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A B S T R A C T   

Background: Pneumonitis is a well-described, potentially disabling, or fatal adverse effect associated with both immune checkpoint inhibitors (ICI) and thoracic 
radiotherapy. Accurate differentiation between checkpoint inhibitor pneumonitis (CIP) radiation pneumonitis (RP), and infective pneumonitis (IP) is crucial for swift, 
appropriate, and tailored management to achieve optimal patient outcomes. However, correct diagnosis is often challenging, owing to overlapping clinical pre-
sentations and radiological patterns. 
Methods: In this multi-centre study of 455 patients, we used machine learning with radiomic features extracted from chest CT imaging to develop and validate five 
models to distinguish CIP and RP from COVID-19, non-COVID-19 infective pneumonitis, and each other. Model performance was compared to that of two 
radiologists. 
Results: Models to distinguish RP from COVID-19, CIP from COVID-19 and CIP from non-COVID-19 IP out-performed radiologists (test set AUCs of 0.92 vs 0.8 and 0.8; 
0.68 vs 0.43 and 0.4; 0.71 vs 0.55 and 0.63 respectively). Models to distinguish RP from non-COVID-19 IP and CIP from RP were not superior to radiologists but 
demonstrated modest performance, with test set AUCs of 0.81 and 0.8 respectively. The CIP vs RP model performed less well on patients with prior exposure to both 
ICI and radiotherapy (AUC 0.54), though the radiologists also had difficulty distinguishing this test cohort (AUC values 0.6 and 0.6). 
Conclusion: Our results demonstrate the potential utility of such tools as a second or concurrent reader to support oncologists, radiologists, and chest physicians in 
cases of diagnostic uncertainty. Further research is required for patients with exposure to both ICI and thoracic radiotherapy.   
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Introduction 

Pneumonitis is a well-described, potentially disabling or fatal 
adverse effect associated with both checkpoint inhibitor immuno-
therapy and thoracic radiotherapy [1]. Immune checkpoint inhibitors 
(ICI), which stimulate an immune response against tumour cells by 
blocking inhibitory receptors such as Programmed Death-1 (PD-1), its 
ligand (PD-L1), or Cytotoxic T-lymphocytic-associated protein-4 (CTLA- 
4), have revolutionised cancer treatment [2–4]. However, artificial 
augmentation of the immune system can result in several side effects 
including pneumonitis, which has a reported average incidence of 3–6 
%, but up to 10 % when an anti PD-1/PD-L1 antibody is combined with 
anti CTLA-4 antibody, and as high as 19 % in some reported studies 
[1,5–9]. 

Radiotherapy is integral to the management of many cancers. 
Approximately 40 % of curative treatments involve radiotherapy, either 
alone or in combination with surgery or systemic therapy, and it is also 
highly effective for palliation in recurrent or advanced disease. 
Furthermore, a growing body of evidence supports the use of high-dose 
radiotherapy for oligometastatic disease [10]. Thoracic radiotherapy 
can result in radiation-induced lung disease encompassing radiation 
pneumonitis (RP) and lung fibrosis, influenced by the total lung radia-
tion dose. Incidence of symptomatic RP is between 5 and 58 % and risk is 
increased with concurrent chemotherapy or after administration of 
systemic anticancer therapy in a previously irradiated lung [1,8,9,11]. 
Subsequent analysis of KEYNOTE-001 demonstrated a 23 % higher all- 
grade pneumonitis in patients treated with Pembrolizumab (a PD-1 in-
hibitor) who had received prior radiotherapy compared to those who 
had not (p = 0.052) [12]. Incidence of all-grade pneumonitis was higher 
in patients treated with adjuvant durvalumab (a PD-L1 inhibitor) after 
concurrent chemoradiotherapy compared to those receiving placebo 
(33.9 % vs 24.8 %) [13]. 

Significant morbidity and mortality can result from both checkpoint 
inhibitor pneumonitis (CIP) and RP. Both conditions require prompt 
management, usually with steroids and may necessitate hospital 
admission for oxygen therapy, and even intubation and ventilation. 
Pneumonitis may return on weaning steroids or with reintroduction of 
radiotherapy or ICI [1,11,14–16]. 

