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Abstract: T2-weighted magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) are
essential components of cervical cancer diagnosis. However, combining these channels for the training of
deep learning models is challenging due to image misalignment. Here, we propose a novel multi-head
framework that uses dilated convolutions and shared residual connections for the separate encoding of
multiparametric MRI images. We employ a residual U-Net model as a baseline, and perform a series of
architectural experiments to evaluate the tumor segmentation performance based on multiparametric
input channels and different feature encoding configurations. All experiments were performed on a
cohort of 207 patients with locally advanced cervical cancer. Our proposed multi-head model using
separate dilated encoding for T2W MRI and combined b1000 DWI and apparent diffusion coefficient
(ADC) maps achieved the best median Dice similarity coefficient (DSC) score, 0.823 (confidence interval
(CI), 0.595–0.797), outperforming the conventional multi-channel model, DSC 0.788 (95% CI, 0.568–0.776),
although the difference was not statistically significant (p > 0.05). We investigated channel sensitivity using
3D GRAD-CAM and channel dropout, and highlighted the critical importance of T2W and ADC channels
for accurate tumor segmentation. However, our results showed that b1000 DWI had a minor impact on
the overall segmentation performance. We demonstrated that the use of separate dilated feature extractors
and independent contextual learning improved the model’s ability to reduce the boundary effects and
distortion of DWI, leading to improved segmentation performance. Our findings could have significant
implications for the development of robust and generalizable models that can extend to other multi-modal
segmentation applications.

Keywords: tumor segmentation; multiparametric MRI; cervical cancer; deep learning; dilated
convolution; radiology; radiation oncology

1. Introduction

Cervical cancer is the fourth most common cancer in women worldwide [1]. In the
epidemiological data of 2020, a total of 604,127 cervical cancer diagnoses were reported
globally [2]. Despite the evolution in diagnostic and therapeutic modalities, projections for
2023 indicate a persistent challenge, with an anticipated 13,960 cases of invasive cervical
cancer in the United States alone. This forecast also predicts a consequent 4310 mortality
events [3]. Such statistics emphasize the imperative of advancements in precise diagnostic
measures, including state-of-the-art imaging and segmentation methodologies.
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Multiparametric magnetic resonance imaging (mpMRI) is a crucial tool in the diagnosis
and management of gynecological malignancies, including cervical cancer. It provides
detailed anatomical and functional information, which is applied for disease staging,
treatment planning, response monitoring, and surveillance for disease recurrence [4–6].
An important aspect of many mpMRI protocols is diffusion-weighted imaging (DWI),
which enhances the contrast and visualization of cellular tumors. DWI is sensitive to the
rate of diffusion of water molecules in vivo, and offers insights into the intricate tissue
microenvironment. Specifically, it has been shown to relate to cellularity, i.e., the density of
cells within a tumor, and is also sensitive to microstructural alterations, such as necrosis
and changes in the extracellular matrix, which can influence water diffusion patterns [7].
The rate of diffusion can be quantified at each spatial location through the estimation of
maps of the apparent diffusion coefficient (ADC). ADC measurements offer the potential to
used as a surrogate biomarker of tumor grade [8,9], and have shown promising results in
identifying early treatment responses, making them desirable for monitoring therapeutic
outcomes in cervical cancer [10,11]. In conventional anatomical T2-weighted (T2W) MRI,
primary and metastatic tumors exhibit intermediate to high signal intensities. This is used
to identify cervical abnormalities, as well as for disease staging and directing MRI-guided
interventions [12,13].

Image segmentation in medical imaging involves the demarcation of regions of interest
(ROIs) into semantically and clinically meaningful areas. Automating disease detection
and delineation in medical images is a critical task, primarily because it aids in extracting
valuable biomarkers from images, which enhances clinical decision-making. This process
is currently impeded by the requirement for extensive annotated datasets, leading to a
high dependency on clinicians and potential inconsistencies due to human contouring
variations. Automated tumor segmentation on mpMRI therefore holds great significance,
not only for reducing the burden on clinicians but also for its potential in improving
accuracy and consistency. Furthermore, in contexts such as treatment planning, where
manual delineation may not be feasible due to time constraints, these automated methods
become particularly indispensable. Therefore, the development of fully automatic tumor
segmentation techniques is a crucial step towards achieving more efficient and reliable
clinical processes. Beyond operational benefits, this could also translate to profound patient-
centric advantages, including shorter and more comfortable treatments, as well as more
accurate and consistent treatment delivery. Such advancements could potentially mitigate
collateral toxicity and optimize treatment outcomes.

