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and Berthold Göttgens1,8,*
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SUMMARY
The paradigmatic hematopoietic tree model is increasingly recognized to be limited, as it is based on hetero-
geneous populations largely defined by non-homeostatic assays testing cell fate potentials. Here, we
combine persistent labeling with time-series single-cell RNA sequencing to build a real-time, quantitative
model of in vivo tissue dynamics for murine bone marrow hematopoiesis. We couple cascading single-cell
expression patterns with dynamic changes in differentiation and growth speeds. The resulting explicit link-
age between molecular states and cellular behavior reveals widely varying self-renewal and differentiation
properties across distinct lineages. Transplanted stem cells show strong acceleration of differentiation at
specific stages of erythroid and neutrophil production, illustrating how the model can quantify the impact
of perturbations. Our reconstruction of dynamic behavior from snapshot measurements is akin to how a
kinetoscope allows sequential images to merge into a movie. We posit that this approach is generally appli-
cable to understanding tissue-scale dynamics at high resolution.
INTRODUCTION

A continuous flow of cells replenishes blood throughout life to

maintain hematopoietic homeostasis. This flow originates from

hematopoietic stem cells (HSCs) and progresses through a com-

plex hierarchy of progenitors, collectively called hematopoietic

stem and progenitor cells (HSPCs). Decades of research have

revealed immunophenotypically defined HSPCs and their fate

potentials, thus positioning them within the hematopoietic hier-

archy and establishing the hematopoietic tree model.1,2

Although scRNA-seq introduced high-resolution and resolved

HSPC heterogeneity, scRNA-seq typically provides snapshot

measurements with limited temporal information. Thus, the he-

matopoietic tree model, even complemented by scRNA-seq

data, remains static and qualitative and does not capture the

highly dynamic HSPC biology in real time.

To facilitate real-time modeling of HSPC dynamics, a previous

study3 induced a persistent fluorescent reporter within the HSC

compartment and assessed label propagation into progeny by

flowcytometry. However, immunophenotyping has limited resolu-

tion, and flow-cytometry-defined HSPCs are functionally hetero-
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geneous. For instance, common myeloid progenitors (CMPs)4,5

and lymphoid-primed multipotent progenitors (LMPPs)6,7 are het-

erogeneous at functional and RNA level. Further scRNA-seq

studies suggested gradual molecular transitions from HSCs to-

ward 8 distinct lineages,8–10 including specific stages of erythroid

differentiation.10Nonetheless, althoughmolecular statescaptured

by scRNA-seq can be predictive of progenitor fate potential when

assessed in vitro,11–13 gaining insights into single-cell fates in vivo

during homeostasis has remained more challenging.14

Lineage tracing in non-hematopoietic tissue combined with

scRNA-seq has provided insights into progenitor cell differentia-

tion to the airway epithelial lineage.15 Nevertheless, such an

approach has never been applied to a complex multilineage dif-

ferentiation process, such as hematopoiesis. Furthermore, it re-

mains unclear whether predictive tissue-scale computational

models of steady-state tissue homeostasis at single-cell resolu-

tion can be constructed based on such approaches. Here, we

reveal high-resolution HSPC kinetics of multilineage bone

marrow (BM) hematopoiesis in vivo. We combined inducible

HSC-labeling to track label propagation to downstream progeny

during steady-state hematopoiesis with scRNA-seq at different
(s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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time points after label induction. This enabled us to reveal real-

time dynamics and build quantitative cellular flow models of

BM hematopoiesis. These models describe numbers of cells

produced and transported across the HSPC compartment,

properties that have so far only been measured for a selected

few subpopulations. Notably, the ample molecular information

allowed us to construct continuous models to associate gene

expression changes with cell behaviors, such as increased pro-

liferation or accelerated differentiation, thus directly connecting

tissue and cellular behavior with the underpinning layer of molec-

ular processes. Finally, we demonstrate that our dynamic HSPC

model is transferable and able to predict HSPC fate outcomes

based on published datasets.

RESULTS

Hoxb5-CreERT2-Tomato reporter tracks HSC
differentiation over time
To analyze HSPC dynamics, we aimed to employ a labeling

approach (based on principles from Busch et al.3), in which an

inducible HSC-specific CRE excises a STOP cassette in the

Rosa26-LoxP-STOP-LoxP-tdTomato (R26LSL-tdTomato) reporter to

permanently label HSCs and their subsequent progeny. We

hypothesized that Hoxb5, which is specifically expressed in

HSCs,16 is a suitable driver locus. To validate the specificity of

Hoxb5 expression at the protein level, first we generated

Hoxb5mKO2 mice, where HOXB5 and mKO2 fluorescent reporter

expression is drivenby the endogenousHoxb5 locus (FigureS1A).

mKO2 expression was selectively confined to the BM

Lin�Sca-1+c-Kit+ (LSK) HSPC compartment (Figures S1B–S1D,

extended data Figure E1A, extended data figures ‘‘E’’ are avail-

able in Mendeley Data, see key resources table). Although high

mKO2 expression was exclusive to the LSKCD48�CD150+ HSC

fraction and enriched for this population (Figures S1B–S1D),

low-level expression was also detected in LSKCD48�CD150�

multipotent progenitors (MPPs) (Figures S1B–S1D). At the func-

tional level, we observed robust long-term multilineage repopula-

tion activity of mKO2+ HSCs upon serial transplantation. Notably,

chimerism in the HSC compartment of primary recipients was

significantly lower in the mKO2� cohort, and mKO2� HSCs failed

to efficiently sustain all lineages in secondary recipients

(Figures S1E and E1B–E1D). Furthermore, scRNA-seq demon-

strated that mKO2+ cells express canonical HSC-affiliated genes,

display the highest HSC-score (Figures E2A–E2C),17 and tightly

occupy the region of the most immature stem cells on high-reso-

lution HSPC landscape7 (Figures E2D–E2F). Altogether, HOXB5

selectively marks HSCs with the long-term multilineage reconsti-

tution potential and stem cell signature.

Having validated Hoxb5 as a suitable locus, we generated

Hoxb5CreERT2 mice16 and crossed them with R26LSL-tdTomato

reporter18 to establish the Hoxb5CreERT2;R26LSL-tdTomato mice

(referred to as Hoxb5-Tom, Figure 1A), which allow for inducible

labeling of HSCs in situ by tamoxifen administration and subse-

quent tracking of HSC progeny over time (Figure 1B). To validate

this system, we used flow cytometry to track label propagation

across BM HSPC subpopulations and differentiated peripheral

blood (PB) cells at indicated intervals (Figures 1B–1F, S1F,

S1G, and E3). Upon tamoxifen administration, we observed spe-

cific labeling of 1.8% of HSCs, with the label gradually accumu-
lating in downstream cell compartments over time (Figures 1D–

1F). Internal controls (i.e., vehicle-treated Hoxb5-Tom mice or

those lacking Hoxb5CreERT2) showed no labeling (Figure E3A).

Labeled differentiated cells were detectable in PB within 1–

2 months post-treatment, with particularly fast contribution to

the platelet lineage, followed by erythrocytes and myeloid cells,

and T and B cells appearing later (Figures 1E, 1F, and E3B–E3D).

We observed non-decreasing labeling for at least 9months post-

treatment (Figures 1D, 1E, S1F, and S1G), indicating that the la-

bel is persistent and inert.

Computational inference of population dynamics relies on a

simple principle (Figure 2A): as heritable label propagates

down from the label-rich upstream compartment, the speed of

differentiation is proportional to label equilibration (Figure 2B,

see STAR Methods). To benchmark our experimental model,

we compared flow cytometry data obtained from tamoxifen-

treated Hoxb5-Tom mice with previously published results of

analogous label propagation obtained with Tie2-YFP mice.3

Our data are highly consistent for both MPP/HSC and HPC-1/

HSC relative abundances across the entire time range (Fig-

ure 2C), thus validating our transgenic models and unlocking

our next goal—modeling of population dynamics.

A unified reference HSPC landscape with time-resolved
differentiation
To capture scRNA-seq profiles of cells traversing the HSPC land-

scape over time (Figure 3A), we harvested BM from tamoxifen-

treated mice at 9 time points ranging between 3 days (providing

just enough time for Tom protein expression) and 269 days,

when the label is mostly equilibrated. Next, we sorted and pooled

together cells from two overlapping Lin�cKit+ and Lin�Sca1+

populations, which contain all HSPCs9 (Figure E3E). To ensure

accuracy and reproducibility, we profiled multiple independent

biological replicates for each time point (36 animals in total).

Although our focus was labeled Tom+ cells, we also profiled

Tom� cells at each time point to obtain accurate background

cell density in case it changes over time.We generated a common

reference landscape by integrating all data followed by clustering,

UMAP embedding, and manual annotation (Figures 3B, 3C, and

S2A–S2E). Clusters disjointed from the main landscape body

(mostly mature cell types) and those representing technical arti-

facts (e.g., doublets or dying cells) were excluded (unfiltered

data in Figures S2F and S2G). The refined landscape (>115,000

cells) served as the basis for our analysis. To place our data within

the broader scope of hematopoiesis research and extend its inter-

pretability, we providemultiple layers of annotation. Manual anno-

tation9,12 used lineage marker expression, cell-cycle phases,

HSC-score (molecular signature of long-term repopulating

HSCs—LT-HSCs17), and pseudotime (Figures 3A–3D; Table S1)

to highlight the upstream cluster containing HSCs (Figure S2C)

(cluster 0) and 8 terminal clusters (Figure 3C), where clear expres-

sion of definitive markers is observed. Please note that we refer to

the populations as terminal within the constraints of our stem and

progenitor landscape, but most of them are not mature cells, and

cells differentiate beyond our landscape. To add functional infor-

mation, we mapped external scRNA-seq datasets using our Cell-

project package. First, we overlaid canonical immunophenotypic

subpopulations with our scRNA-seq landscape (Figures 3D, 3E,

S3A, and S3B) (data from Nestorowa et al.7) comprising highly
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Figure 1. Hoxb5-Tom persistent labeling enables time-resolved tracking of HSCs and their progeny

(A) Targeting strategy to generate the Hoxb5CreERT2 allele.

(B) Hoxb5-Tom mice were treated with tamoxifen and label frequency was analyzed in BM and PB cells within 0.5–9 months post-treatment.

(C) Representative flow cytometry gates used for isolation of HSPC subpopulations and Tom+ cells from mouse BM. Tom labeling (red) is shown in each

population compared with control cells (blue). FACS plots correspond to mouse analyzed 3 months after label induction.

(D) Percentage of Tom + cells in the BM HSPC subpopulations at 0.5 (n = 5), 1 (n = 3), 2 (n = 8), 3 (n = 10), 5 (n = 4), and 9 (n = 7) months after label induction. Dots

represent individual mice, bars indicate mean ± SEM.

(E and F) Percentage of Tom + cells in PB of lymphoid/myeloid cell compartments (E) and erythrocytes/platelets (F). Data represent mean ± SEM (n = 4–32

animals). LSK, Lin�Sca1+cKit+; HSCs, LSKCD150+CD48�; MPP, LSKCD150�CD48�; HPC-1, LSKCD150�CD48+; HPC-2, LSKCD150+CD48+ cells.
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(B) Diagrams providing analogy between the shape of the Waddington landscape and the key population parameters estimated: differentiation rate is akin to the
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the slope.

(C) Comparison of Tie2-YFP and Hoxb5-Tom label progression displayed as relative labeling frequency between MPP or HPC-1 and HSC compartments. Red

dots, Hoxb5-Tom data points (see Figure 3) with SEM error bars; black line and gray shades, rolling average and rolling SEM for matching Tie2-YFP data.19

ll
OPEN ACCESSResource
purified LT-HSCs, MPPs 1 and 3, ST-HSCs, granulocyte-mono-

cyte progenitors (GMPs), LMPPs, and megakaryocyte-erythroid

progenitors (MEPs). Second,wehighlighted cell states associated

with specific cell fate outcomes based on in vitro lineage tracing

experiments12 (Figures 3F and S3C). Importantly, the in vitro cell

potency is broadly aligned with the manual cluster annotation.

Finally, we included information about the active/inactive HSC

status under proliferative challenge based on lineage tracing

data fromBowling et al.20 (Figure 3G). Together, these annotations

place cell clusters into a functional framework facilitating interpre-

tation of the population dynamics models discussed below.

