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Abstract  

TNF is an inflammatory cytokine that upon binding to its receptor, TNFR1, can drive 

cytokine production, cell survival or cell death. TNFR1 stimulation causes activation of 

NF-κB, p38α and its downstream effector kinase MK2, thereby promoting transcription, 

mRNA stabilisation and translation of target genes. Here we show that TNF-induced 

activation of MK2 results in global RIPK1 phosphorylation. MK2 directly 

phosphorylates RIPK1 at residue S321, which inhibits its ability to bind FADD/caspase-

8, and induce RIPK1-kinase-dependent apoptosis and necroptosis. Consistently, a 

phospho-mimetic S321D RIPK1 mutation limits TNF induced death. Mechanistically, we 

find that phosphorylation of S321 inhibits RIPK1 kinase activation. We further show 

that cytosolic RIPK1 contributes to complex-II-mediated cell death, independent of its 

recruitment to complex-I, suggesting that complex-II originates from both RIPK1 in 

complex-I as well as cytosolic RIPK1. Thus, MK2-mediated phosphorylation of RIPK1 

serves as a checkpoint within the TNF signalling pathway that integrates cell survival 

and cytokine production. 
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Introduction 

Tumour necrosis factor (TNF) is a major inflammatory cytokine that was first identified for its 

ability to induce rapid haemorrhagic necrosis of cancers (Balkwill, 2009). In response to 

insults and infection, TNF contributes to homeostasis by regulating inflammation, cell 

proliferation, differentiation, survival and death (Walczak, 2011). However, excessive or 

chronic engagement of TNFR1 can result in inflammatory diseases. Originally, it was 

considered that TNF contributes to such diseases by directly inducing the expression and 

production of inflammatory cytokines. However, recent evidence suggests that aberrant TNF-

induced cell death may also contribute to the disease pathology (Gerlach et al., 2011; 

Pasparakis and Vandenabeele, 2015; Silke et al., 2015). 

 

There are a number of different mechanisms to regulate TNF-induced cell death, including 

the formation of two distinct signalling complexes (Micheau and Tschopp, 2003). Within 

minutes of stimulation, TNF-R1 assembles complex-I by recruiting the adaptors TRADD, 

TRAF2, the kinase RIPK1 and the E3 Ubiquitin (Ub)-ligases cellular Inhibitor of APoptosis 

(cIAP) cIAP1 and cIAP2 (Silke, 2011; Ting and Bertrand, 2016). cIAPs subsequently 

conjugate various types of Ub linkages to components of this complex, which in turn allows 

Ub-dependent recruitment of the kinase complex TAK1/TAB2/TAB3 and the E3 ligase Linear 

Ub chain Assembly Complex (LUBAC, composed of HOIL-1/HOIP/Sharpin). LUBAC-

mediated linear ubiquitylation of different components of this complex appears to stabilise or 

reinforce complex-I formation, and promote TAK1-dependent activation of IKK2 (IKK2). 

Formation of complex-I causes activation of NF-κB and Mitogen Activated Protein Kinases 

(MAPKs), which ultimately results in the production of cytokines and pro-survival proteins, 

such as cFLIP that are necessary for a coordinated inflammatory response (Elliott et al., 

2016; Hrdinka et al., 2016; Kupka et al., 2016; Schlicher et al., 2016; Silke, 2011; Wagner et 

al., 2016).  

 

TNF also initiates formation of a RIPK1-based cytoplasmic complex that chronologically 

appears after complex-I, and which can induce cell death. Therefore, this complex is 

frequently referred to as complex-II or the necrosome (Pasparakis and Vandenabeele, 2015; 
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Wang et al., 2008). Complex-II can kill by activating caspase-8 and apoptosis, or via RIPK3 

and MLKL, which results in necroptosis. It is currently believed that a small fraction of RIPK1 

dissociates from complex-I within 30 minutes to three hours, and together with TRADD, 

associates with the adaptor protein FADD and procaspase-8 to form complex-II (Micheau and 

Tschopp, 2003). Whether TNF can induce lethal levels of complex-II is dependent on multiple 

checkpoints: cIAP- and LUBAC-mediated ubiquitylation of RIPK1 are decisive factors in 

limiting complex-II formation (Bertrand et al., 2008; Gerlach et al., 2011; Haas et al., 2009). In 

the absence of either cIAPs or LUBAC, TNF fails to activate canonical NF-κB effectively, and, 

consequently, cFLIP levels are insufficient to prevent caspase-8-mediated cell death. Under 

normal conditions, cFLIPL suppresses TNF-induced cell death by heterodimerising with 

caspase-8. This inhibits formation of complex-II and the necrosome by cleaving RIPK1, 

RIPK3 and CYLD (Feng et al., 2007; Lin et al., 1999; O'Donnell et al., 2011; Oberst et al., 

2011). 

 

TAK1 and IKK2 also inhibit TNF-induced cell death. This has mainly been considered to be 

via induction of NF-κB and cFLIP, however, recent evidence suggest that they also regulate 

TNF killing independently of their role in NF-κB activation (Dondelinger et al., 2015; Kondylis 

et al., 2015; O'Donnell et al., 2007; Vlantis et al., 2016). In the absence of functional TAK1 or 

IKK, lethal levels of complex-II assemble despite RIPK1 ubiquitylation in complex-I 

(Dondelinger et al., 2013; Dondelinger et al., 2015; Legarda-Addison et al., 2009). Under 

these conditions, TNF-mediated RIPK1-dependent apoptosis was shown to rely on the kinase 

activity of RIPK1 (Dondelinger et al., 2013; Wang et al., 2008). It is unclear, however, whether 

TAK1 inhibits RIPK1 kinase activity directly, or indirectly via downstream kinases such as 

IKK2 (Dondelinger et al., 2015). 

 

MAPK14 (p38α) and its substrate MAPKAPK2 (MK2) play essential roles in TNF-induced 

inflammatory cytokine production. Consequently, several pharmaceutical compounds have 

been developed to target these kinases in auto-inflammatory diseases (Genovese, 2009). 

However, recently we proposed that the p38-MK2 axis also regulates TNF- and RIPK1-

dependent SMAC-mimetic (SM) induced cell death (Lalaoui et al., 2016). These results 
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therefore suggest that TAK1 mediates its pro-survival effect, at least in part, through 

activation of p38-MK2 (Sakurai, 2012).  

 

While it is now thought that many chronic inflammatory diseases are caused or exacerbated 

by aberrant cytokine-induced cell death, the molecular events that regulate this process are 

largely unknown. In this study we demonstrate that RIPK1 is a bona fide substrate of MK2 in 

both human and mouse. We find that TNF-induced activation of MK2 selectively protects cells 

from RIPK1 kinase-dependent death. While MK2-mediated phosphorylation of RIPK1 at S321 

(mouse) and S320 (human) has no effect on NF-κB activation, it selectively inhibits RIPK1 

kinase-mediated formation of complex-II, induction of apoptosis and necroptosis. Whereas 

loss of S321 phosphorylation sensitises cells to TNF killing, introduction of an S321 to D 

phospho-mimetic knock-in mutation partly protects from RIPK1-dependent cell death upon 

TNF stimulation. We find that MK2-mediated phosphorylation of RIPK1 at S321/S320 inhibits 

RIPK1 kinase activation. We further show that cytosolic RIPK1 contributes to complex-II-

mediated cell death, independent of its recruitment to complex-I, suggesting that complex-II 

originates from both RIPK1 in complex-I as well as cytosolic RIPK1. Our data demonstrate 

that the TAK1>p38>MK2 kinase cascade directly limits the lethal potential of cytosolic and 

complex-I associated RIPK1, thereby licencing TNF-induced transcription, mRNA stabilisation 

and increased translation of cytokines necessary for a coordinated inflammatory response. 
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Results  

