solid areas 2.5 1 1 0 1 40 3 63.0 1 9.20
17013592 1 pleomorphic 5 1 1 0 6 40 3 57.2 1 1.57
17013766 1 pleomorphic 1.5 1 0 0 13 40 NA 49.1 1 1.38
17014363 1 pleomorphic 7 1 0 1 22 40 NA 53.9 1 0.52
17015028 1 pleomorphic 8 1 1 0 0 60 3 79.7 0 NA
17018625 1 mixed classic and pleo 7 1 1 0 8 50 2 47.3 0 NA
17020462 1 pleomorphic 2 0 0 1 2 40 2 79.8 1 1.62
17020498 1 pleomorphic 2 1 1 0 3 40 2 73.6 0 NA
17021357 1 pleomorphic 5.5 0 0 0 NA 30 NA 53.5 0 NA
17021740 0 classic 2 1 1 0 1 60 1 83.9 0 NA
17022733 1 pleomorphic 10 1 1 1 1 20 NA 36.2 0 NA
17022921 0 solid and aleolar and classic mixed non pleo 0 1 0 0 4 60 NA 53.6 1 1.49
17022935 0 alveolar classic 2 1 1 0 0 20 3 79.2 0 NA
17023306 1 pleomorphic and pleomorphic LCIS 8.5 0 0 1 33 30 3 58.1 1 1.00
17023387 1 pleomorphic 3 1 1 0 1 20 2 69.2 0 NA
17023670 0 solid and classic not pleomorphic 1 1 1 0 0 80 3 72.4 1 0.21
17025943 1 pleomorphic + lymphovascular invasion 3 1 1 0 0 20 2 65.3 0 NA
17025981 1 pleomorphic 5 1 1 1 2 50 3 88.1 1 1.07
17037705 0 classic 1 1 1 0 0 NA 2 60.0 0 NA
17037739 1 pleomorphic 4 1 1 1 0 40 3 77.9 0 NA
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Supplementary Table 1: Clinical detail of cohort 
 

CASE ID

Pleomoprhic 
(1) / non 

pleomorphic 
(0)

Histology 
TILs 

score  
(%)

ER 
(0/1)

PR 
(0/1)

HER2 
(0/1)

lymph 
nodes 

(n)

size 
(mm) grade

Age at 
diagnosis 

(years)

Mets / 
no mets 

(1/0)

Time between 
diagnosis and 
mets (years)

17047324 1 pleomorphic 16 1 1 0 33 40 2 66.6 1 0.00
17051250 1 pleomorphic 1 1 1 0 0 40 3 80.5 0 NA
17051586 1 pleomorphic 7 0 0 0 0 10 2 66.1 1 6.21
17051630 1 predominantly classic and minor pleo (<10%) 1 1 1 0 0 60 2 73.7 0 NA
17054621 1 pleomorphic 4 1 1 0 1 32 NA 51.7 1 21.36
17055086 1 pleomorphic 2.5 1 1 0 5 40 3 42.7 0 NA
17055238 0 classic 7.5 1 1 0 0 40 2 80.5 0 NA
17055645 1 pleomorphic 6 0 0 0 0 10 2 43.4 1 18.81
17056290 1 pleomorphic 4 1 1 0 0 24 3 69.4 1 2.22
17056531 1 pleomorphic 2 1 1 0 0 20 NA 51.7 0 NA
17056904 1 mixed alveolar pleomorphic and classic 4 1 1 0 0 30 3 92.2 0 NA
17057552 0 classic 1 1 1 0 4 60 2 49.3 0 NA
17057784 1 pleomorphic 4.5 0 0 0 11 40 2 60.8 0 NA
17057789 1 pleomorphic 1 1 0 0 0 20 2 89.1 0 NA
17058082 1 pleomorphic 2 1 1 1 0 25 3 53.8 0 NA
17058145 1 pleomorphic 4 1 1 0 3 60 3 59.6 1 11.50
17058332 1 pleomorphic 4 1 1 NA 1 60 2 40.4 1 4.07
17058347 1 pleomorphic 1.5 0 0 0 8 5 3 46.8 1 3.30
17024213 0 classic 5 1 1 0 17 50 2 73.9 0 NA

