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Abstract

The development of cancer is an evolutionary process involving the sequen-
tial acquisition of genetic alterations that disrupt normal biological processes,
enabling tumour cells to rapidly proliferate and eventually invade and metasta-
sise to other tissues. We investigated the genomic evolution of prostate cancer
through the application of three separate classification methods, each designed
to investigate a different aspect of tumour evolution. Integrating the results
revealed the existence of two distinct types of prostate cancer that arise from
divergent evolutionary trajectories, designated as the Canonical and Alterna-
tive evolutionary disease types. We therefore propose the evotype model for
prostate cancer evolution wherein Alternative-evotype tumours diverge from
those of the Canonical-evotype through the stochastic accumulation of genetic
alterations associated with disruptions to androgen receptor DNA binding. Our
model unifies many previous molecular observations, providing a powerful new
framework to investigate prostate cancer disease progression.
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1. Introduction

Tumour evolution is a dynamic process1 involving the accumulation of ge-
netic alterations that disrupt normal cellular processes, leading to pathological
phenotypes2. While some cancers can be categorised into subtypes, often util-
ising pronounced genomic or transcriptomic differences, the evolutionary pro-
cesses that give rise to this variation are complex and not well understood3.
However, it has been shown that the order of events in some haematological
malignancies can be related to prognosis and treatment susceptibility4,5,6,7.

In prostate cancer, subtyping schemes have been proposed based on the
presence of specific molecular alterations8, combinations of alterations9 or gene
expression profiles10. However, detailed investigations by ourselves11 and oth-
ers12,13 have shown substantial heterogeneity between tumours that presents
challenges for simple or consistent subtype assignments14. Studies investigating
evolutionary differences between prostate cancer disease types by categorising
molecular events as “early” or “late” have been shown to be informative in early-
onset15 and aggressive disease16 and the temporal order of genetic alterations
has also been shown to be related to the ETS subtype11. However, the evo-
lutionary factors that drive the emergence of prostate cancer subtypes remains
largely unexplored.

To investigate how evolutionary behaviour manifests in the variation ob-
served in prostate cancer genomes, we performed three separate analyses, each
of which probes different aspects of tumour evolution. In each analysis we clas-
sified the tumours in an unsupervised fashion and subsequently identified sets
of tumours that shared the same classes across the analyses. Through this ap-
proach we can identify tumours that display consistent evolutionary properties
and use this information to identify likely mechanisms driving prostate cancer
evolution.

2. Results

Data collection and pre-processing

We compiled a data set from 159 intermediate or low risk prostate adeno-
carcinoma patients sampled after radical prostatectomy, which were otherwise
treatment näıve (87 published previously11). These were whole genome se-
quenced (target depth: 50X) along with matched blood controls (target depth:
40X), and 123 summary measurements were generated (STAR Methods; Figure
S1).

We adapted an unsupervised neural network with a single hidden layer to
perform feature learning on this data set, identifying associations between in-
puts to obtain a reduced-dimension set of 30 features (STAR Methods). Using
the trained neural network, we can recast the data for each sample in terms of
these features into a form known as the feature representation. Reconstructing
the original inputs from the feature representation gave a reconstruction error of
≈12%, indicating that these features, and the inputs to which they correspond,
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contain a substantial proportion of the information in the original data. Our ap-
proach is a white-box method meaning we can identify which inputs contribute
to each feature, and so we labelled each features with a brief descriptor of the
associated genomic aberrations (Figure S2). We can perform analysis on the
feature representation itself, while allowing comparison with the results of other
analyses using a selection of the original inputs that correspond to the features
(STAR Methods).

Classifying tumours by patterns of co-occurring genomic features

Despite the reduced dimensionality of the feature representation, application
of standard clustering methods remains problematic due to the high dimension
of features (30) relative to the sample size (159). To mitigate this, we adopted
a two-stage clustering method utilising a discrimination score we calculated
for each feature that quantified the value of each feature in predicting disease
relapse (STAR Methods). In the first stage, we applied k-medoid clustering
to the feature representation of those features with a high discrimination score
(STAR Methods). In the second stage we performed hierarchical clustering on
the cluster centres (medoids) returned in the first stage. The results are shown
in Figure 1.

We identified two distinct metaclusters that were characterised by differ-
ent sets of aberrations. Metacluster A (MC-A) showed a high probability of
features corresponding to intra-chromosomal structural variants (SVs), SPOP
mutations, chromothripsis, and loss of heterozygosity (LOH) in regions 5q15-
5q23.1 (spanning CHD1 ) and 6q14.1-6q22.32 (MAP3K7, ZNF292 ). Metacluster
B showed more frequent ETS fusions, as well as LOH affecting 17p (TP53 ) and
regions 19p13.3-13.2 and 22q11.21-22q11.22. The dendrogram indicated addi-
tional differences within Metacluster B and so we further divided it into sub-
classes, MC-B1 and MC-B2, with MC-B2 displaying near-ubiquitous TP53 LOH
and exhibiting higher probability of ETS fusions, inter-chromosomal chained
structural variants (cSVs), LOH at 10q23.1-10q25.1 (PTEN ) and 5q11.1-5q14.1
(IL6ST, PDE4D).

Classifying tumours by mechanism of DNA double strand breaks.

We investigated the influence of Androgen Receptor (AR) on the DNA break-
points in these samples. AR is known to precipitate DNA double strand breaks
(DSB) in conjunction with topoisomerase II-beta17, and AR-associated break-
points are frequent in early-onset prostate cancer15,18. Furthermore, it has also
been shown that AR binding behaviour can be altered by CHD1 deletion19. We
used a permutation test (STAR Methods) to classify tumours based on whether
breakpoints occurred significantly more (labelled as Enriched) or less (Depleted)
often proximal to AR binding sites (ARBS) than expected if they were indepen-
dent of AR, or Indeterminate tumours that displayed no statistically significant
association (Figure 2A).

Investigating the ARBS groups in conjunction with the genetic alterations
associated with the features (Figure 2B), we found that Depleted tumours had
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the highest percentage genome altered (PGA) and the highest frequency of
multiple CNAs, chromothripsis, kataegis, and SPOP mutations (Relationship
column, Figure 2B). Enriched and indeterminate tumours displayed no signif-
icant differences for any CNAs, but both showed higher frequency of CNAs
covering PTEN and TP53 than the Depleted group (Relationship column, Fig-
ure 2B). In the case of ETS fusions and inter/intra-chromosomal cSV ratio, the
Enriched group showed greater amounts than the intermediate group, which in
turn showed greater enrichment than the Depleted group. Both Enriched and
Depleted tumours displayed higher numbers of breakpoints than Indeterminate
tumours. We identified these ARBS groups in two additional data sets: a set
of low-intermediate risk tumours from the Canadian Prostate Cancer Genome
Network (CPC-GENE)13, and high-risk tumours from the Melbourne Prostate
Cancer Research Group in Australia (unpublished). Clustering these groups
by CNA proportions showed groups classified as Depleted clustered together
(Figure S3), confirming the association between these CNAs and ARBS-distal
breakpoint prevalence.

Classifying tumours through the evolutionary order of key events

The order in which genetic alterations generally occur in tumour evolution,
subsequently referred to as the ‘ordering profile’, can be inferred using the es-
timated proportion of tumour cells that display each genetic alteration in each
sample11. We adapted a Plackett-Luce mixture model20 to create a proba-
bilistic model for the relative order of genomic aberrations given the relative
subclonal fractions of SPOP mutations and the key CNAs that were identified
in our feature extraction (STAR Methods). As a mixture model, it can be used
to extract distinct ordering profiles within the population. Inference with this
model was performed with differing numbers of clusters, and the results used in
Bayesian model selection that determined that two ordering profiles was optimal
(STAR Methods). We therefore defined two classes, Ordering-I and Ordering-II,
and each tumour was assigned to one of these by their mixture weights (Figure
3).

The two profiles displayed notable differences. Tumours corresponding to
Ordering-I frequently experienced an early 8p LOH (spanning NKX3.1 ) and
ETS fusions. Less frequent LOH of regions covering the RB1, BRCA2, CDH1,
TP53 or PTEN genes could also occur. This profile occasionally displayed
a very early LOH of 1q42.12-42.3. Tumours of Ordering-II consistently dis-
played early LOH events covering MAP3K7 and 13q (EDNRB, RB1, BRCA2 ).
However, the earliest events, a mutation of the SPOP gene and LOH cover-
ing CHD1, were less frequent. Ordering-II also displayed more frequent copy
number gains. Both orderings showed late gains of chromosome 19. When com-
paring the occurrence of aberrations between individuals within each Ordering
we found that the relative order of alterations was highly variable, indicating
they arise stochastically (Figure S4; STAR Methods).
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Integrating analyses reveals disease types distinguished by their evolutionary tra-
jectories.

Establishing the concordance of these three classification methods (Figure
4A) revealed a remarkable relationship: MC-A is largely a subset of the Depleted
group (22/27), and both are almost entirely subsets of Ordering-II (26/27 and
30/32 respectively). Quantifying the strength of the pairwise associations us-
ing Cramer’s V statistic gives: Metaclusters and ARBS groups (V = 0.69),
Metaclusters and Orderings (V = 0.58) and ARBS and Orderings (V = 0.62).
These values indicate a strong association between cluster assignments in these
three groups (STAR methods). We can therefore infer that there exists a sub-
set of tumours that exhibit all the corresponding properties: an evolutionary
trajectory (Ordering-II), a breakpoint mechanism (ARBS:Depleted) and char-
acteristic patterns of aberrations (Metacluster:MC-A). We therefore propose
the evotype model for prostate cancer evolution (Figure 4B), in which canonical
AR DNA binding is disrupted, through the effect of genetic alterations or other
causes, coercing tumour evolution along an alternative trajectory that results in
a distinct form of the disease. We can therefore classify tumours by which path
a tumour is most likely to adhere to, which we refer to as its “evotype”. To
perform this classification, we adopted a majority-vote approach and defined
tumours that were assigned to at least two of MC-A, Depleted, or Ordering-
II as belonging to the Alternative-evotype (n=34), to distinguish them from
Canonical-evotype (n=125) tumours that evolve via the standard route. Each
evotype is characterised by a different propensity for certain aberrations (Figure
4C), but we found that no single aberration was either necessary or sufficient
for assignment to either evotype. However, there were several pairwise combi-
nations of genetic alterations that did result in fixation to one of the evotypes
(Figure S5). There were no statistically significant associations (p =0.05) be-
tween the evotypes and tumour stage, Gleason grade or prostate-specific antigen
(PSA) levels (Figure S6).

The lack of consistent genetic alterations indicates that there may be mul-
tiple individual routes of progression for each evotype. We investigated these
trajectories in more detail by developing a stochastic model of the acquisition of
genetic alterations and tracking the probability of assignment to each evotype
as the aberrations accumulate (Figure 4D; STAR Methods). Initially the prob-
ability density is concentrated at ≈0.78, the proportion of Canonical-evotype
tumours in our sample set. As the number of aberrations increases, the density
diverges to accumulate at 1 (corresponding to unambiguous assignment to the
Canonical-evotype) and 0 (Alternative-evotype). In this model, an individual
tumour will follow a trajectory through this probability landscape dependent
on the type and order of aberrations. Due to randomness in the occurrence
of genetic alterations, there are an enormous number of possible routes, but
investigating patterns of aberrations in areas of high probability density reveals
common modes of behaviour (Figures S7 and S8). Exemplars for these modes
are given by the dashed lines in Figure 4D. Notably, when an SPOP mutation
occurs first, it confers high probability (≈0.91) of progression to the Alternative-
evotype (Alternative:Rapid). Other routes to the Alternative-evotype involve
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the accumulation of multiple individual LOH events involving genes such as
MAP3K7, CHD1 or EDNRB (Alternative:Incremental) in any order. LOH
of IL6ST or gain of region 8p23.3-8p22 strongly influence convergence after
a number of aberrations have already accumulated (Alternative:Abrupt). Con-
versely, fixation to the Canonical-evotype is dependent on a few key aberrations.
Early TP53 loss or ERG gene fusion promotes almost certain fixation to the
Canonical-evotype (Canonical:Rapid). Alternatively, loss of regions covering
PTEN or CDH1 can coerce a relatively quick progression toward this evo-
type, but these are rarely the final convergent event in the trajectory (Canon-
ical:Moderate). Indeed, there are aberrations that are often the last step in
convergence to the Canonical-evotype, particularly LOH of 19p13.3-19p13.2
or 22q11.21-22q11.22, or gains of chromosome 19 or region 22q11.1-22q11.23
(Canonical:Punctuated).

