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Bcellsand T cells are important components of the adaptive immune system
and mediate anticancer immunity. The T cell landscape in cancer is well
characterized, but the contribution of B cells to anticancer immunosurve-
illance is less well explored. Here we show an integrative analysis of the

Bcelland T cell receptor repertoire from individuals with metastatic breast
cancer and individuals with early breast cancer during neoadjuvant therapy.
Using immune receptor, RNA and whole-exome sequencing, we show that
bothBcelland T cell responses seem to coevolve with the metastatic cancer

genomes and mirror tumor mutational and neoantigen architecture.

B cell clones associated with metastaticimmunosurveillance and temporal
persistence were more expanded and distinct from site-specific clones.

B cell clonal immunosurveillance and temporal persistence are predictable
from the clonal structure, with higher-centrality B cell antigen receptors
more likely to be detected across multiple metastases or across time. This
predictability was generalizable across other immune-mediated disorders.
This work lays afoundation for prioritizing antibody sequences for
therapeutic targeting in cancer.

The mechanisms by which tumors evade immune control are critical
to developing better targeted immunotherapies. B and T cells play
animportant role in anticancer immunity"”. However, while the T cell
immune response to cancer and its therapeutic manipulation is well
characterized, the B cell contribution to antitumorimmunity remains
less well studied.

B cells contribute to antitumor responses by binding tumor anti-
gens via their B cell antigen receptor (BCR) and presenting these to
follicular helper T cells, by antibody secretion and by cytokine signaling

to other cells. Tumor-infiltrating B cells are associated with improved
clinical outcomes®® and response to chemotherapy and immuno-
therapy”, and the persistence of plasma antitumor antibodies and
tumor-associated tertiary lymphoid structures (TLSs) associate with
improved survival*®.

B and T cell clones selectively expand following antigen recog-
nition by their BCR and T cell antigen receptor (TCR), respectively.
Thesereceptors are generated through DNA recombination and have
the potential to recognize a vast array of antigens. On encountering
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Metastatic breast cancer

27 sites sampled from 8
patients at warm autopsy

Early breast cancer

25 biopsy samples from 10 patients
during neoadjuvant anticancer therapy
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Fig.1|Description of breast cancer cohorts and overview of study design. Schematic of the sampling, data collection and analysis of the breast cancer cohorts in
this study. Female silhouette is from the public domain diagrams of the human body at https://commons.wikimedia.org/wiki/Human_body_diagrams. WES, whole-

exome sequencing.

antigen, B cells can be stimulated to proliferate and further diver-
sify their BCR sequences via class switching and somatic hypermu-
tation (SHM) resulting in high-affinity B cell responses’. Previous
studies in breast cancer have shown significant heterogeneity in
tumor-infiltrating B cell subpopulations, significant levels of SHM
and clonal expansion, and local differentiation of infiltrated memory
B cells™". Indeed, some studies have shown that tumor-infiltrating B
cells can have antitumor BCR specificities, such as anti-HER2 autoan-
tibodies in breast cancer™".

The immune system can monitor, recognize and destroy trans-
formed cells or pathogens, a concept termed immunosurveillance®.
Immunosurveillance is responsible for shaping the tumor molecular
landscape andis key to the effectiveness of anticancer therapies. How-
ever, despite the potential impact of B cells in antitumor responses
and patient survival, the nature of B cell immunosurveillance during
systemicanticancer therapy and across metastaticsitesin breast cancer
isunknown.

Here, we perform a comprehensive analysis of breast cancer
immunosurveillance in metastatic and early breast cancer. By inte-
grating BCR, TCR, DNA and RNA-sequencing (RNA-seq) data from a
multisite metastatic cohort, and during neoadjuvant therapy in an
early disease cohort, we tracked and characterized clones that were
temporally persistent throughout therapy and across metastatic sites
(spatio-migratory mapping). Using this data, we aimed to uncover
three key features of B cell clonal temporal persistence and immuno-
surveillance. Firstly, to determine whether the intra-tumoral B cell
response across metastases is correlated with the tumor genomic
landscape and T cell response, in keeping with the immunoediting
hypothesis. Secondly, to determine the nature of B cell immuno-
surveillance between metastatic sites and throughout anticancer
therapy. Lastly, we sought to identify what key B cell clonal features
predict immunosurveillance and temporal persistence for future
therapeutic exploration.

Results

Multi-platform metastatic tumor profiling

We performed BCR repertoire sequencing on 27 metastatic tumor
biopsy samples obtained through warm autopsies of eight partici-
pants with therapy-resistant metastatic breast cancer to identify

B cell clonality, isotype usages and clonal diversification across the
metastases (Fig. 1 and Supplementary Table 1). The mean yield of
unique BCRs for each metastatic site after filtering was 9,332 (range,
701-80,409; Extended Data Fig.1aand Methods). The genomic, tran-
scriptomic and TCRrepertoires of these metastatic tumors have been
previously reported®.

Significant BCR isotype usage variations were observed across
metastatic sites, withliver and lung/pleuradominated by IgA1 (Fig. 2a
and Extended DataFig.1b). The distribution of BCRisotypes across met-
astatic sites was distinct fromthat observedin healthy normaltissues
using deconvolution of bulk RNA-seq data from the Genotype-Tissue
Expression (GTEx) Consortium atlas" (Extended Data Fig. 1c and
Methods). Additionally, there was a higher expression of both IGH
and TCRgenes in metastatic tumor tissues compared to normal tissues
(Extended DataFig.1d). Together, these datasuggest that the BCR and
TCR patterns observed were the result of tumor-associated responses
rather thanreflecting healthy tissue heterogeneity.

B celland T cell clonal structures are correlated

Bcelland T cell clones are defined by cells sharing related BCR or TCR
VDJ rearrangements. We used the Jaccard index to quantify the degree
of clonal sharing of the VDJ regions of the BCR, TCRacand TCRf clones
between sites (Extended Data Fig. 1e,f), revealing that BCR and TCR
repertoires were distinct between each participant, in keeping with
previousstudies™. Alow degree of BCR and TCR VDJ sequence sharing,
which may occur by chance at low frequencies”, was observed between
different participants, while high levels of BCR and TCR VDJ sharing
were only observed in the metastases from the same participant.

We next compared the clonal structures across metastatic sites
in the two participants in which BCR and TCR sequencing data were
available for four or more sites (participants 308 and 315). TCRa and
TCRp clonal structures were correlated across metastases (strong
correlation in participant 315 and, to a lesser degree, but also sig-
nificant, in participant 308; Extended Data Fig. 2a), in keeping with
the common origin of these receptors. BCR clonal structures across
metastatic sites were also correlated with TCRa and TCRf3 clonal
structures, indicating shared factors driving B cell and T cell infil-
tration and selection (Fig. 2b). This was confirmed by deconvolut-
ing tumor immune microenvironment composition and activity*°
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Fig. 2| Site-specific B cell infiltration correlates with T cell infiltration and
tumor genomic landscape. a, Mean BCRisotype usage across metastatic sites
withmore than two samples (lymph nodes n =5, liver n=6, lung/pleuran=7;
IGHA1**P= 0.042). Pvalues calculated using Kruskal-Wallis test and adjusted

for multiple comparisons. b, Scatterplots showing the relative level of sharing of
BCRs between sites against the relative level of sharing of TCRa/3 VD) sequences
between pairwise metastatic site comparisons. ¢, Correlation between tumor
immune microenvironment components deconvoluted from bulk RNA-seq data
using Danaher gene sets. Inset, scatterplot showing relationship between T cell
and B cell enrichment. Pvalue and R? obtained from linear regression. NK, natural
killer cell, T,1, type 1 helper T cells. Data from all sites (n = 27) from all participants

areshown. d, Scatterplots showing number of shared BCR and TCRa/3 VD)
sequences and tumor mutations between pairwise metastatic site comparisons.
e, Clonal similarity trees for BCR, TCRa/f3 VDJ sequences and mutational
phylogenetic trees for participants 308 and 315. Inter-tree correlations shown
ontheleft. One-sided Pvalues derived from permutation tests shown within
correlation circles. Trees have arbitrary units for branch lengths. f, Scatterplots
showing number of shared BCR VD) sequences and predicted MHC class I and Il
neoantigens (NAg) between pairwise metastatic site comparisons. b,d,f, BCR and
TCRsequences were downsampled. Pvalue and R? obtained from linear regression
analysis. The shaded area, in gray, represents the 95% confidence interval. Inter-
sample comparisons: participant 308, n = 36; participant 315, n = 28.

