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Mixed responses to targeted therapy driven
by chromosomal instability through p53
dysfunction and genome doubling
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The phenomenon of mixed/heterogenous treatment responses to cancer
therapies within an individual patient presents a challenging clinical scenario.
Furthermore, the molecular basis of mixed intra-patient tumor responses
remains unclear. Here, we show that patients with metastatic lung adeno-
carcinoma harbouring co-mutations of EGFR and TP53, are more likely to have
mixed intra-patient tumor responses to EGFR tyrosine kinase inhibition (TKI),
compared to those with an EGFR mutation alone. The combined presence of
whole genome doubling (WGD) and TP53 co-mutations leads to increased
genome instability and genomic copy number aberrations in genes implicated
in EGFR TKI resistance. Using mouse models and an in vitro isogenic p53-
mutant model system, we provide evidence that WGD provides diverse routes
to drug resistance by increasing the probability of acquiring copy-number
gains or losses relative to non-WGD cells. These data provide amolecular basis
for mixed tumor responses to targeted therapy, within an individual patient,
with implications for therapeutic strategies.

Up to 50% of all never-smokers who develop lung adenocarcinoma
(LUAD) harbor tumors with mutations in the epidermal growth factor
receptor (EGFR)1,2. EGFR mutations are predominantly clonal, making
this an optimal therapeutic target. Unfortunately, only a minority of

patients have a lasting treatment benefit for more than two years3–5.
The median progression-free survival for patients receiving EGFR tyr-
osine kinase inhibition (TKI) therapy with osimertinib is 18.9 months
and 10.1 months for patients with EGFR mutation-positive metastatic
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non-small cell lung cancer (NSCLC) when receiving treatment in the
first and second line, respectively6,7. Primary resistance, with no
objective treatment response, is seen in 20% and 29% of patients
receiving osimertinib as first- and second-line treatment, respectively7.
Acquired resistance is defined clinically as systemic progression as
measured by RECIST (Response Evaluation Criteria in Solid Tumors8,9)
after a period of initial response to EGFR TKI therapy10. Common
resistance mechanisms include secondary alterations in EGFR itself,
such as the “gatekeeper” T790M mutation in response to erlotinib
treatment11, as well as TKI bypass via alternative signaling pathways
and/or somatic copy-number alterations (SCNAs), including amplifi-
cations of genes such as MET, ERBB2, KRAS, NRAS, and BRAF12. How-
ever, in ~30% of patients, the mechanisms of acquired resistance
remain unknown13,14.

Mixed treatment responses, also known as heterogeneous
responses, where responding and non-responding metastases are
detected within the same patient, have been observed with varying
frequency in many cancer types. For example, 11% of patients with
BRAFV600E-mutant melanoma or thyroid cancer had mixed responses
after treatment with a BRAF inhibitor15, whereas 56% of patients with
renal clear cell cancer treated with anti-angiogenic tyrosine kinase
inhibitors displayed mixed treatment responses16. In the CAIRO I/II
studies of patients with colorectal cancer and livermetastasis, a mixed
response to therapy was associated with poorer survival outcome17.

When measuring response to therapy using current clinical
RECIST version 1.1 guidelines9, the sum of the diameters of all target
lesions is used9.Within a cohort of patients classified as having a stable
disease or partial response to treatment, there will be some patients
with mixed responses i.e., responding lesions and, at the same time,
progression of other lesions. Current RECIST reporting criteria do not
consider such discordant radiological responses18, nor do they con-
form to the standard definitions of acquired resistance to therapy
since both responding and resistant lesions occur within the same
patient simultaneously.

Only a limited number of studies have explored the prevalence of
mixed responses to TKI in LUAD18,19, and to our knowledge, none have
investigated the underlyingmechanistic basis of acquired resistance in
this context. Since a single progressing lesion might contribute to
systemic re-seeding, disease progression, early treatment failure and
drug discontinuation, understanding the mechanisms of clonal diver-
sification and intra-patient mixed tumor response dynamics may
improve patient screening and therapeutic strategies20.