The lack of a single genetic alteration unique to the Alternative-evotype in-
dicates that there may be multiple mechanisms for acquired AR dysregulation
that we observe in prostate cancer. We therefore investigated potential mech-
anisms of AR dysregulation. It has previously been shown that CHD1 protein
is involved in AR binding, which causes DNA loops that can precipitate DSBs
(Figure 5A, adapted from Metzger et al.21). As LOH of the CHD1 locus is sig-
nificantly associated with the Alternative-evotype (Figure 4C) and is an early
event in tumour evolution (Figure 3), we hypothesised that loss of CHD1 in
these tumours would be associated with fewer DSBs precipitated through the
DNA loop mechanism. We therefore tested whether pairs of adjacent AR bind-
ing sites required for DNA loops to form by this mechanism are significantly
more or less frequent close to DSBs dependent on CHD1 status (STAR meth-
ods). We found that CHD1wt tumours more frequently displayed DSBs close
to pairs of AR binding sites than tumours that displayed a CHD1 -associated
LOH (Figure 5B, p = 0.00025). Extrapolating our hypothesis to the evotypes,
we found a significant difference between Canonical and Alternative-evotype tu-
mours (Figure 5C, (p = 4.91 x 10−9). This relationship also holds in CHD1wt
tumours of both evotypes (Figure 5D, p = 0.00015). These results indicate
that CHD1 LOH can drive AR-dysregulation in prostate cancer, but that other
mechanisms also exist in Alternative-evotype tumours.

3. Discussion

Taken together, our findings reveal prostate cancer disease types that arise
as a result of divergent trajectories of a stochastic evolutionary process in which
specific genetic alterations can tip the balance toward convergence to either
route. Unlike the evolution of species, which involves ongoing adaptation to a
perpetually changing environment, tumour evolution has a definable end point
- a disease state that leads to the death of the host. It follows that the more
”evolved” tumours are closer to this end point, which has obvious implications
for risk stratification. We therefore proposed that our evolutionary model im-
plied two factors associated with risk, the evotype itself and the degree of pro-
gression relative to that evotype. We investigated this principle using follow-up
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information based on time to biochemical recurrence (serum PSA > 0.2 ng/ml
for two consecutive measurements) after prostatectomy.

Initially, we found that classifying by evotype alone provides a significant
association with time to biochemical recurrence (Figure 6A, p = 0.026), dis-
playing a higher hazard ratio (HR = 2.30) than stratification by well-known
genetic alterations such as PTEN loss (HR = 1.42, p = 0.336; Figure S9A),
TP53 loss (HR = 2.03, p =0.0497; Figure S9B) or ETS status (HR = 1.64, p =
0.179; Figure S9C). However, it performed worse than other metrics known to
be associated with outcome, such as tumour mutational burden (TMB), which
led to HR = 4.50 and p = 0.000110 (Figure 6B), or histopathological grading via
the ISUP Gleason grade score, which gave HR= 4.69 and p =0.0000629 (Figure
6C).

To illustrate how information on the evolutionary path might improve risk
stratification, we adopted two approaches to determining which tumours were
the most advanced relative to their evotype. In the first, we classified the 10
tumours of both evotypes with the highest TMB as advanced (denoted High-
TMB Alternative and High-TMB Canonical), and compared these to all other
tumours. We found that High-TMB tumours of both evotypes displayed high
hazard ratios (Figure 6D; HR > 6) compared to all previous metrics, notably
outperforming the 20 High-TMB tumours when evotype was not used (Figure
6B; HR = 4.50). To investigate how this risk determinant might be used in
conjunction with current clinical prognostic methods, we compared the 10 High-
TMB tumours of both evotypes that were also ISUP Gleason grade ≥ 3 with
all other tumours, which further improved performance (HR = 7.28, p = 5.16
x 10−7; Figure 6E). In the second approach, we hypothesised that metaclusters
MC-A and MC-B2 were representative of advanced tumours of the Alternative
and Canonical-evotypes respectively, as these tumours displayed many of their
characteristic genetic alterations (Figure 1). Stratifying by tumours belonging
to both MC-A and the Alternative-evotype yielded HR = 3.64, p =0.00363,
with those in MC-B2 and the Canonical-evotype giving HR = 6.14, p = 4.60
x 10−5, in comparison to the tumours that were in neither group (Figure 6F).
These relationships were still significant when adjusted for TMB, Gleason grade,
and age at diagnosis (padj =0.00913 and 0.000492), showing that TMB itself is
not driving this result. As before, we compared these advanced tumours that
were also ISUP Gleason grade ≥ 3 to all other tumours, which provided even
better performance (HR = 7.66, p = 2.84 x 10−8; Figure 6G). The findings in
Figures 6E and 6G indicate that Gleason grade and evolutionary progression
provide complementary information on prognosis. Note that these findings are
illustrative as a robust optimisation of thresholds or sets of genetic alterations
for risk evaluation requires full validation with an independent data set and
therefore remains outside the scope of this study.

Furthermore, the evotype model provides additional context to relationships
between individual aberrations reported in previous studies. Co-occurring ge-
nomic alterations that have been identified previously can be related to partic-
ular evotypes. For the Canonical-evotype, this includes LOH events affecting
PTEN and CDH22, or PTEN and TP53 23. Conversely, CHD1 losses have pre-

8



viously been observed in conjunction with SPOP mutations24,25, as has LOH
affecting MAP3K7 26 and 2q2227; all these aberrations are associated with the
Alternative-evotype. The most widely used basis for genomic prostate cancer
subtyping is the ETS status, where tumours are classified by the presence or
absence of an ETS gene fusion into ETS+ and ETS- respectively8,9,1,11. We
found that 94% of Alternative-evotype tumours were ETS-, and indeed alter-
ations such as SPOP mutations and CHD1 LOH that are characteristic of this
evotype have previously been associated with ETS- tumours11,28. Conversely,
the Canonical-evotype exhibits both ETS+ (66%) and ETS- (34%) tumours.
When removing Alternative-evotype tumours from the ETS classification, we
found that there were no significant differences in risk (Figure S9D) or preva-
lence of any of the genomic features between ETS+ and ETS- tumours of the
Canonical-evotype (Figure S9E). This is consistent with its definition as a dis-
tinct disease type independent of ETS status.

Classification by evotype could have epidemiological implications. For in-
stance, non-Caucasian racial groups display an increased incidence of many
Alternative-evotype aberrations29,30,31, and may therefore have a higher pre-
disposition for this disease type. Conversely, cancers arising in younger patients
have enrichment for ARBS-proximal breakpoints18, and are reported to develop
via a similar evolutionary progression to the Canonical-evotype18,15. It may also
be possible to tailor treatment strategies to each evotype. In particular, cancers
with aberrations found more commonly in the Alternative-evotype have been
shown to be susceptible to ionising radiation24, and have a better response to
treatment with PARP inhibitors32 and androgen ablation25.

Our evolutionary model for prostate cancer disease types provides a concep-
tual framework that unifies the results of many previous studies and has signifi-
cant implications for our understanding of progression, prognosis and treatment
of this disease. As evolution through the sequential acquisition of synergistic
genetic alterations is a process common to many tumours, the principles, ana-
lytical approach and conceptual framework outlined here are widely applicable
and we anticipate them leading to insights into disease behaviour in other cancer
types.

3.1. Limitations of Study

In this study we present evidence supporting the existence of at least two
distinct evolutionary paths in prostate cancer, which underpins the concept
of classifying these cancers into evotypes. However, the precise criteria that
differentiate Canonical-evotype tumours from those of the Alternative-evotype
remain to be rigorously defined. Our statistical classification may therefore have
incorrectly assigned some tumours to an evolutionary path that does not reflect
their true nature. Additionally, there is the possibility that a single prostate
may contain tumour cell subpopulations following both trajectories. Although
there was no evidence for this in the data sets we analysed, the most appropriate
way to classify such cases remains undetermined. It is also likely that there are
other evolutionary paths yet to be discovered, and so assigning these tumours to
either of the two evotypes we describe here is incorrect. Another caveat is that
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our patient cohort predominantly consists of men of White-European ancestry
treated in the UK, Australia and Canada, and therefore does not represent the
global population. Therefore, while our findings are robust within the context
of our study population, caution is warranted when extrapolating these results
to other ethnic groups.
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5. Figure legends

Figure 1. Co-occurrence of genetic alterations distinguishes three metaclus-
ters. After performing feature extraction, we calculated a discrimination score
quantifying the relevance of each feature in predicting relapse (green heatmap).
Fourteen features (red) were used as inputs for k-medoid clustering with 11
clusters. The medoids of each cluster were used as inputs to hierarchical clus-
tering using all features, which revealed three main metaclusters, MC-A, MC-B1
and MC-B2, with different profiles as indicated by the dendrogram. The main
heatmap shows the medoid feature values for the patients in each cluster, or-
dered by the hierarchical clustering (scale to right). The number of samples
in each cluster is given below the corresponding cluster medoid. Metacluster
colours are denoted by text above dendrogram.

Figure 2. Classification by proximity of DNA breakpoints to AR binding
sites reveals common genetic alterations. (A) The proportion of DNA break-
points within 20 kilobases (kb) of an AR binding site for each patient, normalised
by the number of proximal breakpoints expected by chance (vertical axis). Tu-
mour samples are ordered according to this normalised proportion (horizontal
axis). Classes were determined based on whether the tumour displayed more
(Enriched) or fewer (Depleted) proximal breakpoints than expected, or there was
no statistical significance (Indeterminate). (B) Heatmaps of genomic features
for each patient, ordered as above. Statistically significant relationships for the
three classes are shown in the ‘Relationship’ column, where E, D and I indicate
the Enriched, Depleted and Indeterminate classes respectively. Braces indicate
no relationship between the enclosed classes, but they both display significant
differences to the remaining class. Relationships are ordered so the leftmost
class(es) are those showing significantly greater proportion of the corresponding
genetic alteration. For Bernoulli variables, significance was determined with
Chi-squared test followed by a Fisher exact test for each pairwise relationship,
for continuous variables a Kruskal-Wallace test with Tukey’s HSD was used
(FDR adjusted p < 0.05 for all tests).