from the bulk RNA-seq data using the Danaher gene sets* and MCP-
counter®’, which showed that both the abundance (R?=0.79, Fig. 2c
and Extended Data Fig. 2b) and activation (R?= 0.65; Extended Data
Fig. 2c) of tumor-infiltrating B cells and T cells were strongly corre-
lated. B cell and T cell enrichment was also significantly associated
with the expression of a TLS signature (Extended Data Fig. 2d)*, in
keeping with observations that coordination between BCRand TCR
repertoires occurs within these structures. This relationship was
also observedin The Cancer Genome Atlas (TCGA) early breast cancer
cohort (Extended Data Fig. 2e).

Insummary, B celland T cell infiltration, clonality and activation
aresignificantly correlated across metastases, providing evidence that
B cell and T cell responses are coordinated across metastatic sites in
eachindividual breast cancer participant.

Adaptive immune and tumor genomic coevolution

We previously showed that T cell responses, assessed by TCR sequenc-
ing, appear to coevolve with the metastatic tumor genomes'. This
prompted us to investigate whether a similar association would be
observed for the B cell response. In the two participants for which
more than four metastases were sequenced, B cell and T cell clonal
compositions mirrored the tumor mutational landscape, with signifi-
cantassociations observed between the number of shared TCRs, BCRs
and somatic mutations across metastatic sites (R’range, 0.22-0.78,
P<0.011; Fig. 2d).

To confirmthis, unsupervised VDJ BCR and TCR Jaccard phyloge-
netic trees segregated metastases by organ, with consistent clustering
patterns between BCR, TCRa and TCRp chains (Fig. 2e). Similar tree
structures were observed when tumor mutational phylogenies were
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constructed from the whole-exome sequencing data (Fig. 2e). The BCR
and TCR tree structures in both participants were significantly cor-
related when analyzed using the cophenetic statistic, with similar but
weaker correlations observed when these were compared to the tumor
mutational phylogenetic trees (Fig. 2e), providing further evidence that
the tumor and the adaptiveimmune response coevolve. Finally, maps
of B cell clonal structure across metastatic sites, generated through
quantifying the degree of clonal sharing of the BCR clonotypesbetween
sites (Extended Data Fig. 2f,g), confirmed that there was clonal overlap
between most sites within an individual, but the levels were highly
variable betweensites.

We subsequently characterized correlations between predicted
major histocompatibility complex (MHC) class I and Il neoantigens
and BCR and TCR clonal structure. There was a significant correla-
tion between BCR clonal structure and shared MHC class ll-predicted
neoantigens (R’ range, 0.25-0.35, P < 0.022; Fig. 2f) but not MHC
class I-predicted neoantigens. Similar observations were made with
TCR clonal structure (Extended Data Fig. 2h,i), suggesting that B cell
and T cell clonal structures significantly mirror tumor MHC class
lI-predicted neoantigen architecture.

Insummary, eachindividual metastasis has aunique BCRand TCR
clonal architecture. However, more similar BCR and TCR repertoires
exist between metastases sharing similar mutational landscapes, sug-
gesting coevolution between tumors and B cell and T cell responses
across metastases.

Persistence and immunosurveillance of intra-tumoral B cells
We performed BCR repertoire sequencing on an early breast cancer
cohortcomprising ten participants with sequential tumor biopsy sam-
ples obtained during neoadjuvant therapy (25 serial samples: n=10
before therapy, n =10 after 9 weeks of therapy and n =5 on comple-
tion of therapy). We obtained a mean yield of 8,132 unique BCRs per
biopsy after filtering (range, 762-15,493; Extended Data Fig. 3a and
Supplementary Table 2). Each participant harbored distinct BCR rep-
ertoires (Extended Data Fig. 3b). Together with the metastatic data-
set, this allowed an exploration of the spatial and temporal nature of
tumor-infiltrating B cells.

B cell clones present at multiple time points during treatment
(temporally persistent clones) or at multiple sites (immunosurveilling
clones) were significantly enlarged compared with private clones,
with BCR clone size correlating with both the number of time points
and metastatic sites in which BCR clones were observed (Fig. 3a;
P<2.2x107%, ordinal regression over the mean percentage clone size
within each participant averaged over all sites observed), suggestive
ofimmune surveillance by activated B cell clones. This directly shows
that larger clones per site are associated with temporal persistence and
immunosurveillance, rather than just alarger number of BCRs detected
across all sites. Similarly, by classifying BCR clones as stem, clade or
private depending on whether they were presentin all, some or one
tumor sample from the same participant, respectively, we observed
thatimmunosurveilling and temporally persistent clones were signifi-
cantly enlarged (stem > clade > private, P< 2.2 107, ordinal regres-
sion; Extended Data Fig. 4a).

Tumor-infiltrating BCRs were classified into four clone classes
(A-D; Fig.3a and Methods) based on whether they were (1) expanded
or unexpanded within the tumor microenvironment, and (2) private
to one site or shared between time points (temporally persistent)
or multiple metastatic sites (immunosurveilling). There was no sig-
nificant enrichment of BCR sequences with known binding to viral or
bacterial antigensin these four clonal categories, indicating that these
were not enriched for established systemic responses to non-cancer
antigens and, therefore, did not just represent re-expansions of
non-tumor-specific B cell clones (Extended Data Fig. 4b, Supplemen-
tary Table 3 and Methods). Expanded temporally persistent clones
(clone class B) comprised the majority of tumor-infiltrating BCR

sequences throughout the course of therapy in early breast cancer
(Fig. 3b). Likewise, expanded immunosurveilling clones (clone class
B) comprised the majority of tumor-infiltrating BCR sequences in
metastatic disease (Fig. 3b). These clones were also present at higher
proportionsin liver and lung/pleura metastases compared to private
expanded clones (class A), suggesting that they are highly activatedin
thesesites. Interestingly, within lymph node metastases, there wasno
significant difference between class A and B clone proportions, sug-
gesting that a large fraction of activated B cell clones in lymph nodes
areresident and not undergoingimmunosurveillance.

Antigen experience of migratory and persistent clones

We nextinvestigated whether the nature of shared B cell clones (clone
classes B and D) was significantly distinct from private clones (clone
classes A and C) based on BCR repertoire features. We calculated
BCR CDR3 probability of generation (P,,) as a result of VDJ recom-
bination (that is, the likelihood of being generated by chance rather
than being individual specific) using OLGA®. We observed that clone
class C (private unexpanded clones) had the highest probability of
generation by chance, and the distribution was comparable to naive
or antigen-inexperienced B cells from healthy peripheral blood
mononuclear cells (Fig. 3¢)?*. The other clonal groups (B, C and D)
had higher probabilities of BCR amino acid sequences resembling
antigen-experienced BCRs, with the majority of these sequences being
mutated and class switched, with clone class B (expanded and immu-
nosurveilling) having the lowest P,., scores. This suggests that the
expandedimmunosurveillingand temporally persistent clones are both
selected onthe basis of their BCR sequence and that these are likely to
be participant-specific clones and from antigen-experienced B cells.