TP53 is mutated in around 40% of all patients with NSCLC, and
TP53pathwayperturbations in EGFR-driven tumors are associatedwith
shortened progression-free (PFS) and overall survival (OS), in the
context of treatment with first-, second-, or third-generation EGFR
inhibitors20. It was recently suggested that loss of TP53 function,
together with other genetic events, facilitates the acquisition of EGFR
TKI resistance mutations21. Mechanistically, TP53 loss of function per-
mits the tolerance of chromosomal instability (CIN) and is enriched in
whole genome-doubled (WGD) tumors22–24. Moreover, studies have
demonstrated that WGD results in rapid propagation of CIN and
acquisition of SCNAs25–28.

We hypothesized that TP53 loss together with WGD permits the
rapid onset of CIN and SCNA acquisition, leading to more diverse
tumor genotypes and phenotypes, thereby contributing to the radi-
ologically observedmixed tumor responseswithin patients with clonal
actionable driver events. We investigated this hypothesis in multiple
clinical cohorts of patients with clonal EGFR-activating mutations
treated with EGFR TKI, in genetically engineered mouse models
(GEMMs) driven by clonal EGFR activating mutations with or without
Trp53 loss, and in isogenic cell lines to examine mechanisms of resis-
tance and cellular evolution under therapeutic pressure using func-
tional models, whole-exome DNA sequencing, and single-cell DNA
sequencing.

Results
Mixed clinical responses to TKI therapy are prevalent in EGFR-
driven lung adenocarcinoma
There is limited information available on mixed responses to targeted
therapies and cytotoxic chemotherapy in NSCLC as most studies only
report data required to meet RECISTv1.1 criteria for response18. We
used the Reiter and Vogelstein15 defined response parameters to dis-
tinguish homogeneous from mixed tumor responses in both human
and murine datasets. Unlike RECISTv1.1, which defines progressive
disease as a 20% increase in total diameter calculated as the sumof the
diameter of all measured lesions, Reiter et al. defined response in
individual lesions. A lesion was considered to respond if it shrank by at
least 30% in diameter and stable if it did not grow more than 10% or
reduce in size by more than 30%. Progression was defined by at least a
10% increase in lesion diameter. A homogeneous objective response to
therapy was defined as having at least one lesion with a greater than
30% reduction in size, in combination with other lesions being stable
(less than 10% growth) or reducing in size. The appearance of new
lesions was not considered in the Reiter et al. definition of a mixed
response. However, in the context of lesions thatmeet the criteria for a
radiological response, we included the appearanceof oneormore new
lesions in the mixed response classification, even if all other lesions
were responding. If lesions within the same patient were assigned to
both the response and progression criteria or the patient developed a
new lesion, the patient was classified as having a mixed response to
therapy.

All assessments of responsewere performed at a single time point
where imaging was available and, unless specified otherwise, were
performed at the first response assessment following treatment
(12 weeks post-treatment ± 2 weeks). As we assessed radiological
response on a lesion-by-lesion basis early in the course of treatment,
we were able to identify non-responding lesions before a patient’s
overall tumor response reached the clinical definition of acquired
resistance10. Therefore, to distinguish between clinical definitions of
primary and acquired resistance, designed to standardize criteria for
clinical trial enrollment, we refer to the growth of an established lesion
as the “development of resistance”. Similarly, we apply the same
nomenclature to our murine data and the genetic aberrations asso-
ciated with the development of resistance19.

These radiological response parameters were first applied to
analyse the European Organization for Research and Treatment of
Cancer (EORTC) RECIST database19, which contains response assess-
ments from patients in phase II and phase III clinical trials. The last
imaging assessment occurring during the first 12 weeks of treatment
was used for the analysis and compared to the baseline pretreatment
imaging assessment. The dataset includes response data from 8,365
patients with lung cancer (NSCLC and SCLC). Of the 428 NSCLC
patients treated with erlotinib, 237 patients had at least two target
lesions as defined by RECISTv1.1. Of these patients, 31% (73/237) had at
least one responding target lesion that reduced in size by 30% ormore
(Supplementary Fig. 1a). Within this group, 34% (25/73) had a mixed
response to erlotinib treatment. The majority of patients within this
group (21/25), had growth of at least one existing target lesion
(Fig. 1a, b and Supplementary Table 1), whereas a minority of patients
(4/25), had a mixed response to erlotinib due to the appearance of a
newmetastatic lesion or progression in a non-target lesion (Fig. 1b). To
summarize, in all patients where a mixed response to erlotinib could
bemeasured, i.e., two ormore target lesions could be assessed, 25/237
patients had a mixed response.

