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Summary
Background Retroperitoneal sarcomas are tumours with a poor prognosis. Upfront characterisation of the tumour is 
difficult, and under-grading is common. Radiomics has the potential to non-invasively characterise the so-called 
radiological phenotype of tumours. We aimed to develop and independently validate a CT-based radiomics 
classification model for the prediction of histological type and grade in retroperitoneal leiomyosarcoma and 
liposarcoma.

Methods A retrospective discovery cohort was collated at our centre (Royal Marsden Hospital, London, UK) and an 
independent validation cohort comprising patients recruited in the phase 3 STRASS study of neoadjuvant radiotherapy 
in retroperitoneal sarcoma. Patients aged older than 18 years with confirmed primary leiomyosarcoma or liposarcoma 
proceeding to surgical resection with available contrast-enhanced CT scans were included. Using the discovery 
dataset, a CT-based radiomics workflow was developed, including manual delineation, sub-segmentation, feature 
extraction, and predictive model building. Separate probabilistic classifiers for the prediction of histological type and 
low versus intermediate or high grade tumour types were built and tested. Independent validation was then 
performed. The primary objective of the study was to develop radiomic classification models for the prediction of 
retroperitoneal leiomyosarcoma and liposarcoma type and histological grade.

Findings 170 patients recruited between Oct 30, 2016, and Dec 23, 2020, were eligible in the discovery cohort and 
89 patients recruited between Jan 18, 2012, and April 10, 2017, were eligible in the validation cohort. In the discovery 
cohort, the median age was 63 years (range 27–89), with 83 (49%) female and 87 (51%) male patients. In the validation 
cohort, median age was 59 years (range 33–77), with 46 (52%) female and 43 (48%) male patients. The highest 
performing model for the prediction of histological type had an area under the receiver operator curve (AUROC) of 
0·928 on validation, based on a feature set of radiomics and approximate radiomic volume fraction. The highest 
performing model for the prediction of histological grade had an AUROC of 0·882 on validation, based on a radiomics 
feature set.

Interpretation Our validated radiomics model can predict the histological type and grade of retroperitoneal sarcomas 
with excellent performance. This could have important implications for improving diagnosis and risk stratification in 
retroperitoneal sarcomas.
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Introduction 
Retroperitoneal sarcomas are large and complex tumours 
that account for 12–15% of all soft tissue sarcomas and 
their prognosis is poorer than that of extremity 
sarcomas.1,2 Liposarcoma and leiomyosarcoma are the 
most common retroperitoneal sarcoma histologies. 
Compared with superficial lesions, retroperitoneal 
sarcomas are more challenging to obtain a biopsy sample 
for and are prone to sampling bias.3 Clinical trials have 
explored neoadjuvant therapy, including the phase 3 

STRASS (European Organisation for Research and 
Treatment of Cancer 62092) trial, which assessed 
neoadjuvant radiotherapy in retroperitoneal sarcoma.4

Radiomics is used in oncological imaging to extract 
and mine variables from medical images and non-
invasively quantify the global radiological phenotype of 
tumours.5–7 However, successful clinical translation is 
elusive.8,9 Progress has been hindered by the limited 
generalisability of data, variations in methods, and 
absence of independent validation cohorts.10,11

http://crossmark.crossref.org/dialog/?doi=10.1016/S1470-2045(23)00462-X&domain=pdf
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Although more than 50 soft tissue sarcoma radiomics 
studies have been completed, few include retroperitoneal 
sarcomas, and the majority use single-centre datasets 
without independent validation.5 The limited inter-
pretation of the quantitative radiological phenotype in 
retroperitoneal sarcomas and its association with tumour 
biology is a missed opportunity.

This study, radiomics in sarcoma of the retroperitoneum 
(RADSARC-R), aims to develop and validate a CT-based 
radiomics model for histological type classification and 
prediction of grade in retroperitoneal liposarcoma and 
leiomyosarcoma. We have developed a predictive model 
for histology and grade that was validated in an external 
independent cohort4 with the intended goal of eventual 
clinical translation and use by health-care professionals.

Methods 
Study design and participants 
This was a retrospective cohort study that applied 
radiomics analysis retrospectively to a discovery cohort 
followed by the validation of findings in an independent 
multi-institution cohort. The discovery cohort comprised 
patients with primary retroperitoneal liposarcoma or 
leiomyosarcoma undergoing surgery at the Royal 
Marsden Hospital (London, UK) between Oct 30, 2016, 
and Dec 23, 2020, who were retrospectively identified 
from a prospectively maintained database. The inclusion 
criteria were: (1) histologically confirmed retroperitoneal 

liposarcoma or leiomyosarcoma; (2) older than 18 years 
of age; (3) primary and unifocal disease; (4) baseline 
venous phase contrast-enhanced CT; (5) CT scan images 
including the entire tumour volume without artifacts; 
and (6) minimum clinical dataset required for radiomic 
model development available. The exclusion criteria 
were: (1) other histological types; (2) baseline or venous 
phase contrast-enhanced CT scans unavailable; (3) image 
artifacts; and (4) missing clinical data. For patients who 
had received neoadjuvant therapy, baseline scans and 
histology were used. Patient sex was defined as per the 
electronic patient records and no ethnicity data were 
collected.