Figure 3. Samples can be differentiated by order of genetic alterations.
Phylogenetic trees from individual tumours were used to estimate two ordering
profiles using a Plackett-Luce (P-L) mixture model. Tumours were assigned
to Ordering-I (top) or Ordering-II (bottom). Horizontal box and whisker plots
(5th/25th/75th/95th percentiles) represent the spread of bootstrap estimates of
the negative Plackett-Luce coefficient (αi) for the ith genetic alteration (x-axis).
Here, the lower the value of αi, the earlier the genetic alteration is likely to occur.
The y-axis shows the proportion of samples in the mixture component in which
the genetic alteration was observed. Colours of the box and whiskers denote
the chromosome on which the aberration occurred. Genetic alterations were
annotated if they were identified as an ETS fusion, occurred with a proportion
above 0.25 or were identified in the earliest 5 events; these have chromosomal
regions given with notable driver genes in the region given in brackets where
applicable. Other genetic alterations were not annotated and are displayed with
reduced transparency.
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Figure 4. Integrating results reveal multiple evolutionary trajectories con-
verging to two disease types with different prognosis. (A) A comparison of how
tumours were classified in each of the three previous methods. Each side of the
triangle corresponds to a classification method, wherein each bar in the triangle
denotes a group identified by that method. Values at the intersections of each
bar show the number of tumours which were consistent to both classes. Val-
ues outside the main triangle denotes the total number of tumours in that class.
Colours are those used in previous figures. (B) A schematic of the evotype model
for prostate cancer evolution. (C) The prevalence of each genetic aberration in
each evotype, as determined using the majority consensus of the three classi-
fiers. Aberrations with significant differences between evotypes are coloured by
the evotype displaying the highest proportion (FDR adjusted p < 0.05, Fisher
Exact Test). (D) A surface plot showing the probability density of a tumour
being assigned to the Canonical-evotype relative to the number of aberrations.
Common modes of evolutionary progression follow regions of high density as the
number of aberrations increase. Exemplars of such routes are indicated by black
dashed lines. These are labelled according to their likely evotype, a behavioural
descriptor, and notable driver genes affected by aberrations that are prevalent
in the areas along the path to convergence (Figures S7 and S8).

Figure 5. Frequency of AR-induced DNA loops associated with DSBs is
associated with CHD1 loss and evotype status. A) A simplified schematic of AR
binding to AR-binding sites (ARBS), where CHD1 protein is part of a complex
that induces DNA loop formation and subsequent DSBs, denoted by the red
X. B) A notched box and whisker plot shows that adjacent proximal ARBS
pairs that are required for DNA loops to form were observed less frequently
in the vicinity of breakpoints in CHD1 -deficient tumours than CHD1 wild-
type tumours. C) DSB-associated ARBS pairs also occurred less frequently
in tumours of the Alternative-evotype than the Canonical-evotype, even when
CHD1 is unaffected. D) P-values were determined through a one-sided Mann-
Whitney U-test.

Figure 6. Utility of evotype model in survival analysis. Kaplan-Meier plots
for: (A) the evotypes, (B) 20 tumours with greatest tumour mutational bur-
den (High TMB) against the remainder (Low TMB), (C) ISUP Gleason grade,
(D) 10 tumours with highest TMB for each evotype (High-TMB Alternative
and High-TMB Canonical) against the remainder (Low-TMB Combined), (E)
The ISUP Gleason grade ≥ 3 tumours in the High TMB evotype classes (Evo-
TMB-Gleason High) and the remainder (Evo-TMB-Gleason Low), (F) Alter-
native evotype tumours in MC-A (MC-A/Alternative), Canonical-evotype tu-
mours in MC-B2 (MC-B2/Canonical) and the remainder (MC-B1/Combined),
and (G) ISUP Gleason grade ≥ 3 tumours of either MC-A/Alternative or MC-
B2/Canonical (MC-A/B2-Gleason High Combined) against the remainder MC-
A/B1/B2-Gleason Low Combined. For each comparison we provide the hazard
ratio (HR) and p-value calculated with Cox proportional hazard test, p-value
adjusted for Gleason grade, TMB and age-at-diagnosis if they are not used to
create the sets used in the comparison (padj), and Harrell’s c-index. In D and
F, these values are given for the denoted class in comparison to the remainder
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only. End point is time to biochemical recurrence.

STAR⋆METHODS

RESOURCE AVAILABILITY

Lead contact. Further information and requests for resources and reagents should
be directed to and will be fulfilled by the lead contact, David C. Wedge, Ph.D.
(david.wedge@manchester.ac.uk)

Materials availability. There are no tangible materials produced by this study
that are available for distribution.

Data and code availability. Sequencing data generated for this study have been
deposited in the European Genome-phenome Archive with accession code EGAS00001000262.
Processed data and code used in this manuscript is available at https://

github.com/woodcockgrp/evotypes_p1/ and via https://doi.org/10.5281/
zenodo.10214795.

Experimental model and study participant details

Cancer samples from radical prostatectomy, and matched blood controls,
were collected from 205 patients treated at the Royal Marsden NHS Foundation
Trust, London, at the Addenbrooke’s Hospital, Cambridge, at Oxford University
Hospitals NHS Trust, and at Changhai Hospital, Shanghai, China, as described
previously33,34. Ethical approval was obtained from the respective local ethics
committees and from The Trent Multicentre Research Ethics Committee. All
patients were consented to ICGC standards. 159 of the samples passed stringent
quality control for copy number profiles and structural variants, and were used
in this study.

METHOD DETAILS

DNA preparation and DNA sequencing

DNA from frozen tumour tissue and whole blood samples (matched controls)
was extracted and quantified using a ds-DNA assay (UK-Quant-iT™ PicoGreen®

dsDNA Assay Kit for DNA) following the manufacturer’s instructions with
a Fluorescence Microplate Reader (Biotek SynergyHT, Biotek). Acceptable
DNA had a concentration of at least 50ng/µl in TE (10mM Tris/1mM EDTA),
and displayed an optical density 260/280 (OD260/OD280) ratio between 1.8-2.0.
Whole Genome Sequencing (WGS) was performed at Illumina, Inc. (Illumina
Sequencing Facility, San Diego, CA USA) or the BGI (Beijing Genome Institute,
Hong Kong), as described previously33,34, to a target depth of 50X for the can-
cer samples and 30X for matched controls33. The Burrows-Wheeler Aligner35

(BWA) was used to align the sequencing data to the GRCh37 reference human
genome.

14



Generation of summary measurements

We generated 123 summary measurements from the WGS data using a num-
ber previously published algorithms, so we briefly outline those below. These
are grouped into measurements that were generated with similar or related
algorithms; default parameters were used unless otherwise stated. The pro-
cessed data is given alongside the code at https://github.com/woodcockgrp/
evotypes_p1/.

Numbers of SNVs, indels and structural variants - 10 fields. SNVs, insertions
and deletions were detected using the Cancer Genome Project Wellcome Trust
Sanger Institute pipeline as described previously33. In brief, SNVs were de-
tected using CaVEMan with a cut-off ‘somatic’ probability of 0.95. Insertions
and deletions were called using a modified version of Pindel36. Variant allele
frequencies of all indels were corrected by local realignment of unmapped reads
against the mutant sequence. Structural variants were detected using Brass33.
Total numbers of SNVs, indels and rearrangements per sample were calculated
(1 field each), as were types of indel (3 fields: insertion, deletion and complex)
and structural variants (4 fields: large insertions or deletions, tandem duplica-
tions and translocations).

Percentage genome altered - 3 fields. This was calculated as the percent total
of the genome that is affected by CNAs37. We also recorded the percentage
affected by clonal and subclonal CNAs (i.e. CNAs with CCF=1 and CCF<1
respectively).

Ploidy - 1 field. We adopt the same approach as detailed previously11, where
whole genome duplicated samples were those which had an average ploidy, as
identified with the Battenberg algorithm, greater than 3. These samples were
designated as tetraploid and assigned a value of 1 in our data set, otherwise the
sample was diploid (assigned 0).

Kataegis - 1 field. Kataegis was identified using SeqKat https://github.com/
cran/SeqKat. The datum was set to 1 if kataegis was identified and 0 if not.

ETS status - 1 field. A positive ETS status was assigned if a DNA breakpoint
involving ERG, ETV1, ETV3, ETV4, ETV5, ETV6, ELK4, or FLI1 and partner
DNA sequences was detected and the fusion was in-frame. The datum was set
to 1 if there was ETS fusion detected or 0 if not.

Gene fusions - 2 fields. We reported the number of in-frame gene fusions in the
sample (counts) and if there was a gene fusion affecting the TMPRSS2/ERG
genes (1 or 0)
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Breakpoints - 14 fields. Breakpoints were identified with Chainfinder38 version
1.01. Total number of breakpoints, total number of chained breakpoints (i.e.
where the breakpoints are interdependent), number of chains, the number of
breakpoints in the longest chain, the number of breakpoints involved in the
chained events, and the maximum number of chromosomes involved in a chain
were recorded as integer counts (6 fields). We also calculated the proportion
of all breakpoints that were in chained events (1 field - [0, 1]) and the average,
median and maximum number of chromosomes involved in a chain (3 fields -
[0,∞]). Information about the type of breakpoint was also recorded, includ-
ing the number of deletion bridges, intra-chromosomal and inter-chromosomal
events (3 fields - counts) and the inter-chromosomal to intra-chromosomal ratio
(1 field - [0,∞], set to zero if there were no intra-chromosomal breakpoints).

Mutated driver genes - 26 fields. A set of driver genes were identified from our
previous publication11. Using the CaVEMan output, we determined any non-
synonymous mutations in the exonic regions of these genes as a mutated driver
gene; the corresponding field was assigned a value 0 if no such mutations were
identified and 1 if there were.

Copy number alterations - 60 fields. We followed our previous approach11 to
identify consistently aberrant regions. A permutation test was developed where
CNAs detected from each sample were placed randomly across the genome and
then the total number of times a region was hit by each type of CNA in this
random assignment was compared to the number of times a region was hit
in the actual data. This process was repeated 100,000 times and recurrent (or
enriched) regions were defined as having a false discovery rate (FDR) of less than
0.05. This was performed separately for gains, loss of heterozygosity (LOH) and
homozygous deletions (HD). We identified small regions initially and these were
amalgamated into larger regions defined as the regions between chromosomal
positions when the difference between the number of CNAs identified in the
data and expected frequency (if this process were uniformly random) dropped
to zero. For each sample, if a breakpoint corresponding to a gain, LOH or HD
occurred in each region, then the respective datum was set to 1, and 0 otherwise.

Telomere lengths - 1 field. Telomere lengths were estimated as described in our
previous publication39. A mean correction was applied to batches to compensate
for the effects of a change in chemistry during the project, therefore the value
is continuous in the range [0,∞].

Chromothripsis - 4 fields. The identified copy number breakpoints were seg-
mented in inter-breakpoint distance along the genome using piecewise con-
stant fitting (pcf from the R package copynumber v1.22.0). Regions with
a density higher than 1 breakpoint per 3Mb were flagged as high-density re-
gions. A chromothripsis region was then defined as a high-density region with
a number of copy number breakpoints N > 15; a non-random segment size
distribution (Kolmogorov-Smirnov test against the exponential distribution,
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P < 0.05); at most three allele-specific copy number states covering more than
min(1,−0.006N + 1.1) fraction of the region; and the proportion of each type
of structural variant is random with equal probability PTD = PDel = PH2Hi =
PT2Ti = 0.25 (multinomial test P > 0.01), where TD=tandem duplication,
Del=deletion, H2Hi=head-to-head inversion and T2Ti=tail-to-tail inversion.
We recorded the presence or absence of chromothripsis (1 or 0 respectively),
the proportion of all breakpoints in chromothripsis events ([0, 1]), the number
of chromothripsis events in each sample (counts) and the size of the largest
chromothripsis region (counts).

QUANTIFICATION AND STATISTICAL ANALYSIS

In this section we aim to provide a largely non-technical overview of each
of our methods we used to perform the analysis in the study, followed by more
technical description for those who wish to fully understand and reproduce our
methodology.

