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Objective: To derive evidence-based recommendations for the optimal utilisation of resources during
unexpected shortage of radiotherapy capacity.
Methods and materials: We have undertaken a rapid review of published literature on the role of radio-
therapy in the multimodality treatment of paediatric cancers governing the European practise of paedi-
atric radiotherapy. The derived data has been discussed with expert paediatric radiation oncologists to
derive a hierarchy of recommendations.
Results: The general recommendations to mitigate the potential detriment of an unexpected shortage of
radiotherapy facilities include: (1) maintain current standards of care as long as possible (2) refer to
another specialist paediatric radiotherapy department with similar level of expertise (3) prioritise use
of existing radiotherapy resources to treat patients with tumours where radiotherapy has the most effect
on clinical outcome (4) use chemotherapy to defer the start of radiotherapy where timing of radiotherapy
is not expected to be detrimental (5) active surveillance for low-grade tumours if appropriate and (6)
consider iso-effective hypofractionated radiotherapy regimens only for selected patients with predicted
poor prognosis. The effectiveness of radiotherapy and recommendations for prioritisation of its use for
common and challenging paediatric tumours are discussed.
Conclusion: This review provides evidence-based treatment recommendations during unexpected short-
age of paediatric radiotherapy facilities. It has wider applications for the optimal utilisation of facilities, to
improve clinical outcome in low- and middle-income countries, where limited resources continue to be a
challenge.
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Table 1
Levels of evidence and grades of recommendation [11].

Level of Evidence

Grades of Recommendation

Level Description Grade Description

1 Meta-analysis or Systematic reviews of randomised controlled trials A At least one meta-analysis, systematic review or RCT with a low risk of bias
(RCT) or RCT with a low risk of bias

2 High qualify systematic reviews of cohort studies, high-quality B High qualify systematic reviews of cohort studies, high quality cohort studies or
cohort studies or well-conducted cohort studies extrapolated from RCT with a low risk of bias

3 Non-analystic studies e.g. institutional series C Well-conducted cohort studies or extrapolated from high qualify systematic

reviews of cohort studies or high quality cohort studies
4 Expert opinion D Level 3 or 4 or extrapolated from well-conducted cohort studies

With the current Covid 19 pandemic, healthcare systems are
severely strained [1-3]. So far, infection and severe complications
have been less common in children [4]. Nevertheless the pandemic
is expected to have an impact on the capacity to deliver paediatric
radiotherapy, particularly where general anaesthesia is required,
due to shortages of personnel, protective equipment, ventilators
and machine time, as well as coping infected children and families
[5,6]. Sudden shortage of resources may also occur during other nat-
ural disasters and following machine failures, including particle
beam facilities [7]. Limited radiotherapy resources are a major
obstacle in improving outcomes in low- and middle-income coun-
tries where more than two-thirds of paediatric cancers are diag-
nosed [8].

National guidelines are being issued to provide continuous
adult cancer care without increasing the risk of COVID infection
[9,10]. Provision of uninterrupted and effective paediatric cancer
care faces numerous challenges: most childhood cancers are
aggressive, necessitating urgent treatment, most children are trea-
ted in international collaborative trials [4] and increasingly paedi-
atric tumours are prioritised for treatment with proton therapy,
which may entail travelling some distance.

In an attempt to minimise the potential detriment on clinical
outcomes for children with cancer from interruption of radiother-
apy services, European paediatric radiation oncology experts have
undertaken a rapid review of the role of radiotherapy in the mul-
tidisciplinary care of childhood cancers, and considered alterna-
tives for radiotherapy when it is impossible to deliver the
internationally acceptable standard of care. This guideline
attempts to standardise approaches to paediatric radiotherapy
in times of intense resource constraints to deliver safe, high qual-
ity treatment.

