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Highlights
Cancer cells change phenotype
through cancer evolution; some phe-
notype changes are caused by un-
derlying genetic mutations, but many
are due to non-genetic mechanisms.

We suggest separating non-genetic
phenotype changes into two distinct
mechanisms: changes induced by mi-
croenvironmental stimuli (that we term
‘phenotypic plasticity’) and changes in-
duced by stochastic cell-intrinsic effects
Non-genetic alterations can produce changes in a cell’s phenotype. In cancer,
these phenomena can influence a cell’s fitness by conferring access to heritable,
beneficial phenotypes. Herein, we argue that current discussions of ‘phenotypic
plasticity’ in cancer evolution ignore a salient feature of the original definition:
namely, that it occurs in response to an environmental change. We suggest
‘phenotypic noise’ be used to distinguish non-genetic changes in phenotype
that occur independently from the environment. We discuss the conceptual
andmethodological techniques used to identify these phenomena during cancer
evolution. We propose that the distinction will guide efforts to define mecha-
nisms of phenotype change, accelerate translational work to manipulate pheno-
types through treatment, and, ultimately, improve patient outcomes.
(that we term ‘phenotypic noise’).

We discuss how lineage tracing
methods – either experimental or
those that make use of sporadic muta-
tions to mark lineages – can be used
to distinguish between phenotypic plas-
ticity and noise.

Distinguishing between phenotypic plas-
ticity and noise guides mechanistic work
to determine the molecular causes of
phenotype change, and will ultimately
accelerate efforts to control or prevent
phenotype changes that enable cancer
cells to resist therapies.
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Defining phenotypic plasticity in cancer evolution
Tumour-cell phenotypes (see Glossary) are the features that clinical interventions aim to repress;
these include unregulated growth or immune escape. A major challenge in cancer research has
been to understand how these phenotypes arise and behave.

Advancing genomic technologies have enabled us to study the genetic alterations associated
with malignant phenotypes. Increased frequency of genetic variants within tumours [1] or
their enrichment across tumours [2] identifies cancer ‘driver mutations’ that are under positive
selection.

However, a cell’s phenotype need not be derived exclusively from genetic changes. Indeed,
specialised cell types within the human body all have the same genome because phenotype
specification during development is a plastic process, not an evolutionary one. Burgeoning
omics technologies now enable us to probe the full spectrum of phenotypic control, including
differences in nucleotide sequences, epigenetic modifications of DNA and DNA 3D structure,
and transcription regulatory machinery, alongside more proximal readouts of cell phenotypes in
the form of RNA transcripts or high-throughput imaging. Post-translational regulation can also
be studied at scale via techniques such as (phospho)proteomics.

In cancer, it is now clear that some phenotypes of clinical consequence can arise without under-
lying causative change in DNA sequences [3]. Molecular mechanisms include: stochastic,
transient changes in transcript levels, buffering and feedback of pathways via gene regulatory
networks, and epigenetic modifications of DNA and histones. The resulting phenotypes may
differ in their heritability: the non-genetic mechanism responsible for a phenotypic difference
can influence the probability of inheritance by offspring cells.
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Glossary
Cell state: a group of repeatedly
observed cell behaviours that are often
discussed with reference to epigenetically
mediated states that emerge during
healthy development.
Epigenetic: molecular differences in a
cell that can influence processes such
as gene expression that are not DNA
sequence changes, but are nonetheless
heritable. Examples include DNA
methylation and chromatin structure.
Heritability: the propensity of offspring
(cells) to inherit traits from their parent
(cell). Of note, this relaxed definition devi-
ates from that adopted in quantitative
genetics but makes room for epigenetic
inheritence.
Phenotype: a collective term to refer to
a single or multiple features of a cell (or
related cells – a clone), including the
transcriptome, proteome,morphological
size, shape, and organisation.
Phenotypic noise: a difference in
phenotype (either within a cell over time,
or between contemporaneous cells) that
occurs despite a shared genotype and
independently of any environmental
change.
Phenotypic plasticity: a difference in
phenotype (either within a cell over time,
or between contemporaneous cells)
that occurs despite a shared genotype
but as the direct result of an/some
environmental change(s).
Phylogenetic signal: the tendency for
related species to resemble each other,
more than they resemble species drawn
at random from a phylogenetic tree. Can
be used as a tool to assess the correlation
between genotype and phenotype data.
Waddington landscape: a conceptual
framework describing how the epige-
nome state constrains possible pheno-
type changes.
In the field of cancer evolution, phenotypic plasticity is used as a catch-all term to encom-
pass non-genetic changes that lead to a detectable phenotypic difference between tumour
cells. Here, we argue that adopting the term ‘plasticity’ in cancer evolution to refer to any
non-genetic change masks important nuances in how phenotypes are produced and main-
tained.