Onencountering antigen, BCR sequences may diversify further via
SHM, whichintroduces point mutationsinto the BCR, and class-switch
recombination (CSR), which changes BCR isotype, to generate finely
tuned humoral responses'®. Measuring SHM and CSR between the dif-
ferentclone classes and by disease stage yielded three key observations.
Firstly, expanded immunosurveilling clones (clone class B) had greater
overalllevels of class-switched BCRs (that is, lower levels of unswitched
BCRs; Fig. 3d) compared to unexpanded private clones (clone class
C). Furthermore, B cells infiltrating early tumors had lower levels of
unswitched (IGHM/D) BCRs compared to metastasis-infiltrating B
cells (Fig. 3d and Extended DataFig. 4c). Secondly, the levels of SHM of
tumor-infiltrating B cells varied by clone class (Extended Data Fig. 4d)
and increased during treatment in early breast cancer, but this trend
wasreversed in the metastasis-infiltrating B cells (Fig. 3e and Extended
Data Fig. 4e). These differences were driven by a higher proportion
of low SHM BCRs and a lower proportion of high SHM BCRs in the
metastasis-infiltrating B cells (Extended Data Fig. 4d). The association
observed here of reduced SHM and CSR in metastasis-infiltrating B cells
compared to B cells infiltrating the primary tumor site in early breast
cancer is supported by the reduced expression levels of AICDA, which
encodes akey enzyme associated with these processes (Extended Data
Fig. 4f). Thirdly, the isotype usage proportions varied by clone class
(Extended Data Fig. 4g) and varied with disease course, with IGHA1
increasing with time and IGHG1 decreasing with time (Fig. 3f), with
this trend driven by clonal class B BCRs (Extended Data Fig. 4g). This
is supported by the higher expression of IgA isotype switching and
the lower expression of IgG isotype switching signatures in metastatic
samples (Extended Data Fig. 4h).

Furthermore, tumors with high levels of both BCR SHM and class
switching were associated with significantly higher levels of class B
clonal B cells, as well as higher levels of B cell and T cell infiltration,
TLS score, interferon gamma (IFN-y) score and inflammation scores
(Fig.3g). The effect observed in the tumor was much more pronounced
compared to that seenin healthy tissues (Extended Data Fig. 4i).

In summary, these data suggest that temporally persistent and
immunosurveilling clones are significantly distinct from private clones
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signature scores of B cell, T cell, TLS, IFN-y and T cell inflamed deconvoluted
from bulk RNA-seq data between samples with low and high levels of SHM and
CSR (high, >50th percentile (SHM, CSR); low, <50th percentile (SHM, CSR)).
a,c,d,g, (Data (left) from participants with more than one tumor site sampled
shown (early breast cancer cohort: all participants (n = 10), metastatic breast
cancer cohort participants: 308, 315,323 and 330). e,f,g, Data (right) from all
participants (n =18) and all samples (n = 52). e,f, Pearly breast cancer: ordinal
regression, Pearly versus late breast cancer: Wilcoxon rank-sum tests.

All Pvalues are two sided. b,d,e,g, Wilcoxon rank-sum tests. All Pvalues are two
sided. a,b,d-g, The box bounds denote the interquartile range, the line indicates
the median, and whiskers indicate maximum of 1.5 times the interquartile range
beyond the box. Individual data points are shown as dots.

by being clonally expanded and antigen experienced, rather thanbeing
naive B cells, inagreement with previous studies”. Higher levels of CSR
and SHM are associated with higher levels of B celland T cell infiltration
and TLS scores, suggesting that the tumor microenvironment drives
these differences.

BCR centrality reveals sites of clonal diversification

To determine whether B cell clonal diversification occurred within
each metastasis or was localized to specific anatomical locations,
per-sample BCR clonal expansion and diversification measures were

calculated®. Lymph nodes had significantly lower levels of clonal une-
venness, thus by extension, higher levels of clonal diversity (measured
by the normalized mean clone size index (Fig. 4a) and Shannon and
Gini indices (Extended Data Fig. 5a), P < 0.05 with effect sizes >1.33).
However, there wasagreater abundance of expanded clonesinlymph
node than non-lymph node sites (Extended Data Fig. 5b), indicating
that there are more B cell clonal expansions in the lymph nodes, and
only some clones are overrepresented in the non-lymph node sites.
Additionally, lymph nodes had a higher proportion of unique BCRs from
immunosurveilling clones compared to other sites (Fig. 4b). Together,
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Fig. 4 |Higher BCR centrality describes clonal structure and predicts B cell
immunosurveillance and persistence. a, Box plot showing mean BCR clone
sizeinlymph nodes versus other sites (n = 5lymph node, n = 22 other sites).

b, Box plot showing per-site proportion ofimmunosurveilling clonesin lymph
nodes versus other sites (n = 5lymph node, n = 22 other sites). ¢, Left, schematic
of degree centrality as applied to BCR sequences within a BCR clone. Middle, box
plots showing percentage of BCRs per sample with a degree centrality of 1 (that
is, no progeny) in lymph nodes (n = 3) compared to other metastatic sites (n = 5)
in participant 315. Right, box plots showing distribution of BCR degree centrality
across different metastatic sites sampled in participant 315. d, BCR VD) network
plots showing three examples of expanded immunosurveillance clones shared
between multiple metastatic sites in participant 315. These networks are based

Centrality greater than

on maximum parsimony trees calculated from BCR sequence alignments. e, Box
plots showing association between BCR degree centrality and the number of
metastatic sites and therapy time points in which the BCRis observed. Pvalues
calculated using two-sided analysis of variance. f, Profile plots showing changes
in sensitivity, specificity and accuracy at identifying immunosurveilling BCRs at
different degree centrality thresholds in all samples, early breast cancer samples
and metastatic breast cancer samples. a,b, Data from four participants with more
than one metastatic site sampled (308, 315, 323 and 330) used. a-c, Wilcoxon
rank-sum tests. All Pvalues are two sided. a-c,e, The box bounds denote the
interquartile range divided by the median, with the whiskers extendingtoa
maximum of 1.5 times the interquartile range beyond the box. Individual data
points are shown as dots.

this suggests that clonal diversification predominantly occurs within
lymphnodes, and these are amain source ofimmunosurveilling B cells
in metastatic breast cancer.

Next, we derived the BCR phylogenetic degree centrality, rep-
resenting the number of edges connected to each BCR node in the
network (Fig. 4¢). This allowed us to distinguish between BCRs derived

from B cells that underwent subsequent clonal diversification and were
progenitors to many other BCR variants (high centrality) from those
derived from B cells that did not undergo subsequent clonal diver-
sification and were not progenitors to further BCR variants (unitary
centrality). The majority of lymph node BCRs had a degree centrality
of one compared to other metastatic sites (Fig. 4c), indicating that
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lymph nodes are key sites of clonal diversification where many explora-
tory variants are generated. Conversely, non-lymph node metastatic
sites had a higher proportion of BCRs with degree centrality greater
than one, indicating that these BCRs are predominantly variants of
expanded clones under significant selection (thatis, non-exploratory
variants). These data suggest that higher levels of clonal diversification
occurinlymphnodes, with high-centrality BCRs more likely to migrate
to non-lymph node sites than low-centrality BCRs. There is minimal
additional diversification in non-lymph node metastatic sites, and
these typically do not undergo immunosurveillance to other sites.

High BCR centrality ofimmunosurveilling and persistent
BCRs

We next investigated B cell clonal relationships across sites to deter-
mine whether all members of expanded immunosurveilling clones
(clone class B) underwent active metastaticimmunosurveillance, or
whether migration was restricted to apredictable subset of BCRs within
each clone. BCRs from expanded clones (=10 BCRs) were aligned and
phylogenetictrees estimated to determine their lineage relationships.
These were then represented as non-cyclic networks (Fig. 4¢), with
nodesrepresenting unique BCRs and edges representing SHM between
related BCRs. Visual representations of BCR clonal phylogenetic trees
(Fig.4d and Extended Data Fig. 5¢) demonstrate this trend, with highly
central BCRs shared between multiple sites and BCRs with a centrality
of one typically observed in single sites.