Methods

Experts from the European Society of Paediatric Oncology
(SIOPE) Radiation Oncology Working Group have developed rapid
evidence-based recommendations for effective clinical practise
with minimal variation by asking:

1. For which paediatric tumours are radiotherapy and its timing
important in optimising chances of cure?

2. Can we safely defer radiotherapy for any tumour types and if so,
with what acceptable delay?

3. Can chemotherapy be used to delay radiotherapy if it is still
available and deemed appropriate.

4. If resources are constrained, can hypofractionated regimens be
used for any paediatric tumours?

5. When are radiotherapy dose corrections needed during unfore-
seen treatment interruptions?

6. Can radiotherapy be used as a neoadjuvant ‘bridging’ treatment
when primary surgery or systemic treatment is not available?

Four authors (GOJ, HCM, TA, TVB) independently reviewed pub-
lished literature from European centres, including prospective ran-
domised clinical trials, to evaluate the levels of evidence [11]
(Table 1). The synthesised data has been discussed with expert
paediatric radiation oncologists, including principal investigators
of ongoing SIOPE trials.

Results and recommendations

General measures to mitigate detrimental clinical effects in an
unexpected shortage of radiotherapy facilities

e Current standard treatments, whether in trials or using
approved guidelines, should be maintained if possible. Consider
suspension of trials if the additional resources needed to run
them become unavailable.
Consider referral to another specialist paediatric radiotherapy
department.
Prioritise using existing radiotherapy resources to treat patients
with tumours where radiotherapy has a high impact on
outcome.
Standard or maintenance chemotherapy can be used to defer
radiotherapy in chemo-sensitive tumours where this delay is
not expected to be detrimental (e.g. rhabdomyosarcoma and
Ewing sarcoma, medulloblastoma, ependymoma, and germ cell
tumours presenting with metastases.)
Consider active surveillance (for WHO grade I-II primary cen-
tral nervous system low-grade gliomas and craniopharyn-
giomas after initial biopsy or debulking surgery).
Consider isoeffective hypofractionated radiotherapy schedules
(which also reduce overall treatment time), changing dose per
fraction from 1.6-1.8 Gy to above 2.0 Gy, for selected poor prog-
nosis patients where radiotherapy cannot be safely deferred,
(neuroblastoma, rhabdomyosarcoma, Ewing sarcoma and
high-grade or diffuse midline gliomas).
For highly proliferative tumours (rhabdomyosarcoma, Ewing
sarcoma, medulloblastoma, germ cell tumours, and atypical ter-
atoid rhabdoid tumours [ATRT}), treatment gap corrections
should be applied if the planned duration of treatment is
extended by >1 week.
Omit radiotherapy in patients with poor prognostic tumours
and or who need palliative care if symptom can be controlled
by other measures [12,13].
e Any deviation from standard of care radiotherapy should be
agreed in multi-disciplinary team (MDT) meetings.

Level of evidence and recommendations for common paediatric
malignancies

The following section provides a summary of evidence for the
effectiveness of radiotherapy and recommendations for treatment
of common and challenging paediatric tumours:

Neuroblastoma
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e Evidence

(0]

(0]

1.5 Gy has been the standard dose per fraction in SIOPEN tri-
als so far, but German and US schedules use 1.8 Gy per frac-
tion [14,15] and will be the dose per fraction in the next
SIOPEN high risk protocol (level 2)

Hypofractionation has been used for palliation in paediatric
tumours including neuroblastoma, with effective disease
control and a favourable side effect profile [16] (level 3).
In high risk neuroblastoma, immunotherapy after radiother-
apy increases survival [17] (level 2)

e Recommendation

(0]

Standard treatment should be given wherever possible
(grade B)

1.8 Gy per fraction can now be considered as standard
(grade B)

3 Gy per fraction can be used in case of significantly reduced
capacity (grade C)

In high risk neuroblastoma, and if capacity is severely
reduced, immunotherapy can be given before radiotherapy
(grade D)

In intermediate risk neuroblastoma treatment can be
delayed up to 4 weeks (grade D)

Wilms’ tumour

e Evidence

(0]

A fraction dose of 1.8 Gy with reduction to 1.5 Gy is recom-
mended for irradiation of the flank and whole abdomen/
lung, respectively, and is the standard in the SIOP-RTSG
UMBRELLA 2016 protocol [18] (level 2).