Phenotypic plasticity is a well-established concept in the field of evolutionary biology, originally
defined as a non-genetic change in an organism’s phenotype in response to an environmental
change [4]. A textbook example is the inducible defences in the small planktonic crustaceans
of the genus Daphnia; the environmental change involves the arrival of predators which promote
the growth of morphological traits to defend against predation [5–7]. The evidence supporting
plasticity is clear: the development of these defensive morphological modifications is experimen-
tally inducible via the addition of the predators’ chemical cues, they develop within a single
generation, and they are reversible upon cue removal. It is easy to draw conceptual parallels
between this illustrative example and how plasticity might operate in an evolving tumour; one
could imagine cancer cells in place of individualDaphnia, cytotoxic therapy instead of a predator’s
chemical cues, and replacement of the rapid development of predator defences with a cancer
cell’s rapid phenotypic transition to a resistant state. However, important differences between
the two systems deserve attention. In Daphnia: (i) the phenotype that exhibits plasticity is clearly
defined and easy to measure, (ii) there is a clear distinction between the individual and the envi-
ronment, with limited scope for feedback mechanisms, (iii) inheritance occurs via the germline,
whilst the contents of somatic cells are not inherited, and (iv) the rate of environmental change
is fast relative to the organism’s generation time.

By contrast, in an evolving tumour, it is difficult to define and measure a cell’s phenotype, the
separation between an individual and the environment is often hard to delineate, cells inherit
their molecular contents directly during mitosis, and environmental change and cancer-cell
generation times occur on similar timescales. In cancer evolution these differences produce
a unique set of challenges that likely led to the adoption of the term ‘plasticity’ to refer
to all non-genetic changes in phenotype. Despite this, we contend that clarity around the
mechanism – particularly whether it is cell-intrinsic or environmentally caused – is essential
to enable development of therapies that prevent cancer adaption to treatment or tumour
progression. Open questions include: when can we define observed molecular differences
as discrete phenotypes? In what settings are non-genetic phenomena feasibly measurable?
How heritable are phenotypes under non-genetic control, and how should we subsequently
define them?

In this opinion article we discuss conceptual andmethodological techniques used to identify non-
genetic evolution in cancer in light of these questions.

Phenotypic noise and plasticity in normal tissue and relevance to cancer
Prior to the emergence of any aberrant, neoplastic behaviour, normal cells are capable of pheno-
typic plasticity. Despite sharing the same genome, any given cell must respond to the chemical
and positional cues that allow a zygote to develop into a multicellular organism; hierarchies of
phenotypically distinct cells give rise to organs composed of specialised tissues. Even post-
development, cells must be able to respond to environmental insults (wounding) to ensure that
tissue integrity and homeostasis are maintained. The cell differentiation that drives these
processes is regulated by epigenetic factors and theWaddington landscape [8] is a conceptual
tool often invoked to explain the process whereby cells are committed to these specialised
lineages.
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The phenotypic plasticity of normal cells is vital; they must respond to environmental cues from
the microenvironment or neighbouring cells during development and tissue maintenance. Simple
feedback networks can ensure intercellular signals are converted into stable cell-type differentia-
tion patterns, as has been shown for the lateral inhibition mechanism of intercellular delta-notch
signalling that specifies cell type in the gut epithelium and other organs [9]. By contrast, there is
a strong selection pressure (at the organism level) against healthy somatic cells exhibiting
phenotypic noise, where stochastic changes in phenotype that are not environmentally
controlled could lead to a breakdown in homeostasis (Figure 1).