Statistics

Prior to the study we predetermined we would use Fisher’s Exact Test for
2x2 contingency tables and Chi-squared test for contingency tables of greater
dimensionality and this is applied throughout. Associations between genetic
alterations and ARBS clusters was identified using one-tailed Fisher Exact Test
with p <0.05, corrected for multiple testing using the False Discovery Rate.
Relationships were determined dependent on the variable type: for Bernoulli
variables, significance was determined with Chi-squared test followed by a one-
tailed Fisher exact test for each pairwise relationship; one-tailed tests were
used as a two-tailed test would not have revealed the direction of the relation-
ship. For continuous variables a Kruskal-Wallace test with Tukey’s HSD was
used (adjusted p <0.05 for all tests). Significance of Depleted groups across
countries clustering together was determined using the Approximately Unbi-
ased Multiscale Bootstrap procedure. Associations between evotypes and indi-
vidual genetic alterations was conducted with a two-tailed Fisher Exact Test,
corrected for multiple testing using the False Discovery Rate. The associations
with ARBS pairs were established with a one-sided Mann-Whitney U-test with
p <0.05. Statistics associated with the Kaplan-Meier plot were calculated using
log-rank methods, and significance level was set at 0.05. Cramer’s V statistic
was used to determine the strength of the associations in between the cluster
assignments. As we only claim an association between patients assigned to MC-
A (Metaclusters), the Depleted group (ARBS) and Ordering II, we combined
metaclusters MC-B1 and MC-B2 into one class and the Enriched and Depleted
ARBS groups into one class for this comparison.

Unsupervised feature extraction

The summary measurements detailed above form the data set for further
analysis. However, it contains a number of different data types (binary, propor-
tions, continuous, integer counts), it is high dimensional relative to the number
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of patients, and it undoubtedly contains highly correlated, cooccurring or equiv-
alent events that may confound the analysis. To address this we performed a
feature extraction preprocessing step prior to the analysis. As our downstream
analysis will be investigating genomic patterns that are indicative of evolution-
ary behaviour, it is critical that the results of these analyses can be easily
interpreted. This necessitates methodology where the links between input vari-
ables that correspond to the features are identifiable. We therefore opted for a
latent feature approach as the basis of our feature extraction as these can pro-
vide an interpretable representation of the relationships between the inputs40.
Latent feature (or latent variable) analysis provides a way of reformulating the
data into a reduced set of features that encapsulate the underlying relationships
between the original inputs. The data can be recast in terms of these latent fea-
tures, which is known as the latent feature representation, and the downstream
analysis performed directly on this.

There have been many latent feature models proposed, each with associated
inference methods for the features (a process called feature learning). These
included methods such as non-negative matrix factorisation41, Bayesian non-
parametric methods42 and neural networks43. However, none of these were
able to fulfil all of our requirements above. We therefore created a bespoke
method for feature extraction on this data set.

Neural networks for feature extraction

We utilised a Restricted Boltzmann Machine44 (RBM) neural network as
the basis of our feature learning method. We chose to use an RBM as it is ex-
tensible to multiple data types45,46 and can provide interpretable hidden units,
with appropriate modifications47. An RBM is functionally similar to another
type of neural network architecture called an autoencoder43. Autoencoders are
a class of network types that compress (encode) the data into a transformed
representation (the code), and then decompress (decode) in an attempt to re-
construct the original data. A measure of the error between the reconstruction
and the original data is used to update the parameters through backpropaga-
tion. Typically the code layer contains fewer units than the input/output layers
and this bottleneck means that the learning process attempts to compress the
information in the data set into a more a compact representation in the code.

In contrast, the basic RBM unit consists of only two layers, known as the
visible and the hidden layers. The RBM is formulated as a probabilistic network,
meaning each unit represents a random variable rather than a fixed value. As
such, the hidden layer performs a similar function to the code layer in the
autoencoder, albeit with a probabilistic representation. It has been shown that
the RBM is equivalent to the graphical model of factor analysis48 and so each
hidden unit can be interpreted as a latent feature. Another distinction from the
autoencoder formulation is that there is only one weight matrix, which used to
update both the visible and hidden layers. This means that the information on
the transformation from visible units (input representation) to the hidden units
(feature representation) is encapsulated in this matrix. Hence we also refer to
it as the input-feature map.
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The Restricted Boltzmann Machine

The standard RBM formulation44 consists of Bernoulli random variables for
all visible v = {vi} and hidden units h = {hi}, where vi, hj ∈ {0, 1}, with
respective biases a = {ai},b = {bj}; ai, bj ∈ (−∞,∞), and a matrix of weights,
W ;wij ∈ (−∞,∞). Training of an RBM is based on minimising the free-energy
of the visible units, as a low free-energy corresponds to a state where the data is
explained well through the model parameterisation. Energy-based probability
distributions take the form

P (v,h) =
e−E(v,h)

Z
, (1)

where E(v,h) is the energy function and Z is a normalising factor. This is the
probability of observing the joint v,h pair. The energy function in an RBM is
given as

E(v,h) = −aTv − bTh− vTWh. (2)

In this formulation,

Z =
∑
v

∑
h

e−E(v,h), (3)

which is difficult to calculate due to the number of possible combinations of v
and h.

As we want training to be conducted with respect to the energy at the visible
units, we need to marginalise over h in Equation 1 to calculate the likelihood of
observing the visible unit corresponding to a single data sample dk from data
set D = {dk, k = 1, 2, . . . ,K}.

L(θ|v = dk) =
1

Z

∑
h

e−E(dk,h), (4)

where θ ∈ {{ai}, {bj}, {wij}} is the full parameter set. To simplify notation,
we write L(θ|v = dk) as L(dk) with no loss of generality. To perform training
through gradient descent, we need to calculate the gradient of the negative
log-likelihood for each parameter we wish to update, ∂(− logL(dk))/∂θ. The
partial derivative of the logarithm of Equation 4 takes the form

∂

∂θ
(− logL(dk)) =

∂

∂θ

(
log

∑
h

e−E(dk,h)

)
− ∂

∂θ

(
log

∑
v

∑
h

e−E(v,h)

)
(5)

=
∑
h

P (h|v = dk)
∂E(dk,h)

∂θ
−

∑
v

∑
h

P (v,h)
∂E(v,h)

∂θ
.(6)

We then calculate the expected values using the entire training set

ED

[
∂

∂θ
(− logL(dk))

]
= EP (h|D)

[
∂E(v,h)

∂θ

]
−EP (v,h)

[
∂E(v,h)

∂θ

]
, (7)

which can be used to update the model parameters via gradient descent. The
EP (h|D) term corresponds to the expected energy state invoked from observing
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the data samples, and the EP (v,h) is the expected energy state of the model
configurations, both contingent on the current model parameters. As such,
they are often called Edata and Emodel respectively. Calculating the partial
derivatives with respect to the parameters gives

∂

∂wij
(− logL(dk)) = E[vihj |v = dk]− E[vihj ], (8)

∂

∂ai
(− logL(dk)) = E[vi|v = dk]− E[vi], (9)

∂

∂bj
(− logL(dk)) = E[hj |v = dk]− E[hj ], (10)

which are used to construct the update equations

Wnew ← W old + ν
(
Edata[vTh]− Emodel[v

Th]), (11)

anew ← aold + η
(
Edata[v]− Emodel[v]), (12)

bnew ← bold + η
(
Edata[h]− Emodel[h]), (13)

for learning rates ν and η. The Edata values can be estimated easily by taking
the arithmetic mean.

The Emodel terms are generally difficult to calculate as they involve summa-
tion over all possible configurations of v and h. An alternative is to perform
Gibbs sampling using the conditional probabilities as these are far easier to cal-
culate due to the conditional independence between units in the same layer. We
can estimate the conditional probability of values of the hidden layer from the
visible layer and vice versa thus

P (h|v) =
∏
j

P (hj |v), (14)

P (v|h) =
∏
i

P (vi|h). (15)

The form of P (hj |v) and P (vi|h) depends on the activation function. This func-
tion that inputs the products of the units in one layer and their corresponding
weights, and outputs a probability that a unit is active. In this study, we use a
logistic sigmoid (or simply “sigmoid”) function, which is given by

σ(x) =
1

1 + e−x
, (16)

where x is dependent on the layer we are sampling, and so the individual hidden
and visible probabilities can be written as

P (hj |v) = σ(bj +
∑
i

viwij), (17)

P (vi|h) = σ(ai +
∑
j

hjwij). (18)
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A sample is drawn by setting the corresponding unit to 1 with probability
given by the value for P (hj |v) or P (vi|h) as appropriate. These can then
be used to calculate estimates for P (v) and P (h) by marginalisation over the
conditional variable. In practice a full Gibbs sample every update iteration
would be prohibitively slow and so we used an approximation called contrastive
divergence 44, in which the Gibbs sampler is initialised using the input data and
a limited number of Gibbs steps are performed. In our implementation we use
one contrastive divergence step (i.e. CD(1)), and so the data (or mini-batches
of the data) is presented as a matrix and used to sample the hidden unit values,
which are then used to update the values of the visible units. These values
are used to update the network parameters using stochastic gradient descent
(SGD)49.

During training, the results of these updates are stored in three matrices that
correspond to the weights as well as the network representation of the tumour
data at the visible and hidden layers. These matrices correspond to the network
reconstruction of the data (visible layer, V) the latent feature representation of
the data (hidden layer, H), and the input-feature mapping (weights, W). When
the network is trained, these can be extracted and utilised in the analysis.

Modifications to the base RBM

We made a number of simple modifications to the base RBM described above
to ensure the feature representation was interpretable, generalisable, stable and
reproducible. These modifications are described below.

Data Integration. Our data consisted of multiple different modalities; unlike
conventional multiomics approaches which have a large number of a data points
from a small number of sources, we have a small number of data points from
a large number of sources. As such, data integration needed to be carefully
considered. The RBM can be modified to incorporate inputs of multiple modal-
ities, sometimes through modification of the energy function50,51. However, we
decided to avoid this complication and standardise all our inputs by ranking
all integer and continuous variables prior to rescaling to [0, 1]. Specifically, our
transformations were

• Binary – set as {0, 1},

• Integer – rank and scale to [0, 1],

• Continuous – rank and scale to [0, 1].

For the integer and continuous cases we used ranking as this decouples the value
from the distribution of the inputs and after scaling to [0, 1], the new value can
be interpreted as the probability that the corresponding visible unit is active.
As such, all inputs are treated equally in the machinations of the RBM. These
transformations do not affect the hidden units, which remain a Bernoulli random
variable, hi ∈ {0, 1}.
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Non-negative weights. Neural networks are considered as black-box approaches
as the transformations they perform are highly complex. To improve inter-
pretability of the network machinations we imposed a non-negativity constraint
to the weight updates, specifically by penalising negative values. We use an ap-
proach in which a quadratic barrier function is subtracted from the likelihood
for each negative weight47. Mathematically, this is written as

L(dk)nonneg = L(dk)− α

2

∑
i

∑
j

f(wij), (19)

where α denotes the strength of the penalty, and

f(x) =

{
x2, if x < 0,

0, otherwise.
(20)

This leads to the update rule

Wnew ←W old + ν
(
Edata[vTh]− Emodel[v

Th]− αW {-}), (21)

where W {-} is a matrix containing the negative entries of W , with zeros else-
where. This formulation is equivalent to a L2-norm penalty on the negative
weights, and so penalises more strongly negative weights to a greater degree.
When used in the training scheme, this coerces network weights to non-negative
solutions, simplifying the interpretation of the input-feature map. This can be
considered to be a non-linear extension of non-negative matrix factorisation41,
and similarly can be used to represent the underlying structure of the data by
its parts, which is synonymous with latent features here.