Simultaneous integrated boost (SIB) techniques can be con-
sidered for patients with residual lung metastases at the
time of radiotherapy [18] (level 2).

After pre-operative chemotherapy and surgery, adjuvant
radiotherapy is started within 1-2 weeks from onset of
adjuvant chemotherapy, unless metastatic disease is pre-
sent [19] (level 2).

In stage IV disease with potential indication for radiother-
apy to the lungs and flank/abdomen, abdominal radiother-
apy can be postponed up to week 10 to avoid a gap or
overlap If the recurrence rate is estimated to be high,
abdominal +/— lung [depending on response] radiotherapy
may be given earlier [20] (level 2).

e Recommendation

(0]

(0]

(0]

Standard treatment should be given wherever feasible
(grade B).

1.8 Gy or 1.5 Gy per fraction, depending on the volume,
remains the standard (grade B).

In patients with intermediate-risk and high-risk disease
without distant metastases, deferral of flank or whole abdo-
men irradiation can be discussed within the UMBRELLA
panel (grade D).

Paediatric soft tissue sarcoma

o Evidence

(0]

1.8 Gy per fraction is recommended by the major interna-
tional collaborative groups, including EpSSG, COG and
CWS, and is the standard in the new EpSSG FaR-RMS study
[15,21] [level 2]. Two Gy per fraction has been used for TYA
patients, particularly in NRSTS, mirroring adult soft tissue
sarcoma (STS) schedules.

Simultaneous integrated boost (SIB) techniques can be con-
sidered, with increased dose per fraction up to 2.2-2.3 Gy,
SIB schedules are incorporated into the FaR-RMS radiother-
apy guidelines. For localised disease, standard of care defini-

tive radiotherapy should start between week 12 and week
16; for metastatic disease RT is given with cycle 8 of
chemotherapy (week 22); Detrimental outcomes have been
observed when radiotherapy is delayed beyond week 24
[15,22] [level 2].

Routine use of radiotherapy, either adjuvant or definitive, for
high risk rhabdomyosarcoma was a key factor in improve-
ment in EFS and OS in EpSSG RMS 2005 [21] [level 2]
Post-operative radiotherapy (PO-RT) can be deferred for
RMS until the 4th cycle of post op chemotherapy (week
24) (FaR-RMS).

For NRSTS, PO-RT may be used preferentially instead of pre-
operative RT where there are capacity issues, and although
recommended within 3 weeks of surgery can be deferred
for up to 6 weeks, (COG ARST 1321 NRSTS study guideline).
In metastatic NRSTS, radiotherapy can be deferred to the 8th
cycle of chemotherapy (week 22-25) (BERNIE study [23].
Hypofractionation (>3Gy/f) has been used to treat meta-
static STS, achieving high levels of local control [24].
Hypofractionated stereotactic body radiotherapy for spinal/
paraspinal metastases is being used in current French SBRT
study: 27 Gy in 3 fractions or 35 Gy in 5 fractions.

e Recommendation
o Standard treatment should be given wherever feasible

(grade B)

o 1.8 Gy per fraction remains the standard (grade B)
o If capacity if reduced

m Consider deferral of radiotherapy (grade C).

m Consider omitting radiotherapy for standard risk RMS
achieving complete response; this strategy has inferior
EFS but not OS [12] [level2, grade C].

m 3 Gy per fraction can be used, or even SBRT (grade D).

Ewing sarcoma

e Evidence
o 1.8 Gy per fraction is recommended, including in the recent

EURO EWING 2012 and COG studies. 2.0 Gy per fraction has
been used for TYA or adult patients, mirroring adult sar-
coma RT schedules (level 2).

Hypofractionation (>3 Gy/f) has been used to treat meta-
static STS and ES, achieving high levels of local control
[24] (level 3).