In cancer, the fitness of a tumour cell becomes its ability to survive and proliferate in the face of
changing environments. Molecular machinery that controls the phenotypic plasticity necessary
for somatic cell specialisation can be co-opted during malignant evolution; the ‘stemness’ that
previously enabled development and homeostasis provides a reservoir of rapid phenotypic inno-
vation. Additionally, it is possible that the inhibitory mechanisms which previously prevented cells
from accessing new phenotypes via phenotypic noise are lost. Further, these two phenomena are
not mutually exclusive; one could imagine a phenotype which exhibits non-genetic variation within
a clone of cells (noise) that subsequently responds to an external stimulus through heritable epi-
genetic rewiring (plasticity). Importantly, the propensity to exhibit plasticity – or switch the range of
accessible phenotypes – could also itself result from underlying genetic evolution. A pressing
question in cancer evolution is how frequently and to what degree these non-genetic phenomena
are the driving forces of tumour evolution.

Environmental dependence
Determining the environmental dependence of cancer-cell phenotypes is important for under-
standing cancer biology, and has ramifications for treatment. For example, treatment effective-
ness should hinge on whether the therapy induces a resistant phenotype. Approaches such as
‘evolutionary steering’ [10] – which aims to use treatment to drive cancer cell populations to
more sensitive phenotypic states – rely on treatment-induced environmental changes generating
desired cancer phenotypes.

Relevant environmental changes encountered by cancer cells include resource variability
(e.g., density of the vasculature or stromal composition), pressures exerted by immune
predation, and the clinical administration of cytotoxic therapies. Distinguishing plasticity
from noise depends on being able to measure these environmental differences. This is particularly
challenging in patient samples, where many environmental forces can be shifting simultaneously
[11] and longitudinal measurement is impractical [12,13].

Timescale and heritable nature of phenotypic changes
Non-genetic phenomena can produce phenotypic changes that differ in their degree of perma-
nence. For example, stochastic differences that arise during transcription can lead to variation
in mRNA abundance that persists for only a few hours. During cell division, daughter cells inherit
the ‘molecular contents’ of the parent cell directly; this leads to stochastic variations in the quan-
tity of mRNA each daughter cell receives. Theoretical and experimental work has shown that
these features of expression and division can drive differences in transcript counts and, ultimately,
phenotypes [14–19]. If we instead consider less transient phenomena, heritable chromatin
modifications can propagate through a subclone/lineage causing long-term phenotypic
differences within an otherwise genetically homogeneous population [20–22] (Figure 2).

Phenotype heritability can be a function of the timescale in which the underlying molecular
changes persist within a lineage. This in turn can dictate the potential for the given phenotype
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Figure 1. Primary differences between our definitions of phenotypic noise and phenotypic plasticity. (A) ‘Phenotypic noise’ – phenotypic diversity generated
independently of genetic changes, illustrated by the diverging lineages (left panels), and despite a constant environment. As such, phenotypic diversity that confers a
selective benefit in a new environment is present and selected for when the environment changes (dotted arrows). (B) ‘Phenotypic plasticity’ – phenotypic diversity is
still generated independently of genetic changes; however, unlike phenotypic noise, it is induced by a changing environment. This influences the theoretical
expectations of each phenotype prior to and following a change in selection pressure (right panels). Importantly, although illustrated as such here, these two modes of
non-genetic change in phenotype are not mutually exclusive.
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to benefit future generations: stable, non-genetic differences can be subject to selection. In spe-
cies evolution, discussions traditionally tended to ignore adaptive changes that are not genetic.
These changes might persist for a few generations but lack the permanence of DNA alterations.
In cancer, however, rapid evolution and exponential growth mean that phenotypes persisting
4 Trends in Cell Biology, Month 2023, Vol. xx, No. xx
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even for a few generations still have the potential to alter disease dynamics and determine patient
outcomes. When tumour cells need to respond to sudden external selection pressures (such as a
pulse of chemotherapy), the ability to rapidly access a beneficial phenotype has clear fitness
advantages over ‘waiting’ for novel genetic variants.

Further, the propensity for cells to exhibit these non-genetic phenomena – a trait that could be
thought of as a ‘meta phenotype’ [23] – are themselves subject to selection. In cases where
beneficial phenotypes have emerged via non-genetic means, the ‘meta-phenotype’ that controls
the propensity for this shift may be caused by a genetic change (Figure 3). For example, chromatin
modifier genes are mutated in numerous cancers and enable epigenetically mediated phenotypic
changes [24,25] whilst mutations in gene promoters can impact levels of transcriptional noise [26],
a source of phenotypic diversity.

