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Clonal expansion of B-cells, from the early stages of monoclonal B-cell lymphocytosis through to chronic
lymphocytic leukemia (CLL), and then in some cases to Richter’s syndrome (RS) provides a comprehen-
sive model of cancer evolution, notable for the marked morphological transformation and distinct clin-
ical phenotypes. High-throughput sequencing of large cohorts of patients and single-cell studies have
generated a molecular map of CLL and more recently, of RS, yielding fundamental insights into these dis-
eases and of clonal evolution. A selection of CLL driver genes have been functionally interrogated to yield
novel insights into the biology of CLL. Such findings have the potential to impact patient care through
risk stratification, treatment selection and drug discovery. However, this molecular map remains incom-
plete, with extant questions concerning the origin of the B-cell clone, the role of the TME, inter- and
intra-compartmental heterogeneity and of therapeutic resistance mechanisms. Through the application of
multi-modal single-cell technologies across tissues, disease states and clinical contexts, these questions
can now be addressed with the answers holding great promise of generating translatable knowledge to

improve patient care.
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Introduction

The natural history of cancer can be understood through the
examining drivers of evolution, and the processes of mutation and
selection [1,2]. The acquisition of somatic mutations, as a conse-
quence of endogenous or exogenous processes, leads to cellular di-
versification [3-6]. Selection describes the ability of cells, in the
context of their environment, to out-compete relatives as a re-
sult of these heritable somatic features [1,7,8]. Cancer is formed
of cells referred to as clones, that derive from a common ances-
tor and have expanded as a result of acquired mutations that con-
fer a survival advantage [9,10]. Genes which harbor such mutations
are termed cancer driver genes [10-13]. As well as furthering our
knowledge of cancer biology, the study of cancer evolution and
clonal selection has implications for our understanding of disease
progression, resistance and relapse [14].

The natural history of clonal expansion of B-cells, from the
early stages of monoclonal B-cell lymphocytosis (MBL) through to

* Corresponding authors. Amit Sud, Department of Medical Oncology, Dana-
Farber Cancer Institute, Boston, MA.
E-mail addresses: amit_sud@dfci.harvard.edu (A. Sud),
erinm_parry@dfci.harvard.edu (E.M. Parry).

https://doi.org/10.1053/j.seminhematol.2024.01.009

chronic lymphocytic leukemia (CLL) and then to the aggressive
lymphoma Richter’s syndrome (RS) provides a model of cancer
evolution, notable for the marked morphological transformation
and distinct clinical phenotypes [15-17]. CLL is the most common
leukemia in economically developed countries and over successive
decades advances in therapy have resulted in improvements in sur-
vival [18]. This contrasts with RS, which occurs in only 2% to 9% of
CLL cases, but remains associated with poor prognosis with a me-
dian overall survival of less than 1 year [19]. Hence, there is an
urgent need to understand the evolutionary processes that drive
transformation of CLL to RS to improve patient outcomes.

The long natural history combined with the ease of sampling
has allowed CLL to be at the forefront of genomic characterization
and evolutionary studies in cancer. A comprehensive analysis of
the RS genome however, has only recently been attainable through
international initiatives to collect sufficient numbers of appropriate
tissue, combined with the development of analytic tools for CLL
and RS clonal deconvolution. Here, we provide a unified summary
of the molecular and genetic features of CLL and RS including in-
sights into the mechanisms underpinning transformation of CLL to
RS and their potential for clinical translation (Fig. 1) [20-23].

0037-1963/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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Fig. 1. A schematic for a molecular map of chronic lymphocytic leukemia and Richter’s syndrome. MBL, monoclonal B-cell lymphocytosis; CLL, chronic lymphocytic leukemia;
RS, Richter’s syndrome; M-CLL, mutated chronic lymphocytic leukemia; U-CLL, unmutated chronic lymphoctyic leukemia; 5mC, 5-methylcytosines; cAID, canonical activation-
induced cytidine deaminase; ncAID, non-canonical activation-induced cytidine deaminase; ROS, reactive oxygen species; WGD, whole genome duplication.