The HSPC landscape split by time point shows clear propaga-

tion of labeled cells (Figure 3H), a full quantification of labeled/un-

labeled cell ratios for all time points is provided in Figure S4A and

follows the expected behavior3 (Figure 2A). Certain clusters (e.g.,

8 and 7) very quickly accumulate labeled cells, others are slower

(clusters 11 or 10) and some very slow (clusters 13 or 14)

(Figures 3H and S4A). Eventually, the label largely equilibrated,

as compared with the Tom� population (Figures S4A and S4B).

Importantly, scRNA-seq clustering resolves heterogeneity within

cell populations defined by conventional flow cytometry gates

(Figures S3A and S3B)4,7,21 and is predictive of cell fate.12 To pro-

vide a quantitative description of population dynamics, we em-

ployed two types of models: discrete and continuous, each built

for specific purposes. The former captures dynamics across the

entire compartment and intuitively combines hierarchical tree

models of hematopoiesis with a quantitative view based on

more precisely defined cell types. It also serves as a necessary
reference for the latter, a more advanced continuous modeling

approach, which focuses on specific trajectories, but provides

cellular flux parameter estimates for each single cell and thus

directly connects single-cell transcriptomic profiles with tissue-

scale cellular behavior.

Discrete model reveals HSPCs with lineage-specific
patterns of self-renewal and differentiation
To capture the flow of cells through the HSPC compartment in

real time, we utilized the concepts from previous label propaga-

tion studies3,22 to build a discrete model consisting of multiple,

interconnected cell clusters (Figures 4A–4C). We explain two

variables changing over time: number of labeled cells (Tom+

cells, Figures 4D and E4; Table S2) and size (Tom� cells, Fig-

ure E5; Table S2) for each cluster (labeling frequency in Fig-

ure E6). Each cluster has two basic properties: net proliferation

(number of divisions reduced by the number of cells lost, e.g.,

by cell death) and differentiation rates (number of ingoing and

outgoing cells between clusters per day, scaled to a single

cell). Thus, ourmodel simultaneously estimates (net) proliferation

balancing it with the influx, efflux, and time-dependent cluster

size. Importantly a common set of parameters fits both labeled

and unlabeled cells (except cluster 0, see the next section) indi-

cating similar dynamics. Additionally, we introduce two derived

parameters useful for interpreting cell behavior (Figure 2B). Resi-

dence time, which corresponds to a half-time of one cell in a

cluster, is the time required for the cluster to shrink by 63% (to

1/e of original size, where e is the Euler’s number) in absence
Cell Stem Cell 31, 244–259, February 1, 2024 247
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(H) Projection from (B),withHoxb5-Tom+cells at indicated timepoints shown inblue.Nestorowaet al.7 populationdefinitions: LT-HSC, lin-cKit+Sca1+CD34�Flt3�;
MPP1, lin-cKit+Sca1+Flt3�CD34+CD150+CD48�; ST-HSC, Lin�cKit+Sca1+Flt3�CD34+CD150�CD48�; GMP, Lin�cKit+Sca1+CD16/32+CD34+; LMPP,

Lin�cKit+Sca1+Flt3+CD34+; MEP, Lin�cKit+Sca1+CD16/32�CD34�; MPP3, Lin�cKit+Flt3�CD34+CD150�CD48+; CMP, Lin�cKit+Sca1+CD16/32�CD34+ cells.

Prog, progenitors; B, B cell; Bas, basophils; Bas/MC, basophil and mast cell; DC, dendritic cell progenitors; Eos, eosinophils; Ery, erythroid; Int, intermediate; Ly,

lymphoid; Meg, megakaryocyte; Mono/DC, monocyte and dendritic cell; Neu, neutrophil; pDC, plasmacytoid dendritic cells.
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Figure 4. Quantitative discrete model of the HSPCs highlights progenitor-specific self-renewal and differentiation properties

(A) Annotated UMAP projection overlaid with PAGA graph abstraction view of the HSPC landscape. The graph shows putative transitions between clusters

(related to Figure 3B).
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of any incoming cells. Residence time is defined as the inverse of

([death + differentiation] � proliferation) and thus residence time

increases as proliferation rate rises, and death/differentiation

rates decrease and vice versa. Finally, flux depicts the total num-

ber of cells transported between clusters in a unit of time (i.e., dif-

ferentiation rate multiplied by cluster size). We limited the num-

ber of differentiation parameters by assuming that cells travel

only between adjacent clusters (i.e., with highest PAGA23 con-

nectivities—Figure 4A). Although PAGA is a robust method

with relatively few assumptions, there is currently no consensus

in trajectory inference methodology. Thus, we also provide tools

to explore alternative topologies (see STAR Methods) and apply

a cluster-independent, continuous model (see later).

Of note, we observed changes in relative cluster size over time

(i.e., the background unlabeled cells), in particular a quick in-

crease in relative abundance (compared with cluster 0) of clus-

ters 7 and 8 (>50% in <20 days) and a coordinated relative

decrease in other major clusters (Figures E5 and S5A–S5C).

Cluster 0 size also modestly increases size in the same time

frame. Previous tamoxifen-based label propagation studies

also observed a quick rise in ST-HSC, MPP2, and MPP3 total

numbers (Figure S5D), but no explanations were provided.19 It

had previously been suggested that application of tamoxifen in-

terferes with JAK-STAT signaling.24 Consistent with recovery

from cell depletion caused by tamoxifen interference with JAK/

STAT, this pathway was most active in the depleted clusters 7,

8 in addition to cluster 0 (Figure S6A). To assess how recovery

from short-term cell depletion may influence model parameters,

we compared our main model with a bi-phasic fit, which permits

a switch in differentiation/proliferation rates between the recov-

ery and homeostasis phases, albeit at some cost of increased

parameter uncertainty (Figures S6B and S6C). We observed

changes in 14 out of 58 rates between the two phases

(Figures S6D and S6E; Table S3). Of note, all bar one of the ho-

meostasis rates in the bi-phasic model are essentially the same

as the rates in themainmodel. We thus explain and account for a

previously overlooked side-effect of using tamoxifen for label

induction.

We formulated our main model into a graph in Figures 4C and

S6F, where node sizes are proportional to the average cluster

size, node color indicates residence time (or net proliferation in

Figure S6F) and arrows indicate cell flux (differentiation rate in

Figure S6F). Please note that some transitions occur infrequently

(transition rates and their confidence intervals are provided in

Table S3), and we cannot exclude that some may be redundant

(for the discussion on the minimal model, please see the

methods section ‘‘Model selection’’). Interestingly, differentiation

rates poorly correlate with similarities between gene expression
(B) Graph from (A) color-coded by the absolute number of labeled cells observed

(C) Graph abstraction view of the discrete cellular flowmodel. Size of the nodes is

the residence time (log-scale), arrows indicate differentiation directions, arrow stem

thus exhibits infinite residence time.

(D) Best discrete model fit (with 95% confidence intervals) for Tom+ cell number

(E) Scatter plot showing relation of pseudotime distance to differentiation rates, ea

clusters 0–12 and differentiation rates greater than 10�12 are shown. Please note

rates are plotted (each direction). Blue line indicates linear model fit with shaded

(F) UMAP projection of the HSPC landscape, with cells color-coded by simulated

cluster 0. Please mind that the color is logarithm scaled.

(G) Simulated relative cluster size of chosen clusters following complete ablation
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states (Figures 4E and S6G), indicating that discovery of real-

time dynamics requires temporal information. Moreover, the

compartment-wide view clearly shows lineage-specific dy-

namics (Figure 4C). Megakaryocyte progenitors emerge through

a rapid transition via the fast-proliferating cluster 8, which also

generates erythroid cells, albeit more slowly (cluster 1). Substan-

tial erythroid output is achieved via sequential cell states with

considerable self-renewal (clusters 1 and 9) and proliferation

(cluster 9), followed by fast differentiation between clusters 9

and 11. Furthermore, myeloid progenitors transition from cluster

0 either into cluster 4 or via a shared route with the erythroid and

megakaryocytic progenitors into cluster 8, with gradually

increasing differentiation rates from cluster 2 onward. The

myeloid branch therefore employs additional progenitor popula-

tions analogously to the erythroid trajectory, albeit with lower

proliferation rates (Figure S6F).

The lymphoid trajectory is altogether different showing exclu-

sively slow transitions via clusters 5 and 2 into cluster 14 (which

overlaps mostly with a subset of MPP4 cells). Cluster 5,

compared with the more myeloid-biased cluster 4, proliferates

and differentiates more slowly, while expressing higher levels

of key lymphoid factors, including Flt3, Satb1, Pou2f2 (and to

some extent the monocytic factor Irf8, discussed later) (Fig-

ure E7A). The lymphoid program therefore displays restricted

proliferation and differentiation rates already from its immature

stages. Plasmacytoid dendritic cell (cluster 13, pDCs) differenti-

ation through the lymphoid cluster 14 andmyeloid clusters 6 and

16 is similarly slow. The emergence of mast cell, basophil, and

eosinophil progenitors in the adult BM is unclear.25,26 Our results

are consistent with a model whereby basophil and mast cell pro-

genitors (cluster 12) are continuously generated and originate at

least by a transition from the early myeloid cluster 2 but may also

have some contributions from other clusters (dashed lines).

Furthermore, despite limited cell numbers, we observed some

label accumulation in eosinophil progenitors (cluster 17), most

likely originating from neutrophil progenitors (cluster 10).

Interestingly, residence time (self-renewal) varies widely across

the HSPC landscape, with lineage-specific patterns (Figure 4C;

Table S3). As expected, cluster 0 contains the only perfectly

self-sustaining population; intermediate populations showa range

of residence times, from just 2.5 days for erythroid/megakaryo-

cytic progenitor (cluster 8), 11 days for monocyte/granulocyte

progenitors (cluster 2) and up to 53 days for the medial cluster

4. The latter falls close to the residence time previously estimated

for MPPs (70 days)3 and highlights that progenitors can also show

considerable self-renewal. Importantly, cells in clusters 8, 2, and 4

fall within the immunophenotypic CMP and MPP definitions

(Figures 3D, 3E, S3A, and S3B), illustrating how historically used
in each cluster. four out of 9 time points are shown for clarity.

proportional to square roots of relative cluster size, node color is proportional to

thickness is proportional to cell flux. Note: cluster 0a is fully self-renewing and

in chosen clusters relative to cluster 0. Error bars indicate pooled SEM.

ch point corresponding to a transition between clusters. Only transitions among

that in the case of the transitions between clusters 4 and 8 two differentiation

95% confidence interval.

time required for 1 cell to accumulate in the corresponding cluster starting from

of cluster 0.
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flow cytometry gates capture populations with vastly different dy-

namics. We also note that among some intermediate clusters, our

model permits a degree of forward and backward differentiation

suggesting that some states may exist in an equilibrium, with

each cluster having distinct differentiation properties. Thus,

diverse hematopoietic progenitors exhibit widely different, line-

age-specific dynamics consistentwith distinctmechanismsmain-

taining cell output.

Composition of the top HSPC compartment changes
over time
Based on immunophenotype annotations (Figures 3C–3E), the top

cluster 0 contains virtually all LT-HSC and a large subset of ST-

HSC and MPP1 cells. The overall cluster size increases over

time (Figures S5B and S5C), reminiscent of previous reports

noting the expansion of ST-HSCs and MPP3s as mice age (Fig-

ure S5D).19 Of note, the Hoxb5-Tom-labeled cells within cluster

0 grow almost exponentially (Figure S5A), which mirrors the previ-

ously reported behavior of Tie2-YFP labeled LT-HSCs19 and is

consistent with the observation of dramatic expansion of

Hoxb5-, Tie2-, or Fgd5-labeled cells in aging animals.27 This sug-

gests that the Hoxb5 and Tie2 systems mark, in addition to the

canonically quiescent LT-HSCs, a subset of immature cells with

high self-renewal or proliferation capacity.

To investigate the apparent heterogeneity within cluster 0, we

tested multiple models and put forward a potential explanation,

which assumes a logistic growth for cluster 0 and three subclus-

ters within in it: a top, perfectly self-renewing cluster 0a, the

megakaryocyte &myeloid-biased cluster 0b, and themultipotent

cluster 0c (Figure 4C, dashed box). We constrained cluster 0a

size and differentiation rate to match previously reported LT-

HSC numbers but left clusters 0b and 0c sizes unconstrained.