For the validation cohort, patients with primary 
retroperitoneal liposarcoma and leiomyosarcoma 
recruited as part of the STRASS trial (between Jan 18, 2012, 
and April 10, 2017) were included.4 Contributing sites were 
The Royal Marsden Hospital, London, UK; Institut Curie, 
Hopital de Paris, Paris, France; Gustave Roussy, Villejuif, 
France; The Netherlands Cancer Institute (Antoni Van 
Leeuwenhoekziekenhuis), Amsterdam, The Netherlands; 
Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 
Italy; Institut Jules Bordet, Université Libre de Bruxelles, 
Brussels, Belgium; Centre Hospitalier Universitaire de 
Toulouse, Toulouse, France; and Dana-Farber Cancer 
Institute, Boston, MA, USA. Patient and scan selection 
criteria matched those of the discovery cohort. Patients 
from the Royal Marsden Hospital in the discovery cohort 
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Research in context

Evidence before this study
Radiomics has become an important concept in oncological 
imaging to quantify the characteristics of a tumour in a non-
invasive and global manner. We searched PubMed for articles in 
English from Oct 20, 2021, to Jan 5, 2023, using the following 
search terms: “retroperitoneal sarcoma”, “soft tissue sarcoma”, 
“radiomics in soft tissue sarcoma”, and “imaging in 
retroperitoneal sarcoma”. All radiomics studies were examined, 
with a focus on independently validated studies. Some 
retrospective radiomics studies supported the use of radiomics 
in the prediction of histological grade for soft tissue sarcoma. 
However, patients with retroperitoneal sarcoma were under-
represented, and most studies did not have independent 
validation. The two largest validated studies had area under 
receiver operator curve (AUROC) values of 0·75 and 0·8 for the 
prediction of grade. Few patients with retroperitoneal sarcoma 
were included in these studies and models were MRI-derived 
(standard-of-care imaging for retroperitoneal sarcoma is CT), 
making results challenging to extrapolate. No radiomics studies 
to date have approached the prediction of histological type.

Added value of this study
To the best of our knowledge, RADSARC-R is the largest cohort 
analysed by radiomics for patients with retroperitoneal soft tissue 
sarcoma and the only one validated in an external independent 

cohort. The study incorporates repeatability analysis and a novel 
artificial intelligence pipeline for radiomic feature selection to 
identify robust and more interpretable features to maximise 
direct clinical applicability. The model produced good results in 
the prediction of the two most common histological types 
(liposarcoma and leiomyosarcoma) with an AUROC of 0·928 and 
the differentiation between low grade and intermediate or high 
grade tumours with an AUROC of 0·882. The use of multi-centre 
heterogeneous data, particularly in the validation cohort, aligns 
this study with real-world data and increases the reliability and 
potential generalisability of our models.

Implications of all the available evidence
Patients with retroperitoneal sarcoma continue to have a poor 
prognosis, poorer than that of sarcoma of other anatomical 
sites. The need for neoadjuvant therapy is currently guided by 
doing an invasive biopsy that can lead to the under-grading of 
tumours in up to 68% of patients. The clinical tools available for 
the upfront determination of histological type and grade 
urgently need to be improved to allow for improved risk 
stratification and management. Our radiomics model to predict 
histological subtype and grade presents a conceptual advance 
and an opportunity for a change in personalised care for 
patients with retroperitoneal sarcoma.
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who were also enrolled into STRASS were not included in 
the validation cohort.

Ethical approval was obtained for this retrospective 
study (NHS REC16/EE/0213) and a data transfer 
agreement allowed the inclusion of the validation cohort 
from the STRASS trial. A summary of the study workflow 
is shown in the appendix (p 17).

Image analysis
In the discovery cohort, the CT scan images were 
pseudonymised and transferred to the eXtensible 
Neuroimaging Archive Toolkit (XNAT) platform for image 
curation and segmentation.12,13 Imaging data were in 
the Digital Imaging and Communications in Medicine 
format. In the validation cohort, pseudonymised CT scan 
images from the European Organisation for Research and 
Treatment of Cancer repository were uploaded onto XNAT. 
CT scan variables are listed in the appendix (pp 7–8).