Furthermore, BCR degree centrality was also strongly corre-
lated with both (a) the number of metastatic sites in which the BCR
was observed (P<2.2 x107; Fig. 4e), indicating that a small propor-
tion of variants per activated clone, which are typically more central
within the clone, performimmunosurveillance across multiple meta-
static sites, and (b) the number of time points in which the BCR was
observed (P< 2.2 x107; Fig. 4e), indicating that a small proportion
of high-centrality BCR variants per activated clone are temporally
persistent. This increased BCR degree centrality was not associated
with systemic responses against noncancerous antigen (Extended
Data Fig. 5d). BCR degree centrality was independent of BCR SHM
level (Extended Data Fig. 5e), showing that immunosurveilling BCRs
are not necessarily the most mutated versions of these clones, but
rather represent local optima of the clonal response to its antigen.
Finally, BCR degree centrality also correlated significantly with BCR
frequency (Extended Data Fig. 5f; P< 2.2 x 107*%) inaddition to immu-
nosurveillance and clonal persistence. Together, this points to BCR
clonal structure as a predictor of B cell activation, expansion and
migratory potential.

We lastly determined whether BCR degree centrality would have
sufficient power to predictimmunosurveillance and clonal persistence.
Indeed, degree centrality was highly predictive of BCR immunosur-
veilling status and clonal persistence, with a degree classification
threshold greater than two resulting in an immunosurveilling and
clonal persistence BCRidentification accuracy greater than 80% (Fig. 4f
and Extended Data Fig. 5g), which was robust to sequencing depth
(Extended DataFig. 5h).

The same association was observed in two independent breast
cancer datasets””** (BCR data obtained following the deconvolution of
bulk RNA-seq data; Extended Data Fig. 5i). We also observed that this
trend of higher BCR centrality correlating withimmunosurveillanceis
generalizable to noncancerous disease states, including autoimmunity
(diabetes mellitus® and multiple sclerosis*’; Extended Data Fig. 5i).

In summary, BCRs diversify predominantly in the lymph nodes
and only a small selection of B cells expressing these clonal BCR vari-
antsare able to performimmunosurveillance across other sites or are
temporally persistent. Higher-centrality BCRs are more likely to be
seen across a larger number of sites. These immunosurveillance and
temporally persistent BCRs can be predicted from their centrality with
respect to the overall clonal structure.

Discussion

Anticancer immunosurveillance by B cells and T cells plays a central
role in sculpting malignant clones, and disruption of this processis a
hallmark of cancer®. A central finding of our study was that it appears
that both arms of the adaptive immune response coevolve in a cor-
related fashion, suggesting common drivers of immune cell infiltra-
tion, selection and clonal expansion across metastatic sites. These
adaptive immunity B cell and T cell clonal structures also correlate
with the tumor mutational phylogeneticlandscape, providing further
support in favor of the immunoediting hypothesis®, where failure of
theimmune system to eliminate malignant cell populations resultsin
aphase of equilibrium, in which the immune system limits but cannot
eradicate the tumor, resulting in selection pressures that drive tumor
evolution toward a state of reduced immunogenicity.

Mutated peptides can be presented on both MHC classland class
Il molecules. MHC class Il molecules are primarily expressed on pro-
fessional antigen-presenting cells such as dendritic cells, B cells and
macrophages, and predominantly present exogenously derived pep-
tide antigens to CD4'T cells®. Indeed, B cells use a specialized MHC
class Il presentation to internalize and process BCR-bound antigen
for presentation to CD4'T cells, which has been shown to influence
the fate of both B and T cells***. The majority of intra-tumoral B cells
have been shown to be non-antibody-secreting cells, but rather have
anaive or memory phenotype with surface BCR™***, The significant
correlation between shared BCR sequences and MHC II, but not MHC
I, supports the notion that B cells play a role in presenting antigen to
T cells though BCR-dependent mechanisms®. Even though our data
are unable to distinguish between CD4"and CD8" TCRs, they strongly
support the hypothesis that tumor MHC class Il neoantigens may be
importantin coordinating tumor-specific Band T cell responses, as the
tumor MHC class Il neoantigen landscape correlated withbothBand T
clonalstructures. Inkeeping with this observation, MHC class Il neoan-
tigens have beenrecently shownto predict outcomesin HER2-negative
breast cancer®*®* and associate with tumor-infiltrating lymphocytes and
interferon signaling™.

The nature of B cells and T cells migrating between the tumor and
draining lymph nodes is important for mounting effective antitumor
immune responses, for TLS formation and for establishing long-term
systemic memory, which are strongly associated with outcome*’.
However, despite the potentialimpact of B cellsin antitumor responses
and participant survival, the nature of B cell immunosurveillance
across metastatic sites is unknown. Here we show that the majority
of intra-tumoral B cells are temporally persistent and undergo tumor
immunosurveillance across sites. These immunosurveilling and tem-
porally persistent B cell clones are antigen experienced and isotype
usages vary with disease stage. While some of these measures do not
showahighcorrelation and causality remains unexplored, thisisinline
with previous studies showing aneed foradiverse antibody repertoire
for early neoplastic cell recognition and the critical role B cells play in
anticancer immunity****,

Finally, we show that not all BCRs from expanded shared clones
perform immunosurveillance. We have generated a pipeline that
uses network graph theory to predict which BCR sequences within
animmunosurveilling BCR clone perform cross-site immunosurveil-
lance. These B cells tend to have higher BCR degree centrality but do
not have the highest level of SHM within the clone. Therefore, these
are likely to represent local optima of the B cell clonal response to its
antigen. Furthermore, we show that BCR degree centrality can be used
to predict BCR clonal persistence and demonstrate its generalizability
across other breast cancer datasets and non-cancer datasets. While
the concept of BCR degree centrality has been used to describe B cell
population distributions*’, we show functional differences between
low-centrality and high-centrality B cell clonal variants for the pri-
oritization of specific BCRs. Indeed, this study shows functional and
BCR-dependent associations with B cellimmunosurveillance and clonal
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persistence. While these findings are primarily observational, hence
the significance in the broader context of cancer immune response
and participant outcomes is mostly correlative, they potentially lay
the foundation for expediting the discovery of tumor-specific or per-
sistent B cell clones. Given these findings, we hypothesize that this can
be used to develop personalized antibody-based therapies based on
BCRnetwork degree centrality.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41590-024-01821-0.
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Methods

Study population

Eight participants with metastatic breast cancer enrolled within the
Vall d’'Hebron Institute of Oncology (VHIO) Warm Autopsy Program
were included within this study. Ethical approval from the institu-
tional review board of the Vall d’Hebron University Hospital (Barce-
lona, Spain) was obtained for the use of biospecimens with linked
pseudo-anonymized clinical data. The ten participants with primary
invasive early breast cancer included in this study were enrolled in the
TransNEO study at Cambridge University Hospitals NHS Foundation
Trust. Appropriate ethical approval from the institutional review board
(research ethics ref.12/EE/0484) was obtained for the use of biospeci-
mens with linked pseudo-anonymized clinical data. All participants
providedinformed consent for sample collection, and all participants
consented to the publication of research results. Full details regarding
sample collection, DNA and RNA extraction, library preparation and
sequencing have been published elsewhere®'. No statistical methods
were used to predetermine sample sizes, but our sample sizes are
similar to those reported in previous publications'. When performing
statistical testing, we assessed whether the data met the assumptions
of the tests used.

DNA somatic mutation calling and neoantigen prediction
Somatic mutations (Fig. 2d) and predicted HLA class I neoantigens
(Fig. 2f) were identified from whole-exome sequencing dataand tumor
phylogenetic trees (Fig. 2e) were generated using OncoNEM**, as pre-
viously described'®. MHC class Il allele genotyping was performed on
the normal tissue DNA sequencing data using HLA-HD* (version 1.4)
using default parameters. MHC class Il neoantigens were predicted
from the whole-exome mutation data using mixMHC2pred* (version
1.2) and putative candidates with a percentage rank cutoff of 2% were
retained (Fig. 2f).