We defined the tip cluster by finely subclustering cluster 0 and

picking as cluster 0a the subcluster with the highest HSC-score

(subcluster 8, Figures S5E and S5F). Reassuringly, this cluster

size is compatible with our model prediction, is enriched for

HSC markers Procr and Ly6a, and, most importantly, has a

non-growing labeling frequency, as one would expect from the

candidate tip cluster (Figures S5G–S5I). Cluster 0c remains sta-

ble over time but it proliferates quickly and feeds both down-

stream progenitors and cluster 0b, which in turn grows over

time (Figures S5B and S5C). Hence, the flux between clusters

0b and 8 increases with mouse age. This is in line with the

increased myeloid output28,29 and relative proportion of mega-

karyocyte-biased and myeloid-biased HSCs in aged animals.30
Figure 5. Continuous models capture single-cell growth and differenti

(A) Diagram of megakaryocyte trajectory analysis. Following the arrows: putative

trajectory was isolated (dashed line). Along the pseudotime cell densities wer

pseudodynamics framework providing differentiation and net proliferation rate e

(B) (Left) UMAP projection of the HSPC landscape color-coded by cell fate probab

the right show UMAP projections of isolated neutrophil trajectory color-coded by

(C) Pseudodynamics fitted net proliferation parameter (red) and differentiation ra

lines indicate the region of interest with increasing proliferation.

(D) Heatmap of genes differentially expressed around the region of interest shown

(FDR <10�38), G2-M checkpoint (FDR <10�24), and cell cycle (FDR <10�38).

(E) Pseudodynamics fitted net proliferation (red) and differentiation rate (blue) pa

region of interest with increasing differentiation.

(F) Fitted gene expression values along pseudotime for neutrophil markers and tw

differentiation rates shown in (E). Gene expression was scaled around the mean
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Of note, cluster 0b shows high self-renewal (residence time of

180 days), consistent with high repopulation potential of line-

age-biased HSCs.30 Altogether, our discrete model faithfully re-

capitulates cell flux through the HSPC compartment and pro-

vides a possible explanation of aging-associated changes in

HSC behavior.

Continuousmodel of hematopoiesis connects dynamics
of gene expression with cell behavior
Although the discrete model provides compartment-wide dy-

namics, a complementary model is required to associate gene

expression changes at the single-cell level with cell behavior,

such as increased proliferation or accelerated differentiation.

For this purpose, we employed a continuous model based on

the Pseudodynamics framework.31 For tractability, we consid-

ered one lineage at a time, based on cells with highest fate prob-

abilities toward each lineage32,33(Figures 5A, 5B, E8, and E9).

The continuous model assigns differentiation and net prolifera-

tion rates to each cell (Figure 5A) by solving partial differential

equations describing cell densities along pseudotime over real

time. Hence, model parameters and gene expression share a

common pseudotime (and real-time) axis, enabling direct com-

parison. Of particular interest are states (pseudotime ranges)

with changes in proliferation or differentiation rates. An increase

in proliferation rates indicates an expansion stage, whereas a

rise in differentiation rates marks a potentially irreversible molec-

ular transition.

We set out to analyze gene expression dynamics occurring at

such changes in cell behavior. For instance, correlating the first

derivative of the differentiation rates and gene expression high-

lights complex matching patterns and shortlists potential regula-

tors driving cell differentiation in an unbiased manner (Figure E11,

extended data Table E1, extended data tables ‘‘E’’ available in

Mendeley Data, see key resources table). A more targeted

approach tests for differential expression around specific stages

of differentiation (matching changes in cell behavior). For brevity,

we showcase the megakaryocyte and neutrophil trajectories (Fig-

ures 5, E9, 10) but also provide analogous analyses for the

erythroid and monocytic/dendritic lineages (Figure E9;

Tables S4, S5, extended data Table E2). As shown in Figure 5A,

megakaryocyte progenitors display characteristic changes in

growth and differentiation rates. Cells rapidly increase their net

proliferation early on, ahead of the peak in differentiation and

around the stage where Pf4 (megakaryocyte marker) mRNA be-

comes detectable. In this growth phase, we identified 170
ation rates alongside their molecular state

cell transitions (pseudotime kernel) were used to estimate cell fate, from which

e computed for each time point (color-coded lines) and analyzed using the

stimates for each cell.

ility of neutrophil lineage (estimated with pseudotime kernel, see A). Panels on

indicated parameters or gene expression.

te parameters (blue) along pseudotime for megakaryocyte trajectory. Vertical

in (C). Left columns indicate genes belonging to enriched categories: E2F target

rameters along pseudotime for neutrophil trajectory. Vertical lines indicate the

o TF groups shown in (full analysis in Figure E10). Gray, dashed line indicated

.
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dynamically expressed genes with distinct patterns along pseu-

dotime (Figures 5C and 5D, similar analysis of the differentiation

phase is showed in Figures E9C and E9D). These genes are

strongly enriched for cell growth and proliferation genes with

almost all of them showing an upward trend in the relevant pseu-

dotime range. This serves as a proof of principle, as the model

based solely on total cell numbers, predicts the growth stage

matching the respective gene signature.

While following the neutrophil differentiation kinetics

(Figures 5B and 5E), we found gradually increasing differentia-

tion rates accompanied by a complex pattern of gene expres-

sion. Indeed, we observed two phases of neutrophil-affiliated

gene expression (Figure 5F), with Cebpe, Cst7, Elane, Fcgr3,

andGfi1 appearing almost simultaneously at the onset of differ-

entiation, while Clec4a2, Wfdc21, and S100a8 increasing at

different intervals later. To gain insight into potential mecha-

nisms regulating the process, we scrutinized transcription fac-

tors with dynamic expression along the trajectory (Figure E10A)

and classified them into 4 groups based on expression pat-

terns. Group 2 (Figure 5F) largely mirrored the expression of

early neutrophil markers described above and reassuringly

contained Gfi1, a key determinant of the neutrophil fate, which

indeed suppresses Irf8 expression,34 a member of the downre-

gulated group 1 TFs. Group 3 (Figure E10B) contained factors

with the highest expression in the most immature HSPCs

(e.g., Gata2, Hlf, and Meis1) and showed early and nearly syn-

chronous decay in expression, suggesting involvement in self-

renewal. Finally, Group 1 (Figure 5F) TFs exhibit unique patterns

of expression with peaks at different stages, all of which ulti-

mately decaying as late neutrophil markers appear. These

contain multiple TFs associated with specific lineages such

as: Irf8 (Monocyte/DC fate34), Aff3 (lymphoid/B cells35), Dach1

(myeloid36), Hmga2 (myeloid, erythroid, megakaryocytic,37

Pou2f2 (lymphoid/B cells38) or are important for HSPC self-

renewal, including Ikzf239 or Ssbp2.40 Thus, our analysis indi-

cates that progenitors exhibit transient expression of major line-

age determinants at specific differentiation stages on their way

to becoming neutrophils (seeGfi1, Flt3, Irf8 in Figures E10D and

E10E). Early accumulation of these factors is correlated with

increased differentiation rate, but eventually, a single program

takes over and accelerates the differentiation even further.

Thus, the continuous model unlocks access to full single-cell

transcriptome data and thus enables integrated analysis of

cellular andmolecular dynamics, revealingmechanistic insights

into cell behavior during differentiation.

HSPC models simulate cell journeys in real-time
consistent with basic properties of hematopoiesis
Mathematical models combined with our new datasets offer

unique prediction capabilities allowing us to unravel fundamental

facets of hematopoiesis. Specifically, we focused on computing

cell journeys in real time and consequences of cluster ablation.

First, we estimate the ’average journey times’ with the discrete

model. We placed a single cell in cluster 0 and computed the

average time required to accumulate one cell for each target clus-

ter. The required time depends on the specific influx/efflux and

proliferation rates, including the loss of cells out of the terminal

populations (via differentiation/death). Highly transient popula-

tions can therefore take longer to be populated stably. As shown
in Figures 4F and S6H, average journey time widely varies be-

tween terminals states of different lineages (Table S3). For

instance, accumulating a cell in Meg progenitors (cluster 7) re-

quires 27 days, neutrophil progenitors (cluster 10) or late erythroid

progenitors (cluster 11) >80 days and finally producing pDCs

takes about 150 days. Second, we predict what would happen

if, under normal conditions, the self-renewing cluster 0 was abla-

ted. As expected, without cluster 0 input, downstream cluster

sizes would gradually decline over time (Figure 4G), due to limited

self-renewal of intermediate progenitors. As we described above,

progenitor self-renewal is lineage specific, hence corresponding

clusters wane at different rates, with megakaryocyte progenitors

depleted to 50% after 2–3 days, whereas lymphoid progenitors

are maintained for >50 days. Of note, the substantial effect of

the depletion in some compartments is due to the fact that we

are simulating ablation of all cells in cluster 0, which includes pro-

genitors immediately downstream of HSCs. For comparison, we

also simulated the effect of the depletion of just cluster 0a and as-

certained that the effect on the downstream populations is barely

noticeable (Figure E7B).

Predictions revealed by our model agree with the order of line-

age emergence inferred from transplantation12,30,41–43 or cell

culture12,41 experiments. The time frame of the process is

expectedly much longer but is compatible with previous studies

of HSPC dynamics in vivo.3 Our approach is therefore anchored

firmly in the long tradition of hematopoiesis research and opens

the opportunity to serve as a predictive framework for in vivo

experiments.

Integrative model is predictive and resolves the effects
of transplantation on HSPC dynamics
To demonstrate the predictive capabilities of our models, we

utilized data from an independent study (Upadhaya et al.44). In

this setting, HSCs and their descendants were labeled using the

Pdzk1ip1-CreER;tdTomato system (analogous to Hoxb5-Tom

but using a different HSC-specific driver) and analyzed after 3,

7, and 14 days. Upadhaya et al.44 profiled cells by scRNA-seq;

thus, we were able to integrate them into our HSPC landscape

(Table S6). As the limited number of cells and replicateswas insuf-

ficient to build a standalonemodel, we used the Hoxb5model pa-

rameters to predict expected cell numbers using the day 3 time

point as initial condition and compared our predictions with the

observed data. As shown in Figures S7A and E12, both the

discrete model and continuous models faithfully predict the

evolution of the system over time for most of the large clusters

and trajectories. Curiously, our model indicates faster differentia-

tion towardmegakaryocytes (see clusters 7 and 8) at the expense

of erythroid (clusters 9 and 1). We noted that Upadhaya et al.44

used a milder tamoxifen treatment than our study, hence con-

sulted the Hoxb5 bi-phasicmodel (Figure S6E) for potential expla-

nation. Reassuringly, the bi-phasic parameters show that shortly

after our tamoxifen treatment megakaryocytic differentiation oc-

curs faster while erythroid slower, thus suggesting that the

discrepancy is associated with the difference in tamoxifen

dosage. Thus, our model, with some uncertainty, is able to

quantitatively predict dynamics of adult in vivo hematopoiesis.

Furthermore, our approach paves the way for future studies,

which, avoiding the transient tamoxifen effect, will provide even

more accurate models.
Cell Stem Cell 31, 244–259, February 1, 2024 253
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Figure 6. Growth and differentiation rates of HSPCs adapt to cellular stress conditions

(A) Diagram of the experiment performed by Dong et al.,45 with HSC transplanted into an irradiated animal and followed over time with scRNA-seq.

(B–F) UMAP projections of the HSPC landscape (gray) with embedded cells from Dong et al.45 in blue.

(G) Relative cluster size, points indicate observed data from Dong et al.45 Red line indicates our discrete model prediction (shaded area: 95% confidence interval)

starting from the day 3 time point. Error bars indicate propagated SEM.
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Wenext employed the same approach to predict multi-lineage

differentiation trajectories in vitro (Figures E13) using previously

published data.12 We found that almost all clusters and trajec-

tories accumulate differentiating cells much faster in vitro than

in vivo, though interestingly megakaryocytic differentiation oc-

curs at roughly the same speed as in vivo.