The tumour was manually delineated on all slices 
using XNAT contouring tools producing 3D regions of 
interest. Three independent users completed whole 
lesion segmentations (experienced sarcoma radiologist 
CK-M, clinical fellow AA, and senior research 
radiographer RE). Segmentations completed by RE were 
reviewed by AA and an independent senior sarcoma 
radiologist (CM).

A semiautomated sub-segmentation tool was used to 
obtain radiomic volume fraction (RVF) features for four 
sub-regions associated with low, middle, high, and very 
high Hounsfield units. Sub-segmentations were obtained 
semi-automatically using the algorithm described in the 
appendix (p 1), which makes use of patient-specific 
Hounsfield unit thresholds in conjunction with 
morphological operations with the aim of generating 
sub-segmentations that are similar to those a human 
user would create manually. Because of challenges in 
automatically identifying the visually apparent high 
Hounsfield unit regions in some tumours, guide regions 
of interest were drawn on a single slice of each contiguous 
high Hounsfield unit sub-region.

An alternative approach for computing the sub-region 
volume fractions was developed to reduce user 
subjectivity. The RVF feature values obtained from the 
algorithm were used to derive fixed Hounsfield unit 
thresholds, from which approximate RVF (ARVF) 
estimates were computed by simple image thresholding. 
This procedure is detailed in the appendix (pp 2–3, 14–15) 
and applied to the discovery dataset only to ensure that 
the estimates of predictive performance obtained using 
the validation dataset are not biased to user subjectivity. 
The thresholds thus derived were –50, 19, and 228 
Hounsfield units (low is <–50, middle is –50 to <19, high 
is 19 to <228, very high is ≥228).

Radiomic features 
A summary of the algorithm workflow is shown in the 
appendix (p 16). Radiomic features were computed using 

pyradiomics version 3.0.1 (Imaging Biomarker 
Standardisation Initiative compliant algorithm),14 
yielding 105 features from three feature groups: 14 shape, 
18 first order, and 73 texture; full details are in the 
appendix (pp 6–7). The radiomic feature groups were 
combined with the RVF and ARVF features to give three 
feature sets as outlined in the appendix (p 9). Models 
were built using all three feature sets and the best 
performing model was used in the validation set. CT 
imaging protocols had variations in slice thickness and 
pixel spacing so all images were resampled to a 
1 × 1 × 5 mm voxel size using trilinear interpolation (the 
most frequently acquired slice thickness was 5 mm in 
72 [42%] of 170 scans; appendix pp 6–7). Because of the 
non-isotropic voxel size, the texture features were 
obtained using a 2D neighbourhood, and the image 
values were quantised in steps of 25 Hounsfield units 
before texture feature computation. The features were 
augmented with the RVF and ARVF feature groups. For 
each of these feature groups, the four volume fraction 
features were linearly dependent (since they should sum 
up to 1), so the middle Hounsfield units volume feature 
was removed, leaving the other three volume features as 
a linearly independent set. A subset of radiomic features 
were log-transformed as described in the appendix (p 3).

Feature reproducibility was assessed by repeat 
segmentation of 30 scans in the discovery dataset that 
were selected at random (20 liposarcoma and ten 
leiomyosarcoma). Segmentations were completed by a 
further independent senior research radiographer (SV) 
and senior sarcoma radiologist (CM) who were masked 
to the initial segmentations. The intraclass correlation 
coefficients (two-way random effects, absolute 
agreement, single rater, and measurement) were 
computed for all features, and features where this 
coefficient was less than 0·75 were rejected.15

Machine learning pipeline 
Separate probabilistic binary classifiers were built using 
the Python sklearn toolbox (version 0.24.2) to predict the 
tumour type (liposarcoma vs leiomyosarcoma) and 
tumour grade (low grade [1] vs intermediate or high grade 
[>1] and low or intermediate grade [<3] vs high grade [3]).

A recently developed machine learning pipeline was 
used, which is designed to discover models that are 
easier to interpret16 (appendix pp 3–5, 16). The pipeline is 
based on a nested cross-validation structure, where the 
outer cross-validation provides performance estimates 
(ie, area under the receiver operator curve [AUROC]), 
and the inner cross-validation is used for tuning variable 
optimisation. The pipeline was applied to the discovery 
set to obtain cross-validated performance estimates, and 
the so-called model generation sub-routine was applied 
to the entire discovery set to obtain a single model that 
was tested in the validation dataset. Further details are in 
the appendix (pp 3–5).16 The pipeline included a step that 
removed correlated features by comparing pairwise 

See Online for appendix

For the eXtensible 
Neuroimaging Archive Toolkit 
platform see www.xnat.org

www.xnat.org
www.xnat.org
www.xnat.org
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feature correlations (Spearman correlation) with a 
threshold, and this threshold was optimised, as described 
in the appendix (pp 3–5).