Among these segmentation techniques, U-Net [14] stands out as a prevalent archi-
tecture for image segmentation. Numerous derivatives of U-Net have been developed
for various medical segmentation tasks, with a particular emphasis on neuroimaging.
These include the multi-scale densely connected U-Net (MDU-Net) [15], U-Net with in-
terconnected skip connection pathways (U-Net++) [16], U-Net with residual extended
ski connection and wide context modules (BU-Net) [17], U-Net with a feature enhancer
block (BrainSeg-Net) [18], multi-scale recurrent residual U-Net with dense skip connec-
tions (R2U++) [19], the redesigned U-Net with full-Scale feature fusion and ghost modules
(half-U-Net) [20], U-Net augmented with multi-scale feature fusion (SegR-Net) [21], U-
shaped architecture with residual spatial pyramid pooling modules and attention gates
(RAAGR2-Net) [22], and the pyramid dual-decoder attention U-Net (PDAtt-UNet) [23].

In parallel, architectures based on the vision transformer model [24] have shown
promise for the accurate segmentation of medical images. For instance, Wang et al. [25]
developed the mixed transformer U-Net for multi-organ segmentation in computed to-
mography (CT) images. Furthermore, Huang et al. [26] proposed a transformer-based
generative adversarial network for multimodal brain tumor segmentation in MRI.

Despite these advancements, a significant challenge persists in accurately segmenting
small-scale tumors in mpMRI images, particularly when there is spatial misalignment
between the input channels of the models. This issue is especially prominent in pelvic
images, where internal tissues are prone to spatial deformation during scanning sessions.
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Such deformations could impede the segmentation performance of networks that rely on
conventional multi-channel inputs.

While current segmentation architectures demonstrate promising versatility for com-
plex medical segmentation applications, there remains a scarcity of research on cancer
tumor segmentation utilizing multiparametric MRI, especially in the context of cervical
cancer. The segmentation of cervical cancer presents several challenges. These include
the complex anatomy of the pelvis with closely situated organs, the appearance of inflam-
matory processes that can mimic or obscure tumor regions, and the potential presence of
metastases that might be intermingled with the primary tumor or situated nearby. More-
over, the inherent variability of tumor appearances, challenges arising from low image
resolutions or noisy DWI images, and the intricate distinctions between the primary cervical
mass and adjacent lymph nodes further complicate the segmentation process.

Several studies have explored the DL-based segmentation of cervical cancer in MRI [27–31].
Specifically, some studies have combined semantic knowledge between T2W MRI and
DWI/ADC in this context. Among related studies, Lin et al. [32] developed a U-Net model
for segmenting cervical cancer in DWI and ADC images, and found that multi-channel
input (b0, b1000, and ADC) produced the best segmentation performance. However, this
study focused on two-dimensional (2D) images and did not incorporate multimodal MRI
(e.g., MRI images derived from different sequences). Kano et al. [33] combined 2D and
three-dimensional (3D) U-Net models for cervical tumor segmentation on DWI images
using an ensembling approach. Yoganathan et al. [34] segmented primary tumors along
with organs-at-risk (OARs) on T2W MRI, reporting that integrating segmentations from
2.5D training in axial, coronal, and sagittal planes improved segmentation performance
compared with previous 2D models. However, this study was limited to 39 patients and
single-channel inputs. Wang et al. [29] proposed a 3D CNN model for cervical tumor seg-
mentation on multimodal MRI, while Hodneland et al. [35] utilized a U-Net with residual
connections, employing T2W MRI, b1000 DWI, and ADC as input channels. However,
none of these studies examined the impact of spatial mismatch between multimodal MRI
inputs, resulting from distortion in echo-planar imaging (EPI) and soft-tissue deformations
between scans [36,37], on cervical tumor segmentation outcome.

The aim of this study was to develop a novel 3D framework based on the U-Net
architecture that included multi-head dilated residual encoding blocks for combined fine-
grained and contextual feature aggregation and training on anisotropic sub-volumes of
images, enhancing the segmentation of locally advanced cervical tumors on multiparamet-
ric MRI. To our best knowledge, no previous studies have incorporated and investigated
this strategy for the automated segmentation of pelvic malignancies.