MK2 protects from TNF-induced cell death 

We have shown that inhibition of p38α, or its downstream kinase MK2, enhances the killing 

activity of the SM birinapant (Lalaoui et al., 2016). Because SM kills cells by increasing the 

production of SM-induced TNF biosynthesis, and sensitising cells to TNF-induced and RIPK1-

mediated cell death, p38/MK2 might influence the sensitivity to TNF by influencing either or 

both of these processes. To distinguish between these scenarios, we treated BMDMs with 

SM and increasing concentrations of exogenous TNF and found that inhibition of MK2 

sensitised BMDMs to TNF/SM-induced cell death in a dose-dependent manner, already 3 hrs 

after treatment (Figure 1A). This suggests that inhibition of MK2 can sensitise cells to SM 

induced killing independently of its role in inducing TNF biosynthesis (Gaestel, 2015). To 

explore this further, we used primary mouse embryonic fibroblasts (MEFs) that do not 

produce autocrine TNF in response to SM (Vince et al., 2007), and hence are resistant to SM, 

caspase activation and cell death (Figure 1B and 1C). Inhibition of MK2 sensitised primary 

MEFs to TNF/SM-induced caspase activation and cell death (Figure 1B, 1C, and S1A), and 

co-treatment with the RIPK1 kinase inhibitor GSK’963 (RIPK1i) reversed this sensitisation 

(Figure 1C). Inhibition of MK2 also sensitised MEFs and human HT29 cells to RIPK1-

dependent, TNF-induced necroptosis (Figure 1D and 1E). Consistent with the notion that the 

kinase activity of RIPK1 is required for TNF-induced cell death under these conditions, we 

found that primary MEFs and murine leukemic MLL-ENLs that express kinase dead RIPK1 

were largely protected from TSM (TNF, SM and MK2i)-induced death (Figure 1F and S1B). 

To exclude a potential off-target effect of the MK2i PF-3644022 we generated murine 

leukemic MLLENL Mk2-/- and found that the absence of MK2 highly sensitised those cells to 

TS-induced cell death (Figure S1C). MK2i also sensitised human breast cancer BT549 and 

MDA-MB-468 cells to TS (Figure 1G, 1H, S1D and S1E), implying that MK2 inhibition 

sensitises to TNF-induced cell death in general. 

 

MK2 directly phosphorylates RIPK1 at S320/S321 in response to TNF stimulation 

Recent quantitative mass spectrometry analyses have identified a TNF induced 

phosphorylation of S320 of human RIPK1 (Degterev et al., 2008; Krishnan et al., 2015). 
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Intriguingly, the motif surrounding S320 of human RIPK1 is evolutionarily conserved and 

conforms to the phosphorylation consensus motif of MK2, which is defined as F-X-R-X-(L/N)-

pS/T-(I/V/F/L)-X, where F is a bulky hydrophobic residue (Figure 2A) (Cargnello and Roux, 

2011). We therefore hypothesized that MK2 phosphorylates the serine within this conserved 

motif, and raised phospho-specific antibodies against p-S320 of human and p-S321 of mouse 

RIPK1, respectively (Figure S2). Consistent with the notion that RIPK1 is phosphorylated at 

this motif by MK2, we found that TNF treatment of primary MEFs resulted in transient 

phosphorylation of RIPK1 at S321, which was blocked by pharmacological inhibition or 

genetic deletion of MK2 (Figure 2B and 2C). We found that phosphorylated RIPK1 migrates 

differently depending on the gel-type used and was readily distinguishable from the un-

phoshorylated form when lysates were separated on a 8 % gel (Figure 2C). Similarly, TNF 

treatment induced RIPK1 phosphorylation of S321 in primary BMDMs in an MK2-dependent 

manner (Figure 2D). Likewise, human RIPK1 was phosphorylated at S320 in MDA-MB-468 

cells (Figure 2E). 

 

MK2 is activated by p38α in response to many stimuli, including cytokines and bacterial 

infection (Cargnello and Roux, 2011). Consistent with the idea that RIPK1 is phosphorylated 

by MK2, stimuli that activated MK2, as measured by the appearance of phospho-MK2 (p-

T222), also lead to phosphorylation of RIPK1 S321 (Figure 2F). LPS- and PGN-induced 

phosphorylation of S321 were longer lasting than the one triggered by TNF. To determine 

whether MK2 directly phosphorylated RIPK1 we conducted an in vitro kinase assay using 

recombinant MK2 and purified RIPK1. MK2 readily phosphorylated mouse and human RIPK1 

on S320 and S321 respectively (Figure 2G).  

 

Phosphorylation of RIPK1 at S320/321 is dependent on the TAK1>p38α>MK2 signalling 

cascade but independent of IKK 

To dissect the signalling cascade that results in RIPK1 phosphorylation at S320/S321 we 

made use of pharmacologic inhibition and genetic mutation of components of the TNF 

receptor signalling complex. Phosphorylation of RIPK1 at S320/321 was dependent on the 

TAK1-p38α-MK2 kinase cascade because inhibition of either TAK1 or p38α, which block TNF 
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induced MK2 phosphorylation and activation (Figure 3A, 3B, and 3C), or inhibition of MK2 

itself, abolished the appearance of P-S321 in primary MEFs, BMDMs and of P-S320 in 

human breast cancer MDA-MB-468 cells (Figure 3A, 3B, and 3C). While pharmacological 

inhibition of IKK2 with TPCA-1 or BI605906 strongly inhibited IκBα degradation, as expected 

(Figure S3A and S3B), it did not prevent S320/321 phosphorylation in any of the three cell 

types tested (Figure 3A, 3B, 3C, and S3A and S3B). Likewise, genetic deletion of NEMO, 

IKK1 or IKK2, did not interfere with TNF-induced phosphorylation of S320/S321 in mouse and 

human cells (Figure 3D and 3E). The IKK complex, therefore, does not appear to be involved 

in mediating phosphorylation of RIPK1 at these residues. Furthermore, treatment with a 

RIPK1 inhibitor did not interfere with S320/321 phosphorylation following TNF stimulation 

(Figure 3A, 3B, and 3C), implying that P-S320/321 is not an auto-phosphorylation event. 

 

MK2-dependent phosphorylation of RIPK1 inhibits RIPK1 activation but does not 

impede TNF-induced activation of NF-κB 

Binding of TNF to TNFR1 results in activation of NF-kB and MAPKs, leading to transcriptional 

induction of pro-inflammatory cytokines as well as pro-survival genes such as cFLIP and 

cIAPs. Since defects in NF-kB are known to sensitise cells to TNF-induced cell death (Peltzer 

et al., 2016), we examined whether inhibition of MK2 affected TNF-induced activation of NF-

κB and MAPK. However, inhibition or deletion of MK2 had no effect on TNF-induced 

degradation of IkBa or phosphorylation of p65, JNK or ERK in MEFs and BMDMs (Figure 4A 

and 4B). Moreover, we found no evidence for defective ubiquitylation of RIPK1 in complex-I 

(Figure 4C) and UbiCRest (ubiquitin chain restriction) analysis (Hospenthal et al., 2015) of 

ubiquitylated RIPK1 in complex-I revealed no qualitative differences in Ub linkage types in the 

presence or absence of MK2i (Figure S4A). Intriguingly, only the non-ubiquitylated form of 

RIPK1 in complex-I was phosphorylated at S321 (Figure 4C). In contrast, phosphorylation at 

S166 of RIPK1 in complex-I readily occurs on ubiquitylated RIPK1 (Newton et al., 2016). 