As weights can no longer trade off against each other with counteracting
weights of opposing signs, this means that the lowest free-energy state corre-
sponds to a state with minimal redundancy and so during training the hidden
units compete to convey information about a single input52. This means that
the input will only be represented in small number of latent variables, so when
the initial number of hidden units is of similar order to the number of data in-
puts, this results in some of the biases or weights converging to a negligible value,
and the corresponding hidden layer activations converge to an arbitrary fixed
value. The latter are then called dead units. This is of fundamental importance
to our method as it can be used as an estimate of the intrinsic dimensionality
of the data.

Hidden unit pruning. During training, we prune the dead units to improve the
speed of the algorithm. However determining dead units is not straightforward
in a probabilistic network such as the RBM as the values in the network at
each state will vary stochastically. To circumvent this, we apply an L1/2-norm
penalty on the hidden unit activations, which penalise a non-zero activation
value53. This coerces the values for all patient samples to be zero, rather than
some arbitrary value, and these can then be easily identified and removed with a
thresholding approach. This penalty function is calculated over all training data
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samples, so for consistency with Equation 4 we can formulate the likelihood for
each sample as

L(dk)activ = L(dk)− β

K

∑
k

∥f(yk)∥1/2 , (22)

where f(yk) = P (h|vk) and β is a parameter describing the strength of this
penalty. We calculate the gradient of the additional likelihood term with respect
to each of the hidden unit biases, which is given as

∆b
(L1/2)

j =
1

K

∂
∑

k ∥P (h|vk)∥1/2
∂bj

, (23)

=
1

2

∑
k

exp(−bj −
∑

i vikwij)

|1 + exp(−bj −
∑

i vikwij)|3/2
. (24)

We can then write the vector of gradients for all hidden unit biases as ∆b(L1/2).
The corresponding update rule can therefore be written as

bnew ← bold + η
(
Edata[h]− Emodel[h])− β∆b(L1/2). (25)

In our training algorithm, we prune dead units every 50 iterations after the first
1000 iterations.

Sparsity. Sparsity is a desirable property for latent space representations, as it
means that the information is conveyed in a concise form. The penalty measure
defined in Equation 22 introduces sparsity as it penalises hidden units which
are highly active thus coercing the network toward a sparse configuration53.
Further sparsity measures were not used in training as the weight matrix, which
defines the input to feature mapping, will be filtered at a later stage.

Overfitting. A concern with any neural network formulation is the tendency to
overfit the data, which in this application would lead to a feature set that was not
representative of the true underlying structure, and therefore not generalisable.
To mitigate this, we employed a number of countermeasures, namely

1. DropConnect,

2. Max-norm regularisation,

3. Bootstrap aggregating,

4. Early Stopping.

With DropConnect54, a predetermined proportion of weights in the network
are randomly set to zero with uniform probability at each training iteration.
This helps prevent overfitting by temporarily disrupting correlations between
features, so they are more likely to learn features that are independent of the
state of other features.

When using max-norm regularisation55, we set an absolute value on the
norm of each weight vector that form the input to a single hidden unit. If a vec-
tor becomes too large then we rescale the vector so that it obeys the constraint.
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It is possible for non-negative weights to continue increasing throughout training
as the binary nature of some inputs means that when present they were already
in the maximal output of the sigmoid activation function so the precise value
is irrelevant. Max-norm regularisation prevents this occurrence and facilitates
comparison between weight matrices of different runs.

For bootstrap aggregating56 (bagging), multiple networks with the same
initial architecture were trained on subsets of the data and the outputs amalga-
mated. In our feature learning representation, we extracted the weight matrix
from each of the networks and merged them according to the cosine distance
between features.

Finally, when implementing early stopping57 we need to compare the per-
formance of the network on the training set to the performance on an unseen
validation set. If the network performs similarly on the training and validation
sets then it is a good indicator that it will return generalisable outputs. Be-
ginning with the subsets extracted for ensemble learning, we use data omitted
when the subset was sampled as the validation set, which is propagated through
the network. As the RBM is formulated as an energy-based model, early stop-
ping is predicated by comparing the free energy in the training set to that in
the validation set58. In general overfitting-mitigation strategies, the free energy
(or reconstruction error in error-based networks) is monitored and if the free
energy in the training set decreases while the free energy in the validation set
increases, that indicates overfitting is occurring and training is stopped. We
adopted a more stringent approach in which the samples in the training set are
randomly assigned to subsets of equal size to the validation set and so the free
energy values are directly comparable. During training, if the free energy of
the validation set increases above the largest free energy of the training subsets
for an extended period (10 iterations) then training is stopped and the entire
run is discarded and training repeated. This means that the network is able to
model unseen data (the validation set) as well as it does the training set when
accounting for variation in energy values resulting from sampling the validation
set. If overfitting is suspected, the entire run is discarded and another training
run performed; as our main objective is to derive the input-feature mapping via
the weight matrix, this avoids the situation in which we retain a weight matrix
that has not had time to converge to a solution consistent with those runs that
completed without interruption.

Convergence to global solution. As we are training multiple networks and amal-
gamating the results, it is important that each network converges to the global
solution or the results will be incongruous. Furthermore, as the RBM is trained
by stochastic gradient descent, it is possible that the algorithm may get stuck in
a local optima. To minimise the chance of this occurrence, we used the cyclical
learning rate scheme59, in which learning rates for each of the variables oscillates
between zero and a maximal value throughout training. The maximal value is
subject to decay so that the maximal training rate will diminish throughout
training to zero. This approach has been shown to help convergence to the
global solution and has the advantage that the learning rate parameters do not
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input: set of weight matrices from each network run
concatenate weight matrices into matrix W ;
set low magnitude weights to zero;
set similarity threshold τ = 0.5;
Initialise matrix M with number of rows and columns equal to number
of inputs;

Initialise empty feature matrix F ;
for i=1 to number of inputs do

set ith row of M equal to mean of all rows of W where the ith

weight > 0
end
calculate pairwise cosine similarity matrix S from M ;
while number of rows in S¿0 do

read in the first row of S as the current similarity vector s;
identify all j where sj > τ ;
add the mean of all M [j, :] as a row to F ;

remove jth rows from S and M ;

end
rescale all rows in feature matrix F by max-norm;

Algorithm 1: Pseudocode for amalgamating weight matrices

need to be tuned59.

Amalgamation of feature matrices

Each individual network run provides a similar, but not identical, weight
matrix. As such, weight matrices from each network run were amalgamated
and filtered to form the final input-feature map. Numbers of features, the
inputs they represent, their magnitude and order would not necessarily occur
the same in each network and so we constructed an algorithm based on the
cosine similarity, is which depicted in Figure S10, and outlined in Algorithm 1.
Note that Low magnitude weights were those less than 50% of the maximum
weight value for each hidden unit.

Synthetic data

To investigate whether our RBM network can identify true associations in
data of multiple types, we trained the network on a synthetic data set with
known associations and data generation methods. The values in the synthetic
data set were generated from function that encapsulated simple relationships
when applied to binary latent variables; we also utilised various statistical distri-
butions on top of these relationships to model types like proportions and counts
that we might find in the real data set. The synthetic data is constructed in
seven ‘blocks’ to aid interpretation. In the first six blocks, 5 latent variables
are mapped to 10 observed variables in exactly the same way. The difference
between the blocks is the statistical distributions used to generate the values in
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the data. The final block consists of latent variables mapped to distributions
from all the previous types. In total there were 72 ‘observed variables’ generated
from 34 ‘latent variables’. To generate the data for a single synthetic sample,
the 34 binary latent variables were sampled uniformly with probability of the
latent variable being 1 set at 0.5. This was done for 200 synthetic samples to
create the synthetic data set.

Latent variable to observed variable mappings

We denote the ith simulated observed variables by vi and the jth latent
variables as lj . The first block consists of a simple binary mapping designed to
determine if the network can extract the correct relationships with no sources
of noise. These relationships are written as

v1 = l1 # a one to one map (26)

[v2, v3, v4, v5] = l2 # a one to many map (27)

[v6, v8] = l3 # one to many map that shares v8 with l4 mapping
(28)

[v7, v8] = l4 # one to many map that shares v8 with l3 mapping
(29)

v9 = l5 # one to one map that is inverse of v10 (i.e. 1− v10)
(30)

v10 = 1− v9 # one to one map that is inverse of v9 (i.e. 1− v9)
(31)

From this we model several different types of unambiguous relationships as
described on the right, including logical relationships AND (v2, v3, v4, v5), OR
(v8) and NOT (v10).

We build the next five blocks on exactly the same relationships. Block
2 utilises introduces noise into the mapping, requiring a uniformly sampled
random value Unif([0, 1]) to be greater than a threshold t = 0.25 as well as the
latent variable being equal to 1 for the relationship to be passed through to the
observed variable(s). Unif([0, 1]) > t returns 1 if the condition if fulfilled and 0
otherwise. Block 2 mappings can be written thus:

v11 = l6 ∗ (Unif([0, 1]) > t) (32)

[v12, v13, v14, v15] = l7 ∗ (Unif([0, 1]) > t) (33)

v16 = l8 ∗ (Unif([0, 1]) > t) (34)

v17 = l9 ∗ (Unif([0, 1]) > t) (35)

v18 = (l8 = 1 OR l9 = 1) ∗ (Unif([0, 1]) > t) (36)

v19 = l10 = 1 ∗ (Unif([0, 1]) > t) (37)

v20 = 1− v19 (38)
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Note that where the latent variable maps to many observed variables, a random
value is sampled separately for each observed value so they are correlated rather
than identical.

Block 3 reflects binary to continuous value [0,1] relationships in which the
observed value(s) are zero if the latent value is zero but take a uniformly dis-
tributed random value [0,1] if the latent variable is 1. The mappings therein
can be written as:

v21 = l11 ∗Unif([0, 1]) (39)

[v22, v23, v24, v25] = l12 ∗Unif([0, 1]) (40)

v26 = l13 ∗Unif([0, 1]) (41)

v27 = l14 ∗Unif([0, 1]) (42)

v28 = (l13 OR l14) ∗Unif([0, 1]) (43)

v29 = l15 ∗Unif([0, 1]) (44)

v30 = 1− v29 (45)

Block 4 introduces sampling from a parametric probability distribution, namely
the beta distribution Beta(a, b), to reflect proportions and other continuous
values bounded by 0 and 1. Here we aim to model situations where there are
generally lower or higher values depending on the status of the latent variable.
Therefore the main difference between this block and previous ones is that
the observed value is sampled from one of two differently parameterised beta
distributions depending if the latent variable is 1 of 0. The mappings are:

v31 = l16 ∗ Beta(5, 1) + (1− l16) ∗ Beta(1, 5) (46)

[v32, v33, v34, v35] = l17 ∗ Beta(5, 1) + (1− l17) ∗ Beta(1, 5) (47)

v36 = l18 ∗ Beta(5, 1) + (1− l18) ∗ Beta(1, 5) (48)

v37 = l19 ∗ Beta(5, 1) + (1− l19) ∗ Beta(1, 5) (49)

v38 = (l18 OR l19) ∗ Beta(5, 1) + (1–l18ORl19) ∗ Beta(1, 5) (50)

v39 = l20 ∗ Beta(5, 1) + (1− l20) ∗ Beta(1, 5) (51)

v40 = 1− v39 (52)

Block 5 is similar to block 3, where the observed value(s) are zero if the latent
feature is zero. However, when the latent feature is 1 then the observed value
is sampled from a Poisson distribution to simulate count data. All observed
variables are rescaled by the maximum of ṽi = vi/max(vi), but we leave this
step out of the mapping equations below for simplicity and to aid comparison
with the other blocks. We therefore write the mappings as:
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v41 = l21 ∗ Poiss(10) (53)