Germline genetic susceptibility to CLL

Understanding the germline contribution to somatic mutagen-
esis is informative of the origin of clonal expansion in malignan-
cies such as CLL [24-26]. The germline genetic architecture un-
derscoring the 6-fold elevated familial risk observed in CLL, re-
flects a range of alleles with varying population frequency and
impact [24,27]. Although families segregating CLL provide support

for Mendelian susceptibility, only a limited number of rare alle-
les have been discovered [28-30]. Genome-wide association stud-
ies have identified 43 loci, each affording a modest impact on CLL
risk (Fig. 1) [31-37]. Elucidating the mechanism that these risk loci,
the majority of which map to the non-coding genome, is impor-
tant for elucidating the biological processes in CLL pathogenesis
[24,29]. A number of biological processes have been implicated in
CLL predisposition through the integration of these germline ge-
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netic variants, gene expression and chromatin structure. These in-
clude immune dysfunction (SP140, BCL6, OAS1, and IRF8), apoptosis
(BCL2L11, CASPS8, CFLAR, FAS, BMF, and BCL2), Wnt signaling (UBR5,
TLE3, and LEF1), DNA damage (ATM) and telomere maintenance
(POT1, ACD) [28,29]. Many of these processes converge with so-
matic genetic alterations identified through sequencing of CLL cells.

The CLL genome

Whilst the Binet and Rai clinical staging systems are strongly
predictive of CLL clinical outcomes, heterogeneity within each
group exists. This can be in part explained by the presence of so-
matic hypermutation of the IGHV gene (defined in this context as
<98% identity to the germline sequence), which partitions CLL into
2 distinct subsets with different evolutionary histories [38-41]. CLL
with an unmutated IGHV (U-CLL) is thought to arise from naive B-
cells and is associated with an inferior prognosis when compared
to CLL with a mutated IGHV (M-CLL), which represents a clonal ex-
pansion of a post-germinal center B-cell. Over the past 5 decades,
the discovery of somatic mutations in cancer and their direct rel-
evance to biology and therapy, has motivated efforts to catalog re-
current genomic features in CLL [6,42,43].

Hindered by the low mitotic activity of the leukemic cells in
vitro, fluorescence in situ hybridization (FISH) allowed for the de-
tection of chromosomal aberrations not only in dividing cells but
also in interphase nuclei [44-46]. Approximately 80% of CLL cases
demonstrate a chromosomal aberration, the most common be-
ing 13q del (55%), 11q del (18%), tri(12) (16%), and 17p del (7%)
[44]. These deletions harbor putative CLL drivers: ATM and BIRC3
(11q), TP53 (17p), and miR-15a/16 encoded in an intron of DLEU2
(13q) [44,45,47-49]. These cytogenetic abnormalities have tradi-
tionally been associated with relatively favorable (13q del), unfa-
vorable (del(11q) and tri(12)) and poor outcomes del(17p). Subse-
quent targeted sequencing studies, informed by biological knowl-
edge, demonstrated recurrent single nucleotide variants (SNVs),
insertions or deletions in TP53, ATM and NOTCH1 [50-52]. TP53
aberrations were subsequently recognized as being associated with
markedly decreased survival and impaired response to chemoim-
munotherapy [53].

The advent of high-throughput sequencing (HTS) such as
whole-exome sequencing and whole-genome sequencing (WGS)
has allowed for unbiased mutation detection, driver gene pre-
diction, mutational signature extraction, identification of clinically
relevant biomarkers and modeling of growth kinetics and evolu-
tion [54-63]. The overall mutation burden in CLL is low (~1/Mb)
when compared to other cancers, with no significant difference be-
tween coding mutation rates between M-CLL and U-CLL [61,62].
Mutational signatures in the CLL genome have highlighted biolog-
ical processes responsible for mutagenesis CLL and include SBS5
(clock-like), DBS11 (APOBEC), ID2 (slippage of template DNA strand
during DNA replication), SBS1 (deamination of 5-methylcytosines),
SBS84 and SBS85 (canonical activation-induced cytidine deaminase
[AID]), SBS9 (non-canonical AID), SBS18 (reactive oxygen species),
DBS2 and SBS8 [62-64] (Fig. 1).