TME composition and activity deconvolution from bulk
RNA-seq

RNA-seq data from the early and metastatic breast cancer cohorts
were processed as previously described®. Briefly, FASTQ files were
aligned to the GRCh37 assembly of the human genome using STAR"
(version 2.5.2b) in two-pass mode and counting of reads aligned over
exonic features performed using HTSeq*® (version 0.6.1p1) in read
strand-aware union overlap resolution mode.

Immune cell enrichment was performed using MCPcounter?
(version 1.2.0), using as input normalized log-transformed RNA-seq
expression data (Extended Data Fig. 2b), and enrichment over 14 cell
types using 60 genes” (Figs. 2c and 3g and Extended Data Figs. 2c,d
and 4i). In Extended Data Fig. 2e, published TCGA B cell and T cell
enrichment scores are shown?. Correlations between tumor micro-
environment components shown in Fig. 2c and Extended Data Fig. 2b
were generated using the cor function in the base R stats package and
visualized using the corrplot package (version 0.92). The TLS gene
signature (CCL19, CCL21,CXCL13,CCR7,CXCRS, SELL, LAMP3)** shown
in Fig. 3g and Extended Data Figs. 2d,e and 4i was calculated using
gene-set enrichment analysis. TCGA TLS enrichment scores (Extended
Data Fig. 2e) were obtained using FPKM normalized counts provided
by TCGA (Genomic Data Commons data release 37.0).

Thecytolyticactivity score” (CYT; Extended DataFig. 2c) was com-
puted as the geometric mean of GZMA and PRF1 expression (TPM, 0.01
offset). The T cellinflamed score* (Fig. 3g and Extended Data Figs. 2c
and 4i) was computed using the GSVA*° R package (version 1.38.2)
using as input the log-normalized expression of 18 inflammatory genes
(TIGIT, CD27, CD8A, PDCDILG2, LAG3, CD274, CXCR6, CMKLR1, NKG7,
CCLS, PSMBI0, IDO1, CXCL9, HLA-DQA1, CD276, STAT1, HLA-DRBI and
HLA-E), while theinterferon-y score® (Fig. 3g and Extended DataFigs. 2¢
and 4i) was computed using gene-set variation analysis of six genes
(IFNG, STAT1,IDO1, CXCL10,CXCL9 and HLA-DRA). The B cell activation

scoreshownin Extended Data Fig.2c was computed using GSVA on the
MSigDB*" (version 7.3) C5 Gene Ontology Biological Processes POSI-
TIVE_REGULATION_OF_B_CELL_ACTIVATION (GO:0050871) gene set,
using as input the log, TPM expression, with 0.01 offset.

Healthy tissue GTEx isotype analysis

In the healthy tissue BCR isotype analysis shown in Extended Data
Fig. 1c, normalized gene counts (TPM) were downloaded from the
GTEx" consortium website (version 8, https://gtexportal.org/home/
datasets) and the expression of IGH isotypes retained. Expression data
were available for 3,905 samples from organ sites sampled within this
study (GTEx n: brain = 2,642, breast = 459, liver =226, lung = 578). In
Extended Data Fig. 1c, the heat map shows the proportion of isotype
TPM expression per organ site. In Extended Data Fig. 1d, the median
z-score scaled expression of BCR isotypes is shown. The expression
values of CD3D, CD3G, CD3E and CD247, which encode for the four
different parts of the CD3 complex, were summed to calculate TCR
expression. In Extended Data Fig. 4i, samples with high expression of
unswitched transcripts were defined as those with a >50th percentile
expression of IGHD/IGHM genes, while those with low expression of
unswitched transcripts were defined as those with a <50th percentile
expression of IGHD/IGHM.

BCRlibrary preparation and sequencing

BCRIlibrarieswere prepared from RNA samples extracted from 27 meta-
static sitesand 25 primary breast tumors. BCR variable heavy domains
were first amplified using a protocol we have previously described*.
Briefly, RNA was reverse transcribed to cDNA using a mixture of IgA/
IgD/1gE/IgG/IgMisotype specific primers, incorporating 15 nucleotide
unique molecularidentifiers (UMIs). The resulting cDNAwas used asa
template for PCR amplification using a set of six FR1-specific forward
primersincluding sample-specific barcode sequences (seven nucleo-
tides) along with areverse primer specific to the reverse transcription
primer. For three of the replicate libraries, a modified primer set was
used where the sample-specific barcode wasinstead incorporated into
the reverse transcription primers after the UML.

BCRyvariable heavy domain amplicons (-450 bp) were quantified
by TapeStation (Beckman Coulter) and subjected to gel purification.
Dual-indexed sequencing adapters (KAPA) were ligated onto <500 ng
of amplicon per sample using the HyperPrep library construction kit
(KAPA).The adaptor-ligated libraries were finally PCR amplified (initial
denaturationat 95 °Cfor1min, for2-83cyclesat 98 °Cfor15s, 60 °Cfor
305,72 °Cfor30 sandafinal extensionat 72 °Cfor 1 min). Thelibraries
were sequenced on an lllumina MiSeq using the 2 x 300-bp chemistry.

BCR-sequencing processing

Raw BCR-sequencing reads were processed for analysis using the
Immcantation framework, using previously described parameters
(docker container v3.0.0)°>*. Briefly, paired-end reads were joined
based onaminimum overlap of 20 nucleotides, and amaximum error of
0.2,and reads withamean Phred score below 20 were removed. Primer
regions, including UMIs and sample barcodes, were then identified
within eachread, and trimmed. Together, the sample barcode, UMI, and
constant region primer were used to assign molecular groupings for
eachread. Within each grouping, usearch®* was used to subdivide the
grouping, with a cutoff of 80% nucleotide identity, to account for ran-
domly overlapping UMIs. Each of the resulting groupings is assumed to
representreads arising fromasingle RNA. Reads within each grouping
were then aligned, and a consensus sequence determined. To remove
low-level noise, molecular groupings with two or fewer sequences
contributing to the UMI consensus were filtered out (Supplementary
Table 1). Duplicate reads were then collapsed into a single processed
sequence. IgBlast™ (version 1.14.0) was used to annotate the processed
sequences, and unproductive sequences were removed. Sequence data
fromreplicate libraries were then pooled for analysis.
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BCR clonotype assembly

Annotation of TCR and BCR sequences were performed using IMGT/
HighV-QUEST>® (version 1.8.5) and clonotype assembly performed
using MRDARCY*, whichwas run using default parameters. B cell clones
aregroups of B cells from anindividual that derive from the same pre-B
cell, and thus have identical BCR sequences or BCR sequences related
by SHM. Computationally, BCRs from clonal B cells can be clustered
together via network generation using a previously described pipe-
line?. Briefly, each vertex represents a unique sequence, and the rela-
tive vertex sizeis proportional to the number of identical reads. Edges
joinvertices that differ by single-nucleotide non-indel differences and
clusters are collections of related, connected vertices. A clone (clus-
ter) refers to agroup of clonally related B cells, each containing BCRs
with identical CDR3 regions and IGHV gene use, or differing by single
point mutations, such as through SHM. Likewise, a T cell clone (cluster)
referstoagroup of related T cells arising from the same pre-T cell, each
containing TCRs with identical CDR3 regions and TCRV gene usage.

BCR CDR3 overlap with reference pathogen antibody libraries
Areference antibody database with known binding to viral or bacterial
antigen was constructed from existing public databases: the struc-
tural antibody database’®, abYsis human antibody database*” and the
immune epitope database®’. Antibody sequences corresponding to
synthetic fusion proteins and animal-derived BCRs were excluded.

After preprocessing, 5,800 antibody sequences reacting to anti-
gens were retained, including those derived from human immuno-
deficiency virus-1(n =3,525), Clostridium tetani (n = 817), influenza A
(n=486),vacciniavirus (n =92), hepatitis C virus (n = 80), Streptococ-
cus pneumoniae (n=59), Staphylococcus aureus (n =38) and human
betaherpesvirus 5 (n =32) were used for downstream analysis (Sup-
plementary Table 2).