[v42, v43, v44, v45] = l22 ∗ Poiss(10) (54)

v46 = l23 ∗ Poiss(10) (55)

v47 = l24 ∗ Poiss(10) (56)

v48 = (l23 OR l24) ∗ Poiss(10) (57)

v49 = l25 ∗ Poiss(10) (58)

v50 = max(v49)− v49 (59)

In Block 6 we aim to model the situation where a perturbation to a cellular
process elicits different levels of counts (such as gene expression in mRNA data
for instance). The format is similar to block 4 but with Poisson distributions
used instead of beta distributions. We adopt the same rescaling scheme as used
in block 5.

v51 = l26 ∗ Poiss(30) + (1− l26) ∗ Poiss(10) (60)

[v52, v53, v54, v55] = l27 ∗ Poiss(30) + (1− l27) ∗ Poiss(10) (61)

v56 = l28 ∗ Poiss(30) + (1− l28) ∗ Poiss(10) (62)

v57 = l29 ∗ Poiss(30) + (1− l29) ∗ Poiss(10) (63)

v58 = (l28 OR l29) ∗ Poiss(30) + (1− l28ORl29) ∗ Poiss(10) (64)

v59 = l30 ∗ Poiss(30)) + (1− l30) ∗ Poiss(10) (65)

v60 = max(v59)− v59 (66)

Finally we include latent variables that are mapped to generating functions of
more than one of the types in the blocks above. Simulated count data is again
rescaled as before. The maps are given as

[v61, v62] = l31 ∗ [1, (Unif([0, 1]) > t)]− (1− l31) ∗ [0, 0] (67)

[v63, v64] = l32 ∗ [Unif([0, 1]),Beta(5, 1)] + (1− l32) ∗ [0,Beta(1, 5)]
(68)

[v65, v66] = l33 ∗ [Poiss(10),Poiss(30)] + (1− l33) ∗ [0,Poiss(10)]
(69)

[v67, v68, v69, v70, v71, v72] = l34 ∗ [1, (Unif([0, 1]) > t),Unif([0, 1]),Beta(1, 5),Poiss(10),Poiss(30)]

+ (1− l34) ∗ [0, 0, 0,Beta(5, 1), 0,Poiss(10)] (70)

RBM results on synthetic data

We trained 2000 networks using 80% of the synthetic data as the training
set (chosen uniformly at random). The remainder of the data was used as
a validation set for early stopping using the procedure described above. To
investigate if overfitting occurs and if our early stopping procedure could identify
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potential overfitting, we allowed training to continue if overfitting was suspected
and monitored the behaviour of the free energy. We found that overfitting was
suspected in 123/2000 (6.15%) of the training runs and early stopping would
have been invoked in these cases. We investigated what occurred by plotting
the free energy of the training sets along with that of the validation set. We
provide an example of a well-behaved profile (Figure S11A) and some examples
of training runs that would have been stopped in Figures S11B-D. We observe
that the free energy values oscillate with the periodicity of the cyclical learning
rate described above and in the second half of training there are iterations where
the free energy values decrease significantly across all sets, which corresponds
to removal of dead hidden units in network pruning. In the samples where
overfitting was not suspected, the free energy of the validation set decreased at
the same rate at the free energy values of the training sets, remaining below the
maximum value set by the training sets. This is exactly how we would expect
the free energies to behave if there were no overfitting.

In training runs where overfitting was suspected, we found that this was gen-
erally because the free energy of the validation set had increased to a slightly
higher value than the maximum value of the training sets; this always occurred
during the latter half of training when network pruning was taking place (as
in Figures S11B-C). This could indicate the network is starting to overfit. Oc-
casionally there would be runs where the free energy of the validation set was
notably higher than the maximum of the training sets (e.g. Figure S11D), which
is more concerning and could indicate a higher degree of overfitting. However in
every case we noted that in the general trend of the free energy of the validation
set was to decrease until training stopped at the maximum number of iterations;
this actually indicates that the data is not being overfit as we would expect the
free energy to increase if the model was losing generalisability by incorporating
aspects only present in the training sets. Therefore it is inconclusive whether
these runs are actually overfit. Nonetheless, our early stopping procedure is very
conservative and would have caught and removed these suspect runs, leaving
only indisputably non-overfit runs, and so we are confident that overfit networks
will not contribute to the final results.

We next performed training with early stopping enforced to investigate how
well the network captures known relationships in the data. When training was
complete, we amalgamated the weight matrices using the procedure described
in Figure S10 and the final input feature encoding is given in Figure S12.

We can use the direct binary mappings of Block 1 to investigate how the
RBM attempts to encode the relationships provided in the hidden data. The
algorithm unambiguously identifies the one-to-one mapping of feature 1 to input
1 of this block, as well as the one-to-many mapping from feature 2 to inputs
2, 3, 4 and 5. In features 3 and 4, the algorithm can identify that input 6 and
8 arise from the same feature, as do inputs 7 and 8, but inputs 6 and 7 are
not directly associated. The algorithm cannot identify the inverse relationship
between inputs 9 and 10 and encodes them in two separate features (5 and 6).
This is consistent with the way our approach is constructed as a positive weight
matrix can only encode relationships in which a feature is active leading to
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inputs that are active rather than inactive feature giving rise to active inputs.
A similar pattern is seen in blocks 2-6, where the algorithm is generally

able to extract the correct (or logical) associations encapsulated in the features.
There are two exceptions to this, which we have highlighted by annotations
A and B. Annotation A shows a different encoding of the situation in which
the original features both map to the same input (as in features 3 and 4 in
block 1). Here, these are encoded as three inferred features where the first two
encode a strong association with each input exclusive to each feature and a
weak association with the shared input and the third feature encodes a strong
association with the shared input with weak associations to both of the exclusive
inputs. It is important to note that although this encoding does not precisely
replicate the original input mapping, the network has still learned a logical
way of encoding this relationship. Therefore, we do not consider this encoding
incorrect. Annotation B shows inputs that are not assigned to any feature. Both
of these are one-to-one mappings in block 6 (Poisson low/high) indicating that
these relationships in this data type might be too subtle for the algorithm to
distinguish. Note the one-to-one mapping of the 9th input in the block and the
one-to-many mapping are identified correctly. In block 7, the block consisting
of one-to-many mappings of data of multiple types, the algorithm identifies
the correct number of features (4) and the correct inputs are assigned to each
feature. These results provide empirical evidence that our RBM algorithm can
extract relationships across a number of data types.

Consistency of results

There are several sources of variation between runs on the same data set: the
RBM is intrinsically a probabilistic network, training it is a stochastic process
and we are using different sets of data in each run. However, although variation
between the features extracted in each run is inevitable, it is important that
they are consistent as an ensemble so we can be confident that the result is
stable and the final amalgamated weights reflect the true relationships in the
data.

To quantify the consistency between feature sets, we use an approach based
on the Hamming distance. If we describe a latent feature as a binary string that
is equal to 1 with a non-zero weight is present and zero elsewhere, we can then
calculate the Hamming distance between individual features, which returns the
number of input mappings, m, that are not shared between those features. We
can use this to identify which feature in set Fj is equivalent to a given feature
in set Fi (as that has the minimum Hamming distance) and then identify the
feature in set Fi that is most incongruous to their equivalent feature (as this
has the maximum Hamming distance). We write the Hamming distance of the
incongruous feature as m̃i,j , which can be expressed as

m̃i,j = max
i

min
j

(Dhamming(Fi,Fj)) (71)

We can use this metric to assess how the input/feature mapping differs be-
tween runs. We randomly sampled w = 1000 weight matrices (without replace-
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ment) from the 2000 matrices generated by networks trained on the synthetic
data and amalgamated these as described above. We repeated this 100 times
to give 100 feature sets, and then we calculated m̃i,j for all pairwise combina-
tions of i and j. Of the 10,000 resulting comparisons, the greatest number of
differences between equivalent features was 2, which occurred 72 times (0.72%
of the time). Figure S13 shows the histogram of the m̃i,j values for w = 1000,
which reveals that the most common difference was 1, which occurred 6001 times
(60.01%). There was no difference in the feature maps in 39.27% of the runs.
This is remarkably consistent given the aforementioned sources of variation.

Network training on real data

We used the real data to train various versions of the networks across a
number of runs to obtain distinct outputs for use in the analysis. The goal of the
first run was to extract the amalgamated weight matrix that describes the input
to feature mapping (Figure S2). We used this to determine the latent feature
representation used in the clustering (MP Figure 1) by training a new network
run with the weight matrix initialised to the amalgamated weight matrix and
setting the weight learning rate to zero. Learning of the biases was enabled,
as these may be different to the biases in the previous networks due to the
removal of low magnitude weights. Once the remaining network parameters have
converged during training, taking further iterations is equivalent to sampling the
hidden units/feature representation for each patient. We therefore averaged the
hidden unit values taken every 10 iterations during the final 1000 iterations to
obtain the final feature representation.

The input-feature map was used to extract an informed subset of genetic
alterations from the original inputs - these were used to determine associations
in the ARBS analysis (MP Figure 2), as well as the inputs for the Ordering
Analysis (MP Figure 3).

Two-stage clustering

The dimensionality of the feature representation is still quite large for con-
ventional clustering techniques. Therefore we adopted a two-stage approach
where we first clustered by those features that were most informative of clini-
cal outcome, calculated the centroids of these first-stage clusters for all features,
and then clustered these in the second-stage of clustering to produce MP Figure
1. Here we provide more details on identification of informative features using
a discrimination score and the clustering methods used.

Discrimination score

There have been several methods proposed for quantifying the relative im-
portance of the units of a neural network60. However, most of these are gen-
erally formulated to discover the inputs that are important in discerning the
output61,62. In our application, we wish to quantify the discriminative capacity
of each of the features (hidden layer) with respect to the clinical outcome. As
we utilise non-negative weights to determine the relevance of the inputs to the
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hidden units in the feature extraction, for consistency we adopt a similar strat-
egy to determine the relevance of the hidden units to adverse clinical outcome
as determined by biochemical relapse.

To obtain the discrimination scores for each feature, we modified the archi-
tecture of the base RBM so that it was similar to ClassRBM63. This adds an
extra classification layer, which is fully connected to the hidden layer, the units
of which contain the values of the classes. In ClassRBM, there is another set
of weights that denote the strength of the connection between the hidden and
classification layers, and these are trained in the same bi-directional fashion as
the input weights.

However, in our application we wish to uncover underlying relationships in
the data (encapsulated by the features) in an unbiased way and then deter-
mine how relevant these features are to determining the clinical outcome. We
therefore performed the learning of the latent feature representation and the dis-
crimination scores separately to ensure that learning the classification weights
to ensure that the latent representation remains unbiased by the knowledge of
the clinical outcome, and the algorithm for feature learning described above can
still be considered as unsupervised. This was done by fixing the input weights
to the amalgamated weight matrix described above but then training the class
weights using contrastive divergence as described above.

We also enforced a non-negative constraint on these class weights, similar
to the input weights. To get our discrimination score, we take the absolute
value of the weights corresponding to relapse minus the weights corresponding
to no-relapse, s. This can be expressed mathematically as

s = |cr − cr′ |, (72)

were cr are the class-weights associated with relapse, and cr′ are those associated
with no relapse.

These s values can be considered as heuristic quantity relating importance
of the corresponding feature to the clinical output, similar to how the com-
ponent loadings quantify the explained variance of the corresponding principal
component in principal component analysis (PCA). As there is no set rule for
determining the number of features, so we followed a similar approach to that
conventionally used in PCA and selected the number of features using the cu-
mulative distribution. We chose a cut off of 0.9 of the total cumulative discrimi-
nation score, which resulted in 14 out of 30 features being selected for the initial
clustering phase.