Further, we found that RIPK1 was significantly more phosphorylated on S166 in Mk2-/- cells or 

in cells treated with MK2 inhibitors in response to TNF (Figure 4D and 4E), although the 

timing of S166 phosphorylation was unaffected by MK2 inhibition (Figure 4E and S4B). We 

found that P-S166 appeared after P-S321. Of note, the kinetics of P-S321 did not appear to 
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change with SM, which prevents ubiquitylation of RIPK1, or SM+zVAD, which in addition 

inhibits caspases (Figure S4B). Together, these results suggest that MK2-mediated RIPK1 

S321 phosphorylation occurs in an IAP- and Ub modification-independent manner. While P-

S321 RIPK1 in complex-I is not ubiquitylated, this phosphorylation does not prevent normal 

levels of ubiquitylated RIPK1 being generated in this complex. Further, our data support the 

notion that P-S321 suppresses RIPK1 S166 auto-phosphorylation.  

 

Remarkably, P-S321 RIPK1 was present in both complex-I and the complex-I immuno-

depleted fraction (lysates post FLAG IP) after only 5 minutes of TNF stimulation (Figure 4C), 

suggesting that cytosolic RIPK1 is phosphorylated by MK2. To conclusively test whether 

recruitment of RIPK1 to complex-I was dispensable for S321 phosphorylation, we 

reconstituted WT and Ripk1-/- MEFs with a RIPK1 mutant that lacks the Death Domain (DDD). 

This mutant is not recruited to complex-I and, therefore, cannot become ubiquitylated (Figure 

S4C, S4D, S4E). Even though RIPK1-DDD was not recruited to complex-I, it was readily 

phosphorylated at S321 (Figure 4F). Together, these data demonstrate that TNF activates 

MK2, which in turn rapidly phosphorylates non-ubiquitylated RIPK1 in complex-I and the 

cytosol. 

 

MK2 limits complex-II formation 

Thus far, our data suggest that MK2 inhibition does neither affect TNF-induced recruitment of 

RIPK1 into complex-I nor limit activation of NF-κB/MAPK pathways, yet increases 

phosphorylation of RIPK1 on S166 and sensitises cells to TNF-induced death. This, therefore, 

suggests a role for MK2 in regulating RIPK1 and complex-II formation. Consistent with this, 

we found that loss of MK2 dramatically enhanced TNF-induced association of RIPK1, FADD 

and active caspase-8 (Figure 5A). Pharmacological inhibition of MK2 similarly increased 

complex-II formation and activation in response to TS (Figure 5B, and S5A).  

 

These data suggested that more RIPK1 was available for recruitment into complex-II and 

prompted us to monitor the levels of ubiquitylated RIPK1 in the presence and absence of 

active MK2 post TNF stimulation. Using Tandem Ub Binding Entities (TUBE) (Hjerpe et al., 
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2009), which allow isolation of polyubiquitylated proteins, we purified all ubiquitylated proteins 

over a TNF time course, and probed with an anti-RIPK1 antibody. Using the non-specific 

DUB, USP21, to confirm ubiquitylation, we found that in wild-type cells, the levels of 

ubiquitylated RIPK1 increased within 15 minutes of TNF stimulation, and then steadily 

decreased over 3 hrs of TNF treatment (Figure 5C). Upon MK2 inhibition, the levels of 

ubiquitylated RIPK1 were more prominent at the earliest times following TNF stimulation. 

TNF-induced accumulation of RIPK1 in the ubiquitylated fraction correlated with a significant 

increase in formation of complex-II and activation of caspase-8 (Figure 5A, 5B and S5A).  

 

The observation that cytosolic RIPK1 is phosphorylated by MK2 within minutes of TNF 

stimulation (Figure 4C and 4D) raises the question of the ‘origin’ of complex-II. Complex-II 

may be assembled from RIPK1 that i) comes entirely from complex-I, ii) is generated from the 

cytosolic pool of RIPK1, or iii) is seeded by RIPK1 from complex-I and augmented by 

cytosolic RIPK1. To test this, we reconstituted WT and Ripk1-/- MEFs with RIPK1-DDD that 

retains the homotypic RHIM oligomerisation domain and hence can form functional amyloid 

signalling complexes (Li et al., 2012). RIPK1-DDD expressing Ripk1-/- MEFs were as resistant 

as Ripk1-/- MEFs to TNF/SM-induced cell death (Figure 5D) demonstrating that the cytosolic 

pool of RIPK1 on its own is unable to stimulate cell death in response to TNF/SM either in the 

presence or absence of MK2i. However, RIPK1-DDD exacerbated TNF killing when 

endogenous wild-type RIPK1 was present, even though RIPK1-DDD is not recruited to 

complex-I following TNF treatment (Figure S4C, S4D and S5B). Inhibition of MK2 further 

enhanced this death (Figure 5D). Consistent with the notion that RIPK1-DDD is directly 

recruited to complex-II, we found that it co-purified with components of complex-II in response 

to TNF/SM (Figure 5E). Together these data suggest that the cytosolic pool of RIPK1 can 

contribute to complex-II and cell death and does not need to be first recruited to complex-I.  

 

MK2-dependent phosphorylation of RIPK1 at S321 protects cells from TNF induced cell 

death  

To examine the importance of phosphorylation at S321 we generated RIPK1 S321D 

phospho-mimetic knock-in mice using CRISPR-Cas9 technology (Figure S6A). RIPK1 S321D 
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mice were born and weaned at the expected Mendelian ratio (data not shown), and were 

indistinguishable from their wild-type littermates. Primary MEFs from RIPK1 S321D animals 

exhibited the same RIPK1 protein levels, indicating that the S321D mutation had no impact 

on the stability of RIPK1 (Figure S6C). TNF-induced activation of NF-kB and MAP kinases in 

MEFs and BMDMs from these mice was also indistinguishable from wild-type cells (Figure 

S6B and S6C), consistent with our observations that inhibition or deletion of MK2 had no 

effect on TNF-induced NF-kB/MAPK activation. However, BMDMs and MEFs of homozygous 

S321D animals were less sensitive to TNF/SM induced apoptosis and caspase activation 

compared to their WT littermate controls (Figure 6A, 6B and 6C). The protective effect of the 

S321D mutation was lost at later time points, suggesting that this phosphorylation event 

delays but cannot prevent TNF-induced cell death. Moreover, given that inhibition of MK2 

sensitises S321D cells, it is likely that MK2 phosphorylates additional sites on RIPK1. To 

examine whether S321D cells have a lower propensity to form complex-II using an 

independent method, we performed an in situ proximity ligation assay (PLA) (Soderberg et 

al., 2006) with a combination of RIPK1 and caspase-8 antibodies that generate a localized, 

discrete signal only when RIPK1 and caspase-8 are in a complex (Orme et al., 2016). 

Compared to littermate mate WT MEFs, Ripk1S321D MEFs were significantly less efficient in 

forming complex-II (Figure 6D). Together our data demonstrate that phosphorylation of S321 

by MK2 protects from RIPK1-mediated cell death. 
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Discussion 

TNF is a major inflammatory cytokine that was first identified for its ability to induce rapid 

haemorrhagic necrosis of cancers (Balkwill, 2009). While TNF can cause cell death, the 

dominant outcome in most cell types is cell survival and the production of pro-inflammatory 

cytokines. Several checkpoints control TNF-induced and RIPK1-dependent cell death 

(O'Donnell and Ting, 2011). In this study, we identified a new checkpoint that limits death 

induced by TNF when cIAPs are limiting, which can occur when cells become stressed by 

cytotoxic agents (Tenev et al., 2011; Yang et al., 2000) or as a result of signalling from other 

TNF receptor super family members (Feoktistova et al., 2011; Vince et al., 2008). 