Severe cases require interruption or cessation of ICI or radiation 
therapy, which may compromise efficacy, resulting in loss of tumour 
control and worse outcomes. Misdiagnosis of RP or CIP can prohibit 
subsequent re-challenge of therapy, which may also significantly alter 
outcomes. Delayed diagnosis and appropriate management can lead to 
reduced functional status and quality of life. Early and accurate diag-
nosis is therefore crucial. However, this is often complicated by a wide 
window of onset, varied clinical presentation and a broad spectrum of 
radiologic patterns, which overlap with infective pneumonitis (pneu-
monia). This challenge has been made more apparent since COVID-19. 
With RP, imaging features may be limited to the radiation field and 
not conform to lobar anatomy, however this is not always the case, 
possibly due to a progressive immunological response [8,9,17,18]. 
[8,111,19]. 

Bronchoscopy with bronchoalveolar lavage or biopsy may be rec-
ommended to rule out alternative causes such as infection or tumour 
progression, however widespread uptake is limited in practice due to 
additional risk, patient preference, resource constraints and delay to 
diagnosis. Even when performed, cytology and tissue samples may be 
inadequate for diagnosis [16,17,20]. For these reasons, in practice, pa-
tients are often treated empirically with antibiotics to cover for infective 
pneumonitis (IP) [1,16]. However, treatment without diagnostic 
confirmation is not optimal and could promote antimicrobial resistance 
or disruption of protective microbiota [21]. A more accurate approach 
to non-invasively and rapidly distinguish CIP, RP and IP is therefore of 
significant clinical value. This would facilitate prompt, tailored man-
agement and, may allow earlier reintroduction of ICI or radiation ther-
apy where an alternative diagnosis is confirmed. 

Radiomics, the automated extraction and machine learning analysis 
of high-dimensional quantitative features from medical images, may 
present a solution. These features can be correlated with clinical out-
comes to develop decision support tools that have demonstrated prog-
nostic ability in numerous studies [22–31]. Employing machine learning 
techniques on radiomic features may identify key patterns predictive of 
CIP, RP, and IP. 

In this study, we developed and validated five machine learning 
tools, comparing handcrafted radiomic features, to distinguish:  

1. CIP vs non-COVID-19 infective pneumonitis  
2. CIP vs COVID-19  
3. RP vs non-COVID-19 infective pneumonitis  
4. RP vs COVID-19  
5. CIP vs RP 

Methods 

This work was reviewed by the Royal Marsden Hospital Committee 
for Clinical Research and approved by the UK Health Research Authority 
(reference number: 283611), ClinicalTrials.gov identifier: 
NCT04721444. Some data for this study were obtained from the Na-
tional COVID-19 Chest Imaging Database (NCCID) [32] (Research Ethics 
Committee reference number: 20/LO/0688). NCCID is a centralized 
database containing medical images of hospital patients from over 25 
centres across the UK. Data used in the study were deidentified and 
therefore patient consent was not required, as per Health Research 
Authority and Research Ethics Council approvals. 

Clinical data and accompanying CT images demonstrating pneu-
monitis were collected from six UK NHS Trusts (BLINDED) and the 
NCCID. Comprehensive inclusion and exclusion criteria were imple-
mented to curate five distinct cohorts of patients with either:  

• A confirmed diagnosis of pneumonitis attributed to ICI alone (CIP 
cohort): 103 patients  

• A confirmed diagnosis of pneumonitis attributed to radiotherapy 
alone (RP cohort): 111 patients  

• A confirmed diagnosis of non-COVID-19 infective pneumonia alone 
(IP cohort): 106 patients  

• A confirmed diagnosis of COVID-19 alone (COVID-19 cohort): 120 
patients  

• Pneumonitis in the context of prior ICI and radiotherapy exposure 
(mixed ICI + RT test cohort): 15 patients 