We analyzed a previous study (Dong et al.45), which used

scRNA-seq to track the progeny of highly purified HSCs in trans-

planted animals over time (Figure 6A). After integrating the scRNA-

seq profiles into our reference landscape (Figures 6B–6F), we

derived cell frequencies per cluster at day 3 and used the discrete

model to predict the cell abundance expected under non-trans-

plantation conditions (Figures 6G and S7B). Although some gen-

eral featuresmatch normal hematopoiesis, for instance,megakar-

yocyte progenitors being the first emerging lineage, cells under

transplantation conditions differentiate much faster in most direc-

tions, particularly toward the neutrophil fate (Figure 6G, cluster

10). The erythroid lineage behaves differently, whereas early
254 Cell Stem Cell 31, 244–259, February 1, 2024
megakaryocyte and erythrocyte differentiation is accelerated

upon transplantation (Figure 6G, cluster 8), late erythroid progen-

itor cell emergence is delayed, compared with the steady-state

counterparts (Figure 6G, cluster 11). To go beyond qualitative

interpretation, we performed combinatorial model re-fit of the

transplantation data to pinpoint the changes in differentiation

rates and proliferation rates in each cluster/transition most likely

to be responsible for altered transplantation landscape dynamics

(Figure E14A). This procedure highlighted stage and lineage-spe-

cific effects. For instance, the erythroid lineage differentiates

around 10 times faster between clusters 1 and 9,whereasmyeloid

progenitor cluster 2 exhibits 2-fold higher net proliferation and

7-fold faster differentiation toward neutrophil progenitors and

3-fold higher toward monocyte/DC progenitor (Figure E14B). In

conclusion, we demonstrated that our model can be easily

applied to other datasets and provide quantitative predictions

and interpretation, which would not be available from static mea-

surements alone.
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DISCUSSION

Quantitative models describing cell differentiation (e.g., Wad-

dington landscape) were conceptualized decades ago.46 How-

ever, the generation of dynamic and quantitative abstractions

of native hematopoiesis has been hampered by a lack of suitable

experimental approaches, particularly reaching single-cell reso-

lution. Here, we report a major effort, combining persistent HSC

labeling, time-series scRNA-seq analyses, and mathematical

modeling to build a predictive model of in vivo hematopoiesis dy-

namics. Analogously to the moving images in a kinetoscope, our

approach employs multiple high-resolution snapshots of differ-

entiation to reconstruct the real-time cellular flow between sin-

gle-cell states within the BM multilineage hematopoiesis. Our

model describes cell behavior with self-renewal and differentia-

tion rates, which intuitively can be represented as the shape of a

Waddington-like landscape (Figure 7). Using this analogy, the

discrete model is a set of fixed platforms connected with slides,

whereas the continuous model follows the curvature for all

observed states (here: single cells). Differentiation rate indicates

the slope between two states, with steeper slopes indicating

faster transition. In turn, stable states, the flat areas, have little

or no downward slope and combined with proliferation, consti-

tute areas of high self-renewal (Figure 2B).

Differentiation rate and cell fate are naturally connected, but,

crucially, exist in specific experimental contexts. CMPs have

been originally proposed as a multipotent population with com-

bined erythroid,megakaryocytic, neutrophilic, andmonocytic po-

tential.47 However, later studies reported that most CMPs are

transcriptionally and epigenetically primed toward specific line-

ages,4 exhibit lineage bias, and are primarily unipotent5 in trans-

plantation cell fate assays. Importantly, transplantation, as we

show in this work, is associated with greatly increased differenti-

ation rates, most likely due to high cellular demand, as other

means of ablating cells, similar to 5-FU treatment, also cause
Cell St
accelerated differentiation.3 In vitro as-

says, performed under cytokine-rich con-

ditions also drive rapid differentiation, and

again CMPs also rarely show combined

megakaryocyte, erythroid, granulocyte,

and monocyte output.12,47 However, if the

differentiation is slowed down and cells

given the opportunity to expand (for ap-

prox. 3 divisions) under cytokine-restricted

conditions (SCF, IL-11, TPO only), >50%

CMP clones generate multipotent output

after switching to a cytokine-rich second-

ary culture.47 Similarly, LMPPs have been

described as largely unipotent cells in

transplantation assays48 but can produce

multipotent output in two-phase cultures

analogous to the CMPs,49 i.e., given the
opportunity to grow first under slower differentiation conditions.

Our model, suggests that intermediate clusters 8, 4, 5, which

largely overlap with CMPs, are able to slowly transition among

each other. In particular, cells can shift from 8 to 4 between the

transient megakaryocyte/erythroid-biased cluster 8 and the

long-lived myeloid-biased cluster 4, but potential bidirectional

transitions are also permitted by our model. This prediction is

consistent with cell fates estimated from the static data (using

cellrank), where only a small subset of cells is assigned to a single

lineage (e.g.,�5% to neutrophil fate, Figure E14C), thus suggest-

ing that at least a subset of CMP cells are balanced and produce

multi-linage output. This is also consistent with the in vivo obser-

vation of progenitors with combined myeloid and megakaryo-

cytic/erythroid outputs.14,21,50 Importantly, we find that transi-

tions between clusters 4 and 8 are slow. Under strong

differentiation conditions (e.g., transplantation or differentiation-

promoting media), progenitor cells therefore simply do not have

time to ‘explore’ the multipotent states, thus emphasizing the

obvious, but at time underappreciated notion, that if amolecularly

multipotent progenitor cell does not divide before being chan-

neled down a particular lineage, alternative fates can never be

realized (as illustrated in Figure E14D).

Although tamoxifen has broadly been used to activate CRE in

multiple studies,3,19,51,52 we found that hematopoiesis upon

tamoxifen treatment perturbs the steady state in the short term

(i.e., first twoweeks). Indeed,weobservedchanges incluster sizes

and differentiation rates associated with tamoxifen treatment,

which we teased apart using a bi-phasic model (Figures S6B–

S6E). Development of tamoxifen-independent models will help

avoid such confounding effects. In the long-term, as mice age,

we observed only modest differences of most cluster sizes but

observed striking differences in cluster 0 composition. Although

further work will be required to better resolve the HSC subpopula-

tions (in cluster 0) and their age-related dynamics, we consider the

tentative sub-structure provided here as a critical first step in this
em Cell 31, 244–259, February 1, 2024 255
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endeavor, as it fits both our data and experimental evidence of

HSC behavior in aging mice.3,19,27,30

We fully leverage the scRNA-seq approach to extend our

model’s applicability. To ensure broad accessibility and inter-

pretability, we integrated published annotation from multiple

sources.7,12,20 This places our unified landscape (and its sub-

populations) in the biological context of previous immunopheno-

typing and lineage tracing experiments. Moreover, static cell

properties (cluster, pseudotime) and model parameters (differ-

entiation rates, self-renewal) are transferable. Crucially, new

scRNA-seq data can be readily incorporated into our landscape

and our model is capable of predicting differentiation outcomes

for chosen time points given initial conditions, as we demon-

strated using an independent time course data.44 Finally, our

model can be used to simulate putative explanations for changes

in cell abundance, e.g., between healthy and disease tissues,

even if only few snapshot measurements are available. We

showcased this capability by shedding light on changes cell dy-

namics after HSC transplantation, which displays stage and line-

age-specific acceleration of differentiation in the erythroid and

neutrophilic/monocytic-DC lineages (see transitions 1–9 and

2-3/2-6 respectively).

Differentiation and growth involve coordinated up- and down-

regulation of thousands of genes, where it remains unknown for

the vast majority of those genes whether and, if so, how they play

a role in controlling cell behavior. To access the relevant molec-

ular states with high precision, we introduce the continuous

model of near-native hematopoiesis, which includes per-cell

growth and differentiation rates, thus providing a direct compar-

ison between cellular behavior and underlying gene expression.

We observed complex, sequential gene expression patterns,

some of which overlap with increasing differentiation rates,

implying irreversible molecular changes. For example, we

show that neutrophil differentiation is coupled with expression

of multiple lineage determinants (Irf8, Flt3, Pou2f2, and Gfi1) fol-

lowed by a single program taking over and a further increase in

differentiation.

The current and predominant view of hematopoiesis has been

constructed through the identification of progenitor populations

by FACS and definition of their potential by transplantation.1 This

approach not only lacks resolution, but more importantly, re-

searchers end up describing homeostatic hematopoiesis within

a framework derived from assays that measure potential in a

non-homeostatic context3; transplantation defines potential in

a non-homeostatic assay and therefore does not reveal the

actual contribution of any given population to steady-state he-

matopoiesis. The revolution of single-cell transcriptomics has

provided evidence for additional progenitor populations,4,6,7,21

but so far had been severely limited by having to place those pu-

tative populations on a static transplantation-defined map of he-

matopoiesis. Here we have overcome these shortcomings by

observing near-native hematopoiesis in situ and over time.

The combination of lineage tracing with a single cell transcrip-

tomics chase delivered a truly quantitative and dynamicmodel of

hematopoiesis including previously unknown dynamic relation-

ships between precisely defined stem and progenitor cells.

The model also reveals fundamental quantitative system proper-

ties from cell trajectories, cell division rates, and number of cell

divisions to individual lineage-specific differentiation rates.
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Unshackling the field from the static transplantation-defined

viewof hematopoiesis shifts the paradigm fromqualitativemodels

with limited predictive capabilities to integrative, quantitative, and

predictivemodels. The latterarehighly transferableand thuskey to

providing insight into human hematopoiesis, where experimental

options are limited. As recently demonstrated scRNA-seq can

be integrated across species,53–55 thus potentially enable map-

ping HSPC dynamics onto human counterparts. Self-renewal

and differentiation capacities are particularly relevant to leukemia

research because they are the precise cellular behaviors whose

dysregulation causes the malignant phenotype. As we show

here and supported by previous studies,3,22 progenitors can also

operate close to self-renewal and a small proliferative advantage

may be sufficient to immortalize them. Finally, population dynamic

models are universally applicable across biological fields, as adult

tissues are commonly replenished from their own stem cell

pools.56 To inspire such future endeavors, we showcase how to

build a model connecting high-resolution molecular information

with tissue-scale cell behavior.

Limitations of the study
Despite vastly improved resolution over immunophenotyping,

scRNA-seq does not capture cellular states in full. Additional

variables such as chromatin state, protein levels, metabolism,

and environmental factors also affect cell behavior and may

manifest in unappreciated heterogeneity and dynamic proper-

ties. These characteristics may be heritable in which case they

may be tractable with lineage tracing approaches. In addition,

the discrete model relies on hard clustering, which averages

any finer cell heterogeneity. Although most of the early cell fate

decisions will occur within the landscape presented in this

work, with increased throughput a BM-wide landscape could

be generated, thus providing better insight into the entire

lymphoid and myeloid differentiation trajectories. More work

will also be required to better understand hematopoiesis dy-

namics in a wide-range of non-homeostatic settings such as

inflammation or chemotherapy.
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Antibodies

Anti-Mouse CD45.1 (BV605 conjugated, clone A20) Biolegend Cat#110738; RRID: AB_11204076

Anti-Mouse CD45.2 (PerCP conjugated, clone 104) Biolegend Cat#109826; RRID: AB_893349

Anti-Mouse CD4 (Biotin conjugated, clone H129.19) BD Biosciences Cat#553649; RRID: AB_394969

Anti-Mouse CD5 (Biotin conjugated, clone 53-7.3) BD Biosciences Cat#553019; RRID: AB_394557

Anti-Mouse CD8a (Biotin conjugated, clone 53-6.7) BD Biosciences Cat#553029; RRID: AB_394567

Anti-Mouse CD11b (Biotin conjugated, clone M1/70) BD Biosciences Cat#553309; RRID: AB_394773

Anti-Mouse CD45R/B220 (Biotin conjugated,

clone RA3-6B2)

BD Biosciences Cat#553086; RRID: AB_394616

Anti-Mouse Gr-1/Ly-6G/C (Biotin conjugated,

clone RB6-8C5)

BD Biosciences Cat#553125; RRID: AB_394641

Anti-Mouse Ter119 (Biotin conjugated, clone TER-119) BD Biosciences Cat#553672; RRID: AB_394985

Anti-Mouse c-Kit/CD117 (BV711 conjugated, clone 2B8) Biolegend Cat#105835; RRID: AB_2565956

Anti-Mouse Sca-1 (APC-Cy7 conjugated, clone D7) Biolegend Cat#108126; RRID: AB_10645327

Anti-Mouse CD48 (APC conjugated, clone HM48-1) Biolegend Cat#103411; RRID: AB_571996

Anti-Mouse CD150 (PE-Cy7 conjugated, clone 12F12.2) Biolegend Cat#115914; RRID: AB_439797

Anti-Mouse CD19 (Biotin conjugated, clone 1D3) Biolegend Cat#1; 553784; RRID: AB_395048

Anti-Mouse Sca-1 (PB conjugated, clone D7) Biolegend Cat#108120; RRID: AB_493273

Anti-Mouse CD16/32 (APC-CY7 conjugated, clone 93) Biolegend Cat#101328; RRID: AB_2104158

