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Genomic characterization of cervical lymph
node metastases in papillary thyroid
carcinoma following the Chornobyl accident
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Childhood radioactive iodine exposure from the Chornobyl accident
increased papillary thyroid carcinoma (PTC) risk. While cervical lymph node
metastases (cLNM) are well-recognized in pediatric PTC, the PTC metastatic
process and potential radiation association are poorly understood. Here, we
analyze cLNM occurrence among 428 PTC with genomic landscape analyses
and knowndrivers (131I-exposed = 349, unexposed = 79;mean age = 27.9 years).
We show that cLNM are more frequent in PTC with fusion (55%) versus
mutation (30%) drivers, although the proportion varies by specific driver gene
(RET-fusion = 71%, BRAF-mutation = 38%, RAS-mutation = 5%). cLNM frequency
is not associated with other characteristics, including radiation dose. cLNM
molecular profiling (N = 47) demonstrates 100% driver concordance with
matched primary PTCs and highly concordant mutational spectra. Tran-
scriptome analysis reveals 17 differentially expressed genes, particularly in the
HOXC cluster and BRINP3; the strongest differentially expressed microRNA
also is near HOXC10. Our findings underscore the critical role of driver
alterations and provide promising candidates for elucidating the biological
underpinnings of PTC cLNM.

Thyroid cancer, the most frequently diagnosed malignancy among
adolescents and young adults, has a very good prognosis, with 5-year
relative survival rates exceeding 99%1,2. The most common form,
papillary thyroid carcinoma (PTC), is a well-differentiated tumor that
accounts for approximately 85% of thyroid cancers, is more common
in women, and is typically managed with surgery (lobectomy and/or

total thyroidectomy), post-surgery radioactive iodine (131I) ablation,
and/or systemic therapy3,4. However, clinical uncertainties remain
regarding optimal treatment approaches, in part because an estimated
20–50% of patients have cervical lymph node metastases (cLNM) at
diagnosis, only a fraction of which are identified through pre-operative
imaging4. Patient and clinical factors that reportedly correlate with

Received: 13 February 2023

Accepted: 23 May 2024

Check for updates

A full list of affiliations appears at the end of the paper. e-mail: mortonli@mail.nih.gov; chanocks@mail.nih.gov

Nature Communications |         (2024) 15:5053 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-9767-2310
http://orcid.org/0000-0001-9767-2310
http://orcid.org/0000-0001-9767-2310
http://orcid.org/0000-0001-9767-2310
http://orcid.org/0000-0001-9767-2310
http://orcid.org/0000-0001-5389-6267
http://orcid.org/0000-0001-5389-6267
http://orcid.org/0000-0001-5389-6267
http://orcid.org/0000-0001-5389-6267
http://orcid.org/0000-0001-5389-6267
http://orcid.org/0000-0001-6584-005X
http://orcid.org/0000-0001-6584-005X
http://orcid.org/0000-0001-6584-005X
http://orcid.org/0000-0001-6584-005X
http://orcid.org/0000-0001-6584-005X
http://orcid.org/0000-0002-4368-4647
http://orcid.org/0000-0002-4368-4647
http://orcid.org/0000-0002-4368-4647
http://orcid.org/0000-0002-4368-4647
http://orcid.org/0000-0002-4368-4647
http://orcid.org/0000-0002-8028-0588
http://orcid.org/0000-0002-8028-0588
http://orcid.org/0000-0002-8028-0588
http://orcid.org/0000-0002-8028-0588
http://orcid.org/0000-0002-8028-0588
http://orcid.org/0000-0002-7952-379X
http://orcid.org/0000-0002-7952-379X
http://orcid.org/0000-0002-7952-379X
http://orcid.org/0000-0002-7952-379X
http://orcid.org/0000-0002-7952-379X
http://orcid.org/0000-0002-5123-9674
http://orcid.org/0000-0002-5123-9674
http://orcid.org/0000-0002-5123-9674
http://orcid.org/0000-0002-5123-9674
http://orcid.org/0000-0002-5123-9674
http://orcid.org/0000-0003-3871-2225
http://orcid.org/0000-0003-3871-2225
http://orcid.org/0000-0003-3871-2225
http://orcid.org/0000-0003-3871-2225
http://orcid.org/0000-0003-3871-2225
http://orcid.org/0000-0001-8014-4888
http://orcid.org/0000-0001-8014-4888
http://orcid.org/0000-0001-8014-4888
http://orcid.org/0000-0001-8014-4888
http://orcid.org/0000-0001-8014-4888
http://orcid.org/0000-0001-7334-4718
http://orcid.org/0000-0001-7334-4718
http://orcid.org/0000-0001-7334-4718
http://orcid.org/0000-0001-7334-4718
http://orcid.org/0000-0001-7334-4718
http://orcid.org/0000-0001-6861-9043
http://orcid.org/0000-0001-6861-9043
http://orcid.org/0000-0001-6861-9043
http://orcid.org/0000-0001-6861-9043
http://orcid.org/0000-0001-6861-9043
http://orcid.org/0000-0002-0936-0753
http://orcid.org/0000-0002-0936-0753
http://orcid.org/0000-0002-0936-0753
http://orcid.org/0000-0002-0936-0753
http://orcid.org/0000-0002-0936-0753
http://orcid.org/0000-0002-2324-3393
http://orcid.org/0000-0002-2324-3393
http://orcid.org/0000-0002-2324-3393
http://orcid.org/0000-0002-2324-3393
http://orcid.org/0000-0002-2324-3393
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49292-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49292-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49292-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49292-z&domain=pdf
mailto:mortonli@mail.nih.gov
mailto:chanocks@mail.nih.gov


cLNM and impact surgical decisions include younger age at diagnosis,
male sex, increased tumor size, extrathyroidal extension,multifocality,
location in the upper pole of the thyroid, and history of exposure to
ionizing radiation4,5.

In the last decade, advances in molecular characterization of PTC
have demonstrated promise for providing new insights into patient
risk stratification that could inform therapeutic decision-making,
mainly based on targeted profiling of somatic alterations. Tumor
aggressiveness and occurrence of cLNM and distant metastases have
been associated with gene alterations, including BRAFV600E, TERT pro-
moter, or TP53 mutations; RET fusions; and 22q loss4,6–13. However,
published results are inconsistent, possibly due to small sample sizes
and ascertainment biases; heterogeneity in patient characteristics,
particularly age, which is associated with specific molecular
alterations14–17; and variability in themolecular characteristics assessed
in different studies. A recent report suggested that the relationship
between thyroid tumor aggressiveness and molecular characteristics
could depend on patient characteristics such as age; specifically, the
increased frequency of cLNManddistantmetastases in thyroid tumors
with RET/NTRK fusions versus BRAF mutations was pronounced in a
series of pediatric patients but much less so in older patients from The
Cancer Genome Atlas (TCGA)14,17.

We recently reported a comprehensive molecular characteriza-
tion of fresh-frozen primary tumor (PT) samples from 440 histologi-
cally confirmed PTC (mean age at diagnosis = 28.0 years, range
10.0–45.6) ascertained through the Chornobyl Tissue Bank as part of a
study of the consequences of the Chornobyl nuclear power plant
accident18–20. 131I-containing fallout from the accident was deposited in
the surrounding environment and has been associated with increased
thyroid cancer risk, particularly among children who consumed con-
taminated leafy greens or dairy products fromgrazing cows21. Previous
analyses of patients with PTC following the Chornobyl accident have
suggested associations between 131I dose and tumor invasiveness
(extrathyroidal extension, lymphatic/vascular invasion, and regional or
distant metastases)22–26, which were possibly restricted to BRAFV600E-
negative tumors27. However, the sample sizes were limited and lacked
the combination of comprehensive molecular and clinical data.