To determine potential matches, we screened the cancer CDR3
amino acid sequences to the reference antibody database, allowing
for up to three amino acid mismatches by fuzzy string matching via
a custom Python script. The proportions of BCRs/sample associated
with known binding to viral or bacterial antigen across clone classes
(Extended DataFig.4b) and degree centrality (Extended Data Fig. 5d)
were calculated to show that the observations made were not second-
ary to established systemic responses to non-cancer antigens.

TCRlibrary preparation and sequencing

TCR-sequencing library preparation, sequencing and repertoireiden-
tification and network analysis performed by us have been described
previously'. Briefly, MiSeq libraries were prepared using the same
protocol as for the BCR libraries. Raw MiSeq reads were filtered for
base quality, primer and constant region trimming, annotation and
clustering using the same protocol as for the BCR libraries but using
TCR as the chain parameter.

Clonal overlap between metastatic sites
InFig.2and Extended DataFig. 2, the clonal repertoire analyses for par-
ticipants 308 and 315 that were dependent on sequencing depth were
generated by subsampling each sample to 90% of the number of unique
VDJ sequences present in the sample with the lowest depth (unique VDJ
subsampling thresholds: participant 308:n =980 (BCR), 4,657 (TCR«),
2,620 (TCRp); participant 315: n =1,524 (BCR), 3,199 (TCRa), 2,535
(TCRB). Throughout the paper, we have used the term ‘relative level’
toindicate that the analyses were performed using subsampled data.
In Fig. 2b,d,f and Extended Data Fig. 2a,f,g, the relative level of
shared BCR/TCR VD) sequences was computed by calculating the
number of shared VDJ sequences between different metastatic sites
in 10,000 subsampling operations and then computing the median
of the number of overlaps acrossiterations. In Fig. 2e, the median Jac-
card coefficient of shared VD) sequences derived in the same 10,000
subsampling operations was used to generate BCR and TCR similarity

matrices, from which hierarchical clustering was performed to gener-
ate the BCR and TCR clonal similarity trees via the hclust function in
R using the ward.D2 agglomeration method. In the spatio-migratory
maps of B cell clonal migration shown in Extended Data Fig. 2f,g, the
clonal repertoire analyses for participants 308 and 315 were generated
by calculating the median number of shared BCR clones across the same
10,000 subsampling operations.

Clonal overlap correlations with tumor genomic landscape
The tumor phylogenetic trees were generated using OncoNEM**,
as previously described by us™. The hclust (hierarchical clustering)
function in the base R stats package was used to compute the BCR,
TCR and genomic trees using the ward.D2 agglomeration method.
The comparison of the hclust objects was done using the cophenetic
correlation, using the cor_cophenetic function from the dendextend
package (version 1.15.2)°". A permutation test was used to calculate
correlation one-sided P values, where the tree labels were randomly
shuffled for 100 permutations, while keeping the tree topologies con-
stant. The comparison of the BCR and TCR Jaccard clustering trees
with the genetic trees was done by using the cophenetic definition for
edge-weighted trees. In this version of the cophenetic, the distance
between each pair of nodes is the sum of the weights of edges along
the path connecting these pairs of nodes.

BCR and TCR clonotype classification
Inall participants with more than one tumor sampled (metastatic breast
cancer cohort participants: 308, 315, 323, 330; early breast cancer
cohort: all participants; Fig. 1), the clone proportion per sample was
calculated by dividing the number of UMIs from each clone identified
using MRDARCY with the total number of UMIs present in the sample.
BCR clones were classified as stem, clade or private depending on
whether they were observed in all, some or a single sample from the
same participant, respectively (Extended DataFig.4a).Stemand clade
clones were considered to beimmunosurveilling given that they were
presentin more than one metastatic sample from asingle participant.
We further refined the stem, clade and private clone classification
by takinginto account clone size (percentage of UMIs) to identify clonal
expansion. We fitted a Gaussian mixture model to the log percentage
UMI values of all BCR sequences of all early and metastatic breast
cancer samples using the MClust (version 5.4.9)**R package to identify
an overall BCR clone size cutoff threshold for expanded versus unex-
panded clones. This threshold was set to ensure representation of all
four clonal classes in all samples and that the expanded clones repre-
sented less than10% of the total repertoire. Using this threshold, BCR
clones were classified into four categories: (A) private and expanded,
(B) shared and expanded, (C) private and unexpanded and (D) shared
and unexpanded (Fig. 3a). Clones where clone size was above the cutoff
thresholdin somesites (thatis, expanded) and below the thresholdin
others (thatis, unexpanded) were classified as expanded.

CDR3 probability of generation analysis

We calculated BCR CDR3 P,, as a result of VD] recombination with
OLGA? version 1.2.4 using as input the default human B cell heavy
chain modeland the amino acid CDR3 sequence of each BCR (Fig. 3¢).
InFig.3c, P, scores derived from BCR-sequencing data obtained from
the peripheral blood mononuclear cells from a published healthy
participant® are shown. Antigen-experienced BCRs were defined as
those that were class switched (IgA, IgE, IgG) and had more than four
somatic mutations. Antigen-inexperienced BCRs were defined as
non-class-switched BCRs (IgD and IgM) with four or fewer mutations.

Isotype usages and SHM across BCR clone classes

In Fig. 3d, the number of UMIs in each clone per IGH isotype were
counted for each sample and summarized by summing the UMI
counts by clone class (A, B, C, D) for eachisotype/sample, resulting
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in 192 sample/clone class combinations (48 samples x 4 BCR clone
classes) for all 9 BCR isotypes. The total proportion of unswitched
BCRs comprised the sum of the proportion of IgD and IgM UMIBCRs.
In Fig. 3f, the total proportion of each IGH isotype across sequen-
tial samples obtained during therapy in early breast cancer and
metastatic samples is shown. Statistical comparisons between early
breast cancer time points were performed using an ordinal logistic
regression to identify whether there was a monotonic association
between IGH isotype proportion and time point. Statistical com-
parisons between early and metastatic breast cancer samples were
performed using Wilcoxon rank-sum tests. In Extended Data Fig. 4g,
the dataplottedin Fig. 3fare subset across the four BCR clone classes.

BCRs were classified into four SHM categories (no, low, high and
very high SHM) using the normalmixEM function from the mixtools
R package (version 2.0.0), providing as input the log SHM count. The
thresholds used were 0-1mutation, 1-10 mutations, 11-33 mutations
and >33 mutations for the no, low, high and very high SHM categories,
respectively. In Extended Data Fig. 4d, the proportion of BCRs for
each of the four SHM classes per sample is shown across the four
BCR clone classes. In Fig. 3e, highly mutated BCRs were defined as
those BCRs classified as having high and very high SHM counts. Sta-
tistical comparisons between early breast cancer time points were
performed using an ordinal logistic regression to identify whether
there was amonotonic association between the percentage of highly
mutated BCRs and time point. Statistical comparisons between early
and metastatic breast cancer samples were performed using Wilcoxon
rank-sum tests.

In the analyses shown in Fig. 3g, all samples from all participants
were used. The sample isotype usage was calculated by summing the
total number of BCR UMIs per isotype per sample and then dividing
this by the total number of UMIs within the sample, as described previ-
ously. The total proportion of unswitched BCR comprised the sum of
the proportion of IgD and IgM BCRs. The mean sample BCR mutation
count was calculated by first calculating the mean SHM per clone per
sample, and then calculating the mean SHM per sample (so that larger
clonesarenotoverrepresented). Samples with highSHM and CSR were
defined as those with a >50th percentile SHM and CSR, while those
with low SHM and CSR were defined as those with a <50th percentile
SHM and CSR (Fig. 3g). In Fig. 3g, data from participants with more
than one tumor site sampled are shown (early breast cancer cohort:
all participants (n =10), metastatic breast cancer cohort participants:
308, 315,323,330), as classification into the four clonal groups required
the sampling of more than one site/participant. In Fig. 3g, all samples
fromall participants are shown.