Mechanistically, TNF induces phosphorylation of RIPK1 on a serine embedded within an 

evolutionarily conserved MK2 consensus sequence. RIPK1 phosphorylation at S320 (human) 

or S321 (mouse) by MK2 suppresses TNF/SMAC-mimetic (TS) induced cell death. Genetic 

deletion or pharmacological inhibition of MK2 prevents this phosphorylation and, thereby, 

enhances TNF-driven and RIPK1-dependent cell death. Although the importance of this 

survival checkpoint is revealed when cIAPs are limiting, we found that TNF and other 

inflammatory ligands are also potent inducers of RIPK1 phosphorylation in several different 

cell types, suggesting that MK2-mediated regulation of RIPK1 may be a more general 

phenomenon.  

 

TNF/TNF-R1 induces at least two cellular signalling complexes (Micheau and Tschopp, 

2003), the initial receptor associated plasma membrane complex (complex-I) that activates 

NF-κB and MAPK, and hence transcription and translation, and a secondary cytosolic 

complex (complex-II) whose role appears to be to initiate cell death. Whether complex-I is 

connected with complex-II, and if so how and in what manner it contributes to the formation of 

complex-II, remains unclear (Silke, 2011). TNF induces RIPK1 and cIAP recruitment to the 

TNF-R1 receptor to generate complex-I in which RIPK1 and other components of complex-I 

are rapidly ubiquitylated by cIAPs. The conjugation of Ub to RIPK1 and components of 

complex-I (Wong et al., 2010) promotes TAK1-mediated activation of IKK2, JNK, ERK and 

p38α. p38α phosphorylates and activates MK2, which is known to phosphorylate substrates 

that regulate mRNA stability (Gurgis et al., 2015). Phosphorylation of RIPK1 on S321 by MK2 
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is an early and transient event in TNF signalling as it occurs within 5 minutes and is lost after 

30 minutes. While RIPK1 in complex-I is phosphorylated at S321 within minutes, a large 

proportion of the cytosolic pool of RIPK1 is also rapidly phosphorylated by MK2. How MK2 is 

able to rapidly access and phosphorylate this pool of RIPK1 is an intriguing question, and 

prompted us to explore its relevance. Whereas loss of NF-κB signalling can sensitise cells to 

TNF-induced death, we were unable to find any defects in TNF-mediated RIPK1 

ubiquitylation or NF-κB/MAPK activation in Mk2 deficient or MK2 inhibited cells. On the other 

hand, we found that in the absence of MK2, RIPK1 has a higher propensity to form complex-

II. Recently, auto-phosphorylation of S166 in RIPK1 has been linked to its ability to induce cell 

death. Intriguingly, while RIPK1-P-S166 is readily ubiquitylated in complex-I (Newton et al., 

2016), RIPK1-P-S321 is non-ubiquitylated in complex-I. Further, our time-course analysis 

suggests that P-S321 may have to be removed before RIPK1’s auto-activation at P-S166 can 

occur. While S321 phosphorylation may precede and/or preclude RIPK1 ubiquitylation in 

complex-I, it may also be possible that distinct pools of RIPK1 participate in S321 

phosphorylation and ubiquitylation. In the latter case, RIPK1 phosphorylation at S321 may 

serve to limit the available pool of RIPK1 to be recruited to Complex I. Although these are 

attractive models, given that RIPK1 readily self associates, it will be difficult to conclusively 

demonstrate whether P-S166 and P-S321 are mutually exclusive or compatible. 

Nevertheless, our results are consistent with a model whereby P-S321 antagonises RIPK1 

kinase auto-activation and RIPK1's killing activity. Consistently, we find that Ripk1S321A/+	

heterozygosity	 sensitizes	 primary	mouse	 dermal	 fibroblasts	 to	 TNF/SM	 induced	 cell	 death	

(N.L.	and	J.S.	unpublished	observation). 

 

MK2 not only phosphorylates RIPK1 in complex-I but also modifies a substantial pool of 

RIPK1 outside of this complex. Since complex-II assembles several hours after the formation 

of complex-I, we addressed the origin of the death-inducing platform. Using a form of RIPK1 

that is not recruited to complex-I, we found that RIPK1 can be recruited to complex-II directly 

from the cytosolic pool. The recruitment of non-ubiquitylated, cytosolic RIPK1 directly to 

complex-II may help to explain why RIPK1 in complex-II predominantly lacks Ub chains, 

although undoubtedly deubiquitylating enzymes can also contribute to this phenomenon. 
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Since MK2 is activated under various stress conditions that stimulate p38 (Cargnello and 

Roux, 2011), such as UV irradiation, heat shock, oxidative stress, hyperosmolarity, bacterial 

infection, and different cytokines, it is tempting to speculate that MK2 regulates RIPK1 under 

many of these stress conditions. While the p38 MAPK pathway is deregulated in all 

inflammatory diseases, p38 inhibitors have failed phase II clinical trials due to undesirable 

side effects (Duraisamy et al., 2008). It will be interesting to test whether some of these side 

effects may be due to deregulation of RIPK1.  

 

We previously showed that inactivation of p38α or MK2 significantly improves SMAC-mimetic-

based therapeutic approaches, particularly in acute myeloid leukemias (AML). Accordingly, 

inhibition of these kinases greatly sensitised MLL-ENL-, MLL- AF9-, NUP98-HoxA9, and 

HoxA9/Meis1-expressing AML cells to killing by the clinical SMAC-mimetic birinapant, in a 

TNFR1-dependent manner (Lalaoui et al., 2016). In these earlier experiments, loss or 

inhibition of p38α or MK2 rapidly increased birinapant induced production of TNF by AML 

cells. Due to the rapid induction of TNF under these conditions, it was not practical to 

determine whether the enhanced sensitivity of AML cells was due to more TNF or heightened 

sensitivity to TNF killing, or both. However, the general nature of the results presented here 

make it likely that p38/MK2 inhibition also sensitises AML cells to TNF/SM death, and might 

help to account for the substantial in vivo efficacy of the SM/p38i combination treatment 

(Lalaoui et al., 2016). When SMs kill cells as single agents, as in AML cells, they do so via a 

two pronged mechanism simultaneously promoting TNF production and sensitising to TNF- 

and RIPK1-dependent cell death (Vince 2007, Varfolomeev 2007, Wang Cell 2009, Wong 

CDD 2010). Thus it is particularly intriguing that p38α/MK2 inhibition increases both facets of 

SM activity, suggesting a deeper connection between TNF production and TNF-induced cell 

death than previously anticipated. While the details of this link remain unclear these new 

insights provide a further rationale for exploring the combined treatment of p38/MK2i and SM 

against cancers clinically (Wang, 2017)). 
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FIGURE LEGENDS 
 
Figure 1. MK2 protects from TNF-induced cell death 

(A) Quantification of PI positive primary BMDMs treated with the indicated reagents for 3 hrs. 

An early time point was chosen to avoid complications due to autocrine production of TNF. 

Cells were pre-treated with MK2i (1 µM) for 30 min. 

(B) DEVDase activity analysis of primary MEFs treated with the indicated reagents for 4 hrs. 

Cells were pre-treated with DMSO, MK2i (1 µM) or RIPK1i (100 nM) for 30 min. 

(C) Quantification of PI positive primary MEFs treated with the indicated reagents for 7 hrs. 