17024226 / 2284 0 classic 1.5 1 1 0 NA 21 2 71.2 1 3.61
20160 / 17029272 0 alveolar non pleomorphic (some pleomorphic LCIS) 1 1 1 0 1 25 2 58.7 1 4.93
2602 / 17024882 1 mixed classic and ploe 1 1 1 0 8 90 2 55.1 1 0.65
2851 / 17057134 0 classic 10 1 1 0 4 37 2 56.7 1 14.98
30151 / 17047580 1 pleomorphic 2.5 1 1 0 35 60 2 43.2 1 4.30
4125 / 17004447 0 classic 1 1 1 0 1 30 2 45.8 1 10.74
4148 / 17020161 0 classic 1 1 1 0 14 36 2 47.5 1 7.56
8840 / 17016111 0 classic 0 1 1 0 26 95 2 47.0 1 3.24
9102 / 17014681 0 classic 3 1 0 0 33 30 2 54.4 1 1.15

TG00506 1 pleomorphic 2.5 1 NA NA 4 90 2 46.3 1 8.81
TG01139 1 pleomorphic 5.5 1 1 0 3 40 2 49.4 0 NA
TG01183 0 classic 1.5 1 NA 0 5 25 2 56.8 0 NA
TG01189 1 pleomorphic 3 1 NA 0 1 30 2 49.0 0 NA
TG01725 1 pleomorphic 35 NA NA 1 1 11 3 42.7 0 NA
TG01789 0 classic 1 1 NA 0 2 21 2 54.5 0 NA
TG01941 1 pleomorphic 4.5 1 NA 0 0 50 3 52.0 0 NA
TG01958 1 pleomorphic 10 0 NA 0 5 2 2 34.3 0 NA
TG01964 1 pleomorphic 3.5 1 NA 0 2 11 2 43.8 0 NA
TG02006 1 pleomorphic 1.5 NA NA 0 0 24 2 49.2 1 2.01
TG02072 1 pleomorphic 2 NA NA NA 4 60 2 44.5 0 NA
TG02166 1 pleomorphic 5 1 1 0 0 40 3 56.1 1 NA
TG02210 1 pleomorphic 6.5 1 1 0 0 13 3 57.5 0 NA
TG02222 1 pleomorphic 5 NA NA NA 1 12 2 54.4 0 NA
17014653 0 classic 1 1 1 0 1 50 2 69.6 0 NA
17014838 0 solid not pleomorphic 1 1 0 0 0 40 NA 79.1 1 0.00
17016969 0 classic 1 1 1 0 23 40 NA 72.8 0 NA
17017163 0 classic 2 1 0 0 20 40 NA 73.0 0 NA
17017388 0 classic 3 1 1 NA 0 20 NA 45.5 0 NA
17018357 0 classic 8 1 0 1 1 20 2 57.3 0 NA
17018737 0 mixed classic and alveolar 3 1 1 0 2 60 2 40.8 0 NA
17018751 0 clasisic 1 1 1 NA 0 20 1 67.5 0 NA
17019723 0 intracytoplasmic lumina classic 2 1 1 0 3 20 NA 46.9 0 NA
17019917 0 classic 2 1 NA 1 0 20 2 81.7 0 NA
17021537 0 classic - histocytoid 2 1 1 NA 4 50 NA 52.8 0 NA
17021562 0 classic 3 1 0 1 0 20 NA 60.7 0 NA
17022081 0 classic 6 1 1 NA 0 50 2 54.9 0 NA
17022814 0 classic 3 1 1 0 0 20 NA 54.0 0 NA
17046914 0 classic 2 1 1 0 1 20 NA 56.4 0 NA
17055597 0 classic 1 1 1 0 0 20 2 69.6 0 NA
17004445 0 classic 2 1 0 NA 0 40 NA 71.6 0 NA
17006157 0 classic 5 1 0 NA 0 20 NA 79.3 0 NA
17006800 0 classic 1 1 0 NA 0 20 NA 61.7 0 NA
17007789 0 classic 2 1 0 NA 0 10 NA 63.3 0 NA
17008110 0 classic 0 1 0 NA 2 30 NA 59.6 0 NA
17015966 0 classic 1 1 0 0 7 30 NA 79.6 0 NA
17019918 0 classic 0 1 0 NA 21 60 1 71.6 0 NA
17020262 0 classic 1 1 1 NA 0 20 NA 75.6 0 NA
17020524 0 classic 2 1 1 0 7 60 NA 62.7 0 NA
17023000 0 classic 3 1 NA NA 0 20 NA 64.8 0 NA
17025683 0 classic 2 1 1 0 7 60 2 73.3 0 NA
17037453 0 classic 0 1 1 0 2 40 2 71.3 0 NA
17037629 0 classic 4 1 1 0 0 30 2 75.6 0 NA
17042106 0 classic 1 1 0 NA 0 40 NA 66.6 0 NA
17043414 0 classic 1 1 0 0 0 30 2 72.1 0 NA
17047322 0 classic 0 1 1 0 0 60 2 52.6 0 NA
17020041 1 pleomorphic + pleo LCIS 1 1 0 0 2 10 NA 52.7 0 NA
17022260 0 solid 3 1 0 0 0 30 NA 88.0 0 NA
17004052 1 pleomorphic 4 1 1 0 0 20 NA 80.8 0 NA
17006677 1 pleomorphic + mitoses 2 1 0 NA 0 30 NA 71.1 0 NA
17007630 1 pleomorphic with solid areas 2 1 0 NA 0 30 NA 63.1 0 NA
17041799 1 pleomorphic with solid areas 9 1 1 NA 0 30 NA 72.7 0 NA
17022542 1 pleomorphic 2 1 1 NA 3 80 NA 68.6 0 NA
17004562 1 pleomorphic 3 1 0 NA 0 40 NA 56.5 0 NA
17011975 1 pleomorphic 35 1 0 NA 0 30 2 63.1 0 NA
17042643 0 classic 4 1 1 NA 0 20 NA 63.7 0 NA
17049882 0 classic and solid (not pleo) 3 1 1 0 0 40 2 80.6 0 NA
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Supplementary Table 2: RMH200Solid targeted gene panel 