Clustering

Clustering of tumours was performed on the latent feature representation in
a two-stage process to facilitate the identification of clusters that were relevant
to clinical outcome. As the feature representation for each patient can be con-
sidered as a vector containing the probabilities that the corresponding feature
is active, it is appropriate to use a distance measure that quantifies the distance
between probabilities. As such, we calculated the mean Jensen-Shannon (J-S)
divergence64 between tumours in a pairwise fashion.
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For a pair of patients A and B, represented by the latent feature represen-
tation in hidden layers hA and hB , the mean J-S divergence can be written
as

JSD(hA ∥ hB) =
1

2K

K∑
i=1

[
hA,i log

(
hA,i

mi

)
+ hB,i log

(
hB,i

mi

)]
, (73)

where m = 1
2 (hA + hB), is the midpoint of hA and hB . The additive terms in

the square brackets in Equation 73 represent the Kullback-Leibler divergence
between each element of the latent feature representation for either patient and
the corresponding element of the midpoint vector, m.

As we are not using a Euclidean distance metric, clustering through k-means
is not appropriate and so we used k-medoid clustering for the first stage; this
is similar to k-means but selects a representative data point (medoid) as the
centroid for each cluster instead of the mean. Using the silhouette method65,
we determined that 11 clusters was optimal. For the second stage of clustering,
we used hierarchical clustering to cluster the medoids themselves (again using
the J-S divergence), and this was used to generate and order clusters by the
dendrogram MP Figure 1.

DNA breakpoint proximity to androgen receptor binding site

To examine the proximity of DNA breakpoints to androgen receptor binding
sites (ARBS), we designed a permutation approach that quantifies the departure
from a random distribution of the breakpoints across the genome. We down-
loaded processed ChIP-seq data targeting AR for 13 primary prostate cancer
tumours from Gene Expression Omnibus (accession GSE70079)66 and amalga-
mated them for use as the ARBS locations. For each of our 159 samples, we
simulated the scenario whereby breakpoints were randomly distributed across
the genome. The simulation of breakpoints was performed chromosome-wise.
For each chromosome we simulate 1000 sets of N breakpoint positions, where
N is the number of breakpoints we observed on that chromosome. These po-
sitions are randomly distributed (with a uniform distribution) across the full
chromosome. Therefore the simulations intrinsically take into account the size
of the chromosomes. We used the R package RegioneR67 with genome assembly
GRCh37, masked for assembly gaps (AGAPS mask) and intra-contig ambigu-
ities (AMB mask) to keep the possible chromosomal locations consistent with
what could be observed in the real data.

To detect significant departure from a uniform random distribution, we
calculated the proportion of breakpoints within 20,000 base pairs (bp) of an
ARBS for the observed and permuted data (Bobs and Bperm, respectively). If
Bobs > p97.5%(Bperm), the tumour was classified as Enriched, else if Bobs <
p2.5%(Bperm), the tumour was classified as Depleted. Otherwise the difference
is not significant and the tumour was classified as Indeterminate. The level of
enrichment or depletion of breakpoints in the proximity of ARBS used in MP
Figure 2A was estimated according to the following formula:

D = Bobs − B̃perm. (74)
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To check the method was not inherently biased, we performed the analysis on
the breakpoints derived from the UK data set (as in MP Figure 2) and compared
these to the classes derived if the position of the AR binding sites was distributed
uniformly across the genome (Figure S14). As expected, we find that almost all
tumours in the randomised set were classed as Indeterminate, in stark contrast
to the real data.

The agglomerative hierarchical clustering of the ARBS groups across Aus-
tralian, Canadian and UK data sets was generated using the R package pvclust68

v2.0.0 using the ward.D2 clustering method with squared Euclidean distance
(100,000 iterations). This package also enabled the estimation of the Approx-
imately Unbiased Multiscale Bootstrap (AU) p-values for the Depleted group.
These clustering results were confirmed by a partitional clustering approach
using the R packages cluster v2.1.0 and factoextra v1.0.5.

ARBS pairs required for DNA loop formation

In MP Figure 5 we investigated the role of AR in the formation of DNA
loops that can precipitate DNA double strand breaks (DSBs). For each ARBS
that was previously identified as proximal to a DNA breakpoint in each patient,
we determined the proportion that were also proximal to another ARBS, as
required by the mechanism for DNA loop formation described previously69 and
depicted in MP Figure 5A. As it has been shown that the two ARBS involved
in the DNA loop involved in the TMPRSS2/ERG fusion are separated by 19972
base pairs69, we set the threshold for the second proximal ARBS as 30,000 base
pairs in the direction away from the DNA breakpoint. p-values were determined
as before.

In all box plots the red line denotes the median, the blue box encapsulates
the interquartile range, and the black dashed lines denote the range of data not
considered outliers; outliers (red dots) are as defined in the Matlab boxplot()
function default settings. The size of the angular ‘notch’ corresponds to a confi-
dence interval around the median, such that if two notches are not overlapping
then there is approximately 95% confidence that the median of the two groups
differ. The folded notch in MP Figure 5D indicates that the notch extends past
the interquartile range by the folded amount.

Ordering

We previously estimated consensus ordering of events by estimating phyloge-
netic trees from the cancer cell fraction (CCF) that contained each aberration,
and applying the Bradley-Terry model to determine the most consistent order
of events11. We recently released a study70 that improves this approach using
a Plackett-Luce model71,72, which we also utilise in this study. We provide a
complete description of the method for reproducibility.

There are a number of sources of uncertainty when attempting to determine
the order of events from bulk DNA sequencing. In particular, we often cannot
infer the true phylogenetic tree for each patient, and furthermore it is impossible
to determine the relative timing of events on parallel branches. However, we can
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estimate the set of possible trees using the relative cancer cell fractions (CCFs)
of the genomic aberrations involved, and from these we can estimate a set of
possible orderings. Therefore we created an algorithm where we (sampled) a
single possible tree from the data, and using this we sampled a viable order of
events for each patient. This is repeated multiple times so that the uncertainty
in these estimates is encapsulated in the output distributions. Algorithms of this
type are called Monte-Carlo simulations to emphasise the use of randomness in
the procedure.

We adopted the Plackett-Luce model71,72 to construct a probability distri-
bution over the relative rankings of a finite set of items, the parameters of which
can then be estimated from a number of individual rankings. This can be used
to quantify the expected rank of each item relative to the others across the
population. In our application, an item corresponds to an event, namely the
emergence and fixation of a novel copy number alteration (CNA) identified in
the extracted features. Ranking these events therefore relates to the order in
which they would be expected to occur. We also utilised a Plackett-Luce mix-
ture model20, which allow us to determine whether there are subpopulations in
the data with different orderings.

The Plackett-Luce model

Given a set of CNA occurrences for each patient with associated subclonal-
ity, we would like to infer the order which these events generally occur. To do
this we used a Plackett-Luce model, which is formulated as a ranking method,
and returns a value quantifying the ranking preference. We use a different in-
terpretation, namely the ordering, which is defined as the inverse of the ranking
preference73. Like the Bradley-Terry model, the Plackett-Luce model does not
return any temporal information outside the expected order of events.

We have a set of N copy number events we are interested in,

C = {c1, c2, . . . , cN}, (75)

then we can apply Luce’s choice axiom71, which states that the probability
of selecting one event over another from a set of events is independent of the
presence or absence of the other events in the set. We can therefore write the
probability of observing event i as

P (ci|C) =
αi∑
j αj

, (76)

where {αi} are the coefficients that quantify the relative probability of observing
the ith event. To reflect the ordering aspect of our application we refer to this
value as the proclivity. Plackett72 used this formalism to construct a generative
model in which all N events are randomly sampled from C without replacement
(i.e. a permutation). If we let Λ correspond to a permutation of the set C such
that λk ∈ C and λ1 ≺ λ2 ≺ . . . ≺ λN , then we write the probability density of
a single ordering as

P (Λ) =

N∏
k

αλk∑
j∈Λ(k) αj

, (77)
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where αλk
is the proclivity associated with event λk, and Λ(k) = {λk, λk+1, . . . , λN}

is the set of possible events after k − 1 events have occurred.

Plackett-Luce mixtures

We hypothesised that there may be more than one set of copy number or-
derings present in our population, and so analysing all events in one ordering
scheme may not be appropriate. Furthermore, the inhibition of AR-associated
breakpoints implies that some CNAs may be found more frequently with a se-
lect set of others, which is in violation of Luce’s choice axiom. We therefore
implemented a mixture modelling approach20,73, which reinstates Luce’s choice
axiom as the selection of each CNA can be considered as independent condi-
tional on the mixture component. Such a finite mixture model assumes that
the population consists of a number, G, of subpopulations. In this setting the
probability of observing the ordering Λs for the sth sample is

P (Λs) =

G∑
g

ωgPg(Λs), (78)

where ωg are the weight parameters (not to be confused with the weight matrix
in the RBM) that quantify the probability that sample s belongs to subgroup g.
The appropriate parameter values can be determined using maximum likelihood
estimation via an EM algorithm20. The number of mixture components can be
chosen using the Bayesian Information Criterion (BIC) estimation, which is
given by

BIC = N log(M)− 2ℓ(ΘML), (79)

where ΘML is the parameter set that maximises the log-likelihood ℓ(·), N is the
number of parameters, and M is the number of samples.

Implementation

The general formulation of the Plackett-Luce model takes a matrix contain-
ing the sequence of events for each patient as its input. However, we do not
know the order in which these events occurred, only the presence and cancer
cell fraction (CCF) of each CNA for each patient. As such, we first estimate
the phylogenetic trees for each patient, and then determine the order of events
from this. As we only have one tissue sample for each patient, there is often
uncertainty in the tree topology and the possible sequence of events, and so
we use a Monte-Carlo sampling scheme in which we sample the trees and se-
quence of events, and use these to estimate the distribution of possible orderings
through the Plackett-Luce model. Samples with 0 or 1 CNA were not used in
this analysis.

Another issue arises due to censoring, which occurs when the sample is
taken before all aberrations that would occur have occurred, resulting in missing
data. These are called partial-orderings in the Plackett-Luce framework, and
the general approach to addressing this is to reformulate the model so that
all missing events are implicitly ranked lower than the observed data20,74. This
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may not be appropriate for our analysis as we may have multiple subgroups, and
we anticipate that distinct aberrations may have similar or equivalent effects in
each subtype and thus will rarely co-occur despite being indicative of the same
type. For instance, the absence of a very early aberration may be due to the
occurrence of another less frequent aberration, so including it at the bottom of
the order would bias the rankings toward more frequent aberrations. As such,
our algorithm works in two phases:

1. Determine the number of mixture components and assign patients to each
component,

2. Estimate the ordering profiles of each component.

These are distinct as we treat the creation of the phylogenetic trees in a slightly
different way in each of these processes to account for censoring. When esti-
mating the number of components, we calculate trees only using the observed
CNAs. However, when estimating the full ordering profiles, we introduce an-
other sampling step into our Monte-Carlo scheme where we explicitly sample a
number of additional CNAs with probability proportional to the subclonality
of the aberration in tumours of each mixture component. Sampling in this way
reduces the bias toward more frequent aberrations.