Here, we expand our prior study of 440 adolescents and young
adults with PTC18 with additional detailed clinical data to identify
molecular and clinical predictors of cLNM occurrence, using both
multivariable modeling approaches and stratification to disentangle
the independent effects of patient, clinical, epidemiologic, and mole-
cular characteristics. We further conduct a comprehensive genomic
landscape analysis of 47 cLNM samples by profiling genomic, tran-
scriptomic, and epigenomic characteristics in comparison to matched
PT samples (Supplementary Data 1). Our findings provide insights into
the molecular processes underlying the development of metastatic
PTC and underscore the importance of the specific driver alteration,
almost exclusively drawn from the mitogen-activated protein kinase
(MAPK) pathway. In addition, we did not confirm the effect of envir-
onmental radiation on the occurrence of cLNM.

Results
Patients and clinical predictors of cLNM occurrence
The study population included 440 fresh-frozen, pre-treatment pri-
mary PTC tumors with high-quality whole genome sequencing (WGS,
mean tumor sequencing depth = 89X) and/or mRNA sequencing
(mRNA-seq) (374 both, 57 mRNA-seq only, nine WGS only)18. WGS and
mRNA-seq data were complemented with single nucleotide poly-
morphism (SNP) microarray genotyping, relative telomere length
quantification, DNAmethylation profiling, andmicroRNA (miRNA)-seq
as allowed based on biospecimen availability. Within the series of 440
tumors that were histologically confirmed by a panel of pathology
experts19,20, 359 occurred in individuals with well-quantified 131I expo-
sure before adulthood (≤18 years old) from the Chornobyl

accident28–30, and 81 occurred in individuals from the same regions in
Ukraine who were born >9 months after the accident and thus
considered 131I-unexposed (Table S1). Among the 131I-exposed indivi-
duals, mean estimated radiation dose was 247 mGy (range: 11–8800),
74.9% of patients were female, and the mean age at PTC diagnosis was
29.7 years (range: 13.4–45.6). 131I-unexposed individuals similarly were
predominantly female (81.5%) but tended to be younger at PTC diag-
nosis (mean: 20.7 years; range: 10.0–29.1).

The study was based at one central tertiary center, namely the
Institute for Endocrinology and Metabolism in Kyiv, Ukraine, where
most individuals (N = 365, 83.0%) underwent total thyroidectomy
(Table S1). Nearly half of the tumors (N = 206, 46.8%) were classified as
pathologic T1, 71 (16.1%) T2, and 163 (37.0%) T3 according to the 7th
edition of TNM staging (Fig. S1 and Tables S1, S2)31. Of the 163 tumors
classified as T3, 106 tumors of any size had evidence of minimal
extrathyroidal extension in the fat and connective tissue, 24 had evi-
dence of extrathyroidal extension in the muscle, and 33 had no evi-
dence of extrathyroidal extension but were sized >4 cm. Multifocality
was recorded for 78 (17.7%) tumors. Nearly two-thirds (N = 262, 64.1%)
of the primary lesions were ≤2 cm and only 36 (8.2%) were >4 cm.
Metastases were reported at the time of diagnosis for 179 (40.7%)
individuals, including 164 (37.3%) with cLNM only (N1M0), 14 (3.2%)
with both cLNM and distant metastases (N1M1), and 1 (0.2%) with
distant metastases only (N0M1; this individual was excluded from
further analyses of cLNM occurrence). Among patients with cLNM,
approximatelyhalfwereN1a (N = 87, 48.9%) andhalf N1b (N = 91, 51.1%).

Molecular predictors of cLNM occurrence
The molecular characteristics of the 440 PT samples included in this
study have been described in detail previously18 and are provided in
Supplementary Data 2. Briefly, a single driver was designated for 429
(97.5%) PT, over half (N = 253, 59.0%) of which were mutations (simple
somatic variants [SSVs]) that occurred most frequently in BRAF
(N = 194, 45.2%) or RAS (N = 44, 10.3%) genes. The remaining 176
(41.0%) PT had fusion drivers, most commonly involving RET (N = 73,
17.0%) or other receptor tyrosine kinase (RTK) genes (N = 64, 14.5%).
Among the 356 PT with high-quality WGS data, the low burden of SSVs
(mean= 0.29 mutations per Mb) was predominantly comprised of
single nucleotide variants (SNVs) (93.3%) and less commonly small
insertions (1.8%) or deletions (4.5%). Mutational signature analysis32,33

identified clock-like signatures as themost commonly occurring single
base substitution (SBS) and small indel (ID) mutational signatures
(SBS1 = 9.8%, SBS5 = 60.2%; ID1 = 14.2%, ID5 = 39.8%). Over half
(N = 190, 53.4%) of PT had at least one confirmed structural variant
(SV), and 143 (40.3%) had at least one somatic copy number alteration
(SCNA), most frequently (N = 49, 13.8%) the loss of 22q.

Modeling of characteristics associated with cLNM occurrence
Among all the patient, clinical, and molecular characteristics we eval-
uated in sex- and age at PTC-adjusted multivariable models, cLNM
occurrencewasmost strongly associatedwith PTCdriver; therewasno
measurable effect of cumulative environmental radiation exposure on
cLNM occurrence (Ptrend = 0.32) (Table S3). Specifically, cLNM were
notably more common in tumors with fusion than mutation drivers
(N = 97/156, 55.1% vs. N = 76/252, 30.2%; P = 5.8 × 10−6), with differing
frequencies among specific drivers (Pheterogeneity = 1.6 × 10−19) (Fig. 1 and
Table S4). cLNM were most common among tumors with RET (N = 52/
73, 71.2%) or other RTK (N = 41/64, 64.1%) fusion drivers but less com-
mon among tumors with other fusion drivers (N = 4/39, 10.3%), all of
which occurred in tumors with BRAF fusions. Additionally, cLNM were
recorded for 73/194 (37.6%) of tumors with BRAFmutations but only 3/
58 (5.2%) with driver mutations in other genes, most commonly RAS
(N = 2/43, 4.7%). Analyses by the specific fusion partner showed a
slightly higher frequency of cLNM occurrence for tumors with NCOA4-
RET (N = 12/15, 80.0%) than CCDC6-RET (N = 26/40, 65.0%) fusion
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drivers, and for NTRK1 (N = 11/13, 84.6%) than other RTK (N = 30/51,
58.8%) fusion drivers, regardless of the fusion partner (Table S5). The
excess occurrence of cLNM associated with fusion drivers was more
pronounced for N1b than N1a cLNM (N1b: fusion driver N = 57/156,
32.4%, mutation driver N = 32/252, 12.7%; N1a: fusion driver N = 40/156,
22.7%, mutation driver N = 44/252, 17.5%), particularly for NCOA4-RET
(N1b: N = 9/15, 60.0%; N1a: N = 3/15, 20.0%) (Table S5). Analyses strati-
fied by age at PTC (<30 vs. ≥30 years, reflecting the mean age at PTC
diagnosis among exposed individuals) revealed that the frequency of
cLNM occurrence was consistent by age in tumors with RET fusion
drivers (71.2 vs. 71.4%) but declined at older age for tumors with BRAF
mutation (41.8 vs. 34.0%) and other RTK fusion drivers (69.0 vs. 54.5%)
(Fig. S2).More detailed breakdowns of cLNMoccurrence bydriver and
age at PTC are provided in Table S6. Although results should be
interpreted cautiously due to small numbers of cases in certain sub-
groups, the patterns observed in our overall study population
appeared consistent when we restricted to pediatric cases (<20 years),
namely a high proportion of cLNMoccurrence in PTCwith RET (76.2%)
and other RTK (64.3%) fusion drivers and a lower percentage for BRAF
mutations (23.5%).

When we re-analyzed patient and clinical predictors of cLNM
occurrence separately for tumors with the two most commonly
occurring drivers, cLNM occurrence was significantly associated with
increasing tumor size for tumors with either BRAF mutation
(Ptrend = 1.8 × 10−3) or RET fusion (Ptrend = 9.4 × 10−4) drivers, whereas
there was a suggestive association with younger age for tumors with
BRAFmutation drivers only (P =0.089) (Table 1). Specifically, the odds

of cLNM occurrence for tumors >2 versus ≤1.0 cm were nearly three-
fold higher for PTCswith aBRAFmutationdriver (odds ratio [OR] = 2.9,
95% confidence interval [CI] = 1.2–6.8) and over twelve-fold higher for
PTCs with a RET fusion driver (OR = 12.3, 95%CI = 1.2–112). No dose-
response trend was observed between radiation and cLNM in catego-
rical, linear, linear-quadratic, or quadratic models. Additional mole-
cular characteristics were not associated with cLNM occurrence in
either driver group (P >0.01) (Table S3).