Statistical analysis 
Analyses were performed in Python version 3.6.8 for the 
machine learning pipeline and Python version 3.9.13 for 
the calibration statistics. This was a feasibility study and 
sample size calculations were not performed. The models 
were derived from a pipeline that includes variable 
selection, therefore conventionally computed CIs and 
p values would not be valid and are not available for model 
feature selection. Continuous variables were expressed as 
median and IQR, whereas categorical variables were 
expressed as count and percentages. The diagnostic 
performance of radiomics models for predicting 
histological type and grade was evaluated against 
assessment of the surgical specimen by expert sarcoma 
pathologists (KT, with 14 years experience, and CF, with 
41 years experience) using accuracy, sensitivity, specificity, 
and positive and negative predictive values. The 
discriminative ability of the models was assessed using 
receiver operating characteristic (ROC) curves, from 
which the AUROC was computed. p values for the null 
hypothesis that the AUROC is equal to 0·5 (no 
discrimination) were computed using Wilcoxon rank 
statistics. ROC metrics were computed using cross-
validation in the discovery dataset. An analysis of errors 

was performed using the validation dataset that was 
independent of the development dataset and not used 
during model development. Errors were identified as 
cases where the tumour type or grade identified from 
histological examination of the surgical specimen did not 
agree with the type or grade predicted by the model. 
Model performance was also assessed using Hosmer–
Lemeshow score calibration statistics. For AUROC, 
p values were two-sided, and for the Hosmer–Lemeshow 
score, p values were one-sided and a cutoff value of 0·05 
was used for statistical significance. A Transparent 
Reporting of a multivariable prediction model for 
Individual Prognosis or Diagnosis checklist is provided in 
the appendix (pp 12–13).

Role of the funding source 
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results 
Patient inclusion is summarised in figure 1. 170 patients 
were included in the discovery cohort. The median age 
was 63 years (range 27–89) with 83 (49%) female patients 
and 87 (51%) male patients. 117 (69%) patients had 
liposarcoma and 53 (31%) patients had leiomyosarcoma. 
38 (22%) had grade 1 tumours, 74 (44%) had grade 2 
tumours, and 58 (34%) had grade 3 tumours (table 1; 
appendix p 18). For 59 (35%) of 170 patients in the 
discovery cohort, the initial reporting radiologist was 
unable to offer a diagnosis for histology; 86 (74%) of 
117 were correctly diagnosed as liposarcoma, 23 (43%) of 
53 were correctly diagnosed as leiomyosarcoma, and 
two (2%) of 117 patients with liposarcoma were incorrectly 
diagnosed as having leiomyosarcoma.

120 (71%) of the 170 patients did not have grade 
available from the diagnostic biopsy records as reported 
by two experienced sarcoma pathologists (KT and CF) at 
the time of diagnosis. Where available (50 [29%] of 
170 patients), the comparison of core biopsy and surgical 
specimen grade showed that 22 (44%) of 50 were correctly 
graded and 28 (56%) of 50 were incorrect (27 [96%] of 
28 were assigned a higher grade than originally 
reported [six patients upgraded from grade 1 to 2; 
three patients were assigned a higher grade than 
originally reported from grade 1 to 3; and 18 patients 
upgraded from grade 2 to 3] and one [4%] was assigned a 
lower grade than originally reported [ from grade 3 to 2]), 
reported by KT and CF.

89 eligible patients from the STRASS trial, from 
eight centres, were included in the validation cohort 
(figure 1). The median age was 59 years (range 33–77), 
with 46 (52%) female patients and 43 (48%) male patients. 
76 (85%) patients had liposarcoma and 13 (15%) patients 
had leiomyosarcoma. 33 (37%) patients had grade 1 
tumours, 33 (37%) had grade 2 tumours, and seven (8%) 
had grade 3 tumours. 16 (18%) patients had no grade 

Figure 1: Study profiles of the discovery and validation cohorts showing the reasons for exclusion and final 
cohort numbers

224 patients from the Royal Marsden 
         Hospital retroperitoneal sarcoma 
         database (Oct 30, 2016, to 
         Dec 23, 2020) 

40 excluded (other types)

266 patients in STRASS trial 
         (Jan 18, 2012, to April 10, 2017) 

158 excluded (data not 
         available)

Discovery cohort Validation cohort

184 with liposarcoma or leiomyosarcoma

2 excluded (no CT scan image 
   available)

108 with scans transferred 

11 excluded (other disease 
      types)

182 with liposarcoma or leiomyosarcoma

12 excluded (no contrast-
      enhanced CT scan image 
      available)

97 with liposarcoma or leiomyosarcoma

170 with liposarcoma or 
         leiomyosarcoma with contrast-
         enhanced CT scan images available
         154 external centre scan 
           16 from the Royal Marsden Hospital

89 with liposarcoma or leiomyosarcoma 
       with scans from eight different 
       centres

  8 excluded (no contrast-
      enhanced CT scan image 
      available)
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recorded. The patients without grade recorded were 
included for the validation of histology; however, they 
were excluded from the validation of grade (table 1; 
appendix p 18).