Anti-Mouse CD41 (BV605 conjugated, clone MWReg30) Biolegend Cat#133921; RRID: AB_2563933

Anti-Mouse CD105 (APC conjugated, clone MJ7/18) Biolegend Cat#120413; RRID: AB_2277915

Anti-Mouse Ter119 (FITC conjugated, clone TER-119) Biolegend Cat#116206; RRID: AB_313707

Anti-Mouse CD45R/B220 (APC conjugated,

clone RA3-6B2)

Biolegend Cat#103212; RRID: AB_312997

Anti-Mouse CD19 (APC-Cy7 conjugated, clone 6D5) Biolegend Cat#115529; RRID: AB_830707

Anti-Mouse CD11b (PB conjugated, clone M1/70) Biolegend Cat#101224; RRID: AB_755986

Anti-Mouse Gr-1/Ly-6G/C (PE-Cy7 conjugated,

clone RB6-8C5)

Biolegend Cat#108416; RRID: AB_313381

Anti-Mouse Ter119 (PE-Cy5 conjugated,

clone TER-119)

Biolegend Cat#116210; RRID: AB_313711

Anti-Mouse CD8a (APC conjugated,

clone 53-6.7)

Biolegend Cat#100712; RRID: AB_312751

Anti-Mouse CD4 (APC conjugated,

clone GK1.5)

Biolegend Cat#100411; RRID: AB_312696

Anti-Mouse CD8a (APC-CY7 conjugated,

clone YTS156.7.7)

Biolegend Cat#126620; RRID: AB_2563951

Anti-Mouse CD25 (PB conjugated,

clone PC61)

Biolegend Cat#102022; RRID: AB_493643

Anti-Mouse CD44 (PE-CY7 conjugated,

clone IM7)

Biolegend Cat#103030; RRID: AB_830787

Fc Block (anti-mouse CD16/32, clone 93) Biolegend Cat#101320; RRID: AB_1574975

Streptavidin (PerCP conjugated) Biolegend Cat#405213

Streptavidin (Pacific Blue conjugated) ThermoFisher Scientific Cat# S11222

DAPI BD Biosciences Cat#564907; RRID: AB_2869624

Mouse hematopoietic progenitor cell

isolation cocktail

Stem Cell Technologies 19856

(Continued on next page)
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CD48-APC ThermoFischer 17-0481-82, RRID:AB_469408

c-Kit-APC/Cy7 Biolegend 105826, RRID:AB_1626278

Sca1-BV421 Biolegend 108133, RRID:AB_2650926

CD150-PE/Cy7 Biolegend 115914, RRID:AB_439797

Streptavidin-BV510 Biolegend 405234

Chemicals, peptides, and recombinant proteins

Tamoxifen Sigma T5648; CAS: 10540-29-1

Corn Oil Sigma C8267; CAS: 8001-30-7

DAPI BD Pharmigen 564907

Ammonium Chloride Stem Cell Technologies 07800

SUPERase-In RNase Inhibitor ThermoFisher AM2694

dNTP mix ThermoFisher 10319879

ERCC RNA Spike-In Mix ThermoFisher 4456740

Maxima H minus Reverse Transcriptase ThermoFisher EP0753

Terra PCR Direct Polymerase Mix Takara 639270

Agencourt AMPure XP beads Beckman Coulter A63881

Nextera XT DNA sample preparation

kit 96 samples

Illumina FC-131-1096

Triton X-100 solution Sigma 93443

PEG 8000 solution Sigma P1458

Phusion polymerase ThermoFischer F530L

Critical commercial assays

10x Genomics Single Cell 3’ v3 10X Genomics PN-1000268

Deposited data

Sequencing data This paper GEO: GSE207412

Pre-processed input data This paper Mendeley Data: https://doi.org/10.17632/vwg6xzmrf9.1

Extended data figures This paper Mendeley Data: https://doi.org/10.17632/vwg6xzmrf9.1

Extended data tables This paper Mendeley Data: https://doi.org/10.17632/vwg6xzmrf9.1

scRNA-Seq data from Bowling et al. Bowling et al.20 GEO: GSE146972

See pre-processed input data

scRNA-Seq data from Nestorowa et al. Nestorowa et al.7 GEO: GSE81682

See pre-processed input data

scRNA-Seq data from Weinreb et al. Weinreb et al.11 GEO: GSE140802

See pre-processed input data

scRNA-Seq data from Dong et al. Dong et al. data45 GEO: GSE116530

See pre-processed input data

scRNA-Seq data from Upadhaya et al. Upadhaya et al.44 GEO: GSE120239

See pre-processed input data

Interactive visualization of the HSPC

landscape and model parameters

This paper https://gottgens-lab.stemcells.cam.ac.

uk/bgweb2/HSPC_dyn2022/

Experimental models: Organisms/strains

Mouse: Hoxb5mKO2 This paper N/A

Mouse: Hoxb5CreERT2 This paper N/A

Oligonucleotides

See Table S7 for list of oligonucleotides

and ssDNA

This paper N/A

TSO 50-AAGCAGTGGTATCAACGCAGA

GTACATrGrG+G-30
IDT NA

Oligo-dT30VN 50–AAGCAGTGGTATCAA

CGCAGAGTAC(T30)VN-3’

IDT NA

(Continued on next page)
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ISPCR oligo 50-AAGCAGTGGTATCAAC

GCAGAGT-30
IDT NA

Nextera XT 96-Index kit, 384 samples Illumina FC-131-1002

Recombinant DNA

Topo blunt HA-P2A-CRE-ERT2-HA plasmid This paper NA

Topo blunt HA-P2A-Mko2-p2A-Mko2-

Caax-HA plasmid

This paper NA

Software and algorithms

FlowJo v10 FlowJo,Tree Star Inc. N/A

GraphPad Prism 6 software GraphPad Software, Inc. N/A

Analysis code This paper Mendeley Data: https://doi.org/10.17632/vwg6xzmrf9.1

and Github: https://github.com/Iwo-K/HSPCdynamics

Singularity container (containing all

scRNA-Seq analysis software)

This paper Mendeley Data: https://doi.org/10.17632/vwg6xzmrf9.1

Cellproject This paper https://github.com/Iwo-K/cellproject

Cellranger v3.1.0 10X genomics NA
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Berthold

Göttgens (bg200@cam.ac.uk)

Materials availability
Plasmids and mouse lines generated in this work are available upon request.

Data and code availability
Single-cell RNA-seq data have been deposited at GEO and are publicly available as of the date of publication. Accession numbers

are listed in the key resources table.

Original extended data figures, tables, pre-processed input data and software environment (Singularity container) and analysis

code have been deposited at Mendeley and are publicly available as of the date of publication. The DOI is listed in the key resources

table.

This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key re-

sources table.

An interactive visualization of the landscape is available on a dedicated website and is publicly available as of the date of publica-

tion. The URL is listed in the key resources table.

All original code has been deposited at Mendeley Data and is publicly available as of the date of publication. DOIs are listed in the

key resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

External online data will be maintained long-term using: the GEO repository (sequencing data), Mendeley Data repository (code,

pre-processed input data and software environment) and a dedicated server maintained by the University of Cambridge Stem Cell

Institute (interactive visualization).

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals
All experiments on animals were in accordance with the guidelines of the Queen Mary University of London and performed under UK

Home Office authorisation (Project License number: PP4153210, Project Licence holder: Kamil R Kranc). Animals were maintained

under specific pathogen-free conditions. All mice were on the C57BL/6 genetic background. Bothmale and female mice at the age of

8–12 weeks were employed in this study and no obvious sex differences were found between the sexes. Rosa26-LoxP-STOP-LoxP-

tdTomato (R26LSL-tdTomato) reporter mice were published previously.18 The Hoxb5CreERT2 and Hoxb5mKO2 alleles were generated us-

ing CRISPR-Cas9 gene editing technology, using single strand donor DNA encoding the P2A-CRE-ERT2 protein and mKO2-P2A-

mKO2-CAAX protein, respectively (please see Hoxb5CreERT2 and Hoxb5mKO2 mouse lines for further details). Congenic
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CD45.1+/CD45.2+ recipient mice used for transplantation experiments were generated by intercrossing B6.SJL-Ptprca Pepcb/BoyJ

mice with C57BL/6J mice (both strains were purchased from The Jackson Laboratory).

METHOD DETAILS

Hoxb5CreERT2 and Hoxb5mKO2 mouse lines
The Hoxb5CreERT2 and Hoxb5mKO2 alleles were generated using CRISPR-Cas9 gene editing technology employing fertilized 1-cell

zygotes on the B6CBAF1/Crl genetic background. For the Hoxb5CreERT2 allele, we injected a single 15 ng/ul sgRNA

(tcctccggatgggctca)16 together with 25 ng/ul CAS9mRNA and 17.5 ng/ul single strand donor DNA encoding the P2A-CRE-ERT2 pro-

tein flanked by 70 nucleotides of homology arms (Table S7). For the Hoxb5mKO2 allele, we used the same concentrations of sgRNA

(tcctccggatgggctca), CAS9 mRNA and single strand donor DNA encoding the mKO2-P2A-mKO2-CAAX (Table S7). The F0 offspring

was screened by PCR and Sanger sequencing. The Hoxb5CreERT2 and Hoxb5mKO2 lines were established from one founder animals,

respectively, and back-crossed several times to the C57BL/6N genetic background. Mice were genotyped by PCR using primers

detailed in Table S7.

Transplantation assays and hematopoietic reconstitution analysis
Primary and secondary transplanted recipient mice (CD45.1+/CD45.2+) were lethally irradiated with a split dose of 8 Gy (two doses of

4 Gy administered at least 4 hours apart). For primary transplantations, mice were tail-vein injected with 200 Hoxb5+ or Hoxb5- HSCs

(LSKCD48�CD150+) sorted fromHoxb5-mKO2 animals, together with 2x105 support CD45.1+ unfractionated BM cells. For secondary

transplantations, 3 000CD45.2+ LSK cells sorted fromBMof primary recipientsweremixedwith 2x105 support CD45.1+ unfractionated

BM cells and re-transplanted. PB of all recipient mice was analyzed up to 21 weeks after primary and secondary transplantations. Leu-

kocytes and HSCs (LSK CD48�CD150+) were stained as described below for flow cytometry analysis of PB and BM, except cells were

also incubatedwith CD45.1-BV605 andCD45.2-PercP antibodies. For eachmouse, the percentage of donor chimerism in the analyzed

cell compartment was defined as the percentage of CD45.1�/CD45.2+ cells among total CD45.1�/CD45.2+ andCD45.1+/CD45.2- cells,

after exclusion of recipient fraction (CD45.1+/CD45.2+).

Induction of reporter gene expression by tamoxifen
Tamoxifen (1g) was dissolved in 10mL absolute ethanol and 90mL corn oil at 37�C. Aliquots of tamoxifen (10mg/mL) were stored at -

20 �C. 8-12 weeks Hoxb5CreERT2; tdTomato mice were injected intraperitoneally (i.p.) with tamoxifen at 100 mg/kg body weight for

7 days. As controls for subsequent lineage tracing experiments, mice with same genotype were injected with equivalent volume

of corn oil to determine whether any labelling was present in the absence of induction. Hoxb5WT; tdTomatomice treated with tamox-

ifen were also analysed to confirm no background or tamoxifen-induced changes.

Flow cytometry
At end point analyses, the fraction of mKO2+ and Tom+ cells was determined in various hematopoietic compartments of BM, PB,

spleens, thymi and lymph nodes. Cells from those tissues were prepared and analyzed as described previously.57,58

For HSC and progenitor cell analyses, unfractionated BM cells were incubated with Fc block, followed by biotin-conjugated anti-

lineage marker antibodies (CD4, CD5, CD11b, B220, CD8a, Gr1 and Ter119), cKit-BV711, Sca1-APC/Cy7, CD48-APC and CD150-

PE/Cy7 antibodies. Biotin-conjugated antibodies were then stained with Pacific blue-conjugated streptavidin. DAPI was used for

dead cell exclusion.

For staining of megakaryocyte and erythroid progenitors, unfractionated BM cells were incubated with antibodies against lineage

markers as described above, except Ter119 antibody was replaced by biotin-conjugated anti-CD19. Cells were stained together with

cKit-BV711, Sca1-PB, CD150-PE/Cy7, CD16/32-APC/Cy7, CD41-BV605, CD105-APC and Ter119-FITC antibodies. Biotin-conju-

gated antibodies were then stained with PerCP-conjugated streptavidin.