For example, for the CIP cohort, patients must have received an ICI in 
the three months prior to data collection and presented with new 
radiological lung changes confirmed on the CT, of a severity and dis-
tribution consistent with CIP, that are not incompatible with lower 
respiratory tract infection. Patients must not have had radiotherapy 
involving the thorax in the 12 months prior to presentation, and where 
there was documented clinical concern for infection, they must have 
undergone investigations to rule this out. Similarly, for the RP cohort, 
patients must have completed a course of radiotherapy involving the 
thorax (e.g. lung, breast, oesophageal radiotherapy) in the 12 months 
prior to presentation, and have not received an ICI. They must have 
presented with new radiological lung changes on CT, of a severity and 
distribution consistent with RP or early fibrosis (not established 
fibrosis). These changes should be of severity and distribution that are 
not incompatible with lower respiratory tract infection. For the infective 
pneumonitis cohort, patients presented prior to 2020 and thus did not 
have COVID-19. Ground truth was determined by a multidisciplinary 
team including clinical oncologists, medical oncologists, respiratory 
physicians, and radiologists. Full details of the inclusion and exclusion 
criteria for each cohort are listed in the Supplementary Material. 

Example images demonstrating the difficulty of disease differentia-
tion, for each cohort are presented in Fig. 1. In A1, A2, B1 and B2, there 
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Fig. 1. Two example axial CT slices from each cohort, demonstrating the difficulty of disease differentiation based on imaging alone, with non-specific radiological 
features and pattern present in all cases. A1 & A2) COVID-19, B1 & B2) CIP, C1 & C2) RP, D1 & D2) non-COVID-19 IP. 
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are bilateral multi-focal ground glass opacifications. There are addi-
tionally unilateral consolidations +/- atelectases in the dependent part 
of the lungs in A2 and B1, and unilateral small pleural effusions in B1 
and B2. C1 demonstrates paramediastinal consolidations. In C2, there is 
unilateral ground glass and posterior consolidation in the right lung. In 
these cases, these features conform to the irradiated field but as 
described earlier, this might not always be the case, particularly in cases 
treated with stereotactic ablative radiotherapy [33]. In D1 and D2, there 
are bilateral ground glass opacifications. In D1, there are additionally 
multifocal consolidations visible in the right lower lobe and a unilateral 
pleural effusion on the left. 

Following pseudonymisation, CT images were resampled to 
1x1x1mm using trilinear interpolation, a conservative approach rec-
ommended by the Image Biomarker Standardisation Initiative (IBSI) 
[34], and then converted from DICOM to NIfTI format using MRIcroGL 
(version 1.2). Images were reviewed with CT reports to identify regions 
of pneumonitis. These were then contoured over three consecutive slices 
by a clinical oncologist (SH) to form regions of interest (ROIs) using ITK- 
Snap (version 3.8.0) [35], for feature extraction. Where pneumonitis 
was diffuse, the whole lobe was contoured. 

Several software programs are available for radiomic feature 
extraction, either open-source, commercial or those developed in-house 
[36]. In this study we used Pyradiomics 3.0.1, an open-source, IBSI- 
compliant python package for the extraction of radiomics data, without 
wavelet filtering [34,37]. A total of 107 handcrafted features were 
extracted from each ROI using 25 Hounsfield unit bins using Pyr-
adiomics. All statistical analysis was undertaken in R Studio (version 
1.4.1106). 

As ROI masks did not pertain to a specific shape (e.g. that of a specific 
tumour or nodule), size and shape features were removed, leaving 93 
Pyradiomic features for each patient. Features were standardised by 
centering on the mean and dividing by the standard deviation (Z-score 
normalisation) [38]. Twenty patients from each of the CIP, RP, IP, and 
COVID-19 cohorts, were allocated to hold-out test sets at random, with 
the remaining number of patients in each cohort assigned to training 
sets. For each of the models, respective training cohorts and test cohorts 
were combined. For example, for the CIP vs COVID-19 prediction model, 
the CIP and COVID-19 training sets were combined and the CIP and 
COVID-19 test sets were combined. Feature reduction steps were 
employed to reduce data dimensionality. Highly correlated features 
were removed, and univariable logistic regression with False Discovery 
Rate correction was used to select highly significant features for model 
development. Parameters for these steps are listed in Supplementary 
Table 1. 