The manual delineation process of CT scan images 
from both the discovery and validation cohorts showed 
some liposarcoma with visually discernible lower 
Hounsfield unit areas, probably corres ponding to areas 
of abnormal fat; however, the majority (152 [89%] of 
170 scans in the discovery cohort and 59 [66%] of 89 scans 
in the validation cohort) showed little radiographic 
distinction between leiomyosarcoma and liposarcoma 
(appendix p 19). The semiautomated sub-segmentation 
was also successfully applied to scans from both cohorts 
(appendix p 19).

For the discrimination of leiomyosarcoma from 
liposarcoma, the model derived from the discovery 
dataset showed excellent cross-validated performance for 
all three feature sets evaluated (radiomics, radiomics 
plus RVF, and radiomics plus ARVF), with AUROCs 
ranging between 0·912 and 0·944 (figure 2A; appendix 
p 10). The highest AUROC was attained using radiomics 
plus ARVF; for this feature set, the ARVF and texture 
feature group combination was consistently selected 
across all feature correlation thresholds, substantially 

more frequently than the other feature groups, such as 
shape and first-order statistics, and more than 95% of the 
cross-validation splits for the optimum threshold of 0·62 
(figure 2B; appendix pp 10, 20).

The logistic regression coefficients for the final model 
for histology prediction are detailed in table 2. Much of 
the predictive power of the final model was found to 
come from two features with the largest coefficients, 
indicating that patients with larger Hounsfield unit 
volume fractions or with larger values of gldm_
SmallDependenceLowGrayLevel Emphasis were more 
likely to have leiomyosarcoma. In contrast, patients with 
very high Hounsfield unit volume fractions were more 
likely to have liposarcoma, and similarly for the three 
other texture features, glszm_SmallAreaEmphasis, 
ngtdm_Strength (log), and also for gldm_

Discovery cohort 
(N=170)

Validation cohort 
(N=89)

Median age, range 63 (27–89) 59 (33–77)

Sex

Female 83 (49%) 46 (52%)

Male 87 (51%) 43 (48%)

Eastern Cooperative Oncology Group (discovery cohort) and WHO score 
(validation cohort)

0 103 (61%) 78 (88%)

1 65 (38%) 11 (12%)

2 2 (1%) 0

Histological type

Liposarcoma 117 (69%) 76 (85%)

Leiomyosarcoma 53 (31%) 13 (15%)

Grade

1 38 (22%) 33 (37%)

2 74 (44%) 33 (37%)

3 58 (34%) 7 (8%)

Unknown* 0 16 (18%)

Treatment

Neoadjuvant radiotherapy 
and surgery

3 (2%) 46 (52%)

Neoadjuvant chemotherapy 
and surgery

2 (1%) 0

Surgery only 165 (97%) 43 (48%)
 
Data are n (%), unless otherwise indicated. *When tumour grade was missing, 
these cases were excluded for the purposes of testing the predictive model for 
grade.

Table 1: Full baseline clinicopathological details for the discovery and 
validation cohorts

Figure 2: The performance and feature selection for the final tumour type 
prediction model developed from the discovery dataset
(A) ROC of the three feature combinations tested with radiomics (blue), 
radiomics plus RVF (red), and radiomics plus ARVF (green). Radiomics plus ARVF 
had the highest area under the ROC. (B) The selection frequency of features 
across cross-validation splits for the radiomics plus ARVF combination, as a 
function of the threshold used in the hierarchical correlation feature reduction 
step (0·62). ARVF=approximate radiomic volume fraction. ROC=receiver 
operating characteristic. RVF=radiomic volume fraction.