Previous reports have suggested that TP53, AKT1, PIK3CA, and
TERT promoter mutations, CDKN2A deletions, PTEN mutations/dele-
tions, MYC amplifications, and whole genome duplication are asso-
ciated with the development of metastases6,8,17,34–40. However, we
observed only small numbers of each of these alterations, precluding
analysis in our dataset (TP53 mutation, N0 = 2; AKT1, N0 = 3; PIK3CA,
N1 = 1; TERT promoter mutation, N1 = 1; CDKN2A deletions, N0 = 1;
PTENmutations ordeletions, N0 = 3;MYC amplifications,N0 = 2;whole
genome duplication, N0 = 2). We further compared transcriptomic
profiles of PT with and without cLNM but did not find any significantly
differentially expressed genes (DEGs) in analyses restricted to the two
most commonly occurring drivers, BRAFmutation and RET fusion.

We extended our analysis of the relationship between PTC driver
and cLNM occurrence by re-analyzing previously published data from
two sources (Fig. S1 and Tables S1, S2): (1) 68 individuals from two
previous Chornobyl studies with available 131I exposure data, restricted
to those with known drivers and non-overlapping with our study
population41,42 and (2) 326 individuals from the TCGA analysis,
restricting to those with known fusion or mutation drivers, available

Fig. 1 | DistributionofcLNMatdiagnosis among428PTC tumors inourprimary
study populationwith a final designated driver, by driver type and gene.Red =
cLNM, Blue = no cLNM. Percentages >20% are shown. Pheterogeneity represents a two-
sided P value calculated using likelihood ratio tests, comparing model fit with and

without the variable of interest. Source data are provided as follows: Table S3
provides all counts and percentages, including information on the othermutations
and fusions.
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pathology data, andwithout known radiation exposure17. Although the
sample size from the previous Chornobyl studies was limited, the
patterns of cLNM occurrence by driver in those studies, as well as
TCGA, generally were consistent with our original study population,
though only the differences in cLNM occurrence by the specific driver
in TCGA were statistically significant (Fig. S3 and Table S4). Namely,
cLNMweremore frequent in tumors with fusion thanmutation drivers
(Chornobyl: 47.9 vs. 30.0%, P =0.81; TCGA: 50.9 vs. 44.9%, P =0.44),
and specifically in tumors with RET fusion than BRAF mutation
drivers (Chornobyl: 55.2 vs. 37.5%, among all specific drivers:
Pheterogeneity = 0.39; TCGA: 78.3 vs. 50.2%, among all specific drivers:
Pheterogeneity = 1.4 × 10−5). Similarly, pooled analyses of patient and
clinical characteristics demonstrated a consistently increased occur-
rence of cLNM associated with larger tumor size and more advanced
stage for both BRAFmutation and RET fusion-driven tumors among all
three studies (Tables S7, S8). In contrast, associations with male sex
and younger age in individuals with BRAF mutation-driven tumors
were inconsistent.

Molecular profiles of cLNM samples
We comprehensively characterized the molecular profiles of 47 fresh-
frozen, pre-treatment cLNM samples with high-quality WGS (mean

sequencing depth = 89X), mRNA-seq (N = 46; average read count = 135
million per sample), miRNA-seq (N = 43), DNA methylation profiling
(Illumina Infinium MethylationEPIC array; N = 45), and relative telo-
mere length (N = 43) (Supplementary Data 3). Comparable data from
paired PT samples have been published previously18. Figure S4 and
Table S9 detail the availability of samples by type and platform.
Although the available cLNM samples had a higher proportion of
fusion-driven tumors (Table S9), the distributions with respect to
patient age, sex, and radiation dose were otherwise comparable
(Table S10). For each data type, we confirmed the lack of additional
lymphocyte infiltration in our cLNM compared to PT samples, as
detailed below.

cLNM driver identification
We identified drivers using WGS and mRNA-seq for mutation and
fusion detection18, and all cLNM samples had the same final designated
driver as thepaired PT (Fig. 2 andTable S9). A total of 2/47 (4.3%) cLNM
samples, both with RET fusion drivers, had MYC amplifications that
were not present in their paired PT samples; conversely, the TERT
promoter mutation observed in the single PT sample from our pre-
vious study was not present in its paired cLNM sample. No other new
putative driver mutation private to the cLNM sample was identified.

cLNM genomic characteristics
We comprehensively compared the genomic characteristics of 45
cLNM and 41 paired PT samples with high tumor purity and high-
quality WGS data (Fig. S4). To increase statistical power, we further
selected another 85 high-purity and high-quality PT samples from
other individuals fromour original study of 440 individuals18, matched
on PTC driver (Supplementary Data 1 and Table S9).

In unpaired analyses (N = 45 cLNM, N = 126 PT), cLNM and PT had
comparably low burdens of SSVs (mean=0.27 mutations per Mb in
both sample types), with similar distributions of SNVs (cLNM=92.6%,
PT = 93.2%), small insertions (cLNM=2.0%, PT = 1.7%) and deletions
(cLNM= 5.1%, PT = 4.7%), and multiple base substitutions (cLNM=
0.4%, PT =0.4%) (Figs. 2, 3A–C and Table S11). No additional SBS or ID
mutational signatures were identified in the cLNM samples, and the
distributions of specific SBS and ID signatures were similar between
cLNM and PT. We also observed comparable numbers of samples with
at least one SV (cLNM: N = 35/45, 77.8%; PT: N = 104/126, 82.5%) or
SCNA (cLNM: N = 17/45, 37.8%; PT:N = 51/126, 40.5%), with 22q loss in a
smallminority (cLNM:M= 2/45, 4.4%; PT: N = 11/126, 8.7%). None of the
cLNM samples exhibited whole genome duplication. The mean frac-
tion of the genome altered was similar between cLNM (mean = 0.44 ±
1.35%) and PT (mean =0.30 ± 0.80%). In multivariable regression
models adjusted for age and sex, the distribution of the measured
genomic characteristics was not statistically different between cLNM
and PT samples, except the relative telomere length was suggestively
shorter in cLNM (P =0.014) (Table S12). Results generally were com-
parable when we further adjusted our initial models for radiation dose
and driver, and when we restricted analyses to the paired cLNM-PT
samples (N = 41) from the same individuals (Fig. S5 and Table S12),
except the suggestively shorter relative telomere length in cLNM was
no longer evident in the paired analysis (P =0.24).

Within the paired cLNM-PT samples, we characterized SNVs by
whether they were shared versus private to the cLNMor PT samples as
well as by clonality (clonal = cancer cell fraction ≥ 0.6, subclonal =
cancer cell fraction <0.6). SNVs were approximately evenly distributed
among shared (mean, range: 34.3%, 7.8–75.9%), private cLNM (30.7%,
5.0–65.5%), and private PT (35.0%, 8.3–63.0%) mutations (Fig. S6 and
Table S13). As expected, the shared SNVs were more frequently clonal
(mean, clonal = 29.4% vs. subclonal = 3.2%), whereas the private cLNM
and private PT SNVs were more frequently subclonal (private cLNM:
clonal = 6.0% vs. subclonal = 25.4%; private PT: clonal = 5.6% vs.
subclonal = 30.4%).