Assign samples to mixture components

In the first phase, we

1. Sample phylogenetic trees for each patient,

2. Sample sequence of events for each patient that are consistent with trees,

3. Calculate Bayesian Information Criterion (BIC) for 1-10 mixture compo-
nents,

4. Repeat steps 1-3 1000 times,

5. Determine number of mixture components which consistently had lowest
BIC score,

6. Assign patients to mixture components.

The phylogenetic trees are created by initially sorting the CNAs of each pa-
tient in descending order of CCF obtained from the output of the Battenberg
algorithm, iterating through them and sampling the possible parents with uni-
form probability. The CCF of a parent cannot be greater than the sum of the
CCF of their children, so viable parents are defined as ones where their CCF
is greater than that of their current children plus the CCF of the CNA under
consideration. The position in the sequence when the CNA occurred is sampled
as any position after the parent, with uniform probability. The ordering esti-
mates and assignment to the mixture components using the R package PLMIX

as this incorporates mixture models and partial rankings (so the absence of a
CNA from a sequence would not penalise its position in the ordering). A vector
of assignments was retained for each sample run, and the final assignment was
determined by the most frequent assignment over the course of 1000 runs.

37



Estimate ordering profiles of each component

In the second phase, we

1. Sample phylogenetic trees for each patient,

2. Sample sequence of events for each patient that are consistent with trees,

3. Augment sequence with additional CNAs to alleviate censorship bias,

4. Calculate ordering profiles for each mixture component,

5. Repeat steps 1-4 1000 times,

6. Amalgamate results to determine final ordering profiles of each mixture
component.

The phylogenetic trees and sequence of events were initially determined as be-
fore. However, instead of utilising partial rankings in the PL model, we explicitly
augmented the data with additional CNAs to account for those unobserved due
to censorship. The probability of CNA being added to the sequence of events is
equal to the proportion of subclonal occurrences relative to the total number of
occurrences in the subpopulation defined by the mixture component. This can
be written as

P (c̃ig) =
Nsub(cig)

Ntot(cig)
, (80)

where Nsub(·) and Ntotal(·) denote the number of subclonal and total occur-
rences respectively of CNA ci in mixture component g. As events that are
predominantly subclonal have a higher chance of being unobserved due to cen-
sorship, this sampling scheme will mitigate this to a degree. Conversely, events
that are predominantly clonal (i.e. early) may be unobserved due to factors
other than censoring, and these have a reduced chance of being imputed. Cal-
culating these values using the patient samples for each mixture components
rather than the entire population means that only CNA subclonality relevant
to each subpopulation are considered. Imputation is performed by drawing a
uniform random number, r, for each patient and including the CNA in the
set of additional CNAs for each patient if P (c̃ig) < r. The set of additional
CNAs for each patient are shuffled uniformly and added to the sequence. We
then calculate the ordering for each mixture component individually using the
Plackett-Luce model without partial ranking. This process is repeated 1000
times and the proclivity for each CNA is calculated and used to create an em-
pirical distribution for proclivity for each CNA, which are used to create the
box-plots in MP Figure 3.

Synthetic data

We generated a synthetic data set to evaluate our method. We simulated
two subpopulations, A and B that each had exclusive sets of 5 ’early’ and 5
’late’ CNAs as well as common sets of 5 early and 5 late CNAs. These can be
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written as

EA = {c1, c2, c3, c4, c5}, (81)

EB = {c6, c7, c8, c9, c10}, (82)

LA = {c11, c12, c13, c14, c15}, (83)

LB = {c16, c17, c18, c19, c20}, (84)

EC = {c21, c22, c23, c24, c25}, (85)

LC = {c26, c27, c28, c29, c30}. (86)

We used these sets to simulate the order of the events in each tumour, and
then created a set of CCF values consistent with this order. The main principle
in the simulation is that early events will generally occur before late events, but
there is no intrinsic order in the sets of early and late events themselves.

To obtain the set of events for each simulation, Y , we first sampled how
many events occurred by the time of sampling from a Poisson distribution,
e ∼ Poiss(10) followed by the subpopulation S to draw from, with p(S = A) =
p(S = B) = 0.5. To reflect the early/late ordering and exclusive/common nature
of the CNAs, we first sampled 5 events (or e events if e < 5) from the pooled set
of common and early events for that subpopulation, PE = {ES ∪EC}, without
replacement, that is YE ⊆ PE , |YE | = 5. If e > 5, we then pooled the events
that had not been sampled from PE already, denoted here as P ′

E , with the set
of late events PL = {LS ∪ LC} and sampled the remaining e − 5 events from
this set, YL ⊆ {P ′

E ∪ PL}. We then randomly sampled the order in which the
events in YE occurred, followed by those in YL. We then sampled how many of
these events were clonal, ec, uniformly at random as assigned these a CCF of 1.
To obtain the CCFs values of the subclonal population we ranked the subclonal
events, rs ∈ {1, 2, . . . , es}, and assigned a CCF value as a linear function of their
rank CCFk = 1− rs/(es + 1).

We created synthetic CCF values for 200 tumours and used these as inputs
into our algorithm described above. The BIC scores are shown in Figure S15A,
where two mixture components has the lowest BIC score and so the algorithm
has identified the correct number of subpopulations. These subpopulations were
used in to establish ordering profiles, which are shown in Figure S15B-C. We
find that the algorithm has correctly identified all of the unique early and late
events for each subpopulation, as well as the common early and late events.

BIC scores for real data

Bayesian Information Criterion (BIC) scores were determined for each mix-
ture component for each of the 1000 runs are shown in Figure S16. The BIC
score was lowest for two mixture components for every sampled ordering, and
so this was taken as the value to use in subsequent analysis.

Statistical model of evotype convergence

We created a statistical model describing how the probability of conver-
gence to the Canonical or Alternative evotypes changes as genetic alterations
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accumulate (MP Figure 4D). We assume that the accumulation of such aberra-
tions in each individual tumour followed a stochastic process in which the order
and relative timing of the aberrations occurred with some degree of random-
ness/stochasticity. Similar to the Ordering analysis, we utilised a statistical
algorithm in which we simulated a number of possible aberrations consistent
with the possible phylogenetic trees, and then estimated the probability that
tumours with these aberrations converged to the Canonical-evotype (the prob-
ability of convergence to the Alternative-evotype is 1 minus the probability of
convergence to the Canonical-evotype). As many of the genetic alterations will
occur clonally (i.e. with CCF = 1) there is considerable uncertainty in the
order in which they would have occurred. We incorporate this uncertainty into
our approach using a method akin to propagation of errors through Monte-Carlo
simulation 75, in which we sample (with uniform probability) from the space of
possible trees for each tumour and calculate the probability of tumours with
those genetic alterations converging to the Canonical-evotype. Repeating this
random sampling many times provides a distribution of outputs that incorpo-
rates the uncertainty arising from our inputs in a principled fashion, enabling
downstream analysis.

Our algorithm is outlined in Figure S17. The algorithm iterates through
an increasing number of aberrations (Loop i), performing several Monte-Carlo
repeats of ordering samples (Loop j).

As individual evolutionary trajectories involve the stochastic accumulation of
multiple genomic aberrations, is it impossible to specify each evolutionary route.
However, we can determine common modes of evolution by tracking the genetic
alterations prevalent in tumours at the point of convergence to either evotype
in our model. Through this we can identify paths in the probability density
surface plot that correspond to the accumulation of these genetic alterations
(black dashed lines, MP Figure 4D), and the aberrations that distinguish them
from each other

Modelling the stochastic accumulation of genomic aberrations

We model the accumulation of aberrations in a tumour as a Poisson pro-
cess76. For each iteration of Loop i we update the mean number of aberrations
xi, this is then used as the input parameter to a Poisson random number gen-
erator to draw the number of aberrations to be sampled, n, in each iteration
of Loop j. We then identified those tumours with sufficient aberrations and
selected one with uniform probability, and used the data for these to sample
a phylogenetic tree using the relative CCFs of the aberrations. We then used
the phylogenetic trees to sample an order of occurrence for the aberrations, and
retained the first n. The aberrations used were the SPOP mutations and the
CNAs identified in the feature extraction; inter-intra chromosomal breakpoints,
ETS status and chromothripsis are not included as these do not have associated
CCFs and therefore cannot be used to determine the order of events.

We again use the data to calculate probability that tumours with the set
of aberrations will be assigned to the Canonical-evotype. For a set of sampled
aberrations, Aj = {a1, a2, . . . , an}, we identified the patients for which Aj ⊆ Pk,
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where Pk denotes the full set of aberrations present in patient k. We can then
identify which of these were assigned to the Canonical-evotype. We can now
calculate the probabilities

p(Aj) =
N(Aj ⊆ Pk)

N(Pk)
, (87)

p(Canonical ∩Aj) =
N(Canonical ∩ (Aj ⊆ Pk))

N(Pk)
, (88)

where N(·) denotes the number of tumours that obey the condition in brackets.
We can now calculate the conditional probability

p(Canonical|Aj) =
p(Canonical ∩Aj)

p(Aj)
. (89)

We performed 100,000 samples and thus obtained 100,000 values for each p(Canonical|Aj).
We input these values into a nonparametric density estimation scheme using
Gaussian kernels with bandwidth 0.025. As we are estimating the probability
density function of a set of probabilities, which are bound at [0, 1], we ensured
support only over this interval using the reflection method77. We performed
this sampling step for xi ∈ {0, 0.01, 0.02, . . . , 10}; i ∈ 1, 2, . . . , 1000.

Identifying genetic alterations in the convergent evolutionary trajectories

We used our model simulations to investigate the common evolutionary tra-
jectories involved in convergence to each evotype (black dashed lines MP Figure
4D) as well as the aberrations that characterise them. In the modelling process,
we recorded the order of genetic alterations for each of the trajectories used
to calculate the pdf. We extracted each trajectory that had converged to the
canonical or alternative evotypes (i.e. had a p(Canonical|Aj) = 0 or 1) and
assigned these into sets by the number of genetic alterations in the trajecto-
ries i.e. {A1}, {A2}, . . . , {A10}. We than ran a filtering step for each set where
we removed any trajectories that had occurred in sets corresponding to fewer
genetic alterations, meaning we were left with trajectories that only converged
to either evotype with the final genetic alteration for each set. We can then
identify the position and frequency of occurrence of each genetic alteration in
each set. The results of this are plotted in the bottom pane in Figures S7 and
S8 for Canonical- and Alternative-evotype tumours respectively. Using this in-
formation we can calculate the pdf values for frequent combinations of genetic
alterations in order, and use these to create the representative paths through
the probability density (black dashed lines; MP Figure 4D).

CRUK ICGC Prostate Group members

Additional to the named authors, the CRUK ICGC Prostate Group also
contains the following members:

• Adam Lambert, University of Oxford, Oxford, UK
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• Anne Babbage, Hutchison/MRC Research Centre, Cambridge University,
Cambridge, UK

• Clare L. Verrill, Nuffield Department of Surgical Sciences, University of
Oxford, Oxford, UK

• Claudia Buhigas, Norwich Medical School, University of East Anglia, Nor-
wich, UK

• Dan Berney, Department of Molecular Oncology, Barts Cancer Centre,
London, UK

• Ian G. Mills, Nuffield Department of Surgical Sciences, University of Ox-
ford, Oxford, UK

• Nening Dennis, Royal Marsden NHS Foundation Trust, London and Sut-
ton, UK

• Sarah Thomas, Royal Marsden NHS Foundation Trust, London and Sut-
ton, UK

• Sue Merson, The Institute Of Cancer Research, London, UK

• Thomas J. Mitchell, Cancer Genome Project, Wellcome Trust Sanger In-
stitute, Hinxton, UK

• Wing-Kit Leung, Cancer Research UK Cambridge Institute, University of
Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK.

• Alastair D. Lamb, Nuffield Department of Surgical Sciences, University of
Oxford, Oxford, UK
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