BCR clonal expansion and diversification

We calculated BCR clonal expansion by first subsampling each tumor’s
BCR-sequencing data to 90% of the number of unique UMIs present
in the sample with the lowest depth and summing the total number
of UMIs associated with each unique BCR VD] sequence. The Gini,
Shannonindex and mean clone sizes were calculated using theineqR
package (version 0.2-13), the posterior R package (version 1.4.1) and
custom code, respectively. The mean of 1,000 iterations was used to
calculate the final clonal expansion metrics (Fig. 4a and Extended
DataFig. 5a).

To calculate the per-site proportion ofimmunosurveilling clones
(Fig. 4b), the total number of unique VD) sequences per clone across
all samples was calculated, and clones that were present in more than
onesiteand had atleast four unique VDJs in at least one metastatic site
retained. The proportion of each of these clones across all samples was
then calculated by dividing the total number of VDJs per clone per sam-
ple by the sum of the number of VDJs for that clone in all samples. The
mean of these clone proportions per site was then calculated (Fig. 4b).
In Extended Data Fig. 5b, the percentage of clones per sample that had
atleast four unique VD] sequences were calculated.

BCR clonal network analysis

Network clustering of BCR clones was performed using MRDARCY*’
in participants with more than one site sampled (metastatic breast
cancer cohort: participants 308, 315, 323 and 330, early breast cancer
cohort: all 10 participants). BCRs were clustered using a sequence
identity threshold of 0.95, and clones that were presentin aminimum
of two tumor samples for each participant and had a minimum of ten
unique BCR sequences were retained (number of clones retained in
metastatic dataset: participant 308 = 204; participant 315 = 733; par-
ticipant 323 = 85; participant 330 = 23).

Foreach BCR clone, the ends of the multiple sequence alignment
were trimmed until 95% of all BCR sequences had an aligned nucleo-
tide at the end of the sequence, with a minimum trimmed length of
80 nucleotides required for network clustering to be performed. A
distance matrix was subsequently constructed for all sequences per
clone, identical BCR sequences grouped together into clusters, and
the abundance of these clusters across metastatic sites was calculated
by dividing the total number of UMIs present in the cluster by the total
number of UMIsin the sample being analyzed. BCR clone network dia-
grams were generated by computing the pairwise Hamming distances
between sequences using the phangorn® R package (version 2.7.1),
followed by neighbor-joining tree estimation and phylogenetic tree
constructionand optimization using the pmland optim.pml functions
inphangorn (Fig. 4c,d and Extended Data Fig. 5¢c).

To calculate the degree of a BCR sequence, a minimum spanning
tree was calculated on the Hamming distance matrix using the mst
functioninthe ape® R package (version 5.6), which was then converted
into an undirected graph using the graph_from_adjacency_matrix
functionintheigraphR package (version1.2.10). The degree centrality
was then computed using the degree functioninigraph (Fig. 4c-fand
Extended Data Figs. 5¢c-h).

We validatedin our network clustering findingsinfourindependent
datasets (Extended Data Fig. 5i). Two metastatic breast cancer datasets
(from the Hartwig Medical Foundation (HMF)? and the Rapid Autopsy
tumor Donation program (RAP) at the UNC at Chapel Hill*®) were iden-
tified and TRUST4 (ref. 65) was used to reconstruct the BCR immune
receptor repertoires fromthe RNA-seq data, whichwere then processed
using MRDARCY. Sixteen participants in the HMF dataset had breast
tumor RNA-seq datafor more than one metastatic deposit and clonotype
assembly, and intra-participant comparison was only possible in one
participant (participant ID: HMFN_0320), which had a higher coverage
(1,085BCRsidentifiedinone sample and 1,757 in another). Similarly, clo-
notype assembly and intra-participant comparison were possiblein one
participantin the RAP dataset (participant ID: 828433). BCR-sequencing
datafor diabetes” and amultiple sclerosis® datasets were downloaded
from the iReceptor gateway®® and processed using MRDARCY. Eight
participantsinthe diabetes dataset and three participantsin the multiple
sclerosis dataset had multisite BCR-sequencing data for which clonotype
assembly and intra-participant comparisons were possible.

We have created and uploaded an R framework hosted at https://
github.com/sjslab/BCR-Immunosurveillance to generate network
clustering of BCR clones and compute the centrality analyses from BCR
repertoire dataderived from BCR sequencing, as well as BCR repertoire
data obtained from bulk RNA-seq data.

To determine the predictability ofimmunosurveilling clones based
onBCRdegreeinthe early and metastatic breast cancer cohorts (Fig. 4f
and Extended Data Fig. 5g,h), we calculated the sensitivity, specificity
and accuracy of a classification that categorizes BCRs as immunosur-
veilling or not based on a series of degree cutoffs (>1, >2 >10). Model
performance metrics were generated using the confusionMatrix func-
tioninthe caret (version 6.0-90) R package.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability

Sequence data (aligned to the GRCh37 of the human genome) have
been deposited in the European Genome-phenome Archive (EGA),
which is hosted by the EBI and the CRG, under the accession codes
EGAS00001002703 (tumor DNA and RNA) and https://ega-archive.
org/studies/EGASO00001006976 and https://ega-archive.org/studies/
EGAS50000000241(BCR-sequencing data). Example processed data
areavailable at https://github.com/sjslab/BCR-Immunosurveillance/.

Code availability

Our R framework for the network clustering and centrality analyses of
BCR repertoire data derived from BCR-sequencing or bulk RNA-seq
data is made available to accelerate the identification of potential
immunosurveilling and clonally persistent antibodies (https://github.
com/sjslab/BCR-Immunosurveillance). The Rsource code used torun
the analyses and generate the figures shown in this paper is also avail-
able at this repository.
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Extended DataFig.1| BCR sequencing quality-control statistics. a) Heatmap
showing number of unique BCR and TCR sequences identified across 27 metastatic
sites sampled from 8 patients. b) Box plots showing distribution of BCR isotype
usages by metastatic site (n = liver: 6, lymph nodes: 5, lung/pleura: 7). Pvalues were
calculated using Kruskal-Wallis test and adjusted for multiple comparisons.

c) Heatmap showing BCRIGH isotype usage across n = 3,905 healthy tissue
samplesin GTEx (***P < 6 x107). Pvalues were calculated using Kruskal-Wallis test
and adjusted for multiple comparisons. d) Scatter plot showing expression of BCR
isotypes and CD3/CD247 in tumour versus healthy tissues in GTEx. e) Box plots

Sample comparisons

showing the log,,Jaccard BCR and TCR similarity between technical replicates
(n=9 comparisons), related samples derived from the same patient (n =71
comparisons) and unrelated samples (n =208 comparisons). f) Box plots showing
thelog,,Jaccard BCR and TCR similarity between samples obtained from patients
308 (n=36 comparisons), 315 (n = 28 comparisons) and 330 (n = 6 comparisons),
aswell as unrelated samples (n = 208 comparisons). d-f) Wilcoxon rank sum tests,
all Pvalues two-sided. b, e, f) The box bounds the interquartile range divided by the
median, with the whiskers extending to amaximum of 1.5 times the interquartile
range beyond the box. Individual data points shown as dots.
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Extended Data Fig. 2| See next page for caption.
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Extended Data Fig. 2| Adaptive immune and tumour co-evolution. a) Scatter
plots showing relationship between shared TCRx and TCR VD] sequences across
sampled metastatic sites (inter-sample comparisons: patient 308 n = 36. patient
315: n=28). TCR sequences down sampled. Pvalue and R? obtained from linear
regression analysis. b) Correlation plot showing relationship between tumour
immune microenvironment components deconvoluted from the bulk RNA-Seq
data using MCPcounter. Inset: scatter plot showing relationship between T and
B cell enrichment. Pvalue and R? obtained from linear regression. ¢) Top: heatmap
showing Pearson’s correlations between tumour immune microenvironment
composition (obtained using Danaher gene sets) and activity. Enrichment
scores obtained using bulk RNA-Seq data. ****P < 0.0001, **P < 0.001, **P< 0.01,
*P<0.05. Bottom: scatter plot showing correlation between B cell activation
and cytolytic activity (CYT). Pvalue and R’ obtained from linear regression
analysis. d) Scatter plots showing relationship between B and T cell enrichment
and expression of a tertiary lymphoid structure gene set. P value and R? obtained

from linear regression analysis. e) Relationship between B cell, T cell and tertiary
lymphoid structure (TLS) hallmark signature in the TCGA breast cancer cohort
(n=1083 tumours). Pvalue and R? obtained from linear regression analysis.