2. Materials and Methods
2.1. Patient Populations and Imaging Parameters

In this study, we utilized a retrospective cohort of 207 patients diagnosed with cervical
cancer. The histopathology types of enrolled patients included squamous cell, adenosqua-
mous carcinomas (either non-keratinizing or keratinizing), and all were HPV-associated,
according to the World Health Organization (WHO) classification of female genital tumors
introduced in the 4th edition (2014) [38]. The categorization of locally advanced cervical
cancer was based on the 2018 guidelines set by the International Federation of Gynaecology
and Obstetrics (FIGO) [39]. These patients underwent pelvic T2W MRI, and DWI on a
3T MAGNETOM TrioTim MRI scanner (Siemens Healthcare, Erlangen, Germany) was
selected. The ground-truth tumor contours were defined by a clinician with 3 years of
relevant experience on T2W MRI images, with the DWI data available for all patients. The
acquisition parameters for this dataset are shown in Table 1. The ADC maps were calculated
from DWI images with varying diffusion-weighting magnitude (b-value) (Equation (1)),
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using a mono-exponential fit for two b-values (b0, b1000) (Equation (2)) and least-square
exponential fit for multiple b-values (b200, b600, b1000) (Equation (3)).

Sbi
= Sb0 · e(−bi D) (1)

D = − 1
bi

ln
(

Sbi

Sb0

)
(2)

D = −
N ∑N

i=1 bi ln(Sbi
)− ∑N

i=1 bi ∑N
i=1 ln(Sbi

)

N ∑N
i=1 b2

i − (∑N
i=1 bi)2

(3)

where bi is the b-value, Sb0 represents the signal intensity with no diffusion weighting
(b = 0), Sbi

is the signal intensity at bi, N is the number of b-values and D denotes the
ADC value.

Table 1. Imaging parameters of the cohort used in this study (n = 207). The values are presented as the
range from minimum to maximum values, or are variables using different protocols within the dataset.

Parameter T2W MRI DWI

Manufacturer Name Siemens Healthineers Siemens Healthineers
Scanner Model MAGNETOM Trio MAGNETOM Trio
Magnetic Field Strength (T) 3 3
Sequence Turbo Spin Echo (TSE) Echo-Planar Imaging (EPI)
Slice Orientation Axial Axial
Echo Time (ms) 80–101 60–80
Repetition Time (ms) 3600–8060 3300–10,844
Acquired Matrix Size (read) 224–320 128–172
Reconstructed Matrix Size (read) 256–320 240–248
Reconstructed Pixel Size (mm2) 0.5 × 0.5–0.8 × 0.8 1.2 × 1.2–1.4 × 1.4
Slice Thickness (mm) 4.0–5.0 4.0–5.0
Flip Angle (°) 120–160 180
Phase Encoding Direction Anterior–Posterior or Left–Right Anterior–Posterior
Receiver Bandwidth (Hz/pixel) 190–200 1940–2441
b-values (s/mm2) - [0,1000] or [200,600,1000]

2.2. Network Topology and Architectural Experiments

In this study, we employed a residual U-Net model, a modified version of the con-
ventional U-Net [14], as the benchmark for our segmentation framework. The model
architecture was based on an encoder–decoder structure with symmetrical skip connections
at each level (Figure 1). Each encoding level consisted of two residual blocks with 3D
convolutional layers followed by instance normalization and a parametric ReLU activation
layer (PReLU). Each upsampling block included two residual blocks with 3D strided trans-
posed convolutions and skip connection concatenation layers. The architecture included
four downsampling steps with kernel filters of 32, 64, 128, and 256 and a feature map depth
of 512 in the bottleneck. Downsampling operation was performed in the first convolutional
layer in the block (stride = 2). The model was trained on (i) T2W MRI-only; (ii) T2W and
ADC; and (iii) T2W, ADC, and b1000 DWI training data, with input channels set to 1, 2, and
3, respectively.

To address the boundary effects of DWI in multi-channel training, as the result of
distortions from EPI compared with morphological imaging, a series of architectural
experiments were performed. In the first experiment, we replaced the first encoder block
in the baseline multi-channel model with three encoding heads. The first head utilized a
non-dilated 3D convolutional operation on T2W MRI inputs only. The other two heads
included 3D convolution operations with dilations of 2 and 4 respectively, accepting three
input channels: T2W , b1000 DWI, and ADC. These heads were connected by residual
weight sharing and feature activation summation nodes (multi-head model 1).
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Figure 1. The network topology and the multi-head segmentation training experiments. The opera-
tional blocks incorporate residual connections to facilitate the flow of information between different
layers. The multi-head models use various encoding and weight-sharing configurations for T2W
MRI, b1000 DWI and ADC maps using multiple heads with dilated convolution and connective
residual operations.
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In the second multi-head model, we employed the separate encoding of T2W MRI,
and combined b1000 DWI and ADC images while still maintaining weight sharing. The
dilated heads in this model only included the b1000 DWI and ADC channels. This was
performed to investigate the impact of these channels on the overall contextual learning
(multi-head model 2).