Initial HTS studies of CLL, based on cohorts of ~100 CLL
cases, confirmed previously observed mutations in TP53, ATM and
NOTCH1 and identified novel mutated genes in CLL including
SF3B1, FBXW?7, DDX3X, MAPK1, and ZMYM3 [54-56]. Over the past-
decade sample sizes of sequenced cohorts have increased 10-fold
which has afforded greater power to detect recurrent coding and
non-coding mutations (ability to identify >90% of drivers mu-
tated in 2% of patients) and to associate putative driver muta-
tions with clinical features and outcomes [62]. Moreover, the inclu-
sion of complimentary data such as 3-dimensional protein struc-
ture has improved the prediction of driver gene status [10]. To
date, >200 putative driver genes of CLL have been identified by

Table 1
Cancer driver genes in CLL which are mutated at >5% frequency in CLL, unmutated
CLL and mutated CLL. Data from high-throughput sequencing studies of 2 large
cohorts.

Study Disease Gene

Knisbacher et al. [62] Mutated CLL SF3B1
CHD2
MYD88
ATM
KLHL6
Unmutated CLL SF3B1
NOTCH1
ATM
TP53
POT1
XPO1
MGA
BRAF
DDX3X
EGR2
RPS15
ZNF292
Robbe et al. [63] CLL SF3B1
TP53
IGLL5
NOTCH1
ATM
POT1
BIRC3
RPS15
MGA

Knisbacher et al. [62]

HTS (Table 1) [62,63]. Mutations in SF3B1, NOTCH1, ATM, IGLV3-
21R10 P53 POT1, CHD2, and XPO1 occur in 17.5%, 12.3%, 11.2%,
9.5%, 9.1%, 6.3%, 5.7% and 5% of patients respectively, with the re-
maining drivers possessing a mutation frequency each of <5%. The
genes identified highlight core altered pathways in DNA damage
(eg, TP53 and ATM), mRNA processing (eg, SF3B1, XPO1), chromatin
modification (eg, HISTIH1E, CHD2, and ZMYM3), NOTCH signalling
(eg, NOTCH1, FBXW7), MYC (eg, MGA), inflammation (eg, MYD88,
BIRC3) B-cell receptor transcription and signaling (eg, EGR2 and
BRAF) and telomere maintenance (eg, POT1) (Fig. 2) [62].

In addition to single nucleotide variants and small insertions-
deletions (generally <50 base pairs) in protein-coding sequences,
WGS allows for the detection of recurrent variants outside of the
non-coding mutations as well as larger variants such as copy num-
ber alterations (CNAs) and structural variants (SVs). >50 recur-
rent CNAs have been reported in addition to previously identi-
fied deletions (13q, 11q, and 17p). Through defining minimally af-
fected regions and the integration of driver gene and data and
literature, candidate genes at recurrent CNA sites include UCP2
and UCRP3 (del[11q13]), PCM1 (del[8p]) and RPS14 and TCOF1
(del[5g32]) [62,63]. An average of 5 CLL SV breakpoints occur per
patient with 46% being identified as clonal, supporting a role for
SVs in CLL pathogenesis. Breakpoints frequently involve either the
immunoglobulin light chain kappa locus (13%), the immunoglob-
ulin heavy chain locus (13%) or chr13q14.2 (9%) [63]. The most
common immunoglobulin translocation partner is BCL2, which oc-
curred more frequently in M-CLL [62]. Furthermore, the use of
gene expression, chromatin accessibility and 3-dimensional chro-
matin structure from representative cells has aided in the identi-
fication of additional genes affected by somatic non-coding mu-
tations [29,63]. Regulatory elements and genes affected by non-
coding variants include the 3’ UTR of NOTCH1, an enhancer cen-
tromeric to PAX5 and BACH2 promoter mutations [61,63]. Long-
read sequencing technology and advances in methods to examine
regulatory regions of the genome will expand the catalog of driver
mutations in CLL [65-69].

Comparing the mutational profiles of M-CLL and U-CLL in in-
creasingly large datasets has provided further evidence of a dis-
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Fig. 2. Biological pathways annotated by driver mutations in chronic lymphocytic leukemia and Richter’s syndrome. Red boxes indicate genes where mutations are enriched

in Richter’s syndrome.

tinct genetic evolutionary history. Likely reflective of the post-
germinal center cell of origin, SBS9 and SBS85 mutational sig-
natures (AID) are enriched in M-CLL and SBS9 operates early in
disease evolution [62,63,70]. U-CLL possesses a higher number of
driver genes, whereas M-CLL has a greater proportion of clonal
mutations. Whilst many of the commonly occurring somatic ge-
netic abnormalities occur in both diseases (eg, mutations in TP53,
SF3B1 and POT1, del(13q), trisomy 12, del(17p)) there are a num-
ber that demonstrate specificity. In U-CLL, KRAS, BRCC3, BCOR and
SAMHD1, del(11q), del(6q) and del(2p) appear as exclusive drivers
whereas MYDS88, ITPKB, IGLL5, CHEK2 and del(7q36) (KMT2C) ap-
pear specific to M-CLL [62,63]. Moreover structural variant rear-
rangement mechanisms differed, with V(D)J recombination driving
the BCL2 events in M-CLL and class-switch recombination facilitat-
ing the ZFP36L1-associated deletions in U-CLL [62].