f) Spatio-migratory map of B cell clonal migration between metastatic sites.
Edge width proportional to relative number of shared BCR clones between sites.
g) Heatmaps showing relative number of shared BCR clones between sites.

h) Scatter plots showing relationship between shared TCRa VD) sequences

and predicted MHC class  and Il neoantigens across pairwise metastatic sites.

i) Scatter plots showing relationship between shared TCR3 VD) sequences and
predicted MHC class I and Il neoantigens across pairwise metastatic sites.

b-d) Datafrom all sites (n =27) from all patients used. a-d, h, i) The shaded area,
ingrey, represents the 95% confidence interval. a, f-i) Data from two patients with
more than four metastatic sites sampled used (308, 315). h, i) TCR sequences
were downsampled. Pvalue and R? obtained from linear regression analysis.
Inter-sample comparisons: patient 308 n = 36; patient 315: n=28.
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Sample comparisons

(n=20 comparisons) and unrelated samples (n = 280 comparisons). Wilcoxon
rank sum test, Pvalue two-sided. The box bounds the interquartile range divided
by the median, with the whiskers extending to amaximum of 1.5 times the
interquartile range beyond the box. Individual data points shown as dots.

Extended Data Fig. 3| Early breast cancer cohort BCR sequencing metrics.
a) Heatmap showing number of unique BCR sequences identified across

25 tumour biopsies sampled from 10 patients. b) Box plot showing the log,,
Jaccard BCR similarity between related samples derived from the same patient
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | BCR clone classification analyses. a) Boxplots showing
distribution of BCR clone sizes in stem, clade, and private BCR clones across early
(n=4487 stem, 4569 clade, 85439 private unique BCR clones) and metastatic
cancer (n=1268 stem, 12022 clade, 142161 private unique BCR clones) cohorts.
P < 4.9 %107, **P=0.00099, **P = 0.002, two-sided Wilcoxon Rank sum

test and adjusted for multiple comparisons. b) Boxplots showing proportion

of unique BCRs/sample with CDR3 sequences matching a reference antibody
database with known binding to viral or bacterial antigens with<3,<2 and <1
CDR3 mismatches, across the four BCR clone classes. Pvalues calculated using
two-sided analysis of variance (ANOVA). ¢) Boxplot showing the percentage

of unswitched BCRs per sample in early and metastatic breast cancer cohorts.
Pvalues calculated two-sided Wilcoxon Rank sum test. d) Top: density plot
showing distribution of BCR SHM and thresholds used to classify BCRs in four
SHM classes. Bottom: Boxplots showing the distribution of BCRs proportions
infour SHM classes across the four BCR clone classes in early and metastatic
breast cancer cohorts. Pvalues calculated using Kruskal-Wallis test. e) Boxplot
showing the mean mutation count per BCR clone per samplein early and

metastatic breast cancer cohorts. f) Boxplot showing expression of AICDA in
early and metastatic breast cancer cohorts. g) Boxplots showing % isotype
usage in early and metastatic breast cancer samples across the four BCR clone
classes. Wilcoxon rank sum tests, Pvalues adjusted and two-sided. h) Boxplots
showing distribution of enrichment scores of two RNA isotype switching
signatures. i) Boxplots showing distribution of immune microenvironment cell
type scores and activation signatures across n = 3,905 healthy tissue samplesin
GTEx. Samples with high expression of unswitched transcripts were defined as
those with a>50th percentile expression of IGHD/M genes. a, b, d, g) Data from
patients with more than one tumour site sampled shown (early breast cancer
cohort: n =10 patients, 25 samples; metastatic breast cancer cohort patients:
308, 315,323,330, n =23 metastatic cancer samples) used. c,e,f,h) Data fromall
patients used (early breast cancer cohort: n =10 patients, 25 samples; metastatic
breast cancer cohort n = 8 patients, 27 samples) used. a-i) The box bounds the
interquartile range divided by the median, with the whiskers extendingtoa
maximum of 1.5times the interquartile range beyond the box. Individual data
points shown as dots. a, ¢, e-i) Wilcoxon rank sum tests, all P values two-sided.
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Extended Data Fig. 5| See next page for caption.
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Extended Data Fig. 5| BCR degree centrality analyses. a) Boxplots showing
clonal expansion as measured by the Shannon and Giniindices in lymph

nodes versus other sites. b) Boxplots showing clonal diversity, as measured

by the percentage of expanded BCR clones (=4 unique VDJs) in lymph

nodes versus other sites. ¢c) BCR VD) network plots showing three expanded
immunosurveillance clones shared between multiple sites in patient 308.

d) Boxplots showing proportion of unique BCRs/sample with CDR3 sequences
matching areference antibody database with known binding to viral or
bacterial antigens with <3 and, <2 CDR3 mismatches, across BCRs with degree
centrality = 1and >1. e) Scatter plots showing lack of association between BCR
degree centrality and BCR SHM in early and metastatic breast cancer cohorts.

f) Scatter plots showing association between BCR degree centrality and
proportion of total repertoire in early and metastatic breast cancer cohorts.
Two-sided Pvalue derived from polynomial regression. g) Profile plots showing
changes in sensitivity, specificity, and accuracy at identifying immunosurveilling

BCRs at different degree centrality thresholds in early and metastatic breast
cancer cohorts. h) Profile plots showing changes in sensitivity, specificity

and accuracy atidentifyingimmunosurveilling BCRs at different centrality
thresholds in four patients with metastatic breast cancer at five subsampling
depths (1000,2000,5000,10000 and 20000). i) Boxplots showing association
between BCR degree centrality and the number of sites in which the BCR is
observed in four external datasets (number of cases:n=1Priestleyetal,n=1
Siegel et al, n =8 Seay et al, n =3 Stern et al). Kruskal-Wallis tests, all Pvalues two-
sided. a,b) Data from four patients with more than one metastatic site sampled
(308, 315,323,330) used (n = 5lymph node, n = 22 other sites). d-f) Data from
four patients with more than one metastatic site sampled (patients: 308, 315,323,
330) and all patients (n = 10) with early breast cancer. a, b, d, i) The box bounds
theinterquartile range divided by the median, with the whiskers extending to a
maximum of 1.5 times the interquartile range beyond the box. Individual data
points shown as dots. a, b, d) Wilcoxon rank sum tests, all Pvalues two-sided.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size 8 women with lethal metastatic breast cancer and 10 women with early breast cancer were recruited to this study. No statistical methods
were used to pre-determine sample sizes but our sample sizes are similar to those reported in previous publications.

Data exclusions  No data was excluded. BCR sequencing was performed in cases which had remaining RNA extracted.
Replication For two of the metastatic tumour samples, two replicate BCR libraries were created, and for three of the metastatic samples, three replicate
BCR libraries were created. High levels of BCR VDJ sharing were observed in technical replicates. All attempts at replication were successful as

shown in Extended Data Figure 1e.

Randomization  Randomization not applicable - all cases were treated with standard of care therapy regimens.
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Blinding Blinding not applicable - no group allocations.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChlIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging
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