Finally, LASSO regression with 10-fold cross-validation was used to 
select the lambda value of the minimum cross-validated error (lambda. 
min) before model fitting. The weighted sum of features with non-zero 
regression coefficients gave the radiomic predictive vector (RPV) for 
pneumonitis type. Features contributing to the RPV for each model 
along with their weights are listed in Supplementary Table 2. The 
optimal Receiver-Operator Characteristic (ROC) curve cut-off to maxi-
mise the training set accuracy was used to predict pneumonitis type in 
the training and test sets. For the CIP vs RP model, this was further 
validated on a second test comprising the 15 patients presenting with 
pneumonitis in the context of both prior ICI and radiotherapy treatment 
(mixed test cohort). The Area Under the Curve (AUC) with confidence 

intervals was calculated for each model. Classification metrics including 
Balanced Accuracy, F1 score, sensitivity, specificity, positive and nega-
tive predictive value were also recorded and are detailed in Supple-
mentary Table S3. 

Test sets for each model were independently reviewed by two board- 
certified clinical radiologists (MC, AL) with 7 and 4 years of experience 
respectively, who were asked to assign a binary label to each scan in a 
particular test set. For example, for the CIP vs COVID-19 test set, the 
option was either CIP or COVID-19. The radiologists were blinded to 
clinical data and the number of a particular class in the test set but were 
able to review the full CT scans in multi-planar reformat. AUC values 
and classification metrics were calculated for each radiologist’s perfor-
mance (classification metrics are detailed in Supplementary Table S4). 

Results 

A total of 455 patients were included in the study, across the five 
cohorts (Fig. 2). Numbers of patients included in each model training 
and test set are described in Table 1. 

AUC values with 95 % confidence intervals for each model and test 
set AUC values for each radiologist are listed in Table 2. The models to 
distinguish RP from COVID-19, CIP from COVID-19 and CIP from non- 
COVID-19 IP out-performed the radiologists (test set AUCs of 0.92 vs 
0.8 and 0.8; 0.68 vs 0.43 and 0.4; 0.71 vs 0.55 and 0.63 respectively). 
The models to distinguish RP vs non-COVID-19 IP and CIP vs RP 
demonstrated modest performance, with test set AUCs of 0.81 and 0.8 
respectively, though these were not superior to the radiologists. the CIP 
vs RP model and both radiologists did not agree with the MDT ground 
truth labels for the mixed ICI + RT test cohort, though the radiologists 
performed slightly better with AUC values of 0.6 and 0.6 vs the model’s 
0.54. ROC curves for each of the models are shown in Fig. 3. 

For the CIP vs RP model, four texture features were selected: origi-
nal_glrlm_GrayLevelNonUniformity, original_glrlm_GrayLevelVariance, 
original_glszm_SmallAreaEmphasis and original_ngtdm_Coarseness. A 
Gray Level Run Length Matrix (GLRLM) quantifies gray level runs - the 
number of consecutive pixels with the same gray level value. Gray Level 
Non-uniformity measures variability of gray level intensity values in the 
image, with lower values indicating more homogeneity in intensity, and 
Variance measures the variance in gray level intensity for the runs. A 
Gray Level Size Zone (GLSZM) measures gray level zones in an image. 
Zones are the number of connected voxels that share the same gray level 
intensity. Small Area Emphasis measures the distribution of small size 
zones, with larger values indicating more smaller zones and more fine 
textures. A Neighbouring Gray Tone Difference Matrix (NGTDM) 
quantifies the difference between a gray value and the average gray 
value of its neighbours within a particular distance. Coarseness mea-
sures the average difference between the centre voxel and its neigh-
bourhood, indicating spatial rate of change. Higher values indicate 

Table 1 
Training and test set sizes for each of the models.  

Model Training Set Size Test Set Size 

CIP vs non-COVID-19 IP 169 (83 CIP, 86 non-COVID-19 IP) 40 (20 each) 
CIP vs COVID-19 183(83 CIP, 100 COVID-19) 40 (20 each) 
RP vs non-COVID-19 IP 177(91 RP, 86 non-COVID-19 IP) 40 (20 each) 
RP vs COVID-19 191(91 RP, 100 COVID-19) 40 (20 each) 
CIP vs RP 174(83 CIP, 91 RP) 40 (20 each)  

Table 2 
Training and test set AUC values and Confidence Intervals for each of the models 
together with test set AUC values for the radiologists (R1 = radiologist 1, R2 =
radiologist 2).  