HTS offers the prospect of identifying somatic mutation
biomarkers, beyond those previously described such as TP53 aber-
rations, that are prognostic in CLL. In treatment-naive non-trial pa-
tients, examples include mutations in ZC3H18 and the IGLV3-21R110
(failure-free survival, M-CLL) and amp(8q) (overall survival, M-CL2)
[62]. In U-CLL, examples include del(7q36), del(1q32) (failure-free
survival) and mutations in ASXL1 and del(8p) (overall survival)
[62,63]. Studies of relapsed and refractory CLL have further high-
lighted increases in the cancer cell fraction of mutations such
as TP53, as well as increased copy number alterations and dis-
tinct clonal evolutionary patterns of CLL at disease progression
[60,71,72].

As the therapeutic landscape of CLL has evolved, HTS has also
provided novel insights into mechanisms of resistance to targeted
therapies [73-76]. In patients treated with first generation BTKi,
clinical resistance occurs in 10% to 28% within 2 to 3 years of
therapy initiation. The majority of patients relapse with a BTK
C481S mutation, which reduces the binding affinity of the cova-

lent BTKi [73-78]. Less frequent are gain of function mutations in
PLCG2 which encodes a B-cell receptor (BCR) downstream signal-
ing molecule [73,77,78]. These mutations precede clinical relapse
as a result of expansion of a resistant clone [79,80]. A new gen-
eration of BTKi which exhibit irreversible BTK binding shows effi-
cacy in patients with the BTK C481S mutation, although a wider
spectrum of BTK mutations resulting in a “dead kinase” are now
being described [81,82]. Similarly, in 50% of patients refractory
to venetoclax, a CLL clone emerges before clinical relapse with a
BCL2 Gly101Val mutation, albeit with low variant allele frequency
(VAF) and a co-occurence of other BCL2 mutations [83-85]. The
Gly101Val mutation reduces the affinity of BCL2 for venetoclax,
preventing the drug from displacing pro-apoptotic mediators from
BCL2, thereby promoting CLL cell survival [83]. Such a low VAF
may represent disease compartment heterogeneity. Notably, not
all patients with small-molecule resistant CLL possess a resistance
mutation. Selection for 8p deletion and MCL-1 overexpression are
thought to contribute to venetoclax resistance [86,87].

Dissecting the evolution of CLL

The use of somatic genomics to infer the evolutionary history
of a cancer was first conducted over 35 years ago [88,89]. Sequenc-
ing of bulk tumor samples with HTS has enabled the reconstruc-
tion of the evolutionary history of diverse tumors, based on a large
catalog of somatic mutations [90,91]. The order of genetic events
from ‘early’ to ‘late’, can be measured by comparing the cancer
genome at different temporal stages, and even growth rates can be
modeled. Alternatively, the clonal architecture of the tumor sample
subjected to bulk HTS can be inferred from the variant allele frac-
tion (VAF) of somatic mutations after accounting for ploidy and
tumor purity [92] Mutations common to all sampled tumor cells
(clonal) precede mutations present in a fraction of sampled tu-
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mor cells (subclonal). Thus, differences in the mutational profiles,
or changes in the clonal composition of separate tumor samples,
reflect how the cancer develops over time. Using such approaches
in CLL, del(13q), del(11q), tri(12), and MYD88 have been found to
occur early in the evolution of CLL whereas NOTCH1, ATM, SF3B1,
and TP53 mutations are later events [59,60,62] (Fig. 1). A notable
finding is the observation that BRAF mutations occur early in M-
CLL but late in U-CLL [62]. Serial measurements of peripheral white
blood cell counts in patients have been used to define exponential,
indeterminate and logistic growth patterns in naturally progressing
CLL [93]. Combining such growth patterns with somatic sequenc-
ing data has demonstrated the presence of a higher number of CLL
drivers and greater subclonal dynamics with exponential growth.
In contrast, logistic growth has been associated with a narrower
spectrum of genetic alterations, fewer subclonal drivers, and inter-
clonal stability even in relapse after treatment.