ARVF
ARVF+shape
ARVF+first order
ARVF+texture

Radiomics
Radiomics+RVF
Radiomics+ARVF

0 0·2 0·4 0·6 0·8 1·0
0

0·2

0·4

0·6

0·8

1·0

Se
ns

iti
vi

ty

1–Specificity

A Tumour type ROC

0 0·6 0·7 1·00·8 0·9
0

20

40

60

80

100

Se
le

ct
io

n 
fre

qu
en

cy
 (%

)

Correlation threshold

B Radiomics + ARVF features

ARVF + shape +first order
ARVF + shape +texture
ARVF + first order + texture
All



Articles

1282 www.thelancet.com/oncology   Vol 24   November 2023

DependenceNon UniformityNormalized (log). Four of six 
of these features were present in 95·2–99·7% of cross-
validation splits, implying the discovery process to be 
stable in these data for this model.

For the prediction of low grade versus intermediate or 
high grade tumours, the model developed from the 
discovery dataset had good AUROCs in the range of 
0·857–0·863 for the three feature sets (figure 3A; 
appendix p 10). The highest AUROC was attained in the 
radiomics only feature set. The feature group frequency 
had a selection of first-order statistics and texture features 
for most feature correlation thresholds (figure 3B; 
appendix pp 10, 21) including at the optimum threshold of 
0·93. The radiomics only feature set was selected as the 
final model for prediction of tumour grade.

The final model for predicting histological grade 
included nine features from the first-order and texture 
groups in the final feature set (table 3). The 
firstorder_90Percentile feature had the largest coefficient 
magnitude and a selection frequency of 98·1%, 
suggesting that much of the predictive power of this 
model came from this feature with larger values 
associated with higher tumour grades.

In addition, we evaluated the ability of the model to 
discriminate between low (grade 1) or intermediate 
(grade 2) versus high (grade 3) tumours. The model 
developed from the discovery dataset had acceptable 
AUROCs in the range of 0·714–0·733 (appendix pp 11, 22) 
for the three feature sets. The radiomics plus ARVF 
feature set yielded the highest AUROC.

With the best performance for histology classification, 
the radiomics plus ARVF model was evaluated in the 
STRASS validation cohort. This analysis yielded an 
AUROC of 0·928 (p<0·0001; figure 4A; appendix p 10). 
Other measures of discrimination for the chosen model 
in this cohort were an accuracy of 0·843, a sensitivity of 

Coefficient Frequency 
(%)

High Hounsfield units approximate volume 
fraction

4·782 95·2%

gldm_
SmallDependenceLowGrayLevelEmphasis

2·411 96·2%

Very high approximate Hounsfield units 
volume fraction

–0·662 99·7%

glszm_SmallAreaEmphasis –0·373 96·0%

ngtdm_Strength (log) –0·208 91·0%

gldm_DependenceNonUniformityNormalized 
(log)

–0·129 89·6%

Features are ordered on coefficient magnitude, and the second column gives the 
frequency that each feature appeared in the models obtained from the different 
cross-validation splits using the optimum correlation thresholds of 0·62.

Table 2: Features (derived from pyradiomics version 3.0.1) and logistic 
regression coefficients for the final histological type prediction model 
that was developed from the discovery dataset

Coefficient Frequency 
(%)

firstorder_90Percentile 1·811 98·1%

glszm_ZoneVariance (log) 0·412 82·3%

gldm_DependenceNonUniformityNormalized 
(log)

0·369 85·3%

glcm_ClusterShade (log) –0·192 80·6%

firstorder_Kurtosis (log) –0·141 71·8%

ngtdm_Strength (log) –0·136 73·6%

firstorder_RootMeanSquared –0·093 88·7%

glszm_LargeAreaHighGrayLevelEmphasis 
(log)

0·070 49·2%

firstorder_InterquartileRange 0·016 50·0%

Features are ordered on coefficient magnitude, and the second column gives the 
frequency that each feature appeared in the models obtained from the different 
cross-validation splits using the optimum correlation thresholds of 0·93.

Table 3: Features (derived from pyradiomics version 3.0.1) and logistic 
regression coefficients for the tumour grade prediction model that was 
developed from the discovery cohort

Figure 3: The performance and feature selection for the final tumour grade 
prediction model developed from the discovery dataset
(A) ROC of the three feature combinations tested with radiomics (blue), radiomics 
plus RVF (red), and radiomics plus ARVF (green). Radiomics had the highest area 
under the ROC. (B) The selection frequency of features across cross-validation splits 
for the radiomics feature set, as a function of the threshold used in the hierarchical 
correlation feature reduction step (0·93). ARVF=approximate radiomic volume 
fraction. ROC=receiver operating characteristic. RVF=radiomic volume fraction.
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0·923, a specificity of 0·829, a positive predictive value of 
0·480, and a negative predictive value of 0·984 (calculated 
at the optimal Youden index threshold). The Hosmer–
Lemeshow statistic for calibration was 5·34 (p=0·72), 
indicating a non-significant test of poor calibration. The 
corresponding highest performing model for the 
prediction of grade, the radiomics model, was selected for 
validation. This yielded an AUROC of 0·882 (p<0·0001; 
figure 4B; appendix p 10). Other measures of discrim-
ination for the chosen model in this cohort were an 
accuracy of 0·823, a sensitivity of 0·800, a specificity of 
0·848, a positive predictive value of 0·865, and a negative 
predictive value of 0·778. The Hosmer–Lemeshow 
statistic for calibration was 63·5 (p<0·0001), indicating a 
significant test of poor calibration. It was not possible to 
validate the radiomics plus ARVF model for 
discriminating low or intermediate grade tumours versus 
high grade tumours because of the small number of 
grade 3 tumours in STRASS.