Table 1 | Relationship of patient and pathologic character-
istics to the occurrenceof cLNM inPTCwithBRAFmutationor
RET fusion drivers

BRAF mutation driver RET fusion driver

cLNM cLNM

Characteristic No Yes OR (95%CI)* No Yes OR (95%CI)a

Sex

Female 99 54 1.0 (referent) 17 39 1.0 (referent)

Male 22 19 1.4 (0.6, 2.9) 4 13 1.3 (0.3, 6.1)

Age at PTC (years)

<25 25 20 1.0 (referent) 10 29 1.0 (referent)

25–29 28 18 0.6 (0.2, 1.6) 7 13 0.6 (0.2, 2.6)

≥30 68 35 0.4 (0.2, 1.0) 4 10 1.2 (0.2, 7.2)

Ptrend 0.089 0.74

Radiation dose (mGy)b

0 24 11 1.0 (referent) 5 11 1.0 (referent)

1–99 66 40 2.2 (0.8, 6.1) 8 15 0.9 (0.1, 6.2)

100–199 18 17 3.4 (1.1, 10.8) 4 10 2.0 (0.3, 13.8)

≥200 13 5 1.4 (0.3, 5.6) 4 16 2.1 (0.4, 11.7)

Ptrend 0.92 0.13

Multifocal lesion

No 100 54 1.0 (referent) 18 48 1.0 (referent)

Yes 21 19 1.9 (0.9, 4.1) 3 4 0.2 (0.02, 1.8)

Primary lesion size (cm)

≤1.0 38 16 1.0 (referent) 3 5 1.0 (referent)

>1.0–2.0 61 32 1.2 (0.6, 2.6) 15 19 1.0 (0.2, 5.3)

>2.0 22 25 2.9 (1.2, 6.8) 3 28 12.3 (1.3, 112)

Ptrend 1.8 × 10−3 9.4 × 10−4

cLNM cervical lymph node metastasis, CI confidence interval, OR odds ratio, PTC papillary
thyroid carcinoma.
Bolded font represents P < 0.05. Source data are provided in Data S2.
aMultivariable logistic regressionmodel included all patient and pathologic characteristics in the
table. Ptrend represents a two-sided P value calculated using likelihood ratio tests, comparing
model fit with and without the variable of interest.
bNo significant improvement in model fit was observed when considering radiation dose in a
linear-quadratic (BRAF mutation: P = 0.14; RET fusion: P = 0.82) or quadratic (BRAF mutation:
P = 0.58; RET fusion: P = 0.14) model. No radiation dose-response trend among the categories
was observedwhenwe excluded unexposed individuals from themodel (reference = 1–99mGy;
BRAF mutation: OR100–199mGy = 1.7, 95% CI = 0.7–4.0, OR≥200mGy = 0.6, 95% CI = 0.2–2.0; RET
fusion: OR100–199mGy = 2.6, 95% CI = 0.4–17.0, OR≥200mGy = 2.2, 95% CI = 0.4–12.9).
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To investigate patterns of metastasis seeding, we specifically
focused on clonal private and subclonal shared SNVs (Figs. S6, S7)43,44.
The presence of subclonal shared SNVs (N ≥ 10 SNVs) in 22 paired
cLNM-PT samples is indicative of polyclonal seeding. For the

remaining 19 samples, the more dominant presence of private clonal
mutations in the cLNM and/or PT is evidence of sampling bias, which
obfuscates the metastasis polyclonal versus monoclonal seeding pat-
tern and likely occurred because we sampled and sequenced only a

Fig. 2 | Comparison of genomic characteristics between 47 cLNM and paired PT samples. Data include patient and sample characteristics, PTC driver, mutation,
structural variant, and somatic copy number alteration counts. Source data are provided as follows: Table S9 provides all counts.
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Fig. 3 | Burden of simple somatic variants (SSVs) by sample type.Distribution of
SNVs (A), small deletions (B), and small insertions (C) in cLNM and PT samples.
Red = cLNM, Blue = paired primary tumors, Light blue =matched primary tumors.
All box plots include the center line at themedian, theboxdenotes the interquartile

range (IQR), whiskers denote the rest of the data distribution, and outliers are
denoted by points greater than ±1.5 × IQR. Note that the Y-axis scales differ among
panels. Source data are provided as follows: Table S9 provides counts. Figure S5
provides scatter plots of the distributions in paired cLNM-PT samples.
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single area within both the cLNM and PT. The similarity of the tumor
purity between the cLNM and PT samples supports a lack of additional
lymphocyte infiltration in the cLNM samples.

cLNM transcriptomic characteristics
We compared the transcriptomic characteristics of cLNM and PT,
restricting analyses to 46 cLNM samples with mRNA-seq data, paired
PT samples (N = 44), as well as 89 additional PT samples from our
original study of 440 individuals18, matched on PTC driver (Supple-
mentaryData 1, Fig. S4, and Table S9). We observed strong evidence in
three genes for substantive differential expression: overexpression of
HOXC10 (log(2) fold change [log2FC] = 3.4, false discovery rate [FDR]-
adjusted P value (Padj) = 6.4 × 10−23) and HOTAIR (log2FC = 2.9,
Padj = 2.9 × 10−17) and underexpression of BRINP3 (log2FC = −3.6,
Padj = 1.3 × 10−17) in cLNM compared with PT samples (Fig. 4A and
Supplementary Data 4). Both HOXC10 and HOTAIR, as well as seven
other genes with Padj < 1.0 × 10−4 and log2FC >1.0, are part of theHOXC
locus on 12q13.13. Notably, SCNAs are unlikely to be themechanism of
the HOXC locus dysregulation as no SCNAs occurred across the HOXC
locus in either the cLNM or paired PT samples. Correlation analyses in
cLNM samples for the expression levels of these genes demonstrated
two main blocks of correlated genes, both of which included HOXC10
(Fig. 4B). After adjusting for HOXC10 expression, none of the remain-
ing genes in the HOXC locus were significantly differentially expressed
between cLNM and PT samples (Supplementary Data 4), supporting
further investigation of regulatory elements in or near the HOXC10
region of the locus. Analyses of the expression levels for our top three
genes revealed overexpression in HOXC10 and HOTAIR only in cLNM
but not PT or non-tumor thyroid samples (Fig. 5A, B), whereas BRINP3
expressionwas highest innon-tumors thyroid samples,moderate in PT
samples, and very low in cLNM (Fig. 5C). Overall, our differential
expression results were similar when we further adjusted our initial
models for radiation dose and driver, and when we restricted analyses
to the cLNM and paired PT samples from the same individuals (Sup-
plementary Data 4). Further analyses of gene expression using the
Molecular Signatures Database (MSigDB) Hallmark gene sets45,46 did
not yield any statistically significant differences between cLNM and PT
(Supplementary Data 5).

In parallel analyses of miRNA, we identified four miRNAs that
were substantially differentially expressed: overexpression of miR-
196a2 (log2FC = 3.9, Padj = 1.3 × 10−25) and miR-615 (log2FC = 2.3,
Padj = 3.2 × 10−18) and underexpression of miR-137 (log2FC = −2.5,
Padj = 7.7 × 10−13) and miR-141 (log2FC = −1.0, Padj = 1.6 × 10−12) in cLNM
compared with PT samples (Figs. 6, 7A–D and Supplementary Data 6).
miR-196a2 and miR-615 have correlated expression (r =0.67) and are
located in the HOXC locus near HOXC10 and HOXC5, respectively.
Further adjustment of models for radiation dose and driver, as well
as restriction of analyses to the cLNM and paired PT samples
from the same individuals, generally yielded similar results (Supple-
mentary Data 6). Exploratory analyses of the top differential expres-
sion results for mRNA (HOXC10) and miRNA (miR-196a2) revealed
consistent findings when we restricted to pediatric cases
(<20 years) (Fig. S9).