In summary, the different timescales over which non-genetic mechanisms operate influence the
extent to which phenotypes are heritable and, by extension, their ability to confer sustained adap-
tive changes following environmental change. Genetic alterations can influence the propensity for
cells to exhibit these non-genetic behaviours and can also be subject to selection.

Identifying, measuring and understanding phenotypic plasticity and noise
Cancer is studied using a wide range of methodologies, including in vitro methods (cell lines,
organoids), animal models, direct analysis of primary human tissue or mathematical modelling.
Here we will discuss these approaches including their respective challenges, examples and
opportunities for studying non-genetic evolution in cancer.

Experimental
Experimental characterisation of the dynamics of non-genetic phenotypic evolution offers many
advantages: high resolution lineage tracing, tight control of selective environmental pressures,
and the direct manipulation of molecular pathways.

An observation frequently taken as evidence of non-genetic phenotypic control is the rate of
phenotypic change; if phenotypic transitions occur at a rate unexplainable via the generation of ge-
netic differences alone, some alternative mechanism(s) must be responsible. A ‘population-down’
approach ignores themolecular machinery responsible and instead asks ‘can the change in a cell’s
phenotype through multiple generations be explained by non-genetic phenomena?’.

Tracking the relatedness of cells over time distinguishes stable phenotypic heterogeneity in the
population from ongoing phenotypic transitions within cell lineages [27]. Newer lineage tracing
‘barcodes’ are both stably inherited in the genome and expressed, providing a simultaneous
readout of genetic relatedness and phenotype (in the form of transcript counts). As non-genetic
mechanisms will generate phenotypic changes that don’t correlate with genetic relatedness,
the difference between relatedness as measured by barcodes and gene expression has been
used to assign cells ‘plasticity scores’ [28] (though this score does not explicitly include microen-
vironmental stimulation).

A challenge of using barcode-derived lineage distributions is confidently rejecting genetic modes
of evolution. Indeed, stringent lineage bottlenecks can accompany a lack of any clear genetic
drivers, as was the case in a barcoded mouse model of acute myeloid leukaemia [20]. Further-
more, the statistical signatures left in lineage distributions are produced by transitions rapidly
breaking the correlation between relatedness and phenotype. As such, lineage tracing data
alone are biased towards finding rapid transitions: fast switching between states causes the
Trends in Cell Biology, Month 2023, Vol. xx, No. xx 5

CellPress logo


(A)

Phenotype

A

B

Genotype

1

2

3

Phenotype

A

B

Genotype

1

2

3

(B)

TrendsTrends inin Cell BiologyCell Biology

Figure 2. Differences in the timescale of non-genetic changes in phenotype. (A) Short-term changes in phenotype can result from transient non-genetic
phenomena such as stochastic changes in gene expression. These changes persist for few cell divisions and occur independently of genetic lineage identity. (B) Long-
term changes in phenotype, such as those controlled by stable epigenetic modifications, can persist for many cell divisions. As such, they can reside within a single
lineage and can resemble positive selection for a genetic change following positive selection in a new environment. Because the differences illustrated here arise before
a population experiences selection in a new environment, they are restricted to our definition of phenotypic noise.
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relationship between phenotype and lineage identity to break down through cell divisions. By
contrast, the patterns left by more stable, heritable epigenetic traits could easily resemble those
6 Trends in Cell Biology, Month 2023, Vol. xx, No. xx
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Figure 3. Genetic mutations increasing the propensity for phenotypic plasticity and phenotypic noise: (A) Whilst the change in phenotype following a shift in
environmental pressures (our definition of plasticity) is not directly controlled by a genetic change, a mutation can arise (yellow mutation) that increases a lineage’s
propensity for phenotypic plasticity. (B) Similarly, whilst ongoing phenotypic diversity is generated despite no new genetic differences and independently from any
extrinsic selection pressures, an ancestral mutation (brown mutation) can increase the propensity for cells to exhibit phenotypic noise.
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of genetic mutations, and further genetic mutations can ‘hitchhike’ on adaptive epigenetic changes.
If a phenotype under epigenetic control experiences positive selection, this lineage would increase
in frequency, carrying the passenger mutations to higher frequency too (Figure 2). By developing
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statistical models that generate expected lineage distributions under various evolutionary scenarios,
we expect future work will be able to further leverage the quantitative information provided by lineage
tracing experiments.