ABL1 BCOR CDKN2C FADD HRAS
ACVR1 BCORL1 CEBPA FAM46C IDH1 

AKT1 BIRC3 CHEK1 FANCI IDH2
AKT2 BRAF CHEK2 FANCL  IGF1R 
 AKT3 BRCA1 CIC FAT1 IRF4
ALK BRCA2 CKS1B FBXW7 IRS2

AMER1 BRIP1 CREBBP FGF10 JAK2
ANTRX2 BTG1 CRLF1 FGFR1 KRAS

APC BTK CTNNB1 FGFR2 KBTBD4 
AR CALR CXCR4 FGFR3 KDM6A 

ARAF CASP8 DAXX FGFR4 KDR
ARID1A CBL DDR2 FH KEAP1
ARID1B CCND1 DDX3X FLT3 KIT
ARID2 CCND2 DICER1 FOXL2 KLF2
ASXL1 CCNE1 DROSHA FOXO1 KMT2A

ATM CCNE2 ELP1 GATA1 KMT2C
ATR CD79B EGFR GATA3 KMT2D

ATRX CDH1 EMSY GNA11 LIN28B
AURKA CDK12 EP300 GNAQ LZTR1
AXIN1 CDK2 EPHB2 GNAS MAP2K1
AXIN2 CDK4 ERBB2 GPR161 MAP2K2
B2M CDK6 ERBB3 H3F3A MAP2K4
BAP1 CDKN1A ESR1 HIST1H3B MAP3K1

BARD1 CDKN1B ETV6 HIST1H3C MAPK1
BBC3 CDKN2A EZH2 HIST2H3A MCL1
BCL2 CDKN2B F2R HIST2H3C MDM2
MDM4 OTX1 RAD50 SMARCA4 TCF3
MEN1 PALB2 RAD51B SMARCB1 TERT
MET PAX5 RAD51C SMARCE1 TET2

MLH1 PBRM1 RAD51D SMO TFE3
MN1 PAX5 RAD54L RUNX1 TP53
MPL PBRM1 RAF1 SDHA TP63

MRE11A PDCD1LG2 RB1 SDHB TSC1 
MSH2 PDGFRA RBM10 SDHC TSC2 
MSH6 PHOX2B RET SDHD U2AF1
MTOR PIK3CA RhoA SETBP2 VHL
MYC PIK3CD RICTOR SETD2 WT1