Several lines of evidence provide support that our findings were
not due to additional lymphocyte contamination in the cLNM com-
pared with PT samples. Unsupervised mRNA-seq clustering analyses
showedextensive overlapbetween cLNMandPTC samples, suggesting
lymphocyte levels did not substantially differ between the sample
groups (Fig. S8). Both Genotype-Tissue Expression (GTEx) project bulk
sequencing data and a previously published analysis of single-cell
mRNA-seq across tissue types show thatHOXC10,HOTAIR, and BRINP3
are not highly expressed in lymphocytes (Fig. S10)47,48. Finally, the
application of CIBERSORTx to identify cell types similarly suggested
comparable immune cell distributions in cLNM and PT samples
(Fig. S11)49,50.

cLNM epigenomic characteristics
We compared the epigenomic characteristics of cLNM and PT based
on 43 cLNM and 36 high-purity paired PT samples with DNA methy-
lation data, aswell as anadditional 86high-purity PT samples,matched
on PTC driver (Supplementary Data 1, Fig. S3, and Table S9). Com-
paring differential DNA methylation between cLNM and PT, a total of
68 of the 783,071 high-quality probes had Padj < 0.05, though none had
Padj < 1.0 × 10−4, indicating no differences in epigenomic characteristics
at this higher significance level, even for probes in the region ofHOXC
at 12q13.13 (Supplementary Data 7).

The lack of additional lymphocyte contamination in the cLNM
compared with PT samples was further supported by two epigenomic
analyses. Investigation of the cell type composition showed compar-
able overlap of the characteristic immune cell epigenomic profiles of
matched cLNM and PT samples (Fig. S12), and the 68 probes with
Padj < 0.05 showed no enrichment for active immune regions
(Fig. S13)51,52.

Discussion
In this study, we investigated the association between cLNM occur-
rence and a range of patient, clinical, epidemiologic, and molecular
characteristics using genomic landscape data. The large (N = 440)
number of patients ascertained with centralized pathology review and
consistent surgicalmanagement from a single large tertiary center18–20,
detailed clinical information, and quantitative radiation exposure data
represent an opportunity to improve understanding of cLNM in PTC.
In patients predominantly diagnosed during young adulthood, we
demonstrate that the PTCdriver is the dominant factor associatedwith
cLNM, with the highest frequency of cLNM in tumors with RET or
NTRK1 fusion drivers. Based on multivariable models that included
genomic landscape data, our findings suggest that prior reports of
strong associations of age at PTC and prior radiation exposure with
cLNM occurrence were likely influenced by the relationship of these
variables with the PTC driver. Our comprehensive interrogation of
cLNM samples revealed the lack of a second, novel driver and similar
mutational spectra compared with PT samples. However, tran-
scriptomic changes centered on the HOXC cluster on chromosome
12q13.13, as supported by both mRNA-seq and miRNA-seq results,
provide direction for future research on the biological underpinnings
of PTC cLNM.

Using multivariable modeling, we found that the PTC driver was
the strongest predictor of cLNM occurrence among all the patient,
clinical, and molecular characteristics. The high frequency of cLNM
among PTC with RET (71.2%) or other RTK (64.1%) fusion drivers—
especially NTRK1 (84.6%)—persisted regardless of age at diagnosis, in
contrast to the lower frequency (37.6%) of cLNMamongPTCwithBRAF
mutation drivers, which declined even further with increasing age.
Future research is needed to understand the higher metastatic
potential of RTKs, which influence multiple different signaling path-
ways, in contrast to the lower metastatic potential of other drivers,
such as BRAF fusion, BRAF mutation, and RAS mutation, which pri-
marily regulate the MAPK pathway specifically. Overall, our results
provide a valuable bridge between previous pediatric PTC studies14–16

and the predominantly older adult PTC in the TCGA study17. Our
findings regarding PTC driver and cLNM frequency were consistent
with those from pediatric PTC studies, although our reanalysis of the
previous Chornobyl studies with a younger mean age at PTC, found a
non-significant increased frequency of cLNM in fusion-driven tumors,
perhaps due in part to smaller sample size. Nevertheless, our results
suggest that patterns of cLNMamong young adults aremore similar to
those of pediatric rather than older adult patients. The slightly higher
frequency of cLNM, particularly N1b, that we observed for tumorswith
NCOA4-RET than CCDC6-RET fusion drivers, albeit based on small
numbers, also is consistent with previous reports53,54 of increased
aggressiveness of tumors with RET/PTC3 rearrangements. After model

Article https://doi.org/10.1038/s41467-024-49292-z

Nature Communications |         (2024) 15:5053 7



Fig. 4 | Results of transcriptomic analyses. Differentially expressed genes
between cLNM and PT samples (A) and correlation among gene expression levels
within the HOXC locus (created with BioRender.com) (B). Two-sided P values were
calculated using simple linear regression models on the normalized read counts to
determinewhether tissue status (cLNMvs. PT)was associatedwithdifferential gene

and mRNA expression, adjusted for sample batch, sex, and age at PTC. Adjusted p
valueswere calculated using the standardBenjamini–Hochberg false discovery rate
(FDR)method. Sourcedata are providedas follows: SupplementaryData 4provides
the full results.
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Fig. 5 | Top differentially expressed genes. Expression levels of HOXC10 (A),
HOTAIR (B), and BRINP3 (C) in each sample type. Red = cLNM, Shades of blue =
primary tumors, Shades of gray = non-tumor thyroid tissue. All box plots include
the center line at the median, the box denotes the interquartile range (IQR),

whiskersdenote the rest of thedata distribution, andoutliers are denoted bypoints
greater than ±1.5 × IQR. Source data are provided as follows: Supplementary Data 4
provides the full results.
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adjustment for the PTC driver, only larger tumor size remained con-
sistently associated with the development of cLNM. Notably, prior
studies that lacked comprehensive driver data and/or multivariable
modeling have reported that younger age at diagnosis, male sex, and
exposure to ionizing radiation were associated with increased cLNM
occurrence4,5,22–27. However, the increased frequency of fusion drivers
among young individuals and those exposed to higher doses of
radiation suggests that prior reports associating these characteristics
with cLNM occurrence were likely influenced by the relationship of
these variables with the PTC driver. Together, our data support the
importance of including molecular markers, specifically the tumor
driver, in the clinical management of PTC.

Molecular profiling of 47 cLNM samples yielded three
main observations: (1) 100% concordance of the driver alterations, (2)
no novel drivers, and (3) highly concordant mutational spectra com-
pared with the matched PT. The lack of new driver mutations in the
cLNM supports the central role of the primary PTC driver in the
development of localmetastases, while the lack of evidence for late-hit
mutations in cLNM in our study further supports the similarity of
young adult PTC with pediatric PTC, as late-hit mutations have pre-
dominantly been reported in distant metastases among older
patients6,17.

In transcriptomic analysis of PT and cLNM,we identified a number
of differentially expressed genes and miRNAs. Most notably, we
observed overexpression in cLNM of HOXC10, HOTAIR, and seven
other genes in the 12q13.13 HOXC locus, as well as two miRNAs in the
same locus (miR-196a2 and miR-615). Conditional mRNA analyses of
the locus demonstrated thatHOXC10 retained the strongest effect and
thus likely harbors the regulatory regions most promising for further
investigation. HOXC includes a set of highly conserved genes that are
part of the homeobox family of transcription factors and have been
implicated broadly in carcinogenesis, although the specific mechan-
isms are not well understood55,56. A plausible role for HOXC genes,
including HOXC1057 and particularly HOTAIR58,59, in PTC metastasis is
further supported by reports of increased HOXC10 expression in
clinically aggressive thyroid cancer60; association of increasedHOTAIR

expression with tumor size, pathologic stage, and cLNM in thyroid
cancer61–64; and evidence that HOTAIR promotes migration and inva-
sion of thyroid cancer cell lines65,66. HOTAIR also is increasingly
recognized as a critical contributor in the metastatic process for a
number of cancers more broadly, specifically due to its role as a reg-
ulator of epithelial cell plasticity and the epithelial-to-mesenchymal
transition (EMT)67, although our GSVA analyses did not identify major
differences in gene expression in the EMT or other hallmark pathways
overall. Much less is known about the function of BRINP3, a develop-
mental gene whose reduced expression in cLNM was the second
strongest DEG in our analysis, though it has been implicated as a cell
cycle regulator and associated with cellular proliferation and migra-
tion in osteosarcoma68. Intriguingly, two other genes (DLX1, LMX1B)
that also had lower expression in the cLNM are homeobox genes69,
suggesting the potential importance of dysregulation of develop-
mental and differentiation processes in PTC cLNM. These associations
are further supported by our observation of reduced expression of
miR-137 andmiR-141, both of which are tumor suppressormiRNAs that
reportedly play a role in cancer occurrence and progression70,71. miR-
141, in particular, is part of the miR-200 family, which has been shown
to target and inhibit the ZEB1 and ZEB2 EMT transcription factors and
is well described in cancer metastasis71,72; miR-141 also specifically has
been shown to be downregulated in thyroid cancer, with correlations
between expression and cellular proliferation, apoptosis, and
migration73. Overall, our findings point to promising candidates for
future investigations aimed toward elucidating the biological under-
pinnings of PTC cLNM.