Whilst bulk tumor sequencing can order somatic mutations and
infer clonal dynamics, a higher resolution phylogenetic map can be
acquired through the application of single-cell technologies. More-
over, single-cell profiling of genomic, transcriptomic, epigenomic,
proteomic and other -omic modalities can further our understand-
ing of cancer cell heterogeneity, therapeutic resistance, and mech-
anisms of tumor-immune interactions [94-108]. Characterizations
of single cells from patients with CLL have revealed marked in-
terpatient heterogeneity at the level of the transcriptome, chro-
matin accessibility, methylome and mitochondrial DNA. This con-
trasts with non-malignant immune cells, which have greater con-
sistency across patients [109-115]. Moreover, the distinct CLL phe-
notype observed in each patient is maintained throughout the nat-
ural history of MBL to CLL [112].

Prospective lineage tracing through optical or sequencing bar-
codes has enabled in vitro or in vivo modeling of tumor evolution
[116-122]. Retrospective lineage tracing in primary human tissues,
relies on ‘native barcodes’ such as somatic SNVs, CNAs, methyla-
tion and mtDNA mutations [100,111,123,124]. In CLL, the earliest
studies to generate a phylogenetic tree used targeted single-cell re-
verse transcription polymerase chain reactions to detect somatic
mutations in hundreds of CLL cells [109]. This approach estab-
lished a relationship between SF3B1 mutations and the generation
of altered splice transcripts [125]. High throughput methods have
now been developed to link genotype with single-cell transcrip-
tomes at scale [126-128]. Using massively parallel single-cell mi-
tochondrial DNA and chromatin profiling in bone marrow-derived
mononuclear cells, mtDNA mutations detected in CLL cells can be
tracked to early progenitor cells supporting the notion that a CLL
clonal mutation may arise earlier in the hematopoietic lineage tree
[123,129,130].

As well as assessing native CLL heterogeneity, single-cell tech-
nologies have been used to assess the clonal trajectories over time
and in response to therapy. Trajectories of CLL clonal evolution
have been tracked over time using mtDNA mutations and chro-
matin accessibility signatures [114]. This has demonstrated clonal
persistence over years in the absence of a selective pressure [114].
However, the introduction of a selective pressure such as disease
transformation or relapse is associated with changes in CNAs, chro-
matin accession and gene expression [114]. Another approach used
DNA barcoding with single-cell RNA sequencing and clonal isola-
tion to characterize thousands of clones within a heterogeneous
cell populations [131]. This functionalized ex vivo lineage-tracing
system has revealed distinct trajectories of subclones in relation to
treatment as well as genomic diversification after chemotherapeu-
tic treatment [131].

A number of studies have assessed the impact of specific thera-
pies on CLL response using single-cell technologies with the aim of
elucidating mechanisms of response and resistance. Using single-
cell short and long-read RNA sequencing, the complexity of vene-

toclax resistance in CLL has been further appreciated with NF-«B
activation and confirmation of increased MCL1 expression being
a consistent finding [128]. A separate study integrated longitudi-
nal single-cell immunophenotypic, transcriptomic, and chromatin
mapping of the molecular and cellular dynamics of CLL and im-
mune cells during ibrutinib treatment [113]. The analysis of the
CLL cells revealed reduced NF-«B binding, a reduction of lineage-
defining transcription factors, erosion of CLL phenotypic identity
and induction of a quiescent state [113]. Finally, a single-cell tran-
scriptomic analysis of CLL following allogeneic stem cell transplan-
tation has demonstrated distinct evolutionary trajectories and in-
sight into the graft vs leukemia effect [132]. Early relapses exhib-
ited genetic and cellular stability over time contrasting with late
relapses which displayed notable genetic evolution and evidence
of neoantigen depletion [132].