An alternative experimental approach is to consider the distribution of phenotypes within and
between single-cell-derived clonal populations. The famous Luria–Delbruck fluctuation
experiments used this approach to demonstrate that phage-resistance mutations are pre-
existing [29]. Importantly, the change in environment (e.g., application of drug treatments)
is precisely controlled, meaning phenotypic noise can be distinguished from plasticity.
In cancer, specifically melanoma, such an approach identified a subset of resistance-
associated genes transiently expressed prior to treatment [30], consistent with phenotypic
noise. Additional work has shown that these transient changes can be coordinated across
multiple genes, lead to phenotypic changes with consequences for survival, and are more
likely to occur in a rare population of cells [31]. Conversely, changes observed in a constant
environment can exclude the presence of plasticity: expansion of single-cell-derived colorec-
tal clones showed that slow, heritable shifts in gene expression values were a function of
stochastic changes in DNA methylation, providing a mechanistic explanation for phenotypic
noise [21].

Experimental settings also provide the opportunity to perturb specific molecular pathways in
isogenic cells, either therapeutically or via genetic modification, and to test ‘bottom-up’ how
phenotypes are controlled. For example, deletion of DNA methylation enzymes demonstrated
epigenetic regulation of hematopoietic phenotypic compartments [32], and therapeutic inhibition
of chromatin modifiers (histone methyltransferases) sensitises treatment-refractory cells,
supporting an epigenetic role in resistance [24,25]. That is not to say that epigenetic dysregulation
in cancer cells necessarily leads to the generation of adaptive phenotypic variation. Surprisingly, a
recent study showed that perturbation of epigenetic landscapes can elevate cancer cell fitness by
preventing a response to environmental stimuli [33]: a phenomenon termed ‘phenotypic inertia’
that resembles the inverse of phenotypic plasticity.

Patient data
Limited sampling of tumours hinders the identification of phenotypic plasticity and noise in
patient data; most projects analyse a single biopsy from a single time point [12,13]. Multi-
region sequencing has become more commonplace due to increased interest in
intratumour heterogeneity. Genetic data allow for the inference of tumour evolution via
phylogenetics [34–36], and the addition of other omic approaches gives insight into
non-genetic evolution.

In primary colorectal tumours, our own multiregion multi-omic sequencing revealed that most
expressed genes did not show evidence of intratumour genetic control [37]. Here the presence
of widespread phenotypic plasticity was implied, although the lack of direct microenvironmental
measurements means that phenotypic noise could have also contributed. Further analysis
revealed major changes in chromatin accessibility through progression, often independent of
any genetic changes, with evidence of intratumour epigenome heterogeneity [38]. Recent studies
have used single cell multi-omic sequencing to study epigenetic heterogeneity in gliomas, finding
positive associations between genetic and epigenetic heterogeneity which increased through
disease progression [39], and determining epigenetic cell states to be heritable with differences
in these dynamics between glioblastoma genetic subtypes [40]. However, the inability to accu-
rately measure microenvironmental changes in these studies makes it difficult to distinguish
between phenotypic plasticity and noise.
8 Trends in Cell Biology, Month 2023, Vol. xx, No. xx
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A promising new technology to explore plasticity in vivo involves mapping genetic clones onto
phenotypically characterised spatial data [41]. Whole-genome sequencing is first performed
to determine the mutational and subclonal structure of the sample, followed by base-specific
in situ sequencing and single-cell transcriptomics. This combines spatial context with genetic
ancestry whilst integrating histological, transcriptomic, andmicroenvironmental features. A limita-
tion lies in the assignment of cells/pixels to a few distinct subclones based on a limited number of
mutated loci, which surely underestimates genetic heterogeneity and could lead to an overesti-
mation of phenotypic plasticity/noise. More broadly, multiple emerging spatial transcriptomic
technologies – including 10XGenomics Visium [42] and Nanostring GeoMx [43] – promise to pro-
vide unprecedented characterisation of spatially-resolved transcriptomic tumour heterogeneity
(recently reviewed in [44]). Notably, the ability to infer copy-number alterations from gene expres-
sion [45,46] allows the definition of genetic subclones that can then be compared with spatially-
resolved expression phenotypes. A potential confounder for distinguishing phenotypic plasticity
and noise is that the expression from each ‘spot’ will be a combination of tumour-cell-intrinsic
expression andmicroenvironmental infiltration, an issue that will remain until spatial transcriptomics
can achieve single-cell resolution.