Model Set AUC CI R1 
AUC 

R2 
AUC 

CIP vs non- 
COVID-19 IP 

Train  0.79 0.72–––0.87   
Test  0.71 0.53–––0.86  0.55  0.63 

CIP vs COVID-19 Train  0.70 0.62–––0.76   
Test  0.68 0.49–––0.84  0.43  0.4 

RP vs non-COVID- 
19 IP 

Train  0.85 0.79–––0.91   
Test  0.81 0.64–––0.94  0.93  0.88 

RP vs COVID-19 Train  0.85 0.79–––0.90   
Test  0.92 0.81–––0.99  0.80  0.80 

CIP vs RP Train  0.77 0.70–––0.84   
Test  0.80 0.64–––0.92  0.90  0.85 
Mixed ICI + RT 
Test  

0.54 0.22–––0.86  0.60  0.60  
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lower spatial change rates and a locally more uniform texture. Features 
for each of the models, with their respective weights, are listed in Sup-
plementary Table 2. 

Discussion 

The ability to accurately distinguish causes of pneumonitis is crucial 
to instigate appropriate, tailored management and avoid unnecessary 
intervention or interruption of ICI or radiotherapy, thus increasing 
likelihood of optimal outcomes. However, accurate diagnosis is often 
difficult due to overlapping and varied clinical presentation and radio-
logic patterns, as well as a wide window of onset. Imaging-based arti-
ficial intelligence tools that can non-invasively detect subtle differences 
between different pneumonitis aetiologies to support multi-disciplinary 
clinical decision-making are therefore of great value. In this multicentre 
study of 455 patients, we have developed and tested radiomic models to 
distinguish CIP and RP from COVID-19, non-COVID-19 IP, and from 
each other. These models were then benchmarked against two board- 
certified clinical radiologists. 

Since the emergence of COVID-19, numerous studies have described 
radiomic and deep-learning models that differentiate COVID-19 from 
other IP [39–46], however very few have focused on distinguishing CIP 
from RP, and we were not able to find any that focused specifically on 
distinguishing either CIP or RP from COVID-19 or non-COVID-19 IP, as 
we have done. 

Tohidinezhad et al. developed a model to distinguish CIP from other 
types of pneumonitis, including both infection and radiotherapy, 
achieving an AUC of 0.83. However, the cohort was limited to 72 pa-
tients receiving anti-PD-1/PD-L1 antibodies for Stage IV non-small cell 
lung cancer (NSCLC) and was not externally tested [20]. Chen et al. 
compared RP vs CIP in patients with NSCLC with a training set of 55 
patients (29 RP and 23 CIP). Their model tested on the CIP vs RP alone 
training set reached an AUC 0.76 (CI 0.63–0.90), vs our training and test 
set values of 0.77 and 0.80 [47]. They also tested their model on 30 
patients that had been treated with both radiotherapy and ICI therapy. 
In a differing approach to our methodology, and as no gold-standard 
diagnostic criteria exists to definitively distinguish pneumonitis cause 
in this cohort, they compared model results to a multi-disciplinary 
consensus attribution, however a protocol or assessment scale for 
reaching consensus was not described. Cheng et al. developed a “Bag of 
Words” model, also in patients with NSCLC, with a training set of 59 (28 
CIP and 31 RP) achieving an AUC of 0.937 with 10-fold cross validation. 
The model was validated on a limited cohort of 14 patients treated with 
both radiotherapy and ICI therapy achieving an AUC of 0.896[9]. Qiu 
et al. developed a nomogram to distinguish CIP and RP in patients with 
NSCLC using 11 radiomic and two imaging features – bilateral lung 
changes and presence of sharp borders, achieving a validation set AUC of 
0.947[48]. 

Our models were developed using radiomic features extracted from 
three CT slices whilst the clinical radiologists were able to review the 
entire CT scan. Despite this, the models to distinguish CIP from infection 
and RP vs COVID-19 outperformed the clinical radiologists and the RP vs 
non-COVID-19 IP and CIP vs RP models demonstrated modest perfor-
mance (AUC values 0.81 and 0.8 respectively). It is possible that model 
performance could be improved with the ability to leverage the feature 
space of the whole CT, and/or through the use of deep learning. 