Cells were pre-treated with MK2i or RIPK1i for 30 min. 

(D-H) The indicated cells were treated with the respective reagents, and PI positive (D-F, H) 

cells or DEVDase activity (G) were quantified. Cells were pre-treated with MK2i and/or RIPK1i 

for 30 min. Graphs show mean ± SEM, n = 3–5 independent repeats. *p < 0.05, **p < 0.01 

and ***p < 0.001. (See also Figure S1) 

 
Figure 2. MK2 directly phosphorylates RIPK1 at S320/S321 in response to TNF 

stimulation 

(A) Schematic depicting the evolutionary conserved MK2 phosphorylation consensus 

sequence of RIPK1. Colour scheme emphasizes sequence conservation within the motif.  

(B) Western blot analysis of cell lysates separated on a 4-12 % gradient gel from primary 

MEFs using the indicated antibodies. Cells were pre-treated with DMSO or MK2i (1 µM, 30 

min) followed by treatment with TNF for the indicated time points. 

(C) Western blot analysis of cell lysates separated on a Tris-Glycine 8 % gel from primary WT 

or Mk2-/- MEFs using the indicated antibodies. Cells were pre-treated with DMSO or p38i (1 

µM, 30 min) followed by a 10 min treatment with TNF. 

(D) Western blot analysis of cell lysates from WT or Mk2-/- BMDMs using the indicated 

antibodies. Cells were treated ± TNF for the indicated times. 

(E) Western blot analysis of protein lysates from MDA-MB-468 cells using the indicated 

antibodies. Cells were treated ± TNF for the indicated times. 

(F) Western blot analysis of cell lysates separated on a Tris-Glycine 8 % gel BMDMs using 

the indicated antibodies. Cells were stimulated with the indicated reagents. 
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(G) In vitro kinase assay using purified proteins. Recombinant active human MK2 was 

incubated with mouse and human RIPK1 in the presence of DMSO or MK2i and the reactions 

separated on a Tris-Glycine 8 % acrylamide gel. The presence of phosphorylated S321/320 

RIPK1 and MK2 was evaluated using the indicated antibodies. (See also Figure S2) 

 

Figure 3. Phosphorylation of RIPK1 at S320/321 is dependent on the TAK1>p38α>MK2 

signalling cascade but independent of IKK 

(A) Western blot analysis of cell lysates of the indicated cells using the described antibodies. 

Cells were left untreated or pre-treated for 30 min with the indicated inhibitors followed by 

TNF treatment (10 ng/ml, 10 min). (SM CompA 500 nM, RIPK1i GSK’963 100 nM, TAK1i 

(5Z)-7-O 1 µM, IKKi TPCA-1 5 µM, p38i 1 µM and MK2i PF3644022 1 µM). 

(B) Western blot analysis of cell lysates from BMDMs subjected to pre-treatment for 30 

minutes with the indicated inhibitors (SM CompA 500 nM, RIPK1i/Nec1s 1 µM, TAK1i (5Z)-7-

O 250 nM, IKKi TPCA-1 250 nM, p38i/LY2228820 250 nM and MK2i/PF3644022 2 µM) 

followed by treatment with TNF (100 ng/ml) for 10 minutes. 

(C) Western blot analysis of cell lysates from BMDMs subjected to pre-treatment for 30 min 

with the indicated inhibitors followed by TNF treatment (10 ng/ml, 10 min), as in (A). 

 (D) Western blot analysis of cell lysates from immortalized WT and Nemo-/- MEFs treated 

with TNF for the indicated time points. 

(E) Western blot analysis of cell lysates from Flp-InTM T-REx 293 cells in which the respective 

genes were knocked-out using Crispr/Cas9. Cells were treated with human TNF (10 ng/ml) 

for 10 min. (See also Figure S3) 

 

Figure 4. MK2-dependent phosphorylation of RIPK1 does not affect NF-κB signalling 

but suppresses RIPK1 activation 

(A) Western blot analysis of cell lysates from primary MEFs using the indicated antibodies. 

Cells were treated with TNF (10 ng/ml) for the indicated time points. 

(B) Western blot analysis of cell lysates from WT or Mk2-/- BMDMs using the indicated 

antibodies. Cells were treated with TNF (100 ng/ml) for the indicated time points. 

(C) TNF-induced complex-I immuno-precipitation. Primary MEFs were treated with FLAG-

mTNF (1 µg/ml) for the indicated time points, followed by FLAG immuno-precipitation and 
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Western blot analysis. Lysates pre (right) and post immuno-precipitation (bottom) were also 

analysed by WB. 

(D) Immuno-precipitation of RIPK1 from WT and Mk2-/- immortalized MEFs, treated ± TNF (10 

ng/ml). A Tris-Glycine 8 % acrylamide gel was used to visualise the RIPK1 phospho-

dependent mobility shift. Quantification of the intensity of the P-S166 signal, normalised to 

total RIPK1, is shown to the right. 

(E) Immuno-precipitation of RIPK1 from MEFs treated with TNF (10 ng/ml) ± MK2i (1 µM). 

The presence of the indicated proteins was evaluated by Western blot. 

(F) WT and Ripk1-/- MEFs stably expressing murine RIPK1-DDD were stimulated with FLAG-

mTNF (1 µg/ml) for the indicated time points. Western blot analysis with the indicated 

antibodies is shown. (See also Figure S4) 

 

Figure 5. MK2 limits complex-II formation 

(A) TNF-induced complex-II immuno-precipitation using anti-FADD. Western blot analysis of 

complex-II from WT and Mk2-/- BMDMs using the indicated antibodies. Cells were treated with 

TNF (100 ng/ml) and SM (500 nM) for 1 h and z-VAD-FMK (20 µM) to stabilize complex-II. 

(B) TNF-induced complex-II was immuno-precipitated with anti-FADD from BMDM lysates. 

Cells were treated with TSZ for the indicated times ± Mk2i (2 µM). 

(C) TUBE affinity purification of lysates from primary MEFs. Cells were pretreated with DMSO 

or MK2i (1 µM) for 30 min, and treated ± TNF for the indicated times. The TUBE affinity 

purified ubiquitylated proteome was subsequently left untreated or exposed to USP21. 

Western blot analysis for the indicated proteins is shown. The graph to the right depicts the 

quantification of non-modified RIPK1 in the USP21-treated samples. 

(D) Quantification of PI positive primary WT and Ripk1-/- MEFs reconstituted with RIPK1-DDD. 

Cells were pretreated with DMSO or MK2i (1 µM) for 30 min followed by TS treatment for 3 

hrs. 

(E) TNF-induced complex-II was immuno-precipitated with anti-FADD from lysates of WT 

MEF reconstituted with RIPK1-DDD (as in E). Cells were treated with TSZ for 3 hrs. (See also 

Figure S5) 
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Figure 6. MK2-dependent phosphorylation of RIPK1 at S321 protects cells from TNF 

induced cell death  

(A) Quantification of PI positive WT and Ripk1S321D BMDMs treated with the indicated 

reagents for 5 hrs.  

(B) DEVDase activity analysis of BMDMs treated with the indicated reagents for 1 hr. 

(C) Quantification of PI positive primary WT and Ripk1S321D MEFs treated with the indicated 

reagents for 6 hrs.  

(D) Proximity ligation assay of primary WT and Ripk1S321D MEFs using RIPK1 and caspase-8 

antibodies. Cells were stimulated with the indicated reagents for 3 hrs. The panel below show 

quantifications of RIPK1/caspase-8 PLA speckles. Scale bar: 10 µm.  