MYCL PIK3R1 RIT1 SF3B1 YAP1
MYCN PIN1 RNF43 SH2B3 DPYD
MYD88 PMS1 ROS1 SMAD2 EBF1 

NF1 PMS2 RUNX1 SMAD3 IL3RA 
NF2 POLD1 SDHA SMAD4 KIAA1549 

NFE2 POLE SDHB SMARCA4 MYOD1 
NFE2L2 POT1 SDHC SMARCB1 TG
NOTCH1 PPM1D SDHD SMARCE1 YES1
NOTCH2 PPP2R2A SETBP2 SMO YWHAE 
NOTCH3 PRKAR1A SETD2 SOX2 H3F3B 

NPM1 PTCH1 SF3B1 SRSF2 ID3 
NRAS PTCH2 SH2B3 STAG2

NTRK1 PTEN SMAD2 STK11
NTRK2 PTPN11 SMAD3 SUFU
NTRK3 RAD21 SMAD4 TCEB1
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Supplementary Table 3: NanoString GeoMx Immuno-oncology panel 
 

Immune Cell Profiling 
Panel (Core)

IO Drug Target 
Panel

Immune Activation 
Status Panel

Immune Cell 
Typing Panel

Pan-Tumor 
Panel

MAPK Signaling Panel (Early 
Access)

PI3K/AKT Signaling Panel 
(Early Access)

Beta-2-microglobulin 4-1BB CD137 CD25 CD14 Bcl-2 BRAF p-AKT (S473)
CD3 ARG1 CD27 CD34 EpCAM p-CRAF (S338) p-GSK3 (S9)
CD4 B7-H3 CD40 CD45RO ER alpha EGFR p-GSK3αβ (S21/S9)
CD8 GITR CD44 CD66b Her2/ErbB2 p-JNK (T183/Y185) INPP4B

CD11c IDO1 CD80 CD163 MART1 p-MEK1 (S217/S221) MET
CD20 LAG3 CD127 FAPalpha NY-ESO-1 p-P38 (T180/Y182) Pan-AKT
CD45 OX40L ICOS FOXP3* PR p44/42 MAPK ERK1/2 PLCG1
CD56 STING PD-L2 PTEN† p-p44/42 MAPK ERK1/2 (T202/Y204) p-PRAS40 (T246)
CD68 Tim-3 S100B p-P90RSK  (T359/S363) p-Tuberin (T1462)
CTLA4 VISTA Pan-RAS

Fibronectin
GZMB†
HLA-DR

Ki-67
Pan-cytokeratin

PD-1
PD-L1
SMA

Housekeeping 
genes/negative controls

Ms IgG1
Ms IgG2a
Rb IgG
GAPDH

Histone H3
S6
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Supplementary Table 4: NanoString DSP differential protein expression data 

Protein
Coefficient 
relapse vs 
no relapse

p-value q-value
Coefficient 

early vs late 
relapse

p-value q-value

S100B -0.983 0.013 0.983 -0.465 0.360 0.804
CD11c -0.657 0.053 0.983 -0.257 0.348 0.804
PanCk 0.782 0.076 0.983 -0.061 0.938 0.972
EpCAM 0.750 0.118 0.983 0.665 0.365 0.804

Histone H3 -0.224 0.121 0.983 -0.157 0.316 0.804
Her2 1.377 0.168 0.983 3.038 0.078 0.804

FOXP3 -0.386 0.169 0.983 -0.301 0.565 0.870
CD8 -0.529 0.170 0.983 -0.595 0.188 0.804

Phospho-GSK3B (S9) 0.444 0.176 0.983 -0.607 0.171 0.804
PD-L1 -0.464 0.187 0.983 -0.279 0.565 0.870

Phospho-p38 MAPK 
(T180/Y182) -0.250 0.206 0.983 -0.322 0.184 0.804

PR -0.419 0.228 0.983 0.094 0.856 0.966
CD66b -0.456 0.237 0.983 0.208 0.667 0.903

CD3 -0.430 0.259 0.983 -0.257 0.606 0.903
GITR -0.295 0.274 0.983 -0.133 0.714 0.922

pan-RAS 0.212 0.303 0.983 -0.017 0.959 0.972
Bcl-2 0.308 0.304 0.983 -0.157 0.767 0.935