For analyses of differentiated cells in the BM, cell suspensions were stained with B220-APC and CD19-APC/Cy7 antibodies for B

cells, CD11b-PB and Gr1-PE/Cy7 for myeloid cells and Ter119-FITC for erythroid cells.

PB samples were collected from tail vein into EDTA-coated capillary tubes (Sarstedt). 1-2mL of unfractionated PB were used for

analysis of erythrocytes, mixed with 10uL of platelet solution. Platelets were separated by centrifugation of PB samples at 100g

for 10 min at room temperature. Platelets were identified as Ter119-PE/Cy5�CD150-PE/Cy7+CD41-BV605+, and Ter119-PeCy5+

cells were erythrocytes.

For analyses of leukocytes in PB, spleen and lymph node, myeloid cells were stained as above for BM cells, T cells with CD8a-APC

and CD4-APC antibodies, and CD19-APC/Cy7 antibodies were used to detect B cells.

Cell suspensions from thymuswere incubated with the biotin-conjugated anti-lineagemarker antibodies described above together

with CD4-APC, CD8b-APC/Cy7, CD25-PB and CD44-PE/Cy7 antibodies. Biotin-conjugated antibodies were then stained with

PerCP-conjugated streptavidin.

Flow cytometry data were acquired by LSRFortessa (BD) and analysed with FlowJo software (TreeStar, v10).
Cell Stem Cell 31, 244–259.e1–e10, February 1, 2024 e4
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Cell isolation for the scRNA-Seq experiments
Hoxb5-Tom experiments

All steps in this section (unless otherwise indicated) were performed on ice, and centrifugation steps performed at 300g, 4�C for

5 min. 8-12 weeks old mice carrying the Hoxb5-Cre and the Rosa26-LoxP-STOP-LoxP-tdTomato constructs were treated with 7

daily injections of tamoxifen (as described above) and sacrificed at indicated time-points. BM cells were extracted from ilia, tibiae

and femora by grinding with mortar and pestle in PBS supplemented with 2% Fetal Bovine Serum (cell buffer). The suspension

was filtered through a 50mmfilter, centrifuged and resuspended in 3ml of cell buffer. Red blood cells were removed using the ammo-

nium chloride solution: 5 ml of 0.8% Ammonium Chloride was added to the suspension and incubated for 10 min with intermittent

mixing. Afterwards cells were diluted with 7ml of cell buffer, centrifuged and resuspended in 1ml of cell buffer. Subsequently, lineage

depletion was performed as follows: added 20 ml of the EasySep mouse hematopoietic progenitor cell isolation cocktail, incubated

for 15 min, added 30 ml magnetic particles, incubated for 10 min, added 1.5 ml of cell buffer and placed tubes in a magnet, incubated

for 3 min at room temperature and eluted cells twice (with additional 2.5 ml of cell buffer). Afterwards, cells were centrifuged, resus-

pended in 200 ml of cell buffer and stained with the antibody panel as follows: antibody mix was added, cells were incubated for

30 min, washed with 2 ml of cell buffer, centrifuged, resuspended in 200 ml cell buffer. For the secondary staining Streptavidin-

BV510 was added, cells were washed with 2 ml of cell buffer, centrifuged, and resuspended in 1000 ml of cell buffer supplemented

with 7AAD. Afterwards cells were sorted with BD influx sorter into either 96 well plates containing 2.3 ml lysis buffer (for the Smart-

Seq2 protocol) or 100 ml of PBS with 0.04% BSA in eppendorf tubes (’droplet buffer’) when used for the 10x Genomics scRNA-Seq

protocol. The Smart-Seq2 plates were vortexed, centrifuged at 800g for 2 min and stored at -80�C.
Both Tom+ or Tom- cells within the Lin- (cKit OR Sca1)+ gate were sorted. (cKit OR Sca1)+ is a superset of the cKit+ gate used pre-

viously9 which contains more lymphoid progenitors and pDCs.

Hoxb5-mKO2 experiments

All steps in this section (unless otherwise indicated) were performed on ice, and centrifugation steps performed at 500g, 4�C for

5 min. 8-12 weeks old mice carrying the Hoxb5-mKO2 reporter were sacrificed and cells were isolated from BM (femurs and tibia)

by grinding with mortar and pestle in PBS supplemented with 2% Fetal Bovine Serum (cell buffer). Cells were stained as described

under Flow cytometry section for analysis of HSPCs. Cell suspension was filtered as above and sorted with BD influx sorter into

96-well plates containing 2.3 ml lysis buffer (for the Smart-Seq2 protocol). The Smart-Seq2 plates were vortexed, centrifuged at

800g for 2 min and stored at -80�C. The isolated populations were Lin-, Sca1+, cKit+, CD48-, CD150- (MPPs) and Lin, Sca1+,

cKit+, CD48-, CD150+ (HSCs).

scRNA-seq data generation
Smart-Seq2

When cell numbers were limiting single cells were profiled with a modified version of the Smart-Seq2 protocol59,60 rather than 10x

Genomics kit. Single cells were sorted into 96-well plates with 2.3 ml lysis buffer containing 0.115 ml of SUPERase-In RNase Inhibitor

at 20 U/ml concentration and 0.23 ml of 10% Triton X-100 solution, plates were vortexed and stored at -80�C. After thawing 2 ml of the

annealing solution (0.1 ml of ERCC RNA Spike-In solution (1:300,000 dilution), 0.02 ml of the oligo-dT primer (100 mM stock concen-

tration) and 1 ml of dNTP (10mMstock concentration)) was added. The plate was incubated at 72�C for 3min, cooled down on ice and

reverse transcription was performed by adding 5.7 ml of RT buffer (0.1 ml of Maxima H minus reverse transcriptase at 200 U/ml con-

centration, 0.25 ml of SUPERase-In RNAse Inhibitor at 20 U/ml concentration, 2 ml of the Maxima enzyme buffer, 0.2 ml of TSO oligo at

100 mM concentration, 1.875 ml of PEG 8000 solution at 40% v/v concentration and 1.275 ml water) and incubation at 42�C for 90 min

followed by incubation at 70�C for 15 min. Immediately after, cDNA was amplified by PCR by adding 1 ml of the Terra PCR Direct

Polymerase (1.25 U/ml), 25 ml of the Terra PCRDirect buffer and 1 ml of the ISPCR primer (10 mMstock concentration) to a total volume

of 50 ml using the following PCR conditions: 98�C for 3 min, 98�C for 15 s, 65�C for 30 s, 68�C for 4 min (21 cycles), 72�C for 10 min.

The amplified cDNAwas purified using AMPure XP beads, quantified using the PicoGreen assay (ThermoFischer P7589) and used for

Nextera library preparation. The libraries were generated using either a standard protocol (batch 7d andmKO2 data) or modified pro-

tocol (batches 3d7d, 2w4w and 3dr2, see the corresponding metadata) described below. No obvious batch effects were observed

among cells analyzed with either of the protocols.

The standard Nextera protocol: cDNA was diluted to approximately 50-150 pg/ml and 1.25 ml of the solution was used, 2.5 ml of

Tagment DNA buffer 1.25 ml of Amplicon Tagment Mix (Nextera XT kit) were added, samples were incubated at 55�C for 10 min,

and the reaction was stopped by addition of 1.25 ml of NT buffer. Tagmentation products were amplified by PCR by adding

1.25 ml of each N and S primers and 3.75 ml of NPM solution and using the following thermocycler settings: 72�C 3 min, 95�C
30 s, 12 cycles of 95�C 30s, 55�C 30s, 72�C 60s and a final extension at 72�C for 5 min.

Themodified Nextera protocol follows the same principle as the standard Nextera protocol and includes the following steps: cDNA

was diluted to approximately 50-150 pg/ml and 1.03 ml of the solution was used, 1.63 ml of Tagment DNA buffer and 0.6 ml Amplicon

Tagment Mix was added, samples were incubated at 55�C for 10 min, the reaction was stopped by adding 0.82 ml of NT buffer. Tag-

mentation products were amplified by adding 1.23 ml of each N and S primers (as above but diluted 5 times), 2.3 ml of Phusion HF

buffer, 0.1 ml of dNTP (25 mM stock concentration), 0.07 ml of Phusion polymerase and 2.5 ml of water and using the following ther-

mocycler settings: 72�C 3 min, 98�C 3 min s, 12 cycles of 98�C 10s, 55�C 30s, 72�C 30s and a final extension at 72�C for 5 min.

Libraries were sequenced using the Illumina Hiseq4000 or NovaSeq instruments, obtaining an average of 1, 271,307 reads per cell.
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10X genomics
For the 10xGenomics scRNA-Seq protocol up to 20,000 cells were pooled in pairs corresponding tomale and female animals, centri-

fuged and resuspended in a volume of droplet buffer optimal for recovery of up to 10,000 cells and immediately processed with the

10x Genomics Single Cell 30 v3 protocol following the manufacturer’s instructions.

Libraries were sequenced using the Illumina NovaSeq instrument, obtaining at least 20,000 reads per cell in each run (33,843 reads

per cell total average).

scRNA-Seq data analysis
Smart-Seq2 sequencing reads were aligned to the mouse genome (mm10) using the STAR aligner (version 2.7.3a) with default pa-

rameters. Reads mapping to exons were counted with featureCounts (version 2.0.0) using the ENSEMBL v93 annotation. Each cell

was subjected to a quality control, cells with: <100,000 reads, <23% of reads mapped to exons, >8.5% of reads mapped to ERCC

transcripts, >10%mitochondrial reads or <2000 genes detected above 10 counts per million were discarded. 1288 out of 1533 cells

passed quality control. Data were normalized 10,000 total counts and ln(n+1) transformed.

10x genomics reads were pre-processed using cellranger (version 3.1.0, reference genome and annotation version 3.0.0) with

default settings. Downstream analysis was performed mainly using the scanpy61 framework with additional packages where indi-

cated. Low quality barcodes with less than 1000 genes were excluded from the analysis, doublet scores were estimated using

the scrublet tool (using 30 principal components), potential doublets were removed. Male and female cells were distinguished based

on the expression of the Xist gene and Y chromosome genes. Cells with detectable Xist expression and undetectable Y chromosome

gene expression were classified as female and vice versa, ambiguous cells or potential doublets were excluded. Data were normal-

ised to 10,000 total counts and ln(n+1) transformed.

To determine highly variable genes, scanpy’s highly_variable_genes function was used to select top 5000 genes within the 10x

genomics data. From the list of highly variable genes, genes associated with cell cycle, Y-chromosome genes and the Xist were

excluded. Genes associated with cell cycle were a union of cell-cycle genes from9 and genes with at least 0.1 Pearson correlation

with the following gene set: Ube2c, Hmgb2, Hmgn2, Tuba1b, Ccnb1, Tubb5, Top2a, Tubb4b, following previously established

method.12 Putative cell cycle phase was assigned using scanpy’s ’score genes cell cycle’ function to assign putative cell cycle phase

to both 10x and Smart-Seq2 cells. Following that, 10x and Smart-Seq2 data were combined and subjected to Seurat CCA batch

correction.62 Among a variety of batch correction tools (Harmony,63 Scanorama,64 BBKNN,65 fastMNN,66 MNNcorrect) only Seurat

CCA generated seamless integration best matching the cell frequencies based on flow cytometry analysis. After applying batch

correction, we observed no obvious segregation of Smart-Seq2 and 10x scRNA-Seq profiles (Figure S2E). Corrected log-normalized

counts were scaled and used to compute 50 principal components, find nearest neighbors and calculate a UMAP projection.67 A

minor batch effect between 10x samples was corrected using Harmony batch correction tool.63 The corrected principal components

were used to calculate 12 neighbors followed by cell clustering using the leiden algorithm68 and calculation of the UMAP projection.

Clusters were manually annotated based on the marker gene expression as described in Table S1. To reduce the complexity for the

discrete model clusters with the following criteria were excluded from the further analysis: clusters that appeared disjointed from the

main landscape body, represented low-quality/dying cells or with unclear origins based on the UMAP projection and PAGA analysis.

This included: T cells, innate lymphoid cells (ILCs), cells with high mitochondrial gene counts, mature B cells, interferon-activated

cells, cells with high complement expression and small clusters with unclear annotation, likely to represent doublet cells. Unfiltered

landscape is displayed in Figure S2G.