Functional analysis of somatic mutations in CLL and RS

As well as confirming the predicted driver status of genes, func-
tional studies offer an opportunity to directly study the biological
consequences of mutations in cancer. In vitro model systems that
have been utilized include established CLL, isogenic and patient-
derived cell lines. Examples of genomic regions and genes that
have been interrogated include trisomy 12, ATM, POT1, NOTCH1,
TP53, SF3B1, RPS15 and CHD2 [58,133-139]. Such analyses high-
light dysfunction of inflammatory and BCR signaling, DNA dam-
age, RNA regulation, chromatin structure and telomeres as being
consequences of somatic mutations in CLL (Table 2 and Fig. 2).
Through deconvolution of the biological pathways perturbed by so-
matic mutations in CLL, novel therapeutic vulnerabilities can be
identified [133,136,137,140]. Recently developed high-throughput
approaches for functional annotation of somatic mutations offers
the prospect of testing the functional consequences at scale [141].
Furthermore, murine models allow further functional dissection of
involved risk genes [142].

The RS genome

The majority of patients with RS have histology of diffuse large
B-cell lymphoma (DLBCL) and it has long been appreciated that
RS can arise as either clonally related or unrelated to the CLL, the
latter of which has been associated with a more favorable prog-
nosis [143-145]. A number of risk factors for RS have been pro-
posed including, U-CLL, TP53 mutations and NOTCH1, CDKN2A or
CDKN2B loss, stereotyped HCDR3, BCR subset 8 and a complex
karyotype [146-151]. Three recent studies, comprising a collective
total of >100 individuals, have performed exome- or genome-
wide analyses of paired CLL and RS, largely of DLBCL histology
[20-22]. Together, these analyses provided a number of insights
into the drivers and evolutionary history of CLL transforming to
RS. Firstly, through computational deconvolution of clones, the
majority of RS indeed is clonally related to the antecedent CLL
and is distinct from DLBCL [20,21]. Secondly, transformation to
RS is associated with an increase in genomic complexity as ev-
idenced by an increase in somatic mutation burden, CNAs, SVs,
kataegis, chromothripsis, chromoplexy, and whole genome dupli-
cation (WGD) [20-22]. Thirdly, through identification of coding
mutations, CNA and SVs, these studies have expanded the driver
genes and pathways involved in transformation to RS (Fig. 2)
[20-22,146,148,149,152-158]. Highly prevalent alterations include
del(17p), TP53 and NOTCH1 mutations were uncovered, consistent
with prior study. Taken together the catalog of recurrent candi-
date driver genes in RS annotate pathways such as DNA dam-
age (TP53), cell cycle control (CDKN2A and CDKN2B), transcrip-
tional regulation in B-cells (MGA, EGR2, IRF2BP2), DNA methyla-
tion (DNMT3A and TET2), RNA splicing (SF3BA, SRSF1), chromatin
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Table 2

Summary of putative role of CLL driver genes which are mutated at >5% frequency in CLL [62,63].

Gene Putative Role

SF3B1 Defective pre-mRNA splicing [125,139,174-177]

NOTCH1 Constitutive NOTCH1 pathway activation [54,178-183]
ATM Defective DNA damage response [52,174,184-189]

TP53 Defective DNA damage response [187,190-192]

POT1 Telomere dysfunction [58]

CHD2 Disrupted chromatin states [134]

MYD88 Activation of the Toll-like receptor and IL-1 receptor signaling pathways [54]
KLHL6 Disrupted function of a CULLIN-Ring ubiquitin ligase [193]
XPO1 Disrupted nuclear export cargo [194,195]

MGA Dysregulation of MYC [157,196]

BRAF Deregulation of BCR signaling [129]

DDX3X Dysregulation of mRNA translation [197,198]

EGR2 Dysregulation of transcription and BCR signalling [129]
RPS15 Dysregulation of mRNA translation [135,199,200]

ZNF292 Disruption of cellular proliferation and cycling [201]

IGLL5 Disrupted B-cell development [202,203]

BIRC3 Constitutive activation of the NFxB pathway [138,204-206]