Several points should be considered in the interpretation of our
results. Analyses based on data generated across several sequencing
platforms did not support additional lymphocyte infiltration in cLNM
compared to PT samples. The paucity of distant metastases was
notable in our study population, though not all patients were sys-
tematically scanned for distant events. Future efforts should compre-
hensively evaluate clinical-histopathological characteristics and
molecular-genetic alterations in relation to updated PTC pathologic
classifications74. Finally, caution is warranted when comparing

Fig. 6 | Results of miRNA analyses. Differentially expressed miRNAs between
cLNM and PT samples. Two-sided P values were calculated using simple linear
regression models on the normalized read counts to determine whether tissue
status (cLNM vs. PT) was associated with differential gene and miRNA expression,

adjusted for sample batch, sex, and age at PTC. Adjusted p values were calculated
using the standardBenjamini–Hochberg false discovery rate (FDR)method. Source
data are provided as follows: Supplementary Data 6 provides the full results.
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mutational spectra because we sampled only a single area within each
of the cLNM and PT75–77.

In conclusion, based on comprehensive genomic landscape ana-
lyses combinedwith detailed clinical and patient data, we demonstrate
that the PTC driver is directly related to the occurrence of cLNM. Our
findings underscore the importance of molecular subtyping in the
clinical management of PTC across the age spectrum and inform cur-
rent approaches to patient risk stratification78,79. To better understand
the biological underpinnings of metastatic PTC, further investigation
of the HOXC locus and other differentially expressed genes and miR-
NAs is warranted.

Methods
Study population
Written informed consent for donation and research usewas obtained
from all participants or their legal representatives through the CTB.
The study was approved by Institutional Review Boards at the patient
treatment and tissue collection center (Institute of Endocrinology and
Metabolism in Kyiv, Ukraine), the CTB coordination center (Imperial
College of London, UK), and the United States National Cancer
Institute.

The primary study population included 440 individuals who were
diagnosed with pathologically-confirmed papillary thyroid cancer
(PTC) during young adulthood in Ukraine following the April 1986
Chornobyl nuclear power plant accident and whose pre-treatment,

fresh frozen tumor samplewas collectedby theChornobyl Tissue Bank
(CTB)18–20. The studypopulation included a total of 359 individualswho
were in utero or ≤18 years of age on April 26, 1986 and lived in one of
the regions of Ukraine most highly contaminated with 131I-containing
fallout from the accident, and 81 individuals whowere born >9months
after the accident and were therefore considered 131I-unexposed.
Quantitative radiation dose estimation was conducted by an interna-
tional team of dosimetry experts18,28–30. Doses were estimated for 49
individuals based on individual thyroid radioactivity measurements
taken in May-June 1986, personal interviews regarding residential his-
tory and intake ofmilk and green leafy vegetables, and results of radio-
ecological modeling; for four individuals based on individual thyroid
radioactivity measurements but not on personal interview; for 297
individuals based onmeasurements on different individuals who lived
in the same residential area; and for nine individuals whowere in utero
at the time of the accident based on the mother’s exposure.

All patients were evaluated and treated at a single central tertiary
medical center, withdiagnoses offirst primary PTChistopathologically
confirmed based on the review of tumor tissue by an international
panel of experts through the CTB. Pathologic stage was assigned uni-
formly by a single expert (T.I.B.) according to the 7th edition of the
TNMClassification ofMalignant Tumors31,80. Individuals with unknown
values for nodal (Nx) or metastatic (Mm) were combined with N0 and
M0, respectively, for the purposes of these analyses. TNM distribu-
tions are provided in Fig. S1 and Tables S1, S2. Among the 440

Fig. 7 | Top differentially expressedmiRNAs. Expression levels of miR-196a2 (A),
miR-615 (B), miR-137 (C), and miR-141 (D) in each sample type. Red = cLNM,
blue = paired primary tumors, light blue =matched primary tumors. All box plots
include the center line at themedian, the boxdenotes the interquartile range (IQR),

whiskersdenote the rest of thedata distribution, andoutliers are denoted bypoints
greater than ±1.5 × IQR. Source data are provided as follows: Supplementary Data 6
provides the full results.
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individuals in our primary study population, 179 (40.7%) had metas-
tases at the time of PTC diagnosis, including 164 (37.3%) with cervical
lymphnodemetastases (cLNM)only (N1M0), 14 (3.2%)with both cLNM
and distant metastases (N1M1), and 1 (0.2%) with distant metastases
only (N0M1; this individual was excluded from further analyses of
cLNM occurrence).

For reference, when the PTCs were staged according to the TNM
8th edition81, tumors with minimal extrathyroidal extension in the fat
and connective tissue that were classified as T3 in the 7th edition were
re-classified according to tumor size. Specifically, 71 PTCs shifted from
T3 to T1 and 34 from T3 to T2. However, we retained our primary
analysis using the TNM 7th edition classification because we analyze
tumor size separately and to enable comparisonof our resultswith two
previous studies in the literature17,41,42, both of which were classified
using the 7th edition.

Laboratory methods
We identified a total of 49 fresh-frozen cLNM samples for potential
inclusion in the current study. All laboratory methods for sample
handling, nucleic acid extraction, library preparation, and sequencing
followed those previously described for the primary tumor samples18,
as outlined below.

Sample handling and nucleic acid extraction. The fresh-frozen
cLNM specimens were obtained from the CTB and processed by
Nationwide Children’s Hospital (NCH) Biospecimen Core Resource
(BCR) (Columbus, Ohio). Dual DNA andRNAextractionwasperformed
utilizing the AllPrep DNA/RNA Mini Kit (Qiagen) for DNA and mirVana
miRNA Isolation Kit (Applied Biosystems) for RNA according to man-
ufacturers’ instructions. Following extraction, purified nucleic acids
were evaluated for quality and quantity.

Whole genome sequencing (WGS) and library construction. WGS
library preparation and sequencing was performed at the Broad
Institute18. Libraries were constructed and sequenced on the Illumina
HiSeqX with the use of 151 base pair (bp) paired-end reads then pro-
cessed by the Picard data-processing pipeline. Sequencing data were
aligned to the human reference genome (hg19; gs://firecloud-tcga-
open-access/tutorial/reference/Homo_sapiens_assembly19.fasta)
using BWA-MEM82. Each WGS sample was assessed for all quality
control processes, including coverage, library complexity, finger-
printing across tumor and normal samples, sequencing error
rates, fragment length, chimeric fragment rate, and DNA
oxidative damage using a suite of Picard tools (Picard CollectWGS-
metrics, CollectSequencingArtifactMetrics for 8-oxoG damage, and
CrosscheckFingerprints).

RNA library preparation and sequencing. mRNA-seq andmiRNA-seq
wereperformedat theCancerGenomicsResearch Laboratory (CGR)of
the National Cancer Institute18. Briefly, libraries were prepared using
the Kapa RNA HyperPrep Kit with RiboErase (Kapa Biosystems) and
sequenced on the IlluminaHiSeq 2500. Trimmed readswere aligned to
the GRCh38 human reference genome (Illumina iGenomes NCBI
GRCh38) using STAR/2.5.4a. Code for mRNA-seq quality control and
alignment is publicly available83. For miRNA-seq, ribosomal RNA
depletion from 500ng purified RNA was performed using the Illumina
Ribo-Zero Gold rRNA Removal Kit (Illumina), libraries were prepared
using the NEBNext Multiplex Small RNA Library Prep Set for Illumina
kit. Single-endmiRNA reads were processed according to the ENCODE
miRNA-seq pipeline (https://www.encodeproject.org/microrna/
microrna-seq/) and also mapped to the human hairpin sequences in
reference microRNA database “miRbase” version 22.1 (https://www.
mirbase.org/) using a custom pipeline84. FASTQC/0.11.5 was used for
the quality control analysis of post-trimmed RNA-seq and miRNA-seq

reads. Samples that received warning or fail messages on the analysis
of Mean Quality Scores, per sequence quality scores, per base N con-
tent, or adapter content were filtered. STAR alignment scores were
used for alignment quality control analysis. Samples over 60% of any
type of unmapped reads were filtered.