Graphs show mean ± SEM, n = 3–8 independent repeats. *p < 0.05, **p < 0.01 and ***p < 

0.001. (See also Figure S6) 

 

  



KEY RESOURCE TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
Anti-Actin Sigma A5441 
Anti-Caspase 8 Santa Cruz Biotechnology sc-789 
Anti-Caspase 8 Santa Cruz Biotechnology sc-6136 
Anti-cFLIP Adipogene AG-20B-0056 
Anti-cIAP1 Enzo Life Sciences  ALX-803-335-C100 
Anti-cIAP1 Enzo Life Sciences  ALX-803-335-C100 
Anti-Cleaved Caspase 8  Cell Signaling 9429 
Anti-ERK Gift from Chris Marshall N/A 
Anti-FADD Santa Cruz Biotechnology sc-6036 
Anti-FLAG [M2] Sigma  F3165 
Anti-HOIL Gift from Henning Walczak N/A 
Anti-Hsp27 Santa Cruz Biotechnology sc-13132 
Anti-Hsp90 Santa Cruz Biotechnology sc-7947 
Anti-IkB α Santa Cruz Biotechnology sc-371 
Anti-JNK Santa Cruz Biotechnology sc-571 
Anti-MK2 Cell Signaling 3042 
Anti-NEMO Santa Cruz Biotechnology sc-8330 
Anti-P-ERK Cell Signaling 9101 
Anti-P-Hsp27 Santa Cruz Biotechnology sc-166693 
Anti-P-IkBa Cell Signaling 2859 
Anti-P-JNK Cell Signaling 4668 
Anti-P-MK2 Cell Signaling 3007 
Anti-P-p38 Cell Signaling 9215 
Anti-P-p65 Cell Signaling 3033 
Anti-P-RIPK1 (S166) (rodent specific) Cell Signaling 31122 
Anti-P-RIPK1 (S320) (human) Custom project  

ThermoFisher Scientific 
N/A 

Anti-P-RIPK1 (S321) (mouse) Custom project 
ThermoFisher Scientific 

N/A 

Anti-p38 Cell Signaling 9212 
Anti-p65 Cell Signaling 8242 
Anti-RIPK1 (C-terminal) BD Bioscience 610459 
Anti-RIPK1 (N-terminal) Cell Signaling  3493 
Anti-RIPK3 Proscience 2283 
Anti-Sharpin ProteinTech 14626-1-AP 
Anti-TAK1 Cell Signaling 4505 
Anti-TNFR1 Abcam 19139 
Anti-Tubulin Sigma  T-9026 
Anti-Ubiquitin Dako Z0458 
Chemicals, Peptides, and Recombinant Proteins   
GSK’963 (RIPK1 inhibitor) Gift from GSK N/A 
Compound A (Smac mimetic) TetraLogic Pharmaceuticals N/A 
Necrostatin-1 BioVision 2263-5 
FLAG-tagged hTNF Enzo Life Sciences  ALX-804-034-C050 
Human recombinant TNF Enzo Life Sciences ALX-522-008-C050 
Mouse recombinant TNF Enzo Life Sciences ALX-522-009-C050 
BI605906 (IKK2 inhibitor) MedChemExpress HY-13019 
TCPA-1 (IKK2 inhibitor) Sigma T-1452 



(5Z)-7-Oxozeaenol (TAK1 inhibitor) Tocris Bioscience 3604 
BIRB 796 (p38 inhibitor) LC Laboratories D-2744 
zVAD-FMK Apex Bio A1902 
LY2228820 (p38 inhibitor) Apex Bio A5566 
PF-3644022 (MK2 inhibitor) Tocris Bioscience 4279 
LPS Invivogen TLRL-PEKLPS 
Tri-DAP Invivogen tlrl-tdap 
PGN-EB Invivogen tlrl-pgneb 
Human MK2 (active recombinant) Thermo Scientific PV3317 
ATP  Thermo Scientific R0441 
Protein A/G agarose Thermo Scientific 20423 
Hoechst Thermo Scientific  33342 
Propidium iodide solution Sigma P4864 
Ac-DEVD-AMC Sigma A1086 
Halt Protease and phosphatase inhibitor  Thermo Scientific 78443 
PR619 2B Scientific SI9619 
MTT reagent Sigma  M5655 
Murine Stem Cell factor (m-SCF) Peprotech 250-03 
Critical Commercial Assays   
Cell-Titer Glo Luminescent Cell Viability assay Promega G7571 
Duolink® In Situ Detection Reagents Green Sigma DUO92014 
HiScribe T7 high yield RNA synthesis kit NEB E2040S 
Deposited Data   
http://dx.doi.org/10.17632/znt3g8r753.1   
Experimental Models: Cell Lines 
Primary MEFs In house N/A 
Primary BMDMs WT and Mk2-/- In house N/A 
Primary BMDMs Mk2-/- Gift from M.Gaestel N/A 
Primary MEF Ripk1S321D/S321D In house N/A 
Immortalised MEF Ripk1K45A In house N/A 
Primary MEF Ripk1S321A/wt In house N/A 
Immortalised MEFs WT and Mk2-/- Gift from Chris Marshall N/A 
BT549 ATCC HTB-122 
MDA-MB-468 In house N/A 
MDA-MB-231 In house N/A 
MLL-ENL WT, Mk2-/- and Ripk1D138N In house N/A 
Experimental Models: Organisms/Strains   
Mouse: C57BL/6 Ripk1S321A/wt In house N/A 
Mouse: C57BL/6 WT, Mk2-/- and Ripk1D138N In house N/A 
Mouse: C57BL/6 Ripk1S321D/S321D In house N/A 
Mouse: C57BL/6 Ly5.1 MLLENL  In house N/A 
Oligonucleotides   
RNA targeting RIPK1: 
GCTCGGGCGCCATGTAGTAG  

  

RNA targeting TRADD: 
CCTGTTTGTGGAGTCCTCGC 

  

RNA targeting TAK1: 
GTAAACACCAACTCATTGCG 

  

RNA targeting IKK1: 
GAACCATGCCAATGTTGTAA 

  



RNA targeting IKK2: 
ACCACCGCTCTCGGTTCCGG 

  

RNA targeting NEMO: : 
GGCAGCAGATCAGGACGTAC 

  

Recombinant DNA   
Cas9-plasmid Addgene 41815 or 48138 
pcDNA3 Thermo Scientific V79020 
pTRIPZ GE Dharmacon RHS4696 
pTRIBZ In house (Tenev et al.,2011) 
pCDNA5.5/FRT/TO vector Thermo Scientific V652020 
px330 vector  Addgene 42230 
Software and Algorithms   
CRISPR design http://crispr.mit.edu  
CRISPR design http://www.addgene.org/cris

pr/church/ 
(Mali et al., 2013) 

SAINT analysis http://saint-
apms.sourceforge.net/ 

(Choi et al., 2011) 

Swiss-Prot https://www.ebi.ac.uk/unipr
ot 

 

Proteome Discoverer v1.4 Thermo Scientific  
Image Lab  V5.2.1. Bio-Rad laboratories  
Sequence alignment http://benchling.com  
GraphPad Prism v6.0 http://www.graphpad.com/  
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STAR METHODS 

CONTACT FOR REAGENTS AND RESOURCE SHARING 

Further information and requests for reagents may be directed to the Lead Contact, Prof. 