Profiling non-genetic heterogeneity is also possible without spatially resolved or highly sampled
patient data. One such study derived single-cell transcriptomes through disease progression in
a mouse model of lung cancer, and elucidated a gene expression signature of high tumour-cell
plasticity (here defined by rapid switching of cell states) which was then applied to single-cell
and bulk-tumour patient data [47]. In bulk transcriptome data from patient samples, this score
was associated with drug resistance and patient prognosis. More recently, this cell plasticity
score contributed to a model for predicting metastatic seeding in lung cancer [48].

The history of genotype–phenotype interactions reveals phenotypic plasticity, noise, and genetic
control. Phylogenetic signal is often used in evolutionary biology to quantify phenotype herita-
bility by computing the correlation between genetic distance and phenotype (dis)similarity [49].
Recently, a framework was implemented for measuring phylogenetic autocorrelation in single-
cell RNA sequencing (scRNA-seq) data alongside a barcode-enabled phylogeny [50]. A Markov
model of cell state transitions then inferred transition rates, and was applied to a murine model of
pancreatic cancer to demonstrate differential transition rates between epithelial and mesenchymal
cell states. Phylogenetic signal is therefore a useful tool for investigating plasticity which could be
applied to patient or experimental data, but the onus is on users to appropriately define the quan-
titative phenotype assessed and evaluate whether any change not related to genetic ancestry is
oncogenically relevant and/or is in response to external stimuli.

Mathematical modelling
Mathematical models provide a quantitative framework with which we can test mechanisms and
processes that are important contributors to malignant survival and growth [51]. In a genetic
setting, the cancer evolution field has borrowed heavily from traditional population geneticmodels
to describe the behaviour of mutations in tumour populations [1,52]. These models infer evolu-
tionary dynamics by leveraging the footprints left in the genome by clonal selection, foremost
the over-representation of positively selected alterations. Features of genetic evolution – such
as the stable inheritance of DNA through generations, lowmutation rates, and the discrete nature
of nucleotide sequences – made these models tractable. However, many of these assumptions
lose relevance for non-genetic evolution. A new class of models addressing this roughly fall into
two categories: population models (those modelling the behaviour of cells given non-genetic
changes in phenotypes) and mechanistic models (those that model the non-genetic phenomena
that cause changes in phenotypes).
Trends in Cell Biology, Month 2023, Vol. xx, No. xx 9
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Population models
Mathematical models have been used extensively to describe the behaviour of phenotypes in
cancer-cell populations. Markov chains are a technique well suited to capturing the stochastic,
reversible transitions between discrete phenotypic states [53] and model steady states by
predicting the (average) phenotypic composition of a population over time [54]. However, without
information concerning the lineage relationships of the population, care should be taken when
using time-series phenotypic compositions alone to infer phenotype transition rates; other evolu-
tionary phenomena such as growth rates that are either phenotype- and/or frequency-dependent
can lead to quasi-steady state distributions without having to invoke any movement between
phenotypic compartments [55].

If the ancestral relationships of cells are known, Markov chains can be imposed onto phylogenies
to generate statistical predictions of lineage–phenotype relationships given different phenotypic
transition rates (we note the underlying mathematics is similar to that used in phylogenetic signal
methods). Studies have leveraged live-cell imaging and RNA fluorescence in situ hybridisation
(RNA-FISH) [56] or expressed barcode systems that offer a joint readout of single-cell relatedness
and scRNA-seq [50] to map phenotypes onto cell phylogenies and infer phenotypic switching
rates. Whilst these modelling techniques offer a sophisticated approach for transition rate infer-
ence, they still assume that the discrete phenotypes can be described using end-point readouts
such as scRNA-seq (Box 1).