Finally, in the third experiment, we employed a multi-head encoding strategy with
no weight sharing between the T2W and b1000 DWI/ADC heads. Similar to the approach
used for the second model, we applied dilated convolutions exclusively to the b1000 DWI
and ADC images to facilitate independent contextual learning and reduce boundary-based
attention. However, this architecture included an additional concatenation layer followed
by a convolutional layer for dimensionality reduction and feature summation with the T2W
head (multi-head model 3).

2.3. Image Pre-Processing and Implementation Details

Prior to training, all mpMRI images were resampled to an in-plane resolution of
0.6 × 0.6 mm2, which was the most common T2W MRI resolution in the dataset (approx-
imately 85%), and a slice thickness of 4 mm. Bilinear interpolation was applied for the
resampling of T2W and b1000 DWI images, as it allows for smooth intensity transitions,
preserving the details within the images. On the other hand, ADC images and contours
were resampled using the nearest-neighbor interpolation method. This method was se-
lected due to its ability to retain the original discrete values of the images, which is crucial
for ADC maps that are quantitative in nature, and for contours as they represent categorical
labels or boundaries in segmentation tasks. Each channel was independently normalized
to a mean of zero and unit variance. Finally, the dataset was randomly split into 157, 25,
and 25 patients for training, validation, and testing, respectively.

During training, sub-volumes of size 256 × 256 × 16 voxels were extracted stochas-
tically from the training data, ensuring that each patch contained at least one annotated
tumor slice. Random data augmentation operations, such as intensity shifting, scaling, and
cropping, were applied to improve network generalizability. The models were trained for
100,000 iterations using the Dice loss function, which outperformed the combined Dice and
cross-entropy and Tversky [40] losses during the initial experiments on input channels. The
Adam optimizer with an initial learning rate of 1 × 10−4 and weight decay of 1 × 10−5 was
used, and a cosine annealing learning rate scheduler was employed after each epoch. Vali-
dation was performed after each epoch, based on the Dice scores of whole image volumes,
and the best-performing weights were saved. Volumetric segmentations were generated
using a sliding window algorithm with a 75% overlap between adjacent patches. The mod-
els were evaluated using the Dice similarity coefficient (DSC), 95th percentile Hausdorff
distance (HD), mean surface distance (MSD), and percentage relative volume similarity
metrics [41]. PyTorch and Monai [42] DL libraries were used for all implementations.

2.4. Channel Sensitivity Analysis and Visualization

To assess the significance of individual channels in our models, we conducted a
channel sensitivity analysis using sequential channel dropout. By setting each channel
to zero one at a time, we compared the segmentation results obtained from the baseline
multi-channel and proposed multi-head models to those achieved with no channel dropout.
We employed the same quantitative metrics utilized in our previous analyses to perform
a comprehensive comparison between the proposed architectures. To delve deeper into
the channel-wise significance within our models, we incorporated a 3D adaptation of
Gradient-weighted Class Activation Mapping (GRAD-CAM) [43]. GRAD-CAM serves as
a method to visually interpret the relevance of particular regions within an input image
in relation to the final prediction of a DL model. It does so by leveraging the gradient
information flowing into the last convolutional layer of the model to generate a coarse
localization map, thereby highlighting regions of interest.
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In the context of our research, we tailored this technique to cater to the 3D data modal-
ity. The produced saliency maps from the penultimate layers of the investigated models
explicitly emphasized the areas of highest importance for the segmentation tasks at hand.
Specifically, when this technique was applied to the center-cropped patches sourced from
the test image volumes, the resulting visualizations not only detailed the salient features
but also provided insight into the channel-wise contributions. Such intricate visual insights
are paramount in decoding the rationale behind the model’s predictions and further fine-
tuning its segmentation capabilities.