Phospho-PRAS40 
(T246) 0.547 0.304 0.983 0.712 0.423 0.856

OX40L -0.299 0.326 0.983 0.219 0.674 0.903
MET -0.267 0.327 0.983 -0.762 0.130 0.804

Phospho-JNK 
(T183/Y185) -0.632 0.342 0.983 -1.160 0.262 0.804

FAP-alpha 0.246 0.367 0.983 0.460 0.342 0.804
CD45 -0.257 0.382 0.983 -0.175 0.491 0.857

Phospho-MEK1 
(S217/S221) 0.255 0.427 0.983 0.845 0.176 0.804

IDO1 -0.414 0.431 0.983 -1.308 0.114 0.804
Phospho-Tuberin 

(T1462) 0.195 0.432 0.983 -0.452 0.077 0.804

Phospho-AKT1 (S473) 0.239 0.434 0.983 -0.019 0.957 0.972

CD20 -0.554 0.436 0.983 0.314 0.634 0.903
STING -0.312 0.483 0.983 -0.806 0.260 0.804
CTLA4 0.293 0.486 0.983 -0.646 0.309 0.804

Beta-2-microglobulin -0.201 0.488 0.983 -0.165 0.762 0.935
SMA 0.190 0.505 0.983 -0.659 0.094 0.804

Fibronectin 0.209 0.505 0.983 0.047 0.916 0.968
MART1 -0.135 0.508 0.983 0.212 0.454 0.856
CD27 -0.222 0.525 0.983 -0.270 0.531 0.870

CD45RO -0.226 0.532 0.983 0.296 0.568 0.870
INPP4B 0.258 0.546 0.983 -1.068 0.093 0.804
Ki-67 -0.246 0.555 0.983 -0.443 0.418 0.856
CD80 -0.151 0.562 0.983 0.671 0.163 0.804

ER-alpha 0.244 0.568 0.983 -0.858 0.334 0.804
CD127 -0.174 0.570 0.983 -0.895 0.109 0.804

Phospho-GSK3A 
(S21)/Phospho-

GSK3B (S9)
0.099 0.597 0.983 -0.311 0.174 0.804

NY-ESO-1 0.080 0.631 0.983 -0.056 0.773 0.935
CD4 -0.171 0.645 0.983 0.062 0.907 0.968
ICOS -0.156 0.671 0.983 0.191 0.664 0.903

Phospho-p90 RSK  
(T359/S363) -0.105 0.685 0.983 -0.704 0.085 0.804

PTEN -0.090 0.695 0.983 -0.406 0.275 0.804
CD25 -0.072 0.712 0.983 -0.210 0.421 0.856
EGFR -0.094 0.725 0.983 -0.036 0.876 0.966
CD68 0.172 0.731 0.983 1.608 0.055 0.804
CD40 0.119 0.738 0.983 0.126 0.672 0.903

GAPDH 0.101 0.756 0.983 -0.207 0.637 0.903
CD163 0.151 0.767 0.983 0.842 0.321 0.804

Phospho-c-RAF 
(S338) 0.042 0.788 0.983 -0.184 0.448 0.856

Phospho-p44/42 
MAPK ERK1/2 
(T202/Y204)

0.103 0.792 0.983 0.540 0.330 0.804

VISTA 0.099 0.795 0.983 -0.020 0.974 0.974
p44/42 MAPK ERK1/2 -0.043 0.809 0.983 -0.207 0.477 0.856

GZMB -0.064 0.809 0.983 -0.221 0.559 0.870
S6 -0.063 0.811 0.983 -0.383 0.470 0.856

PLCG1 0.067 0.816 0.983 -0.874 0.050 0.804
Pan-AKT -0.068 0.822 0.983 -0.689 0.214 0.804

LAG3 0.043 0.825 0.983 -0.051 0.871 0.966
PD-L2 -0.055 0.826 0.983 0.250 0.480 0.856
CD44 0.066 0.860 0.990 0.310 0.294 0.804
CD14 0.048 0.864 0.990 0.530 0.241 0.804
CD34 -0.089 0.879 0.990 -1.064 0.294 0.804