To visualize the relative proportions of cells per cluster over time (Figure S4A), we averaged fractions of Tom+ cells in each cluster

for each time-point and divided by the respective values for matching Tom- cells.

mKO2 cell analysis
Smart-Seq2 sequencing reads were aligned to the mouse genome (mm10) using the STAR aligner (version 2.7.3a) with default pa-

rameters. Reads mapping to exons were counted with featureCounts (version 2.0.0) using the ENSEMBL v93 annotation. Cells with:

<100,000 reads, <10% of reads mapped to exons, >10% of reads mapped to ERCC transcripts, >10%mitochondrial reads. 374 out

of 384 cells passed quality control. Counts were normalized using the scran package in R and ln(n+1) transformed. Log-normalized

counts were used to generate the corresponding violin plots, compute HSC-scores17 and the projections on the7 landscape. Partic-

ularly, the projections were performed within the scanpy module: log-normalized counts of the mKO2 experiment and of the pub-

lished datasets were combined, subsetted to highly variable genes, and scaled. 50 PCs were then computed and corrected with

the mnn_correct package.66 Adjacency scores were determined based on the fraction of cells in the reference landscape that are

neighbours of the cells to be projected according to the euclidean metric (method adapted from Dahlin et al.9).

Subclustering of cluster 0
To verify whether the HSC tip population has a constant labeling frequency, we subset cluster 0 from our landscape. We then

focussed on 10x data only, to avoid artefacts deriving from the integration of different data types when it comes to very high detail.

We then subclustered cluster 0 cells with higher resolution (1.3) of the Leiden algorithm. Among these subclusters, we identified the

subcluster that has the highest HSC score17 as the putative cluster 0a.
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Embedding external datasets into the integrated HSPC landscape
For each external datasets the log-normalised counts for cells passing quality control were used as in the original work. Annotation

was either obtained from the respective GEO repositories, literature or kindly provided by the authors.

Each dataset was integratedwith theHSPC landscape (below denoted as reference) using the indicated batch correction tools and

the Cellproject package as follows. Log-normalized counts for7 were concatenated with the reference and batch effect was removed

using Seurat CCA method62 only highly-variable genes selected in the reference landscape were used. The corrected values were

scaled and used to compute PCA (50 components) in the reference dataset. The correct values of Nestorowa et al.7 dataset were fit

into the reference PCA space, in which 15 nearest neighbors were identified between the datasets. These nearest neighbors were

used for two purposes: (1) transfer the cluster identity to the newdata (based on themost frequent label) and (2) to predict coordinates

in the original reference PCA space (used as a basis for UMAP projection) using nearest-neighbor regression. Finally, the new PCA

coordinates were used to embed the new data into UMAP space. As immunophenotypic populations we used the ’narrow’ classi-

fication provided in the original study.

Bowling et al.20 data was concatenated with the reference and a common PCA space was calculated, which was subsequently

corrected with the Harmony batch correction tool. Within the corrected space 8 nearest neighbors were identified across the data-

sets, followed by label transfer and UMAP embedding as described above.

Weinreb et al.12 and Upadhaya et al.44 data were integrated analogously to the Nestorowa et al.7 data. For Figures 3F, S3C only

’state-fate’ clones were used, ie. cells captured at an early time-point (day2) with measured fate outcomes at later time-points. Only

fates with more than 7 cells were considered for the analysis. To enable model predictions (Figures S7, E12-14) all cells and time-

point were integrated using the same method.

Trajectory inference and selection
To pinpoint the most immature stem cells the HSC score was calculated (default parameters)17 and denoised by averaging values

over the nearest neighbors for each cell. As diffusion pseudotime the cell with the highest smoothed HSC score was selected, diffu-

sion map was calculated and served as the basis for trajectory inference and continuous populations models described below.

To infer putative trajectories Tom+ cells were used (matching the Pseudodynamics analysis below) for calculating cell transition

probabilities using the Pseudotime Kernel method (based on the Palantir tool33) from the CellRank package.32 To define the end

states clusters 6, 7, 10, 11, 13, 14, 15, 16, 17, 18, 19 were selected and within them 50 cells with the highest pseudotime values.

These states are largely consistent with an unsupervised method of macrostate selection Generalized Perron Cluster Analysis

with Schur decomposition.32 To assign cell fate probabilities Cellrank’s compute_absorption_probabilities function was used.

Cells belonging to trajectories for the continuous models were selected as follows. In case of megakaryocytic trajectory cells

belonging to cluster 0, 7 and 8 andwith the respective fate probability >0.3were chosen. For the erythroid trajectory cellswith respective

fate probability <0.2 and falling within the pseudotime range 0.015 and 0.294 (to exclude variable small number at the end of the tra-

jectory) were used. Neutrophil and monocyte share a long stretch of progenitors with high probabilities towards both lineages, thus

a different approach was used, motivated the apparent locations of bipotent cells with neutrophil and monocyte/DC potential based

on cell fate assays (Figure 3F).12 Neutrophil progenitors (terminal state 10) were selectedwith fate probability >0.24 andMono/DCprob-

ability <0.38 and excluding a small number of cells falling into clusters 12, 17 and 14. Conversely for the Mono/DC progenitors (terminal

state 6) cells were selectedwithMono/DC fate probability >0.18 and neutrophil probability <0.49 and a small number of cells falling into

clusters 12, 17 and 14 was excluded.

Differential expression analysis
For the DE analysis cells were selected tomatch the continuousmodel trajectories. The shapes of differentiation and net proliferation

rates were inspected for potential regions of interests and respective ranges of pseudotime values were chosen. Prior to the analysis

genes with low expression were filtered out, only genes detected in more than 2.5% cells and with overall mean expression above

0.05 (data normalized with logNormCounts from the scuttle package) were included. To select genes with dynamic expression in the

chosen intervals the fitGAM function followed by startVsEndTest from the TradeSeq package were used. Genes were considered

significant if they showed at least FDR of 0.1 and a log2(Fold change) of at least 1. Predicted and smoothed gene expression was

used using the predictSmooth function from the same package. In heatmaps genes were clustered with hierarchical clustering using

the hclust R function with default settings. Transcription factors were selected based on the gene list established in,69 TF groupswere

established by cutting the tree at the level of 4. Gene enrichment was performed using GSEAPY interface to the enrichr tool.70 The

first derivative of the differentiation rate was calculated using interpolation at the same pseudotime points that were used to predict

gene expression using the TradeSeq model described above.

QUANTIFICATION AND STATISTICAL ANALYSIS

Flow cytometry data analysis
Flow cytometry data was analysed using the FlowJo software followed by Prism 6 software for statistical testing and visualization.

Statistical tests, relevant distributions parameters (means and standard errors of themean) and replicate numbers are provided in the

respective figures and figure legends. Effects exceeding p-values 0.05 and/or confidence interval of 95% were considered

significant.
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Discrete population model analysis
As input to the discrete models the estimated total number of Tom+ or Tom- cells per cluster was used (Table S2). The numbers were

estimated based on the fraction of cells assigned to each cluster adjusted by the total number of cells (based on the flow cytometry

analysis of the entire sample). One out of 5 mice analyzed at day 3 exhibited abnormally high labeling frequency, the sample was

excluded to avoid introducing bias but we provide the corresponding data within the GEO submission files and source code for in-

dividual assessment.

To assess the kinetics of differentiation and growth of the different hematopoietic populations, we first considered a discrete com-

partments model, using the HSPC landscape clusters as compartments. To establish the available differentiation pathway, PAGA

connections and pseudotime ordering were considered. We used a relaxed lenient PAGA connectivity threshold of 0.05 preserving

themajority of connections between ‘adjacent’ clusters, consistent with the hematopoiesis models.10,12,14,21 The relaxed PAGA con-

nectivity threshold of 0.05 This reduced the number of model parameters and prohibited ‘jumps’ between distant states (e.g. from

HSC to neutrophil progenitor directly), in line with the common assumptions of trajectory inference methods. Beyond identifying pu-

tative transitions the connectivity weights do not feed into our dynamics models. Furthermore, no back differentiation (ie. against

pseudotime ordering) was permitted into cluster 0 and frommost differentiated clusters with clear expression of commitment genes:

1, 3, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19. Other transitions above-threshold were considered potentially bidirectional. Each

compartment is assigned a growth rate and as many differentiation rates as the number of its progeny compartments. Assuming the

following:

d the label is neutral and stably propagated

d the kinetics parameters of each cluster are constant over time and independent of the size of any cluster

d the labeled and unlabeled cells have identical kinetics,

Population dynamics can be modeled as an ODE system of coupled equations:

_xiðtÞ =

 
bi �

Xnc
j = 1

ai;j

!
xiðtÞ+

Xnc
j = 1

aj;i xjðtÞ

where xiðtÞ is the number of cells in population i, aj;i is the differentiation rate from compartment j to i, and bi the growth rate of

population i. For the terminal and initial clusters, the equations take form respectively:

_xiðtÞ = bi xiðtÞ+
Xnc
j = 1

aj;i xjðtÞ
_x0ðtÞ =

 
b0 �

Xnc
j = 1

a0;j

!
x0ðtÞ

Please note that differentiation rates are set to zero if they have not passed the thresholding criteria as explained above. The dif-

ferentiation rates were allowed to vary between 0 and 4 per day, with the exception of cluster 0a’s rates, which were bounded to vary

between 0 and 0.02 per day, based on previous knowledge of HSCs low activity.19,42 The growth rates were bounded between -4 and

4 per day, to allow for death rate (negative values) or additional differentiation towards more mature cell states outside the presented

HSPC landscape, or cell migration. The number of clusters, nc, is equal to 22, one per each of the 20 Leiden clusters, plus 2 additional

subpopulations within cluster 0, the most immature cluster. The reason for this choice lays in 2 observed characteristics in the data:

cluster 0 ratio of labelled to unlabeled cells (labelling frequency) grows over time, and some downstream clusters’ labeling frequency

overshoots the one in cluster 0. Based on Barile et al.19 and Takahashi et al.,22 this implies that the progenitor cluster must be het-

erogeneous. Indeed, the most immature HSCs occupy only the tip of cluster 0 (Figure 3C).

Particularly, we chose to add 2 more sub-compartments to allow for differentiation bias in the HSCs.19,42 The growth rate in the

most immature subcluster 0a was fixed in such a way to balance the differentiation rates, given the a priori knowledge that pure func-

tional hematopoietic stem cells show only limited growth over time. The proliferation estimates range, we chose from one division per

145 days to in 50 days.3,19,27,42 We accounted for this upon modelling cluster 0 overall number of cells with a logistic function, and

thus added a logistic parameter r and a carrying capacity K. Both parameters are positive and unconstrained. Specifically, we im-

plemented the following equations for cluster 0a:

_x0ðtÞ = r x0ð1 � x0ðtÞ =KÞ
_x0aðtÞ = _x0ðtÞ � _x0bðtÞ � _x0cðtÞ;
while the time evolution of clusters 0b and 0c is analogous to that of all other clusters. Since we calibrated the ODE system to both

the labelled and unlabeled cells time courses, we also included as parameters 22*2 initial conditions (corresponding to labelling fre-

quencies and cluster sizes), all positive and unbounded, except for the number of cells in cluster 0a, set to range between 500 and
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1500 based on previous HSC number estimates71 and factoring in cell isolation efficiency. The model allows the initial number of

labelled cells to be greater than zero, thus accounting for any unspecific labeling.

We calibrated our model to 4 types of observables:

d The number of labeled cells in each cluster over time and relative to cluster 0 as computed via scRNA-Seq analysis

d The number of unlabeled cells in each cluster over time and relative to cluster 0 as computed via scRNA-Seq analysis

d The number of labeled cells in cluster 0 over time as computed via FACS sorting and scRNA-Seq analysis

d The number of unlabeled cells in cluster 0 over time as computed via FACS sorting and scRNA-Seq analysis

To estimate the parameters, we minimized a cost function of the squared sum of residuals. Each residual is weighted by the

squared error, which was computed as pooled variance per time course. We computed the 95% confidence bounds on the param-

eters’ best fit with the profile likelihood method as in.19,72 To compute error bounds on the model, we ranz4000 bootstrap simula-

tions, where data is resampled with replacement per time-point, and the cost function is re-minimized on the new dataset. For each

simulation, a new parameter vector is found, and a model curve generated. 95% bootstrap confidence bounds are then determined

cutting upper and lower 0.025 quantiles per time-point.