Pascal Meier (pmeier@icr.ac.uk) 

 

EXPERIMENTAL MODELs AND SUBJECT DETAILS 
Generation of murine AML  
All in vivo experiments were conducted in accordance with the guidelines of The Walter and 

Eliza Hall Institute Animal Ethics Committee. MLLENL retroviral construct were previously 

described (Lalaoui et al., 2016). Viral supernatants were produced in 293T cells by co-

transfection of expression constructs and packaging plasmids. Fetal liver cells (E14.5) from 

WT Mk2-/- Ripk1D138N C57BL/6 Ly5.2 mice were infected with viral supernatant using the 

retronectin protocol. Transduced cells were cultured in alpha-MEM medium (Invitrogen) 

supplemented with 10 % FCS, 2 mM L-glutamine, 100 ng/mL m-SCF, 10 ng/mL IL-6, 50 

ng/ml TPO and 10 ng/ml Flt3 (WEHI). After two rounds of infection, cells were injected into 

sub-lethally g-irradiated (7.5 Gy) C57BL/6 Ly5.1 mice. Mice were collected when disease was 

evident. Parameters used to determine leukemia were weight-loss, enlarge spleen, anemia, 

lethargy and hunched posture. Leukemic cells were obtained from bone marrow of sick mice. 

Cells were cultured at 37 °C in a 10% CO
2 humidified atmosphere in IMDM media 

supplemented with 10 % fetal calf serum and 2.5 ng/ml IL-3. 

 

Mice generation 
For the generation of Ripk1-S321D mice Cas9 mRNA (TriLink) together with the ssDNA 

repair oligo (IDT) and the short guide RNA (sgRNA) targeting the region surrounding S321 of 

the murine Ripk1 gene was microinjected into the pro-nucleus of fertilized oocytes obtained 

from C57BL/6 mice. The injected embryos were transferred to foster mothers and allowed to 

develop to term. Mutations in the genome of progeny were determined by analysis of 

genomic DNA using the T7 endonuclease I assay and sequencing. The sequence of the 

ssDNA oligo used as a repair template for the Ripk1-S321D can be obtained upon request. 

sgRNA was generated by in vitro transcription, from the px330 vector containing the Ripk1 

targeting sequence. 

 

Cell lines 
MEFs, MDA-MB468, MDA-MB-231 and Flp-In™T-Rex™ HEK293 cells were cultured in 

Dulbecco’s modified Eagle’s Medium (DMEM), BT549 were cultured in RPMI media. All 

media were supplemented with 10 % Fetal Bovine Serum (FBS) and penicillin and 

streptomycin, under 10 % CO
2
. Immortalised WT and Mk2-/- MEFs were a kind gift from Chris 

Marshall. 
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METHOD DETAILS 
Isolation of primary cells  
Primary Mouse Embryonic Fibroblasts (MEFs) were generated from E13.5 embryos. After 

removing the placenta, yolk sac, head and the dark red organs, embryos were finely minced 

and digested for 20 min in 0.25 % trypsin. Single cell suspension was then obtained by 

pipetting up and down the digested embryos. To generate Bone Marrow Derived 

Macrophages (BMDMs), bone marrow cells from tibia and femur of 2 month old mice were 

seeded in non-coated petri dishes and cultured for 6 days in Dulbecco’s modified Eagle 

medium + 10 % fetal bovine serum + 20 % (v/v) L929 mouse fibroblast conditioned medium. 

To generate Mk2-/- BMDMs, lethally irradiated (9.5 Gy) WT C57BL/6 were reconstituted with 

Mk2-/- bone marrow, 8 weeks later bone marrow cells from tibia and femur from reconstituted 

mice were culture L929 conditioned medium for 6 days. 

 

Constructs and transfection 
For the generation of Ripk1-/- MEFs, primary Ripk1K45A MEFs were infected with SV40T-

expressing lentivirus for immortalization and subsequently infected with Cre recombinase-

expressing lentivirus for Ripk1 deletion as previously described (Berger et al., 2014). Human 

RIPK1 with deletion of DD (hRIPK1-DDD -1-581Aa) and mouse RIPK1 with deletion of DD 

(mRIPK1-DDD-1-567AA) were cloned into pTRIPZ or pTRIBZ and the respective cell lines 

were infected as described previously (Tenev et al., 2011). 

 

Cell death and cell viability assays 
5 x104 BMDMs or 8 x103 MEFs were seeded in 96 well plates and 24 h later were treated as 

indicated for the indicated times. Hoechst (0.5 μg/ml) and PI (1 μg/ml) were added and the % 

of dead cells was measured using the CeligoS image cytometer (Nexcelon Bioscience). 5 

x104 of MLL-ENL were seeded in 96 well plates and treated the same day as indicated for 24 

hrs. Cell death was analysed by flow cytometry quantification of PI (2 µg/mL) uptake using a 

FACSCalibur (BD Biosciences).  

 

Caspase activity assay (DEVDase) 
Cells were plated in 24 well plates and treated as indicated. After treatment media was 

removed and plates were frozen at -80 0C, to aid cell lysis. Next, plates were thawed and 50µl 

of 1 % DISC lysis buffer (20 mM Tris-HCL pH 7.5, 150 mM NaCl, 2 mM EDTA, 1 % Triton X-

100, 10 % glycerol) was added to each well, cells were scraped and lysates were left at 

Room Temperature for 15 min. 450 µl of DEVDase assay mix (20 µM Ac-DEVD-AMC 

(SIGMA), 1mM DTT, 25 mM HEPES pH 8.0) was added to the lysates NB: to measure all 

fractions cell lysates were not cleared). The plates were incubated at room temperature for up 

to 24 hrs and DEVDase activity was read at 380nM excitation/460nM emission. 
 

Generation of CRISPR cells  
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Guide RNAs were designed according to Zhang lab (Ran et al., 2013). MDA-MB-231 or 

293FlpIn cells were transfected with pSpCas9-2A-GFP (Addgene) plasmid carrying gRNAs 

against human RIPK1-PM865, TRADD-16A35, TAK1-16A32, IKK1-16A25, IKK2 – 16A26 and 

NEMO-16A30 (sequence can be obtained upon request). 72 hrs after transfection GFP 

positive clones were FACS sorted and single clones were screened for gene knockout. 

 
In vitro kinase assay 
L929 or HT29 cells were lysed in DISC buffer supplemented with protease inhibitors and 

clarified at 14,000 rpm at 4 °C. Immunoprecipitations were performed using Protein A/G Plus 

agarose and rotated overnight at 4 °C with anti-RIPK1 (C-terminal). Beads were washed 2x in 

wash buffer and 1x in kinase buffer (200 mM Hepes pH 8.0, 20 mM MgCl2, 5 mM EGTA, 0.05 

% Triton-X-100). The kinase assay was performed in 30 µl kinase buffer containing 100 ng 

recombinant active MK2, 30 µM ATP and MK2 inhibitor where indicated. Beads were 

incubated for 30 min at 30 °C, and reactions were halted by addition of 30 μl 2x SDS sample 

buffer. Samples were boiled and the results visualized by Western Blot.  

 
Tube pull-down 
Cells were lysed in DISC lysis buffer supplemented with protease inhibitors, 1 mM DTT, 

PR619 (10 μM) and GST-TUBE (50 μg/ml; 50 μg TUBE/mg protein lysate). Cell lysates were 

rotated at 4 °C for 20 min then clarified at 4 °C at 14,000 rpm for 10 min. 20 μl GST beads 

were added and immunoprecipitations were performed overnight. Beads were washed 4x in 

wash buffer (50 mM Tris pH 7.5, 150 mM NaCl, 0.1 % Triton X-100, and 5 % glycerol) + 

PR619 (10 μM), and bound proteins eluted by boiling in 50 μ l 1x SDS loading dye. 