Relative telomere length measurement. We measured relative telo-
mere length using a qPCR assay18. In brief, we measured the ratio of
telomere (T) signals specific to the telomere hexamer repeat sequence
TTAGGG to autosomal single copy gene (S) signals, and then stan-
dardized this ratio using internal control DNA samples to yield relative
standardized T/S ratios proportional to average telomere length.

MethylationEPIC array. High-throughput genome-wide methylation
analysis was performed on bisulfite-treated DNA (EZ-96 DNA Methy-
lationMagPrepKit (ZymoResearch)) at theCancerGenomicsResearch
Laboratory (CGR) of the National Cancer Institute using the Infinium
MethylationEPIC BeadChip (Illumina Inc.)18.

Bioinformatic analysis
All details of variant calling and filtering were identical to the pre-
viously published pipelines18. WGS processing is available in the public
Terraworkflow framework (Terra.bio)85 REBC_methods_only. TheWGS
cohort included both cLNM-normal (blood or non-tumor thyroid tis-
sue, as available) pairs and a reanalysis of the primary tumor (PT)-
normal pairs to confirm the reproducibility of the variant calling
pipeline, which resulted in 100% concordance in variant calls between
the prior18 and current analysis of the PT-normal pairs.

Simple somatic variant detection andfiltering pipeline. A consensus
calling approach for SSVs combined evidence frommultiple detection
algorithms18. Single nucleotide variants (SNVs) were detected by
MuTect1.0 version GATK3 v1.1.6, MuTect2.0 version GATK3 “3.6-97-
g881c5e9”, Strelka1 version 1.0.11, and Strelka2 version 2.8.3. Insertion/
deletion variants (indels) were detected by MuTect2.0, Strelka1, and
Strelka2, as well as PCAWG_snowman version 1.0, and SvABA version
134. The mutations were filtered for possible sources of artifacts,
including8-oxoGdamage, Panel ofNormal evidence, local realignment
issues, tumor sample contamination, alternate read support in the
paired normal, and the post-process consensus filter requiring evi-
dence from two independent algorithms. Two cLNM samples were
excluded during the initial quality control evaluation, one because
there was no overlap between the cLNM and PT SSVs, and the other
because of contamination of the PT sample, resulting in a final analytic
dataset of N = 47 cLNM samples. All samples are derived from unique
individuals.

Structural variant detection and filtering pipeline. The SV
detection pipeline was based on the consensus of calls among four
structural variation algorithms: dRanger/Breakpointer86, SvABA87,
PCAWG_snowman88, andManta89. SV variant calls from each algorithm
were converted into a common format and filtered based on PCAWG
PoNdata. The SVpost-process filters required variant evidence fromat
least two algorithms, at least four alternate allele supporting reads
from the tumor sample, at most one alternate supporting read in the
normal sample, and VAF ≥0.05. The SV filter also excluded SVs with
breakpointswithin centromereor telomere regions andwithinhotspot
regions as previously described18. SV events were classified as simple/
balanced, simple/unbalanced, and complex clusters of SV events
based on the breakpoint proximity of the SV calls90. IGVmanual review
was performed for all fusion drivers, all simple/unbalanced SVs, and
any complex SVs from individuals withmultiple complex clusters. Any
discordant events or false positives were corrected or removed to
generate the final SV dataset.
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SCNAdetection andfilteringpipeline. Copynumber alterationswere
detected in the WGS data using the GATK 4.1.4 CNV workflows and
multiple collapsing steps18. The SCNA PoN consisted of 423 CTB nor-
mal samples (blood and non-tumor tissue) with no sign of tumor-in-
normal (TiN) contamination from the prior analysis18. Both total copy
numbers based on normalized read coverage and germline hetero-
zygous SNP allele fraction shifts were used to estimate the allelic copy
number ratio across the genome and to assign allelic copy number
ratios to discrete segments. The Fraction of Genome Altered was cal-
culated by summing the span of each SCNA over the total span of the
genome.

Purity and ploidy assessment. ABSOLUTE was utilized to estimate
tumor ploidy. Given the limited allelic copy number signal in most
samples, tumor purity was estimated considering both ABSOLUTE and
a somatic VAF method based on the clonal allele fraction peak90 as
described previously18. For the purposes of most statistical analyses,
we excluded cLNM and PT samples with tumor purity <20%. Figure S4
and Table S9 describe the availability of cLNM and PT samples by
platform.

Variant clonality (cancer cell fraction) estimation. Since most
tumors did not have sufficient copy numbers to constrain ABSOLUTE
purity and ploidy solutions with corresponding allelic SCNAs and
mutation CCFs, a custom approach was implemented to predict CCF
based on the logic of the ABSOLUTE algorithm18,90. CCF Clonal and
Subclonal Thresholds: For the SSV mutations, clonal variants were
defined as thosewith a CCF hat≥0.6, while subclonal SSV variants were
those with a CCF hat <0.6.

Mutational signature analysis. Mutational signature classificationwas
performed on single base substitutions (SBS) and small indel (ID)
variants separately using SigProfiler32,33. The cLNMsandpaired PTs had
to be analyzed separately due to the substantial overlap in variants,
therefore we classified signatures in two separate runs: (1) 45 high-
purity cLNMs, 316 PTs from other individuals, and 42 samples from
TCGA and (2) 41 high-purity paired PTs, and the same 316 PTs from
other individuals and 42 samples from TCGA. Mutational signatures
were predicted using SigProfilerMatrixGenerator (version 1.1.0), presig
version 0.0.1, and SigProfilerExtractor version 1.0.3 applying non-
negative matrix factorization-based signature extraction. In brief, SBS
and ID mutations were optimally attributed and classified as muta-
tional patterns of the known 96 SBS or 83 ID signatures from the
Catalog of Somatic Mutations in Cancer (COSMIC v3)33 or de novo
signatures.

mRNA clustering analyses. Unsupervised consensus clustering ana-
lysis was performedusing ConsensusClusterPlus91. Input data included
the variance stabilizing transformation (vst) expression of the 1000
most variably expressed genes for mRNA analysis92. The appropriate
cluster number was determined by identifying the largest cluster with
a delta area value >0.3.

PTCdriver identification. Candidatemutation and fusion drivers were
identified in the 47 cLNM and reevaluated in the paired PT, examining
both theWGS andmRNA-seq data with a comprehensive list of known
driver genes18. Known mutation driver genes included genes sig-
nificantly mutated in the prior MutSig2CV analysis18, genes previously
reported as mutation drivers in the TCGA analysis93, and genes
reported in the COSMIC Cancer Gene Census (CGC) database to ver-
sion 92 (v92) (https://cancer.sanger.ac.uk/census)with frameshift,
missense, nonsense, or splice site mutation types. Candidate driver
mutations in the cLNM and PT tumors were somatic protein-altering
variants that had a corresponding match in the COSMIC CGC v92
database within one of the known mutation driver genes.

The known fusion driver genes included previously identified
fusion drivers or focally deleted genes in the prior analysis18 or the
TCGA analysis93 and genes reported as oncogenes or tumor sup-
pressors in the COSMIC CGC v92 with fusion indicated for either the
“role in cancer” or “mutation type.” Candidate fusion drivers in the
cLNM and PT tumors were WGS structural variants and RNA-seq gene
fusions involving one of the known fusion driver genes.