SBRT has demonstrated good local control in small single
centre series [25]; it is being evaluated in the French SBRT
study (see above), and the COG AEWS1221 Ewing study
where 30-40 Gy in 5 fractions is being used for bone metas-
tases (level 3).

e Recommendation
o Standard treatment (1.8 Gy per fraction) should be given

wherever feasible (grade B).

o Simultaneous integrated boost (SIB) techniques can be consid-

ered, with increased dose per fraction up to 2.2-2.3 Gy. Con-
sider deferral of radiotherapy if reduced capacity (grade C).

o If capacity is reduced, 3 Gy per fraction can be used, or even

SBRT (grade D).

Hodgkin lymphoma

e Evidence
0o Most protocols for the treatment of paediatric Hodgkin lym-

phoma have used 1.5-1.8 Gy fractions [26-28]. However, in
adult Hodgkin lymphoma, 2 Gy fractions are standard [29].
In addition, the boost dose per fraction is also 2 Gy in the
EuroNet protocol (level 2).



(o]

G.0. Janssens et al./Radiotherapy and Oncology 148 (2020) 216-222

There are convincing data on detriment from delaying
radiotherapy after chemotherapy [30] and according to the
EuroNet protocol treatment should start within 3-6 weeks
after chemotherapy (level 2).

e Recommendation

(0]

(0]

Standard treatment should be given wherever possible
(grade B)
2 Gy per fraction can be used instead of 1.5-1.8 Gy (grade C)

Leukaemia

e Evidence

(o]

Although in some countries TBI is given in 8 fractions twice
daily, the current standard is 12 Gy in 6 fractions twice daily
[31] (level 2).

For total body irradiation (TBI) in adult patients, single-dose
daily fractionation has proven to be non-inferior to twice-a-
day fractionated TBI before allogeneic stem cell transplanta-
tion for acute leukaemia [32] (level 2).

For TBI, single or 2 fraction treatments have been used
instead of 6 fraction treatments; however at cost of
increased toxicity and inferior results [33] (level 3). Replac-
ing TBI by chemotherapy (fludarabine, thiotepa, busulfan
and treosulfan) regimens can also be considered, but is asso-
ciated with inferior results in acute lymphoblastic leukae-
mia (interim analysis of ALL SCTPed 2012 FORUM trial).
For paediatric leukemic CNS relapse, radiotherapy in 1.5-
1.8 Gy fractions is often used in addition to chemotherapy
[34], while in adults 2 Gy fractions are more common (level 2).
For paediatric leukemic testicular relapse, 1.5-1.8 Gy frac-
tions are commonly used after orchidectomy while 2 Gy
fractions are used if no orchidectomy has been performed
[35] (level 2).

e Recommendation

0]

(0]

(0]

(0]

Standard treatment should be given wherever possible

(grade B)

If capacity is reduced

m 12 Gy fractionated TBI can be delivered safely in terms of
disease control and survival with a single daily dose of 3
or 4 Gy/d instead of 6 fractions of 2 Gy BID. (grade B)

m Replacing TBI by chemotherapy only conditioning regi-
mens can be considered, but is associated with inferior
results in ALL (grade C). In case of severely reduced
capacity, single (7.5-8 Gy) or two fraction (2 x 4.5 Gy)
TBI can be used at the expense of increased toxicity and
slightly inferior results (grade D)

For paediatric leukemic CNS relapse, dose per fraction can
be increased to 2 Gy. Alternatively, an additional course of
chemotherapy can be given (grade C)

For paediatric leukemic testicular relapse, dose per fraction
can be increased to 2 Gy. Alternatively, an additional course
of chemotherapy can be given (grade C)

Medulloblastoma

e Evidence

(0]

In non-infant children and TYA with medulloblastoma, post-
operative craniospinal radiotherapy with boost gives best
survival [36-39] (Level I)

Delay in starting radiotherapy beyond 49 days after surgery
significantly reduces 5-year EFS [40] (Level II)

For infant medulloblastoma, chemotherapy is generally
adopted to delay or avoid the need for radiotherapy
[41,42] (Level I)

(o]

(o]
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Hypofractionated radiotherapy has not been studied in
standard adjuvant treatment for medulloblastoma.
Hypofractionated regimens provide effective palliation in a
select group of patients considered for reirradiation
[43,44] (Level III)