In treatment settings, the strong selective pressure exerted on cells by treatment obviates many
of the difficulties around defining phenotypes based on subtle differences, since the key pheno-
type is whether a cell is ‘sensitive’ or ‘resistant’ to treatment. Furthermore, treatment is one of the
few environmental changes under experimental or clinical control, offering additional information
Box 1. Defining phenotypes

To identify when non-genetic mechanisms of phenotypic control are driving tumour evolution, we need to consider when
to define differences between cells as distinct phenotypes. Historically, phenotypes were features that could be either
observed directly or inferred from the behaviour of cancer cells, such as the rate of repopulation in a scratch assay, or the
tumour growth rate in a mouse model. As such, phenotypes tended to be broad in nature. Today, single-cell sequencing
technologies such as scRNA-seq and scATAC-seq have enabled high-resolution characterisation of the molecular
differences between cells. However, the granularity offered by single-cell techniques means we must determine when
molecular features separating cells become functionally important and warrant distinction as unique phenotypes. Addition-
ally, the subtle changes revealed by these technologies can provide a quantitative readout of previously qualitative pheno-
types. Although sometimes statistically convenient, assigning continuous features to discrete phenotypes can impact
estimates of the transition rates between phenotypes, with ramifications for understanding phenotypic plasticity and noise.

Whilst static snapshots of single-cell data can identify groups of genes co-expressed in cells – commonly referred to as
‘modules’ or ‘programs’ [22,24] – defining phenotypes of interest using highly dimensional molecular data can prove
challenging: the capacity of single timepoint measurements to identify meaningful biological relationships between
expressed genes is limited. Newer approaches include using time-series data and functional perturbations to develop
gene–gene relationships into gene regulatory networks (GRNs) that enable predictions of future behaviours given changes
to external selection pressures [66,69–71]. Properties of these networks can give rise to stable cell features despite the
noisy processes underpinning gene expression [63,64,72,73].

Cancer cell phenotypes are often defined with reference to normal cells, where those with recognisable features that are
observed repeatedly are described as ‘cell states’. These states are usually discussed within the context of the epigenetically
mediated differentiation of cells during normal tissue development [21,40]. Open questions include: to what extent are new
statesmade possible duringmalignant transformation, and how should this impact the way we define cancer cell phenotypes?

We propose that tumour phenotypes should be assigned with consideration of behaviours deemed important to tumour
evolution: for example, with reference to the hallmarks of cancer [11]. A robust definition is paramount for describing non-
genetic evolution, where accurate identification of phenomena such as phenotypic plasticity and noise hinges on the
sound description of unique phenotypes.
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for distinguishing phenotypic changes that occur either independently of (phenotypic noise) or in
response to (phenotypic plasticity) some external selection pressure.

In bacteria, quantitative models have shown that non-genetic sources of phenotypic differences
can provide rapid sources of adaptive diversity when suddenly faced with strong selection
pressures such as drug treatment [57]. Similar models in cancer have tackled when the rapid
phenotypic transitions consistent with non-genetic mechanisms might promote resistance. A
stochastic branching process assessed how the fraction of cells that were either transiently or
permanently resistant differed during treatment given transition rates that could vary in the
presence of therapy [58].

As non-genetic transitions between phenotypes are relatively high, the switching dynamics
modelled stochastically in Markov chains can be replaced by instead employing differential
equations. Deterministic ordinary differential equations (ODEs) have shown that phenotypic
switching enhances an adaptive therapy regime by re-sensitizing the population between treat-
ment windows [59], and stochastic differential equations (SDEs) have been used to assess the
efficiency of growth-rate-dependent treatments in a population where discrete phenotypes
were stratified by growth rates and cells could transition between adjacent compartments
[60]. Alternatively, phenotypes can be modelled as continuous traits: SDEs have been used
to model the non-genetic evolution of cells through a two-dimensional phenotypic space
representing survival and proliferative axes [61], where stress-induced transitions to a tolerant
state in the presence of treatment were also permitted. In another study, the expression of a
hypothetical gene was modelled as a continuous variable, where gene expression noise
increased the variance of a cell’s gene product and expression above a threshold conferred
survival during treatment [62].

Mechanistic models
An alternative domain of modelling work has asked: how do molecular, non-genetic features give
rise to the generation of phenotypically distinct populations?