Discussion 
Our radiomics models successfully predicted histo-
pathological type and grade; they differentiated 
liposarcoma from leiomyosarcoma with an AUROC of 
0·928 and predicted grade with an AUROC of 0·882 on 
validation. To the best of our knowledge, this is the 
largest retroperitoneal sarcoma cohort analysed by 
radiomics and the only one validated in an independent 
cohort. Furthermore, we have undertaken rigorous cross-
validation and used sub-segmentation and feature 
selection techniques to enrich for interpretable features.

Arguably, liposarcoma can display distinguishable 
semantic radiographic features if abnormal fat is present, 
indicating a well differentiated lipomatous component. 
However, in the absence of abnormal fat, liposarcoma 
and leiomyosarcoma can be indiscernible when using 
conventional CT; therefore, tissue sampling is needed for 
diagnosis and grading. Expert centres have concluded 
that no radiological criteria are sufficient to anticipate a 
specific diagnosis of a retroperitoneal sarcoma except 
well differentiated liposarcoma,17 and in this study, the 
reporting radiologist was not able to offer a diagnosis in 
35% of patients and was only able to correctly diagnose 
73% of liposarcoma and 43% of leiomyosarcoma. Our 
model accuracy of 0·843 (ie, 84·3%) has notable potential 
as a tool to support differential diagnosis. Because of 
intratumoural heterogeneity, histopathological grade can 
vary greatly between tumour regions, resulting in a risk 
of under-grading and making suboptimal therapeutic 
decisions. In leiomyosarcoma, under-grading by core 
biopsy can be up to 68%.3 In this study, 56% of tumours 
were incorrectly graded on biopsy compared with the 
surgical specimen. The accuracy of this model of 0·823 
(ie, 82·3%) for predicting grade is therefore also 
promising. Radiomics offers a consistent method not 
influenced by radiologist interpretation, and one that 
might be used by non-expert users. Few radiomics 

studies have focused on retroperitoneal sarcoma or CT-
derived radiomics in soft tissue sarcomas. Given the 
central role of tumour grading in patient risk stratification 
and treatment planning, previous radiomic studies in 
sarcoma have sought to evaluate the predictive capability 
of radiomics models for grade; however, they have 
generally used MRI.18–24 The primary drawback of most of 
these studies is the absence of independent external 
validation and under-representation of retroperitoneal 
sarcoma, possibly because MRI is not routine practice for 
retroperitoneal sarcomas. Novel to the existing literature, 
our study addresses the absence of a radiomics model 
specific to retroperitoneal sarcoma for the prediction of 
tumour grade, and has good and consistent performance 
in an independent cohort with an AUROC of 0·882 on 
validation and accuracy of 0·823. In addition, subset 
analyses from the STRASS trial have suggested a possible 
role for neoadjuvant radiotherapy in low grade 
liposarcoma tumours.4 Our study focuses on distin-
guishing low from intermediate and high-grade tumours, 
and the identification of low-grade liposarcoma might 
help to inform presurgical treatment planning. Further-
more, to our knowledge, for the first time, our model 
enables the classification of histological type in 

Figure 4: ROCs for tumour type and tumour grade following independent 
external validation
In the graphs, the blue line shows the validation plus ARVF model, and the red 
line shows radiomics alone model. ARVF=approximate radiomic volume 
fraction. ROC=receiver operating characteristic.
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leiomyosarcoma and liposarcoma, which can frequently 
be challenging to discern with conventional imaging. 
This finding could be a useful aide to tissue sampling 
with unclear histological type morphology and negative 
ancillary tests, and to inform immediate care when tissue 
sampling is not possible or successful.

Most patients in the discovery cohort had baseline CT 
scans acquired in their local centres and protocols were 
therefore not standardised. It is important that radiomics 
models are designed to be applicable to the real-world 
setting that includes heterogeneous data. Our model has 
excellent performance using heterogeneous and real-
world data. Our validation cohort was also compiled from 
different centres, and the similar performance observed 
in the discovery and validation datasets corroborates the 
generalisability of the radiomic feature sets selected by 
our models. It is also worth noting that management 
(surgery alone) was almost uniform in the discovery 
cohort despite variability in tumour grade between 
patients. This finding reflects the retrospective nature of 
the data collection, which was during a period when 
neoadjuvant therapy was not often an option for patients 
with retroperitoneal sarcoma.