Of the 1633 patients treated with cytotoxic chemotherapy, 1092
patients had at least two target lesions. Within this group, 64% (699/
1092 patients), had at least one lesion that shrank by 30% or more.
However, this does not imply a RECIST response, as the sum of the
diameters of the target lesions may have decreased by less than 30%.
Within the 699 patients with one responding target lesion, 24% had a
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mixed response (165/699). Within this group of patients, a majority
had growth of at least one existing target lesion as a component of the
mixed response (106/165, Fig. 1a, Supplementary Fig. 1b, and Supple-
mentary Table 2). In 59/165 patients, the mixed response was due to
the appearance of a new metastatic lesion or progression in a non-
target lesion. In all the patients where a mixed response to che-
motherapy could be measured, i.e., two or more target lesions could
be assessed, 165/1092 patients had a mixed response.

Focusing on those patients with at least one responding target
lesion, we found that 34% (25/73) and 24% (165/699) of responding
patients treated with erlotinib or chemotherapy respectively, dis-
playedmixed responses to treatment (Fig. 1a). However, as responding
patients were defined by the response in a single lesion rather than as
the sumof diameters of the target lesions as per RECIST, our definition
could include patients from across the RECIST response spectrum.
Due to this reason, the response rates to erlotinib and chemotherapy
reported here may differ from what would be expected clinically.

Indeed, using the response criteria outlined above, we found that
within the EORTC cohort, 5.9% and 13% of erlotinib-treated patients,
classifiedwith partial response (PR) or stable disease (SD) according to
the RECIST criteria, respectively, did in fact have mixed responses
(Supplementary Fig. 1c, left panel). The equivalent numbers for
patients treatedwith chemotherapywere 13.5%achieving SD and 16.9%
for patients achieving a PR (Supplementary Fig. 1c, right panel).
Although there are no scans or genomic data associated with the
EORTC dataset, re-analysis of the underlying lesion measurements
demonstrates thatmixed responses are commonly observed in NSCLC
patients treated with either TKI or chemotherapy.

TP53 pathway disruption is associatedwith shorter progression-
free survival and mixed clinical responses to TKI therapy
To understand the molecular basis underlying mixed responses in
EGFR-mutant lung cancer, we used existing genomically annotated
clinical cohorts. In clinical LUAD cohorts, loss of TP53 function has
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Fig. 1 | TP53 pathway disruption is associated with shorter progression-free
survival and mixed clinical responses to TKI therapy. a Bar chart showing the
percentage of responding patients with homogenous (gray) or mixed (red)
responses to treatment with erlotinib or chemotherapy. bMixed responses in the
RECIST database were analysed using response criteria defined by ref. 15. Patients
with at least two lesions where one shrank by at least 30% were included in the
analysis. The number of patients with homogenous responses are shown in black
for patients receiving erlotinib. The different patterns of progression seen in
patients with a mixed response are shown in red. c Kaplan–Meier survival analysis
of patients with E (n = 35, yellow line) and EP tumors (n = 82, green line), in the
AURA2, AURA3, and AURA phase II expansion cohort, demonstrating the differ-
ence in PFS after osimertinib treatment (Log-rank test (two-sided) p = 4e−04, HR
0.36, CI: 0.20–0.65). d Bar chart of the proportion of Homogenous (yellow) and
Mixed (green) responses to osimertinib in patients with E or EP tumors (p =0.0106