Non-genetic mechanisms must constantly mediate the protein levels within a cell via a complex
web of feedback interactions. One promising approach to investigate the rules governing these
complicated gene regulatory networks is to frame them as dynamical systems. Describing the
underlying structure of these gene–gene relationships can provide a window into how stochastic
molecular processes such as transcription can produce recognisable cell behaviours, and how
these phenomena are perturbed during cancer evolution. The topology of these gene networks –
that is, the presence and magnitude of feedback relationships between genes – has been shown
to engender stable phenotypic states [63], whilst models of gene expression noise show it can
lead to network modifications that generate multi-modality in protein concentrations [64]. These
models can use existing knowledge of gene–gene relationships to test the propensity for cells to
transition between cell states, states which can influence a cell’s ability to metastasise or resist treat-
ment [65]. As these models can test how perturbations to the networks via intrinsic and extrinsic
forces can shift the phenotypic composition of a cancer-cell population, they are well placed to
directly probe how likely cells are to exhibit phenotypic noise and plasticity given certain evolutionary
scenarios. Recently, researchers leveraged high-dimensional -omics data to simultaneously define
phenotypic states, their key gene components and the structure of the underlying regulatory
network [66]. The growing sophistication of these quantitative models will enable a greater
understanding of how non-genetic phenomena constrain cells to stable phenotypic states in
healthy somatic cells, and how the breakdown of these systems promotes growth and survival
in cancer cells.
Trends in Cell Biology, Month 2023, Vol. xx, No. xx 11
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Outstanding questions
How frequently and to what degree do
plasticity and noise act as sources of
adaptive phenotypic diversity during
cancer evolution?

To what extent is non-genetic evolution
in cancer characterised by the noisy
dysregulation of healthy cell states
versus the directed acquisition of new
phenotypic states?

How confidently can we define
phenotypes from single time-point mo-
lecular data? And, by extension, how
well can we identify non-genetic drivers
of evolution from these data?

How can we better adopt molecular
and statistical tools to distinguish
cases where non-genetic changes in
cancer-cell phenotypes occur in re-
sponse to (plasticity) or independently
from (noise) the environment?

How should we learn the mechanisms
responsible for non-genetic differences
in phenotype? For example, can we le-
verage cases of phenotypic plasticity
and noise identified with experimental
and theoretical models to uncover the
molecular changes responsible?
Finally, whilst not discussed in detail here, mathematical models also provide an opportunity to
distinguish plasticity from noise by enabling descriptions of the interplay between cell-intrinsic
and -extrinsic forces: for example, models that permit phenotypic shifts have investigated how
environmental factors such as acidity and oxygen can drive metabolic evolution [67,68].

In conclusion, mathematical models allow us to formalise the behaviour of non-genetic phenomena
such as phenotypic plasticity and noise. The relative paucity of existing models that tackle the evo-
lutionary dynamics specific to these non-genetic mechanisms offer an exciting opportunity for fur-
ther model development and new biological insight into the control of phenotypic plasticity and
noise. We believe that there is a growing demand for models that explicitly combine population-
level evolutionary dynamics with those that capture the molecular mechanisms and shifting
environmental forces driving non-genetic changes in phenotype.

Concluding remarks
Enabled by a rapidly developing single-cell omics field, there is growing appreciation that non-
genetic phenomena are important drivers of cancer evolution. In discussions concerning these
phenomena, the term ‘phenotypic plasticity’ is now commonly used to mean any phenotypic
change which cannot be ascribed to a difference in genotype. Here, we argue that this sweeping
usagemasks important biology: specifically, whether or not the change in phenotype was caused
by extrinsic selection pressures. As such, we suggest the term ‘phenotypic noise’ to denote
phenotype differences that arise independently of any environmental changes, and ‘phenotypic
plasticity’ for situations where the environment induces phenotype change. Both processes
make critical, yet mechanistically distinct, contributions to cancer evolution. The distinction will
aid future research that tackles the many unanswered questions surrounding non-genetic evolu-
tion in cancer (see Outstanding questions). The high-dimensional nature of modern omics data
introduces new challenges to the question of defining phenotypes, as identifying salient non-
genetic phenomena requires first identifying the discrete phenotypes they control. Understanding
the causes of phenotype transitions in cancer will identify new opportunities to block adaption to
treatment and improve the efficacy of anticancer therapies.
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