Our CIP vs RP model failed to differentiate on the test set treated with 
both ICI and radiotherapy however the radiologists also had difficulty 
correctly differentiating this test set. This may be due to the difficulty in 
establishing ground truth labels for this cohort as well as the existence of 
crossed immune signalling pathways in both radiation and ICI induced 
lung injury, reflecting shared pathology and imaging features [49]. 
Additionally, there is a possibility of pneumonitis in this cohort being 
due to ICI induced radiation recall pneumonitis which is suggested to 
have distinct radiological patterns and immunological mechanisms to 
that of direct radiation pneumonitis [50,51]. Development of and 
scoring against a robust multidisciplinary consensus of ground truth 
labels would be worth exploring. 

Chen et al. found that qualitative imaging features such as number of 
involved lobes, distribution of pneumonitis change and presence of a 
sharp border improved model performance[47]. Similarly, integration 
of clinical data with radiomic features improved performance of clas-
sification models in our previous work[24], however clinical and qual-
itative imaging features were not available for inclusion. 

Whilst our study has larger training and test sets compared to those 
described above, and is not limited to only patients with NSCLC, our 
sample sizes may be considered relatively small in the context of ma-
chine learning and may be responsible for wider confidence intervals for 
the test set AUCs. This is a consequence of our robust and comprehensive 
inclusion and exclusion criteria, designed to ensure cohorts were not 
cross contaminated – i.e. a patient in the CIP cohort did not have con-
current infection. However, future work would benefit from larger 
training and test sets. In particular, the number of patients with pneu-
monitis in the context of prior exposure to ICI and radiotherapy is 
limited in our study. Future research should focus on this cohort as 
increasing numbers of patients are likely to receive both thoracic 
radiotherapy and ICI, for example with consolidation Durvalumab 
following concurrent chemoradiotherapy for Stage III NSCLC. Addi-
tional limitations of this work include the retrospective nature of the 
study, as well as the dichotomous nature of the models; a multi-class 
model would be preferable for maximal clinical utility. 

Despite this, to our knowledge, this is the first study to present 
models for both CIP and RP vs COVID-19 and other infective pneumo-
nitis. Our models are developed using CT imaging from a CIP cohort of 
patients treated with both anti PD-1/PD-L1 and CTLA-4 antibodies and 
our CIP and RP cohorts consist of patients with several tumour types 

Fig. 2. Numbers of patients from each of the six NHS Trusts and the NCCID allocated to each cohort. RMH = Royal Marsden Hospital NHS Foundation Trust, CXH =
Imperial College Healthcare NHS Trust - Charing Cross Hospital, CWH = Chelsea & Westminster Hospital NHS Foundation Trust, SBH = Barts Health NHS Trust, 
MUW = Manchester University Hospital NHS Foundation Trust - Wythenshawe Hospital, GSTT = Guy’s & St Thomas’ NHS Foundation Trust. 
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beyond NSCLC, thus extending their clinical application. We have also 
employed larger, multi-centre cohorts for model development, 
compared to previous single-centre studies focusing on CIP vs RP dis-
cussed above. Furthermore, our models are externally tested and 

benchmarked against clinical radiologists, with encouraging AUC values 
that reflect potential ability to act as a second reader, supporting on-
cologists, radiologists, and chest physicians in determining pneumonitis 
aetiology in cases with diagnostic uncertainty. Future work could 

Fig. 3. ROC curves demonstrating the trade-off between sensitivity (true positive rate) and 1-Specificity (false positive rate) at varying classification thresholds, for 
each model. Left panel: training sets; right panel: test sets. A) CIP vs non-COVID-19 IP model B) CIP vs COVID-19 model. C) RP vs non-COVID-19 IP model. D) RP vs 
COVID-19 model. E) CIP vs RP model. 
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explore deep learning as an alternative to handcrafted radiomics, multi- 
class model architectures, and incorporation of other biomarkers to aid 
model performance. 
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