two-sided Fisher’s exact test). e Bar chart of the proportion of patients with E or EP
mutant tumours with new lesions during osimertinib treatment (p =0.0846 two-
sided Fisher’s exact test). f Individual first tumor response within six months on
osimertinib treatment, presented as % change in CT-measured tumor length. Each
x-axis tick represents one patient (n = 21, E group of patients with 127 lesions and
n = 39, EP group of patients with 246 lesions in total). The dotted lines show the
Reiter et al. criteria for response (−30%) and progression (10%), respectively. Gray
dots and whiskers represent the median change in tumor size and variability
around the median value using the median absolute deviation (MAD) for each
patient. Boxes underneath the graph indicate the occurrences of new lesions (red
box), andmixed responses of existing lesions, as defined by ref. 15 (gray box), and
patients with mixed responses with or without the occurrences of new lesions
(blue box). Source data are provided as a Source Data file.
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been associated with reduced PFS and OS20. Molecularly, TP53 path-
way disruption (defined as deleterious mutations in TP53 affecting
splice sites, DNA binding, transactivation domains and tetramer
binding, TP53 deletion, or clonal MDM2/4 amplification) has been
shown to increase the tolerance and propagation of genomic
instability and CIN29–32. We hypothesized that TP53 pathway disruption
in tumors with clonal EGFR activating mutations may promote cell-to-
cell diversification by permitting the acquisition and propagation
of SCNAs. An increase in SCNAs might be a substrate upon which
selection for drug-resistant subclones could act and thereby
expandphenotypic diversity andopportunities for thedevelopmentof
resistance, resulting in an increased frequency of mixed tumor
responses within the same individual under the selective pressure of
therapy.

The incidence of EGFR driver mutation-positive LUAD varies geo-
graphically and by genetic ancestry. In order to quantify the proportion
of patients with EGFR driver mutation-positive LUAD with TP53 co-
mutation, we analysed the incidence of EGFR and TP53 alterations in
threewell-annotated, geographically distinct LUADcohorts. Concurrent
TP53 pathway disruption was observed in 52% of the first prospectively
recruited 421 patients in the TRACERx study (UK)33, in 72% of the TCGA
cohort (US)1, and in 47% of the OncoSG cohort (East Asia)34 (Supple-
mentary Fig. 2a). Within the TRACERx421 cohort, there were 249 LUAD
cancers sequenced, of which 25 harbored a clonal EGFR mutation. Of
these 25 cases, sevenwere found to have clonal TP53mutations and two
to have subclonal TP53mutations. An additional four tumors had clonal
MDM2/4 amplification events and the remaining 12 tumors were classi-
fied as TP53 pathway wildtype (Supplementary Fig. 2b).

To investigate the effect of TP53 pathway disruption on targeted
therapy response and TKI resistance, we used data from the AURA2
and AURA3 clinical trials, as well as the AURA trial phase II expansion
cohort, which tested the efficacy of osimertinib in patients with
metastatic EGFR mutation-positive NSCLC (Identifiers: NCT02094261,
NCT02151981, and NCT01802632; see Supplementary Table 3 for
patient selection criteria). All patients from the AURA clinical trials
included in our analysis had NSCLCs that tested positive for both an
EGFR activating mutation (e.g., L858R) and the EGFRT790M resistance
mutation, had progressed following first-line EGFR TKI treatment and
were treatedwith the third generation TKI osimertinib. Although some
patients in these studies had an assessment of TP53 co-mutation using
circulating tumor DNA (ctDNA)35, our PFS analysis of the combined
AURA cohorts was restricted to patients with available tissue-based
tumor somatic analysis (n = 117) due to the difficulty in calling copy-
number loss from ctDNA and the confounding impact of clonal
hematopoiesis of indeterminate potential on TP53 mutations in cir-
culating lymphocytes. Consistent with previous reports20, patients
whose tumors harbored oncogenic EGFRmutations and TP53 pathway
disruption (EP, n = 82) had significantly worse PFS compared to
patients whose tumors had only oncogenic EGFRmutations (E, n = 35),
p = 4e−04, HR 0.36, CI 0.20–0.65 (Fig. 1c). This difference could not be
explained by a difference in the number of metastatic lesions present
in the two patient groups before the start of osimertinib treatment
(median numbers of lesions per patient: 5.5 E and 6 EP; p = 0.7366,
Supplementary Fig. 2c, two-sided Mann-Whitney U test) or by other
clinical variables (Supplementary Fig. 2d).