The current consensus is that, although the selection 
of stable validated features is crucial for the development 
of a clinically useable radiomics model, inter pretability 
enables the end user to maximise its potential.25 We 
applied a recently developed pipeline designed to 
improve model interpretability compared with standard 
radiomics pipelines.16 Furthermore, our novel sub-
segmentation method attempted to address the often 
heterogeneous radiological phenotypes of retroperitoneal 
sarcoma seen on CT and our method using fixed 
thresholds for sub-region segmentation makes it more 
likely to be reproducible.26

Our model for predicting histology includes ARVF and 
texture features, which suggests that none of the shape 
and first-order features are useful in predicting histology. 
The ARVF features are high Hounsfield unit and very 
high Hounsfield unit fractions (calcification). Notably, 
the high Hounsfield unit fraction relationship with 
leiomyosarcoma and very high Hounsfield unit 
(calcification) relationship with liposarcoma mirrors 
what is currently accepted as the morphological 
phenotypes of these histologies. The final model for the 
prediction of grade is based on a radiomics-only feature 
set, and one that comprises first-order and textural 
features. This finding suggests differences in grade are 
attributable to lesion characteristics captured by the pixel 
Hounsfield unit values or image texture, or both, and, 
importantly, characteristics that are harder to distinguish 
via radiographic features (eg, shape). The 90Percentile 
feature relates to the brightness of the brightest 10% of 
pixels and higher tumour grades are associated with 
higher values. Notably, a key feature in the model for 
predicting histology is the ARVF high Hounsfield unit 
volume fraction, and thus predictions of both tumour 

type and grade are dominated by the brightest pixels in 
the tumour. Finally, our radiomics model shows that 
using CT images, distinct tumour features can still be 
derived to aid the prediction of histology and grade. Our 
choice of CT increases the model applicability with no 
additional imaging required.

We acknowledge the limitations of this study. Its 
retrospective nature leaves it susceptible to potential 
bias. Given the rarity of soft tissue sarcomas, retrospective 
cohorts make studies such as ours possible, where 
valuable findings can be consolidated and validated 
through prospective studies. Limited by the low incidence 
of other retroperitoneal histologies, we only included 
liposarcoma and leiomyosarcoma and acknowledge that 
our model is not generalisable to all retroperitoneal 
sarcomas. There is an imbalance between the number of 
patients with leiomyosarcoma and liposarcoma within 
our discovery cohort, which is reflective of the real-world 
differences in the incidence of these histologies. 
However, our assessment was that this imbalance was 
insufficient to require additional resampling or weighting 
techniques, which are generally recommended for an 
imbalance greater than 1:10. In addition, because of the 
small numbers of patients with grade 3 tumours in the 
validation dataset, we could not validate our model for 
low or intermediate versus high grade tumours. 
Clinically, these tumours were more likely to represent 
dedifferentiated liposarcoma and leiomyosarcoma, 
which are substantially harder to distinguish with 
conventional imaging and carry a higher risk of under-
grading by biopsy. This can be explored prospectively to 
further improve our model and better inform clinical 
practice. Furthermore, the small dataset limits the 
number of extractable radiomic features. However, this 
study surpasses most radiomic studies within this 
tumour type and anatomical site. The intensive internal 
cross-validation performed further improves confidence 
in the final feature sets selected and their stability. 
Because of the limited dataset, harmonisation techniques 
could not be applied. This risks extra noise on some 
affected radiomic features, resulting in a lower predictive 
power and rejection by the model pipeline.27 Correct 
harmonisation might have improved their predictive 
capabilities and therefore we accept the risk of rejecting 
potentially useful features. The low calibration statistic 
values for the model predicting grade suggest that a 
larger dataset would be necessary to obtain a well 
calibrated model.

To conclude, our study provides a foundation for the 
further development and prospective validation of these 
models. These models could be further developed to 
address the intricate complexities of intermediate and 
higher grade retroperitoneal sarcomas and for exploring 
the value of combining other radiological features or 
clinical data to the predictive performance of the models. 
The availability of high-quality STRASS trial data is an 
opportunity to explore a prognostic model for clinical 



Articles

www.thelancet.com/oncology   Vol 24   November 2023 1285

outcome and this is in development. Finally, by 
developing this model further, it could harmonise entry 
into future prospective clinical trials and standardise 
patient staging and prognostication.
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