 
UbiCRest 
The UbiCRest analysis with linkage selective DUBs was performed essentially as described 

in (Hospenthal et al., 2015). Briefly, the released fraction (see complex-I purification) was 

incubated with 1 μM OTULIN, 0.2 μM OTUD1, 1 μM CEZANNE, 0.2 μM OTUB1, 1.5 μM 

USP21. The reaction was conducted in the presence of 1 mM DTT for 30 min at 37°C. 

Reactions were stopped with SDS sample buffer, and the ubiquitylation status analysed by 

western blotting. 

 

Complex-I/II Purification 
Cells were seeded in 15 cm dishes and treated as indicated with 3x FLAG-hTNF (5 μg/ml). 

Media was removed and plates were washed with ice cold PBS. Plates were frozen at -80 °C. 

Plates were thawed on ice and cells were lysed in 1 % Triton X-100 lysis buffer (30 mM Tris-

HCl pH 7.4, 120 mM NaCl, 2 mM EDTA, 2 mM KCl, 10 % glycerol and 1 % Triton X-100) + 

protease inhibitors and PR619 (10 μM). Cell lysates were rotated at 4 °C for 20 mins then 

clarified at 4 °C at 14,000 rpm for 30 mins. Proteins were immunoprecipitated with 20 μl of α-

FLAG M2 beads (SIGMA) with rotation overnight at 4 °C. For the 0 hrs sample 5 μg/ml of 
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FLAG-TNF was added post-lysis. Beads were washed 4x washes in lysis buffer and samples 

eluted by boiling in 60 μl 1x SDS loading dye. For complex-II purification MEFs and BMDMs 

were seeded in 10 and 15 cm dishes respectively and treated as indicated in Figure legend. 

Cells were lysed on ice as above. Cell lysates were rotated at 4 °C for 20 min then clarified at 

4 °C at 14,000 rpm for 10 mins. 20 μl of protein G sepharose, blocked for 1 hrs with lysis 

buffer containing 1% BSA, were bound with FADD antibody [1.5 μg antibody/mg lysate] and 

incubated with protein lysates 4 hrs at 4 °C. Beads were washed 4x in lysis buffer and 

samples eluted by boiling in 60 μl 1x SDS loading dye. 

 

Proximity ligation assay (PLA)  
PLA was performed according to the manufacturer’s protocol using the Duolink Detection Kit 

(SIGMA). Cells were examined with a confocal microscope (objective x 40, Zeiss LSM 710).  
 

Statistics 
Statistical analysis was performed using GraphPad Prism V6.0. Unless otherwise specified, 

data are presented as mean ± SEM. Comparisons were performed with a Student’s t test 

whose values are represented in the figures as *p < 0.05, **p < 0.01, and ***p < 0.001. 

 

Data and software availability 

Raw data are uploaded to http://dx.doi.org/10.17632/znt3g8r753.1 
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Supplementary Figures  

Figure S1  

 

 

Figure S1. MK2 protects from TNF-induced cell death, Related to Figure 1 

(A) Quantification of PI positive cells of primary MEFs treated with the indicated agents. Cells were 

pre-treated with MK2i (1 µM). (B) Quantification of PI positive cells of WT and Ripk1D138N MLL-ENL 

cells. Cells were treated with the indicated agents for 24 hrs. TNF (10 ng/ml), SM (25 nM), MK2i (2 

µM). (C) Quantification of PI positive cells of WT and Mk2-/- MLL-ENL cells, treated with the indicated 

agents for 24 hrs. TNF (10 ng/ml), SM (25 nM). (D) Quantification of cell viability in MDA-MB-468 

cells, treated with the indicated agents. Cells were pre-treated with MK2i (1 µM). (E) DEVDase activity 

analysis of MDA-MB-468 cells left untreated or treated with the indicated agents for 5 hrs. Cells were 

pre-treated with MK2i (1 µM) and RIPK1i (100 nM) for 30 min.  Graphs show mean ± SEM, n = 3 

independent biological repeats. *p < 0.05, **p < 0.01, and ***p < 0.001. 
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Figure S2 

 

 

Figure S2. Antibody validation, Related to Figure 2 

Western blot analysis of RIPK1 immunoprecipitates from MEFs or HT29 cells using the indicated 

antibodies. Cells were stimulated with TNF (10 ng/ml) for 10 min. Antibodies were either left untreated 

or pre-incubated with blocking P-peptide, against which these antibodies were raised against. 
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Figure S3 

 

 

Figure S3. MK2 phosphorylates RIPK1 at S320/S321 in response to TNF stimulation, Related to 

Figure 3 

(A) Western blot analysis of cell lysates from primary MEFs using the indicated antibodies. Cells were 

pre-treated with increasing concentrations of IKK2i (TCPA-1, 0.2, 1 and 5 µM) for 1 h, followed by 

stimulation with TNF (10 ng/ml) for 10 min. (B) Western blot analysis of cell lysates from primary 

MEFs using the indicated antibodies. Cells were pre-treated with IKK2i (BI605906, 10 µM) for 1 hr, 

followed by stimulation with TNF (10 ng/ml) for the indicated times. 
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Figure S4 
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Figure S4. MK2-dependent phosphorylation of RIPK1 does not affect NF-κB signalling, Related 

to Figure 4  

(A) UbiCRest analysis of ubiquitylated RIPK1 in complex-I. Complex-I was purified from primary WT 

MEFs using FLAG-mTNF as affinity reagent. Immuno-complexes were then subjected to UbiCRest 

analysis using the indicated panel of DUBs followed by Western blot analysis for RIPK1. (B) Immuno-

precipitation of RIPK1 from DMSO and MK2i-treated MEFs (1 µM). The presence of the indicated 

proteins was evaluated by western blot. Cells were treated with the indicated agents for the indicated 

time points. (C,D) TNF-induced complex-I immuno-precipitation using FLAG-mTNF or FLAG-hTNF (1 

µg /ml) as an affinity reagent from lysates of WT and Ripk1-/- MEFs (C) and MDA-MB-231 (D) cells 

stably expressing an inducible form of RIPK1-DDD. Western blot analysis with the indicated 

antibodies is shown. (E) Western blot analysis of cell lysates of WT and Ripk1-/- MDA-MB-231 cells 

stably expressing RIPK1-DDD. Expression of RIPK1-DDD was induced by Doxycycline (1 µg/ml), and 

the presence and phosphorylation status of the indicated proteins was evaluated. 
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Figure S5 

 

Figure S5. RIPK1-DDD is not recruited to TNF complex-I, Related to Figure 5 

(A) TNF-induced complex-II was immuno-precipitated with anti-FADD from MEF lysates. Cells were 

treated with TSZ for 3 hrs ± MK2i (2 µM). (B) TNF-induced complex-I immuno-precipitation using 

FLAG-mTNF (1 µg/ml) as an affinity reagent from lysates of WT MEFs stably expressing and 

inducible form of RIPK1-DDD. Western blot analysis with the indicated proteins is shown. 
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Figure S6 

 

 

Figure S6. MK2-dependent phosphorylation of RIPK1 at S321 protects cells from TNF induced 

cell death, Related to Figure 6 

(A) Sequence of the Ripk1 gene in WT and Ripk1
S321D/S321D

 mice. In addition to the TCA to GAC 

mutation changing S at position 321 to D, silent mutations were introduced in the PAM sequence to 

protect the mutated allele from Cas9-mediated cleavage. (B, C) Western blot analysis of primary 

BMDMs (B) and MEFs (C) isolated from WT and Ripk1S321D mice using the indicated antibodies. Cells 

were treated with TNF (10 ng/ml) for the indicated time points. 
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