Next, response dynamics were examined in the 68 patients from
the AURA cohorts who had at least two metastatic lesions at the
baseline scan, had tissue-based tumor somatic analysis, and had con-
sented to share longitudinal follow-up imaging (See Consort diagram,
Supplementary Fig. 2e, for exclusion criteria). Within these trials,
patients were imaged every 6 weeks following randomization. A total
of 395 metastatic lesions from 46 patients with EP tumors and 22
patients with E tumors from the AURA2 (n = 24), AURA3 (n = 33), and
AURA phase II expansion cohort (n = 11) were assessed to investigate
homogenous and mixed responses during osimertinib therapy. In

total, at the time of first assessment, 60/68 patients were defined as
responders as they had at least one metastatic lesion that reduced in
size by 30% or more (E: range 2–13 lesions per patient; EP: range 2–15
lesions per patient).

At the first follow-up time point, responding patients with EP
tumorswere significantlymore likely tohavemixedobjective responses
to therapy with the progression of one or more existing metastatic
lesions consistent with the early development of resistance (Fig. 1d, 10/
39 EP vs 0/21 E, p =0.0106, Fisher’s exact test). At this early time point,
newmetastatic lesions were only observed in the EP patient group, but
this difference did not reach significance (Fig. 1e, 7/39 EP vs 0/21 E,
p =0.0846 Fisher’s exact test). Patients with EP tumors had significantly
higher variability in response between metastatic lesions (as measured
using the median absolute deviation (MAD) of lesion response within
each patient) and this was consistent whether measured at the first
follow-up scan (Fig. 1f, p =0.01 Mann–Whitney U-test) or at the point of
maximum response where 64 out of 68 patients had at least one
responding lesion (Supplementary Fig. 3a, p=0.032 two-
sided Mann–Whitney U-test). At the point of maximum response,
patients with EP tumors continued to be more likely to have mixed
responses to therapy (Supplementary Fig. 3b, 29/42 EP vs 5/22 E,
p =0.0006, two-sided Fisher’s exact test) and were also more likely to
progress with a newmetastatic lesion (Supplementary Fig. 3c, 25/42 EP
vs 5/22 E, p =0.0079, two-sided Fisher’s exact test) compared to
patients with E tumors. No specific TP53 mutation correlated with
homogenous or mixed responses in this dataset (Supplementary
Fig. 3d).We next investigated radiological responses froman additional
dataset of osimertinib-treatedpatients fromtheUniversity ofCalifornia,
San Francisco (UCSF) Clinical Cohort (Supplementary Fig. 3e). At the
time of the first surveillance scan, new metastatic lesions were only
evident in the EP group (0/14 E mutant group compared to 5/34 EP
mutant group). We also analysed 113 lesions from the first surveillance
scans of 31 patients (E = 9, EP = 22) with at least one responding lesion.
Although we only could observe mixed responses in two EP patients at
this early time point, the MAD of response was significantly different
between the two patient groups (median of the MAD; E = 2% compared
to EP = 13%, Supplementary Fig. 3f, p=0.0165, Wilcoxon test). Focusing
on patients with at least one responding lesion, there was a small but
significant increase in the appearance of new metastatic lesions in the
EP patient group when analysing the combined AURA and UCSF data-
sets (0/30 E compared to 8/54 EP mutant group, p=0.049) suggesting
that loss of p53 function predicts the appearance of early new meta-
static lesions in patients receiving EGFR TKI therapy. These data high-
light the association between TP53 pathway dysfunction, mixed
responses to EGFR TKI therapy, and reduced PFS in patients with
metastatic EGFR driver mutation-positive NSCLC.