3. Results

The baseline multi-channel model was evaluated on various input channels and loss
functions. Multi-channel input trained with Dice loss achieved the best mean segmentation
performance in terms of DSC across all test cases, with consistent results across input
channels. The average DSC values for multi-channel input (T2W, b1000 DWI, ADC) using
Dice, combined Dice and cross-entropy, and Tversky losses were 0.672, 0.661, and 0.664,
respectively (Figure 2).

Figure 2. Heatmaps of mean (a) Dice similarity coefficient (DSC), (b) 95th percentile Hausdorff
distance (HD), (c) mean surface distance (MSD), and (d) relative percentage volume difference for the
multi-channel residual U-Net model trained across different input images and loss functions from
the test data. The white color within the volume difference colourmap indicates the optimal metrics.
The model trained on all T2W, b1000 DWI, and ADC channels, and with Dice loss, achieved the best
overall segmentation performance across all experiments.
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The comparison of segmentations obtained from the baseline multi-channel and
the proposed multi-head models revealed that multi-head model 3 exhibited superior
performance across the quantitative metrics analyzed (Figure 3a–d). Specifically, the median
DSC values for the multi-channel model, multi-head model 1, multi-head model 2, and
multi-head model 3 were 0.788 (confidence interval (CI), 0.568–0.776), 0.805 (CI, 0.538–0.769),
0.796 (CI, 0.537–0.776), and 0.823 (CI, 0.595–0.797), respectively (Figure 3a). However, the
differences in performance between the proposed multi-head models were not significantly
different from the multi-channel model (p > 0.05). On average, all models underestimated
tumor volume compared with the contours delineated by the clinician, with median relative
percentage volume differences for each model of −14.4%, −18.9%, −9.7%, and −12.0%,
respectively (Figure 3d). Multi-head model 3 demonstrated the best quantitative scores
compared with other experimental architectures; therefore, the segmentation contours
predicted by this model were compared with those obtained from the baseline multi-
channel model (Figure 4).

Figure 3. Comparison of segmentation performance based on (a) Dice similarity coefficient (DSC),
(b) 95th percentile Hausdorff distance (HD), (c) mean surface distance (MSD), and (d) relative
percentage volume difference between the baseline multi-channel model and three variations of the
dilated multi-head model. Overall, the multi-head model with dilated convolutions and separate
b1000 DWI/ADC feature aggregation (multi-head model 3) achieved the best performance among all
models. IQR: interquartile range.
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Figure 4. Comparative evaluation of the baseline multi-channel and proposed multi-head models
for 6 example test cases, arranged in descending order of tumor size. The yellow arrows indicate
regions where distortion in DWI and subjectivity in tumor location made contour propagation from
T2W images challenging. Conversely, the white arrows highlight regions where the proposed model
performed better by capturing boundaries and contextual information compared to the baseline
multi-channel model. The red arrows highlight tumor regions within the ground-truth contours that
did not exhibit strong impeded diffusion, thus remaining undetected by the DL models.
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A channel sensitivity analysis was performed to compare the performance metrics
between the multi-channel and our proposed multi-head model. One finding was the
significant dependence of the multi-head model on the ADC channel. Specifically, when
the ADC channel was excluded from the input, the tumor segmentation performance of
the multi-head model deteriorated markedly, as evidenced in Figure 5. The saliency maps
generated from both models revealed that b1000 DWI images had a relatively minor impact
on the overall tumor segmentation performance for larger tumor volumes. In contrast,
the T2W and ADC images were more crucial, as visualized in Figure 6, test cases 1 and 2.
However, for smaller and more challenging tumor masses, the absence of ADC channels
had a more pronounced adverse effect on the final outcome (see Figure 6, test cases 3–5).

Figure 5. Comparison of the sensitivity of the multi-channel and proposed multi-head models to
different input channels based on quantitative metrics, including the (a) Dice similarity coefficient
(DSC), (b) 95th percentile Hausdorff distance (HD), (c) mean surface distance (MSD), and (d) relative
percentage volume difference. Our channel dropout analysis revealed a strong dependence of the
proposed multi-head model on the ADC channel, indicating its importance in achieving accurate
segmentation performance. IQR: interquartile range.
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Figure 6. The normalized 3D GRAD-CAM saliency maps generated from the penultimate layer of
the models, highlighting the most relevant regions for segmentation under different channel dropout
conditions at test time. To improve visualization, the b1000 DWI and ADC images for smaller tumors
were scaled.
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4. Discussion