Phospho-AKT 
(phospho T308) 0.094 0.884 0.990 -0.095 0.910 0.968

BRAF -0.016 0.930 0.993 -0.368 0.125 0.804
4-1BB -0.010 0.948 0.993 -0.032 0.847 0.966
CD56 -0.008 0.950 0.993 -0.107 0.532 0.870
ARG1 0.018 0.954 0.993 0.090 0.860 0.966
PD-1 0.006 0.966 0.993 0.217 0.336 0.804

HLA-DR -0.008 0.970 0.993 -0.133 0.703 0.922
Tim-3 -0.006 0.980 0.993 0.149 0.725 0.922
B7-H3 -0.004 0.993 0.993 0.134 0.826 0.966
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Supplementary Table 5: NanoString DSP M2/M1 ratios per patient 
 

Case ID M2/M1 
ratio

17013592 4.34
1355G 2.69
17014363 3.36
17013387 3.69
17023306 3.08
17051586 2.52
17047324 1.39
17025981 2.68
17055645 2.25
TG02166 3.22
17011789 3.22
17018625 2.80
17015028 0.78
17021357 2.87
17057784 1.51
17055238 3.15
TG01139 3.37
TG01725 3.50
TG01958 2.32
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Supplementary Table 6: 134 significant overall survival genes from KHP pleomorphic RNA 
cohort 
 

MPHOSPH8 PPARD KHDRBS1 CDR2L SLC39A10
KMT2D ZNF281 GOLGA1 MFSD11 SOAT1
RUNX2 SLC7A2 ZNF493 XPR1 USP3
PDPR MTMR14 CYLD FBLIM1 AP2A2
BAG5 FAM83H SMAD5 TCP11L2 CAMSAP2
TRABD ZMYM3 MKNK1 VCPIP1 EXOSC6
STEAP2 ICA1 EIF4E IRAK1 MROH1
RABGAP1L PARN COL6A2 ZDHHC21 ACAD10
RNF4 MPLKIP MTMR1 KLC4 SLC35A3
NXPE3 ASCC2 AKNA WRNIP1 CREBRF
ATE1 TMEM132A FTO CD109 UBE2B
PJA2 TTC39B RFX1 SCAPER RXRA
UQCRB ADCK2 RAB30 CYB5R3 DNAJC3
SDCBP CTSO DNAJC13 ACTR1A STXBP4
TLK2 MAPK9 RBM5 DAPK2
BOD1L1 RAP2B DTX2 PTPN1
DHX57 TTC7A IGF1R ENG
DOP1A LETM1 NEK11 GNPNAT1
ZNF606 RBMS1 PARP9 SNX25
CRYBG3 KMT2E LITAF ARL1
RPL13 IGFBP5 MRPS14 ARID2
ALDH2 UBXN6 TTC21B BRI3BP
ERP44 ADCY6 MAP3K20 TUFT1
ARMC8 TGFBR2 PPP2R3A TRIM65
APBB2 DNAH5 IL17RD KDM4C
GALNT7 GFUS SSH1 MED15
TAMM41 CYBRD1 YJU2B RBM15B
PHF2 C11orf54 ZC3H13 ANKRD26
BTN2A1 CDK16 NUDT3 KIAA0513
YPEL2 NIPA2 CHMP1B UBP1

134 Overall Survival genes
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Supplementary Table 6: 356 significant metastasis free survival genes from KHP pleomorphic 
RNA cohort 
 

 
 
  

SLC9A1 ATE1 PPARD LETM1 G2E3 HSD17B4 TMEM25 STXBP4
TM2D1 PJA2 PARP6 RBMS1 DNAJC13 CD109 AHI1 COX7C
REPS2 PPP1R21 SELENOT SAV1 SCRIB AHDC1 PPM1K BDP1
TMTC3 PTPDC1 TLE5 PALD1 UHRF2 STK19 UBP1 PRR14
MEIS2 ZNF33A SLCO3A1 MAF PDE12 AKAP17A ZDHHC17 CCDC186
TCF12 ZDHHC18 SLC7A2 KMT2E RBM5 UFM1 FBXL4 NCKAP1L
MDFIC NAGLU RPS27 ATF2 DTX2 RNF166 SLC39A10 TMEM167A
PURA ATM ZNF460 CYP1B1 SPART PTPN1 CUL3 CCNL1