Trp53 loss is associated with more rapid therapy resistance and
acquisition of alternative mechanisms of resistance to TKI
therapy in mouse models
Tomodel the impact of clonal p53 disruption in EGFR-mutant LUAD in
the context of mixed responses to therapy, EGFRL858R (E) and
EGFRL858RTrp53fl/fl (EP) GEMMswere used (Supplementary Fig. 4a). Lung
specific expression and recombination was induced via intratracheal
delivery of adenoviral Cre and tumor development was monitored
usingmicro-CT scanning (See Supplementary Fig. 4b for workflow). EP
mice demonstrated earlier tumor initiation (Supplementary Fig. 4c,
p <0.0001, two-sided Mann–Whitney U-test), a higher number of
tumor nodules per mouse (Supplementary Fig. 4d, p =0.0124, two-
sided Mann–Whitney U-test), increased tumor proliferation indices
(Supplementary Fig. 4e, p <0.0001,Mann–WhitneyU-test) and a trend
towards higher tumor grade (Supplementary Fig. 4f, p =0.1704,
Kruskal–Wallis test) when compared to tumors from E mice. We
observed significantly reduced overall survival of EPmice compared to
E mice (Supplementary Fig. 4g, p = 0.0014, Mantel–Cox test).
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Weevaluated the suitability ofGEMMsas amodel system to assess
mixed responses in EGFR-driven lung cancer by generating combined
synteny SCNAmaps of treatment-naïvemouse and human tumors. Re-
mapping the mouse LUAD genome onto the human LUAD genome
revealed that, in all samples investigated, oncogenes, such asAKT1 and
tumor suppressors, such as PBRM1, SETD2, BAP1, and SMAD3, were
recurrently affected by copy-number gains (pink) and losses (blue)
respectively in both human and mouse tumors irrespective of E or EP
status (Fig. 2a). Syntenic gains or losses that were restricted to either E
or EP tumors included the tumor suppressor gene CDKN2A, which was
predominantly lost in mouse and human E tumors, whereas syntenic
loss of PTEN, which has been associated with TKI resistance36, was
mainly observed in treatment-naïve EP tumors. These analyses
demonstrate that tumors from E and EP mice recapitulate several of
the genomic events observed in human tumors and highlight the
potential importance of a limited set of genes commonly gainedor lost
in the earliest stages of EGFR-driven tumorigenesis (Fig. 2a and Sup-
plementary Data 1).

Next, mice were scanned using micro-CT one month after Cre-
mediated induction, and tumor development was monitored with
monthly scans (see Methods). Erlotinib treatment was initiated upon
identifying at least one lung tumor with a minimal diameter of 1mm. If
multiple smaller tumors were found (granular appearance of lungs),
mice were scanned again after 2 weeks, and if it was deemed that the
welfare of the animal would be compromised within the next 2 weeks,
therapy was initiated (Supplementary Fig. 5a and Supplementary
Data 2). As seen in treatment-naïve animals, EP mice had significantly
reducedOS compared to Emicewith treatment durations ranging from
two weeks to 12 months (median survival after initiating erlotinib
treatment: 13 (EP) and 34 (E) weeks respectively, Fig. 2b, p <0.0001,
log-rank Mantel–Cox test). Micro-CT imaging of response dynamics
using the same parameters as the patient data in Fig. 1f, revealed that
within the first month of therapy, tumors in individual Emice almost all
uniformly responded to treatment with erlotinib (Fig. 2c). In contrast,
EP mouse tumors exhibited significantly greater heterogeneity in
response dynamics between tumors, with some lesions responding to
treatment and others progressing within the same animal. To analyze
the degree of variability in lesion size, the MAD percentage tumor
diameter change within each animal was compared, which demon-
strated significantly higher variability in tumor response in the EP than
in the E mouse group (Fig. 2c, p =0.006464, two-sided Mann–Whitney
U-test, Effect size: −0.53232, Cohen’s ds).

The observation that acquired resistance was a rare event in the
erlotinib-treated E mouse cohort but not in the EP mouse cohort (2
out of 12 E mice had at least one resistant lesion compared to 11 out
of 16 EPmice, Fig. 2c)motivated us to further explore the association
between TP53 pathway disruption and the development of resis-
tance to therapy. The combination of longer latency times to tumor
development together with fewer nodules per mouse in the E group
(Supplementary Fig. 4c, d) prompted us to increase the probability
of generating resistant tumors by adapting an intermittent dosing
protocol shown to generate erlotinib-resistant tumors37 (see Meth-
ods). Even when using this protocol, significantly more EP mice than
E mice developed at least one therapy-resistant tumor (Fig. 2d,
p = 0.0082, two-sided Chi-squared test). In addition, the develop-
ment of resistance occurred significantly faster in EP mice (range
8–111 days after start of erlotinib) than in E mice (range 28–330 days
after start of erlotinib, Fig. 2e, p < 0.0001, two-sided Mann–Whitney
U-test). Within the first month of erlotinib treatment, 17/18 EP and 3/
13 E mice had at least one resistant nodule, suggesting a higher
propensity to develop early resistance to therapy in EPmice. Overall,
these results indicate that Trp53 loss increases the probability of and
reduces the time to developing therapy resistance.