DWI is a critical functional imaging technique for the detection and localization of
tumors. This is particularly evident in ADC maps, where regions depicting impeded
water molecule diffusion are indicative of increased cell density, often signifying a more
aggressive disease [44]. However, using DWI and ADC maps in conjunction with T2W MRI
sequences presents several challenges, such as voxel misalignment due to distortion and
soft-tissue deformations between scans, variations in tumor delineations between the two
modalities and the absence of standardized protocols for mpMRI. In this study, we proposed
a novel multi-head framework that utilizes both b1000 DWI (including ADC) and T2W MRI
for cervical cancer segmentation—a process well-suited to potential biomarker extraction.
Our framework includes separate encoding heads that extract contextual information about
tumors using dilated (or atrous) convolutions and shared residual connections. We have
demonstrated that our technique provides a more robust and boundary-aware segmenta-
tion of cervical tumors when compared with the baseline multi-channel architecture that is
commonly used in previous studies [32,35]. Our findings using the multi-channel training
approach are comparable to previous reports on the segmentation of cervical tumors in mul-
tiparametric MRI [29,32,35]. However, it is challenging to make direct comparisons of our
results due to the lack of public databases and resources for cervical cancer segmentation
in MRI [45] and the use of different datasets.

Dilated convolutions are a crucial component of several successful segmentation
architectures, including DeepLabv3+ [46], DeepLab [47], residual enhanced U-Net and
atrous convolution (AtResU-Net) [48], and 3D deeply supervised fully convolutional
network with concatenated atrous convolution (3D DSA-FCN) [49]. While most of these
techniques utilize dilated convolutions throughout their architectures’ encoding steps, we
propose a multi-head framework that uses these operations for separate contextual and
representational learning in b1000 DWI and ADC images for only the first block of the
encoder. This approach ensures that the training parameters are not increased drastically
compared with baseline multi-channel architectures, and the model is easier to interpret
with conventional methods for future explainability studies. Moreover, lighter networks
are better suited to online MR-guided treatments, where segmentation and planning are
performed live on the scan taken on the day before radiation treatment [50], and speed is of
the essence. In this study, we trained our models using anisotropic sub-volumes to maintain
a greater focus on the plane of acquisition (axial) for 2D MRI. Our presented methodology,
while primarily focused on its current application, possesses a versatile architecture that
can be adapted and extrapolated for broader utilities. For example, it can be extended to
3D MRI scans, which are more commonly used for radiation therapy.

Channel sensitivity and saliency mapping of our experimental model indicated that
our algorithm was more sensitive to ADC maps, which potentially makes it more robust
to changes in acquisition protocol in MRI scanners. This approach could also serve as a
strategy for more generalizable and cross-disease detection models [51]. However, this
dependence on b1000 DWI and ADC images, as demonstrated in this study, may result
in underestimation of the predicted tumor volume for malignancies with heterogeneous
tumor mass diffusion. Although our findings indicate a stronger dependence on ADC input
channels, further investigations are required for a more comprehensive understanding of
tumor segmentation outcome using MRI and DWI images from multiple centres. More-
over, the subjectivity associated with inter-operator variability presents another drawback,
with more reliable segmentations only attainable through the use of consensus contours.
The decision to include specific areas within the ground-truth contour of the tumor is a
discretionary choice made by the clinical expert annotating the images—a decision that
relies heavily on their professional training and experience. It is important to note that
this limitation may bias the findings from this study. Hence, future studies should aim to
employ consensus ground-truth contours and evaluate the segmentation outcome through
a number of expert human reader assessments to ensure the accuracy and reliability of the
results for clinical decision-making.



Diagnostics 2023, 13, 3381 13 of 15

5. Conclusions

Our proposed multi-head framework that combines b1000 DWI, ADC, and T2W MRI
for cervical cancer segmentation has demonstrated improved accuracy and robustness
compared to conventional multi-channel architectures. The use of dilated convolutions in
only the first block of the encoder improves contextual learning with no significant parame-
ter increase compared with conventional U-Net models. However, both the dependence
on b1000 DWI and ADC channels and inter-operator variability are potential limitations
that need to be addressed in future studies. Potential solutions may include architectural
improvements or the use of consensus ground-truth contours and expert human reader
assessments. Overall, our approach could offer a more accurate solution for monitoring
disease progression and treatment response. This has the potential to enhance clinical
decision-making in the diagnosis and treatment of patients with cervical cancer, as well as
other pelvic malignancies.
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