Radiotherapy should start ideally at 28-40 days after sur-
gery. Delay beyond 40 days should be avoided (level III)

e Recommendation

(o]

Standard postoperative radiotherapy should be given to all
non-infant children and TYA after initial surgery (Grade A).
Hypofractionated radiotherapy is not recommended for
standard adjuvant treatment (grade B)

For infant medulloblastoma, chemotherapy with delayed or
no radiotherapy is recommended (grade B)

Ependymoma

e Evidence

(o]

(o]

(o]

(o]

Postoperative radiotherapy (59.4 Gy in 33 fractions)
improves clinical outcome with acceptable toxicity even in
children younger than 3 years (17-21). A dose modification
to 54 Gy in 30 fractions is recommended in very young chil-
dren (<12 months) or those undergoing multiple surgeries
for tumours near the brainstem because of possible
increased risk of brainstem toxicity in these patient groups
[45-48] (Level I).

Radiotherapy should ideally start within 6 weeks of surgery
(Level III)

There is no proven role for the use of chemotherapy to delay
radiotherapy. However, chemotherapy is used in children
<12 months to delay radiotherapy [49,50] (Level II).

There are no studies of hypofractionated adjuvant radio-
therapy for ependymoma.

e Recommendation

(o]

(o]
(o]

All patients except children <12 months with ependymoma
should receive postoperative radiotherapy at the standard
dose/fractionation of 59.4 Gy in 33 daily fractions (Grade A)
Radiotherapy should start within 6 weeks of surgery (Grade C)
Use of chemotherapy as bridging strategy is not recom-
mended, except for children less than <12 months of age
(Grade A)

High grade glioma including diffuse midline glioma (DMG) of
pontine, and non-pontine origin

e Evidence

(o]

(o]

(o]

(o]

(o]

30 fractions of 1.8 Gy are most commonly given for all HGG,
including DMG [51-53] (level 2).

Hypo-fractionation using 13 fractions of 3.0 Gy results in
comparable overall survival rates in patients with DMG of
pontine origin [51,53] (level 1)

The utility of systemic agents for newly diagnosed DMG of
pontine origin remains unproven [54] (level 2)

A slightly improved outcome is observed in children who
received lomustine in addition to temozolomide for
subtotally-resected glioblastoma with MGMT overexpres-
sion [55] (level 2)

In adults with glioblastoma, delays >8 weeks in patients
with GTR resulted in worse survival [56] (level 1)

e Recommendation

(o]

Hypo-fractionation using 3.0 Gy is an alternative to normo-
fractionation to lower the treatment burden in patients with
DMG of pontine origin [grade B], and for patients with HGG
from non-pontine origin and unfavourable molecular profile
(grade D).
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o For primary treatment, the biologic behaviour of the tumour
determines time of starting radiotherapy. In most patients it
is limited from days to a couple of weeks (grade D).

o For GTR/NTR after surgery, radiotherapy should start within
4-8 weeks (grade B).

Low-grade glioma
e Evidence

o Fractionation using 1.8 Gy is generally accepted as standard of
care [57-59]. A dose of 50.4-54 Gy is most recommended
(Level IT)

o There is some evidence for better tumour control with 54
Gy [60] (Level I1I)

o Optimal timing of radiotherapy is not known [61] (level III).

e Recommendation

e Standard treatment (50.4-54 Gy using 1.8 Gy per fraction)
should be given whenever possible (Grade B)

o In case of reduced capacity, in absence of symptoms or sys-
temic options, delay treatment until next MRI-scan (Grade
B)

e 50-54 Gy using 2 Gy per fraction could be considered
(grade D)

Intracranial germ cell tumours
e Evidence
Intracranial germinoma

o In localised disease, primary chemotherapy followed by a
total dose of 40 Gy [62] in 1.6 Gy fractions is standard for
this highly radiosensitive tumour (level 2).