All 47 cLNM and PT pairs had the same candidate driver(s). For 45
pairs, a sole candidate driver was identified and therefore was desig-
nated as the final driver. For two pairs, two candidate drivers were
identified, but the final driver was designated as the one that was
recurrently altered in the full dataset of 487 (47 cLNM, 440 PT)
samples.

Methylation filtering. The methylation filtering and normalization
processing was updated in the current analysis compared with the
prior analysis18. The methylation intensity files from the Illumina
methylation assay on the MethylationEPIC BeadChip were processed
with the R packages minfi and ChAMP94. Samples with mMed or uMed
<10.2were removed from the analysis prior tomatching the cLNMwith
additional PT samples based on driver. All 165 samples in the analysis
(43 cLNM, 36paired PT, and86matchedPT;Data S1) hada low fraction
of failedprobes (<0.005% failedCpG fraction). Probeswerefiltered at a
detection p value of 0.01 (n = 25,429), and due to a beadcount <3 in at
least 5%of samples (n = 1228). Non-CpGprobes (n = 2804), probeswith
SNPs95 (n = 53,375), and probes aligning to multiple locations96 (n = 11)
were also filtered. After filtering, 783,071 probes were available for
analysis. Estimates of the composition of cell types were obtained
using the algorithm of ref. 97.

Statistical analysis
All analyses were conducted using SAS version 9.4 (Cary, NC), R ver-
sion 3.6.3 and 4.2.1 (Foundation for Statistical Computing, Vienna,
Austria), or Epicure version 2.0 (Risk Sciences International, Ottawa,
Canada).

Predictors of cLNM occurrence. We identified clinical and molecular
predictorsof cLNMoccurrence inour primary studypopulationof440
adolescents and young adults with PTC using unadjusted logistic
regression models and multivariate logistic regression models adjus-
ted for sex and age at PTC (continuous). Additional sensitivity analyses
were further adjusted for radiation dose (continuous), with doses
>1000mGy truncated (i.e., assigned the value of 1000mGy) to reduce
their influence on the estimated model coefficients18. For each pre-
dictor variable, statistical significancewas assessed using a two-sided P
value generated using likelihood ratio tests, comparing model fit with
and without the variable of interest. Models that evaluated the linear
trend in radiation dose estimated the excess odds ratio (EOR) so that
the effect of dose was linear (rather than log-linear), consistent with
standard practice in radiation epidemiology98.

Genomic profiles of cLNM versus PT samples. We compared the
genomic profiles of cLNM versus PT samples using multivariable
regression models adjusted for sex and age at PTC (continuous).
Additional sensitivity analyseswere further adjusted for radiation dose
(continuous) and driver type (BRAF mutation, RET fusion, other RTK
fusion, and BRAF fusion [referent group]). The type of regression
model depended on the distribution of themolecular characteristic, as
described previously18 and specified in Table S12, with the use of linear
regressionmodels for continuous variables, logistic regressionmodels
for dichotomous characteristics, and proportional odds models for
characteristics with discrete counts over a limited range.

Transcriptomic profiles of cLNM versus PT samples. To evaluate
genes differentially expressed between cLNM versus PT samples, we
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used standardized approaches as described by the Pancancer Analysis
of Whole Genomes (PCAWG) Working Group99. Briefly, RNA-seq read
counts for each gene were generated via STAR100 and loaded into R
version 4.1.2 (Foundation for Statistical Computing, Vienna, Austria).
For mRNA-seq analyses, normalization size factors were calculated
using the standard “Upper Quartile”method101, in which each sample’s
size factor is equal to the 75th percentile of the set of nonzero gene-
level read counts for that respective sample. The log-normalized
counts are defined as:

Y i,g = log2

Ki,g + 1

si

� �
ð1Þ

where Ki,g is the simple read count for sample i and gene g, si is the
normalization size factor for sample i, and Y i,g is the log-normalized
read count for sample i and gene g. Due to the large size of the sample
set, specialized methods to calculate the dispersion were not
necessary. For miRNA-seq analyses, we normalized read counts
according to DESeq and excluded miRNAs with mean counts <1
(Supplementary Data 8).

As described above for analyses of the genomic profiles, simple
linear regression models on the normalized read counts were used to
determine whether tissue status (cLNM vs. PT) was associated with
differential gene and miRNA expression, adjusted for sample batch,
sex, and age at PTC, with additional sensitivity analyses adjusted for
radiation dose and driver type, as above for the genomic profile ana-
lyses. Two-sided adjusted p values were calculated using the standard
Benjamini–Hochberg false discovery rate (FDR) method102.

Patterns of mRNA-seq expression in previously identified gene
sets were analyzed from the Molecular Signatures Database (MSigDB)
“Hallmark gene sets” (n = 50; MSigDB v7.1; https://www.gsea-msigdb.
org/gsea/msigdb)45,46. Expression information across gene sets was
collapsed using GSVA, an R package that performs “Gene Set Variation
Analysis,” providing a Kolmogorov–Smirnov-like rank statistic based
on the log-normalized counts for each gene and set of genes. Linear
regression analyses were then performed on these statistics103, as
described above.

Finally, we used CIBERSORTx to estimate the cell type composi-
tion of cLNM and PT samples49. Single-cell RNA-seq data for thyroid
cancerweredownloaded from theGene ExpressionOmnibus database
(accession GSE184362)50 to serve as training data. Clustering and cell
type identification was performed in the Seurat R package104, sorting
the 169,161 cells into clusters of principal-components-based linear
dimensional reduction. Cell types associated with each cluster were
assigned based on reference transcript lists from the thyroid fromThe
Human Protein Atlas as well as the original thyroid cancer single-cell
RNA-seq data105–107. Cell fractions for each cLNM and PT sample were
then imputed using CIBERSORTx49.

Epigenomic profiles of cLNM versus PT samples. To evaluate dif-
ferential DNAmethylation between cLNM versus PT samples, outliers
were fixed by replacing all values ≤0 with the smallest positive value
and all values ≥1 with the largest value below 1. Normalization was
performed by applying the Beta-Mixture Quantile (BMIQ) normal-
ization with ChAMP.norm. ChAMP.SVD was utilized to analyze
potential sources of technical or other variation. ChAMP.runComBat
was used to account for variation due to sex and the array or Sentrix
position.

Notably, all the cLNM sampleswere run on the same sample plate,
separately from the PT samples, thus caution is warranted in the
interpretation of our results. Sample plate was included as a covariate
in the simple linear regression models used for analysis, which also
were adjusted for sex and age at PTC, with additional sensitivity

analyses adjusted for radiation dose and driver type, as above for the
genomic profile analyses. We also evaluated robust linearmodels with
sandwich estimators for top sites, to account for heteroskedasticity.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
RawWGS, RNA-seq, andmiRNA-seq data are deposited at theGenomic
Data Commons under project ID REBC-THYR. These data, as well as
raw SNP array data, were accessed through the database of Genotypes
and Phenotypes (dbGaP) under accession code phs001134 [https://
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=
phs001134.v2.p1]. Data were available under dbGaP-controlled access
for general researchuse. Approved userswill be granted access to data
for 12-months, after which the requestor will be asked to renew or
close-out the project. The sample IDs included in each analysis are
specified in Supplementary Data 1. Source data are provided with this
paper, with specific sources noted in each figure and table in Supple-
mentaryData 2–8. Processed scRNA-seq data from ref. 50 are available
without restriction fromtheGene ExpressionOmnibus (GEO)database
under accession code GSE184362.

Code availability
The Methods text specifies code that has been posted to GitHub
and is archived on Zenodo83,84,90,92. Code used for mRNA-seq
quality control and alignment is available at https://github.com/
NCI-CGR/ChernobylThyroidCancer-RNAseq. Code for mRNA clus-
tering analyses is available at https://github.com/NCI-CGR/
ChernobylThyroidCancer-Clustering. Code for miRNA-seq pro-
cessing is available at https://github.com/NCI-CGR/Gencode_
microRNA-seq. Code for tumor purity and clonality estimation
and SV events classification, is available at https://github.com/
getzlab/REBC_tools/releases/tag/v1.1.2.
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