The bi-phasic model was generated analogously for data split into to the recovery phase (days 3-27) and the homeostasis phase

(remaining time-points). We observe vast majority of changes in Tom- cell abundance within the first 12 days, thus we conservatively

chose day 27 as a boundary.

To simulate the ablation of any population, the initial condition of the unlabeled cells for the corresponding compartment can be set

to 0. To ablate the HSCs, we simultaneously set to 0 the initial condition of all 3 subclusters.

To compute the journey times, we generated the model in the time interval 1–300 days with 1 day steps, assuming that cells are

initially only in cluster 0 andwith the unlabeled cells initial condition.We then computed the smallest time for which the number of cells

in a population reaches one and dubbed that journey time.

Generalized model for testing alternative topologies
As explained in the main text and in the above section of the methods, our model constrains the topology based on the PAGA-pre-

dicted edges. In principle, though, one could test any topology, including backwards differentiation and unlikely connections such as

HSC differentiating directly into a terminal compartment. We have thus implemented an additional code where the user can test the

performance of any model upon setting to 1 the entries of a 22 X 22 table representing the existence of a differentiation rate from any

cluster to any cluster.

Model selection for perturbed systems
To infer what parameters may change in non-homeostatic conditions, we developed a model selection-based method. We first fixed

the parameters describing the challenged system to our best fit, and then allowed the parameters of specific populations to change.

We considered 14 populations whose proliferation and differentiation rates may change, being 14 out of 20 the populations that have

at least one progeny in the ‘challenge’ dataset. Out of these 14 populations, any subgroup may change its parameters or not, for a

total of 214 = 16384 models. These models were all fit to the transplantation data. In order to rank these models, we employed the

Akaike information criterion, and retained only those models that simultaneously have the lowest possible number of populations

whose parameters change in order to fit the data and whose corrected Akaike index is not greater than the best ranking Akaike index

plus 10.

Continuous population model analysis
In order to compute pseudotime-dependent kinetic rates, we relied on the pseudodynamics framework.31 Briefly, the compartment

model explained in the previous section has a one to one correspondence to the continuous model if the compartment index is

treated as a continuous variable, namely the diffusion pseudotime coordinate s, the number of cells is replaced by the cell density

over pseudotime and real time uðs;tÞ, and the differentiation and net proliferation rates are replaced by the drift vðsÞ and the growth

rate gðsÞ, respectively. Given these substitutions, the ODE system becomes a PDE system. In addition, the Pseudodynamics frame-

work also introduced an extra parameterDðsÞ that allows for diffusion of the cells on the pseudotime axis to account for stochasticity

in the differentiation process. The 3 kinetics parameters, drift, growth rate and diffusion, are modeled as natural cubic splines with 9

nodes. The nodes boundaries were kept as in the original publication: between 0 and 1 per day for drift and diffusion, and between -5

and 6 per day for the growth rate. To simplify the computation, we estimated such rates independently for 4 different trajectories,

which avoids introducing parameters that describe the branching process. The trajectories were chosen based on the affinity to

each terminal state as estimated by CellRank (see section ’Trajectory inference and selection’). For each trajectory, the PDE reads:

vuðs; tÞ
vt

=
v

vs

�
DðsÞ vuðs; tÞ

vs

�
� v

vs
ðvðsÞ uðs; tÞÞ+gðsÞ uðs; tÞ

For the boundaries, we assumed no-flux Robin conditions, as in the original publication. To solve the PDE, we used the non-

branching pseudodynamics model as compiled in MATLAB 2017b, with only one difference: we did not enforce differentiation to

be 0 at the end of the trajectory which, together with the growth rates taking also negative values, accounts for the fact that the
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populations in our landscape are all transient and that fully mature cells are not captured by our gating strategy. The model was cali-

brated to the time-dependent density and total number of labelled cells only. The error was computed as variance among replicates.

For each trajectory, at least 240 simulationswere launched, with regularization parameters 0, 1, or 10 to penalize big differences in the

splines’ nodes. The solution was chosen based on the highest log-likelihood, and the regularization parameter as the highest that

visually fits the data well.

Transplantation data analysis
Dong et al. data45 was integrated into the HSPC landscape analogously to the7 data integration described in section ’Embedding

external datasets into the integrated HSPC landscape’. Cells in each HSPC cluster were counted and used as an input into the

discrete model prediction. Day 3 data was used as the initial condition and cell abundances per cluster were predicted from day

3 to day 7. The bootstrap confidence bounds were recomputed upon substituting the initial conditions. Given that the experimental

data in relevant clusters vastly exceed themodel prediction bounds, we concluded that the dynamics of perturbed hematopoiesis are

different from normal conditions and suggest increased differentiation.
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Supplementary Figures 

Figure S1 Validation of the Hoxb5-mKO2 and -Tom model systems (related to Figure 1). 

(A) Targeting strategy for introducing the mKO2 reporter at the Hoxb5 locus (Hoxb5 mKO2). 

(B) Representative flow cytometry gating of BM cells to isolate LK, LSK, HSC, MPP, HPC-1 

and HPC-2 populations. (C) Representative histograms from WT and Hoxb5 mKO2 mice 

showing mKO2 expression in CD150- and CD150+ fractions. (D) Hoxb5 expression for cell 

types gated in B is shown by bar graph with mean % of Hoxb5+ cells ±SEM, and representative 

contour plots with outliers. mKO2+ cells were measured after comparison to wild-type control 

mice (top row), used as fluorescence minus one (FMO) and for logical exclusion of 

autofluorescence. Results are from 15 Hoxb5 mKO2 mice at 8-12 weeks old. (E) Percentage 

of CD45.2+ cells in the BM HSC compartment of primary recipient mice 16 weeks after 

transplantation of Hoxb5+ or Hoxb5- HSCs, see also Figure E1B-C * P≤0.05, unpaired, two-

tailed Student’s t-test. (F) Fractions of Tom+ cells in the HSPC populations at each analysed 

time point. All data represent mean±SEM; *P <0.05, **P <0.01, ***P < 0.001 and ****P < 

0.0001 (one-way ANOVA with post hoc Tukey’s multiple comparisons test against all groups). 

(G) Fractions of Tom+ cells in the BM, thymus, spleen and lymph nodes analyzed at the 

indicated time-points after label induction. Shown as mean with error bars denoting SEM of 4-

32 animals.  

Figure S2 Detailed annotation of the HSPC scRNA-Seq landscape (related to Figure 3). 

(A) UMAP projection of the integrated HSPC scRNA-Seq landscape (all Tom+ and Tom- 

combined) with log-normalized expression for chosen marker genes in red. (B) Projection from 

A with inferred cell cycle phases. (C) Projection from A showing the HSC-score, metric 

correlated with the highest HSC repopulation potential. (D) Projection from A showing 

inferred diffusion pseudotime values for each cell. (E) Projection from A color-coded by 

scRNA-Seq technology used, SS2 - Smart-Seq2, 10x - 10x Genomics 3' Kit. (F) UMAP 

projection of the integrated scRNA-Seq landscape (all Tom+ and Tom- cells combined) prior 

to filtering out outlier/aberrant clusters with color-coded cluster information. After filtering 

cluster were renumbered in consecutive order. (G) Projection from F with color-coded manual 

annotation. 

Abbreviations: B prog - B cell progenitor, Bas - basophils, Bas/MC prog - Basophil and Mast 

Cell progenitors, DC prog - dendritic cell progenitors, Eos - eosinophils, Ery prog - erythroid 

progenitors, HSC - hematopoietic stem cells, Hi-Mito - cluster characterized by high 



mitochondrial gene expression (potentially dying cells), ILC - innate lymphoid cells, Ifn-act 

prog - progenitors with strongly activated Interferon signature, Int prog - intermediate 

progenitors, Ly prog - lymphoid progenitors, Meg prog - megakaryocyte progenitors, 

Mono/DC prog - monocyte and dendritic cells progenitors, Myo C1 - myeloid cells with high 

expression of complement genes, Neu prog - neutrophil progenitors, pDC - plasmacytoid 

dendritic cells 

Figure S3 Overlaying immunophenotypic and functionally defined populations onto the 

scRNA-Seq landscape (related to Figure 3). (A) UMAP projection of the integrated HSPC 

landscape (grey) with embedded immunophenotypic sub-populations (blue) from Nestorowa 

et al.7 (B) Fraction of cells in each immunophenotypic population from A assigned to the HSPC 

landscape clusters. (C) UMAP projection of the integrated HSPC landscape (grey) with 

embedded cells from Weinreb et al.11 split by their progeny fate. 

Figure S4 Equilibration of the labelled cells over time across the scRNA-Seq landscape 

(related to Figure 4). (A) Projection from A comparing the relative abundance between 

labelled and unlabelled cells within each time-point. Each cluster is color-coded according to 

its log2-transformed ratio between Tom+ and Tom- cell numbers (average of all replicates per 

time-point). Red indicates enrichment, white the expected value and blue depletion. For 

reference the cluster boundaries are visualized in the bottom right panel. (B) UMAP projection 

of the integrated scRNA-Seq landscape (all Tom+ and Tom- combined) in grey with Tom- cells 

harvested at 269 days in blue. 

Figure S5 Changing composition of cluster 0 over time (related to Figure 4). (A) Best 

discrete model fit (with 95% confidence intervals) for number of Tom+ cells in cluster 0. (B) 

Best discrete model fit (with 95% confidence intervals) for cluster 0 size. (C) Best discrete 

model fit for sub-cluster sizes within cluster 0. Error bars indicate pooled standard error of the 

mean. (D) Total number of cells per mouse in the indicated populations normalized to the first 

time-point. Based on flow cytometry data from Barile et al.22. Error bars indicate pooled 

standard error of the mean. (E) UMAP projection of the isolated cluster 0 from the HSPC 

landscape, colour-coded by subclusters. (F) Violin plots of HSCscore or Procr/Ly6a expression 

grouped per subcluster from E. (G) Relative observed size of subclusters from E compared 

with the model best fit and bounds for cluster 0a. (H,I) Observed labelling frequency in 

subclusters from E: 8 -with highest HSC-score and HSC marker expression and 12 – with 

intermediate HSC-score but highest Ly6a expression. Data compared with the best fit and 

bounds for cluster 0a from the HSPC discrete dynamics model. 



Figure S6 Characterization of the discrete model and its bi-phasic variant (related to 

Figure 4). (A) UMAP projection of the integrated landscape color-coded by log-normalized 

expression of indicated JAK/STAT target genes72. (B,C) Relative cluster size (normalized to 

cluster 0, based on Tom- cells) with the best fit for the main model (only one phase) and bi-

phasic model, which permits a change in proliferation and differentiation rates after day 27. 

Error bars indicate pooled standard error of the mean. (D) Proliferation rates per cluster for 

each phase of the bi-phasic model. Phase I includes the first four time-points and phase II the 

remaining ones. Error bars indicate 95% confidence interval. (E) Differentiation rates per 

transition for each phase of the bi-phasic model. Phase I includes the first four time-points and 

phase II the remaining ones. Error bars indicate 95% confidence interval. (F) Graph abstraction 

view of the dynamics model. Size of the nodes is proportional to square roots of relative cluster 

size, node color is proportional to net proliferation rate, arrows indicate differentiation 

directions, arrow thickness is proportional to cell differentiation rate (log-scale). (G) Scatter 

plot showing relation of cluster connectivity (estimated by PAGA) to differentiation rates. Only 

clusters 0-12 and differentiation rates greater than 10-12 are shown. Please note that in the case 

of the transitions between clusters 4 and 8 two differentiation rates are plotted (each direction). 

Blue line indicates linear model fit with shaded 95% confidence interval. (H) Related to Figure 

4F, the average time required for a single cell to accumulate in the corresponding cluster when 

initiated in cluster 0 (journey time).  

Figure S7 Prediction of hematopoiesis dynamics in near-native and transplantation 

settings related to Figure 6. (A) HSPC dynamics discrete model prediction of labelled cells 

relative to cluster 0 based on the initial labelling from the Pdzk1ip1-Tom in vivo mouse model 

data43. Please note that this dataset contains a limited number of cells, in particular clusters 14, 

17, 18, 19 contain less than 10 cells across all time-points. (B) Predicted relative cluster size 

(red line with 95% confidence interval) based on day 3 data from Dong et al.44. Observed data 

shown in blue (please note that this dataset contains a limited number of cells). Error bars 

indicate propagated standard error of the mean. 
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