o Although chemo-sensitive, germinoma is not chemo-
curable and radiotherapy has a major role in local control
and cannot be omitted [63,64] (level 2)

o In localised germinoma, ventricular irradiation to reduce
regional subependymal relapse necessitates 24 Gy at
1.6 Gy per fraction [65], followed by tumour bed boost
(level 2)

o In disseminated germinoma, CSI irradiation 1.6 Gy per frac-
tion/TD 24 Gy followed by boost 1.6 Gy/TD 16 Gy is associ-
ated with a high level of disease control [62] (level 2)

Non-germinoma GCT

o Primary chemotherapy with surgery for operable residue
and radiotherapy is the standard of care to improve local
control in all cases.

o For localised disease: Focal RT, 1.8 Gy per fraction up to
54 Gy remains the recommendation in Europe [62] (level
2).

o For metastatic disease: craniospinal irradiation 1.5 Gy per
fraction to 30 Gy followed, by boost to 54 Gy [62] (level 2)

e Recommendation

Germinoma

o Standard treatment should be given whenever possible
(Grade B)

o Post chemotherapy boost dose per fraction to tumour bed
may be safely increased to 1.8-2 Gy if needed (grade D).

o Hypofractionation is inappropriate (grade A)

o Delay of post chemotherapy RT should be limited (1-
2 weeks) (grade B)

o For disseminated germinoma, pre-RT chemotherapy may
be safely used for up to 4 cycles to delay craniospinal irra-
diation (grade C).

Non-germinoma GCT

e For localised disease, 1.8 Gy per fraction up to 54 Gy should be
used preferentially, but 2 Gy per fraction may be considered
especially if target volume is small (grade D).

e For metastatic disease, 1.8 Gy craniospinal and 1.8-2 Gy boost
fractions may be applied (grade D)

Atypical Teratoid/Rhabdoid Tumours (ATRT)

e Evidence

o Standards and evidence about RT in ATRT are sparse.

o Within the German HIT trial, patients were treated with
1.6 Gy fractions for CSI volume and 1.8 Gy fractions for local
fields (level 2)

o The European EURHAB protocol used 1.6 Gy fractions for CSI
and 1.8 Gy for tumour bed, r [66]; children treated were
extremely young (level 2)

o St. Jude’s approach uses 1.8 Gy fractions for CSI and local
fields [67] (level 3).

o For the current draft of the future SIOP-ATRT trial, European
radiation oncology experts have agreed to use 1.8 Gy frac-
tions for both CSI and local fields [68] (level 4).

o Chemotherapy is used in many protocols to postpone the
start of RT because of very young patient age (level 3).

e Recommendation

o 1.8. Gy fractions can be considered for moderate accelera-
tion of the treatment course during CSI phase (grade C).

o 2.0 Gy fractions to the local field can be considered for mod-
erate acceleration (grade D).

o Hypofractionation cannot be recommended due to the
extremely young age of the patient except for palliative
treatment (grade D).

o SIB concepts are not appropriate for CSI plus local treatment
as the gap between CSI and local dose is too large to avoid
high doses per fraction (grade D).

o After interdisciplinary discussion chemotherapy may be
used for good responders without evidence of disease to
delay onset of RT (grade D).

Conclusions

Existing evidence for the clinical practise of paediatric radio-
therapy and details of ongoing SIOPE clinical trials are used here
to derive an evidence-based treatment recommendation during
unexpected shortage of radiotherapy facilities. This guideline
may have a wider application in optimising the use of paediatric
radiotherapy to improve clinical outcome in low- and middle-
income countries, where limited resources continue to be a chal-
lenge. This article also highlights the important radiotherapy ques-
tions which need to be addressed in future clinical trials.

This rapid review and recommendation will serve only as a
guide to MDTs and are not meant to replace the important network
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of national and international paediatric radiotherapy experts that
regularly give advice. We wish to highlight the importance of
recording outcomes for children who receive radical radiotherapy
where there have been modifications in fractionation or timing
of treatment due to unexpected shortage of facilities such as during
the COVID-19 epidemic so that there can be shared learning in the
future.
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