MAPKAP1 PLEKHG5 IKBKB CMTM4 ODR4 CREM SOAT1 AKAP10
MOSMO HECTD2 EPHB4 CALCOCO1 PPOX NHLRC2 PCMT1 PRRC2C

MAPK1IP1L DDX1 BAG3 NXN IGF1R SYTL4 ZNF445 RNF146
MPHOSPH8 ZNF638 RPGR ADCY6 RHOT2 SEPTIN9 SMARCAD1 PDP1
KMT2D USP25 TGFBR1 CEPT1 ZNF146 FLRT2 EXOSC6 BPNT2
ACAP2 ACVR2B HNRNPU MFSD4B PARP9 ENG EP400 YPEL2
CLUAP1 VAV3 ZRANB1 ARHGAP35 CCNG1 ACP6 BCL3 CACNB3
GRINA LASP1 MTX3 INTS1 SAMD9L ANAPC5 SEL1L SPEF2
RUNX2 TBC1D8 MPLKIP PRPF3 S100PBP SNX18 ZBTB41 DNASE1
NUP43 LRP5 KDELR2 GFUS LITAF SMIM8 EPC1 TDP1
RAB27A SDCBP SORBS1 CYBRD1 DDIT4 SNX25 COL9A2 TMEM250
XRN1 DAZAP2 RANBP2 ORC4 RBM26 PTEN BCL9 PRPF4B
PDPR ABCC10 C1QTNF3 C2CD3 MRPS14 RAB11FIP2 RTTN AKNA
TSPAN4 CORO1C FMNL2 TBRG1 TTC21B ARRDC1 ZNF875 PHLPP1
CSNK2A1 GNA12 VPS36 SH3TC1 TET2 ARL1 GANC ANKRD40
AZIN2 BOD1L1 GTF3C5 WDR36 COQ7 RELT KLHL9 KLHDC4
ARPC1B DHX57 DACT1 NIPA2 MAP3K20 SLC25A46 SLC20A2 WRNIP1
PPP2R5C COG3 DCAF5 PIP5K1C ITSN2 CSE1L CERS4 SLC25A22
SCAMP4 IKZF1 SRP54 AKT3 C2orf69 TTC39A ORC2 SLC30A1
MRI1 DOP1A FAM126B SULF1 IL17RD ARID2 TSN CMTR2

TBC1D15 ZNF235 CWF19L2 BTN3A2 SSH1 CCAR2 INTS8 HMG20B
SLMAP EI24 SMARCD2 IFI44 BRF1 BCL2L2 SLC35A3 ANKRD26
CRNKL1 NIPBL PLEKHG2 PDCD4 PREX1 SPATA20 PER1 TTL
TTC14 ZNF280D TMEM132A MTAP EPG5 HSPG2 PPFIBP2 CLUH
PMP22 ZEB2 TNFAIP1 GPX4 YJU2B SENP6 RALGAPA1 RESF1
TRABD PIAS2 ZEB1 SEC22B ZC3H13 COBLL1 UBE2B ZNF75A
LAMTOR1 PHYKPL CHST12 MBD5 NUDT3 CTDSP1 PHF23 MPRIP
LZTR1 ZNF37A MTURN NIBAN2 SPRYD4 TUFT1 EMSY RAB5C
NAV2 NBEAL1 PLEKHH2 SUN2 DDX46 ACSS1 RXRA MRRF
LLGL2 ZFHX4 PSMB7 ZNF91 CDK19 NEMF DNAJC3 RPS27L
BRAT1 CSNK1G1 MAN1B1 N4BP2 PLEKHA1 RAP1B ANKRD12 ZDHHC21

RABGAP1L ARMC8 AP1G1 MKNK1 DOT1L FASN TTC19 MED15
CTDSPL2 HINFP CTSO TPGS2 MFSD11 KDM4C RAB22A ZNF551
SLC35A4 SOCS5 ZNF428 ARFGAP1 XPR1 STRBP VPS26B
CEP170 NUB1 ZNF121 ENOSF1 FBLIM1 MLH3 NR2C2
FAM91A1 RBBP6 LETMD1 FHIP2B SACS USP8 NOTCH4
BAZ2B GMIP KIFAP3 COL6A2 STK11 EEA1 BRAF

356 Metastasis free survival genes
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