structure (EZH2), nuclear export (XPO1), B-cell receptor signal-
ing (BRAF) and immune evasion (B2M) [20,21]. Moreover, muta-
tional signatures that operate in RS independent to those also
identified in CLL include SBS44 (defective DNA mismatch repair)
and a novel mutational signature [20,22]. Finally, through unsu-
pervised non-negative matrix factorisation on somatic mutation
data, RS appears to cluster in 5 distinct groups (RS1-RS5) [21].
Three (RS1, RS3 and RS5) are enriched for TP53 alterations, dis-
play a higher rate of CNAs and genome alterations and are asso-
ciated with an adverse prognosis. RS1 is marked by WGD, a frac-
tured genomes, MYC amplification and del(1p) and del(9p) and an
enrichment for transformed M-CLL. RS3 is enriched for NOTCH1
and IRF2BP2 mutations as well as CNAs, including del(14q32.11),
del(9q), del(15q15.2) (MGA), amp(16q23.2) (IRF8) and del(2q37.1).
RS5 possessed del(16q12.1), del(1p35.2) and amp(7p) CNAs. RS2 is
typified by tri(12) co-occurring with SPEN/NOTCH1 and KRAS muta-
tions and RS4 is marked by SF3B1 and EGR2 mutations on a back-
ground of del(13q). The sample sizes used in these studies were
modest and expansion of these cohorts along with refinement of
methods for clonal deconvolution, will most certainly expand the
mutational landscape of RS and increase power to identify novel
drivers of histologic transformation.

Given the short median overall survival associated with RS,
there is a pressing need to exploit recent molecular insights to
improve patient outcomes. Using longitudinal sampling, small sub-
clones possessing genomic, immunogenetic and transcriptomic fea-
tures of RS were found in 5 of nine CLL patients with available
samples and up to 19 years prior to transformation [20]. As well
as raising questions regarding the prevalence of RS subclones in
CLL patients and the mechanisms that subsequently contribute to
overt clinical presentation of transformation, this finding provides
preliminary evidence that early detection of RS can be achieved in
some patients. Whilst plasma-derived cell-free DNA (cfDNA) in the
context of lymphoma diagnosis and monitoring is attractive, it is
uniquely challenging in RS due to the presence of circulating CLL
cells, which also shed cfDNA [159]. However, using ultra-low-pass
whole-genome sequencing, RS specific somatic genomic changes
have been detected in plasma, often separate from the circulating
CLL. This included 6 of 8 patients at RS diagnosis time and even 2
of 7 patients, months prior to a diagnosis of RS [21]. These studies
supports the notion of early non-invasive diagnosis of RS which is
valuable when faced with challenges acquiring tissue for a diag-
nosis. This new understanding of the molecular basis of RS may
inform a new generation of therapeutic opportunities. Examples of
promising agents In addition to checkpoint blockade include small
molecules (eg, inhibition of BTK, BCL2, PI3K and CDK9), bispecific

antibodies (eg, CD3/CD20), antibody-drug conjugates (eg, VLS-101,
polatuzumab) as well as CAR T-cell therapies [160-167].

Genomics and the microenvironment in CLL and RS

New molecular and genomic approaches allow for the identifi-
cation of genetically-defined clones and sub-clones of CLL and RS
and the interactions of the surrounding cells, thereby adding an-
other layer to the molecular map of CLL. DNA-, RNA-, and protein-
based approaches such as multiplexed error-robust fluorescence in
situ hybridization [168], protein detection methods [169], and spa-
tial barcoding are now available and are beginning to generate
novel biological insights [170]. These technologies are advancing at
pace to allow for single-cell resolution and modification to permit
the detection of additional molecular features such as T-cell and
B-cell receptors [171,172]. Linking CLL and RS genomics to spatial
and functional information across tissue compartments and disease
stages will generate insights into the organization of clones within
the TME, the co-evolution of CLL and TME and ultimately offers
the possibility of new disease taxonomy, biomarkers and therapies
[173].

Conclusion

The molecular map of CLL and RS to date has generated fun-
damental knowledge concerning the etiology and evolution of CLL.
Such insights are already being exploited to improve patient care
through prediction, treatment selection, and ongoing preclinical
and clinical investigations. However, this map is only partially
complete. Whilst a large component of the mutational landscape
of CLL has been described, non-coding mutations in CLL as well
as a complete understanding of mutations in RS remain relatively
unexplored. Already in progress is the use of model systems to de-
convolute the functional consequences of driver mutations which
is essential to inform our biological understanding of CLL. Single-
cell analyses has enabled high resolution characterization of in-
tratumoral heterogeneity in CLL. However, questions remain re-
garding the origin of the B-cell clone, the role of the TME and
interaction with clonal cells, inter- and intra-compartmental het-
erogeneity and resistance mechanisms. Through functional studies
of mutations and the application of single-cell genomic, transcrip-
tomic, epigenomic and spatial data across tissues, disease states
and clinical contexts these questions can be addressed with the
promise of generating translatable knowledge to improve patient
outcomes.
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