To assess whether somatic resistance mutations, such as T790M,
identified from repeat biopsy of patient tumors with clinically defined

acquired resistance to TKI therapy38, could explain the development of
resistance in the mouse tumors, we performed whole-exome sequen-
cing (WES, median depth of 92x, range: 58–169x) of 9 E and 10 EP
erlotinib-resistant mouse tumors. There was no significant difference
in the total tumorpointmutational burdenbetween the twogenotypes
in either the naïve or treated mouse tumor samples, or in the human
TRACERx421, OncoSG, or TCGA cohorts (Supplementary Fig. 5b–e).
Resistance to TKI treatment via histological transformation13 of EGFR-
driven LUAD to small-cell cancer with accompanying RB1mutations is
a well-described phenomenon39. Neither Rb1 mutations nor histologi-
cal transformation was observed in the analysed resistant
mouse tumor samples. In E-resistant mouse tumors, we identified four
EGFR bypass mutations (oncogenic Kras mutations; Q61H, Q61R, and
two G12D mutations13) and one gain-of-function mutation in Fgfr2
(C382R)40 (Fig. 2f). No acquired Trp53mutations were observed in the
E cohort after treatment. In contrast, only one known resistance-
associated mutation, EGFRT790M, was identified in an EP mouse tumor
(Fig. 2f), suggesting that alternative mechanisms might be driving
resistance in the remaining EP tumors.

p53 dysfunction results in elevated SCNAs of genes associated
with TKI resistance and increased cell-to-cell diversity
To investigate alternative, non-SNV-related mechanisms of resistance
resulting from p53 loss of function, single-cell whole-genome
sequencing (scWGS) was performed on FACS-sorted nuclei obtained
fromdifferent ploidy groupswithin naïve and resistant E and EPmouse
cells (see Methods). This approach revealed clear genomic differences
between these four groups (Supplementary Fig. 6a, b). We utilized
MEDICC to analyse the evolutionary timing of copy-number changes,
including genome doubling, using the total copy number as input (see
Supplementary Fig. 6c for workflow). A representative example of the
derived phylogenies, gains, losses, and the timing of WGD is shown in
Supplementary Fig. 6d.When investigating the earliest events on these
phylogenetic trees (those within three edges from the most recent
common ancestor, MRCA), we found a difference in the expansion of
cells with copy number losses in E compared to EP tumors. In resistant
E tumors, cells which underwent an early loss expanded very little,
resulting in a lower cancer cell fraction (CCF) compared to EP cellswith
early losses (Fig. 3a, p =0.0435, two-sided Mann–Whitney U-test). E
cells with gains were more likely to expand and form the majority of
the tumor. This phenomenon was not observed to the same degree in
resistant EP tumors or in treatment-naïve tumors. This result is con-
cordant with recent data obtained from cell lines, where TP53 loss
correlated with a higher frequency of chromosome losses compared
to isogenic TP53WT cells41. The overall frequency of SCNAs across the
genome was higher in the EP naïve mouse and human (OncoSG)
tumors compared to E tumors (Supplementary Fig. 7a, b Mouse:
median frequency E 15% vs EP 38%, p < 2.2e-16 Human: median fre-
quency E 8% vs EP 12%, p < 2.2e-16; two-sided Mann–Whitney U-tests).
Due to the relatively low number of patients with EGFR mutations in
the Tx421 cohort, there was insufficient statistical power to perform
this analysis in that dataset.

Further assessment of the extent of chromosomal alterations
revealed that EP mouse tumors exhibited a higher frequency of both
copy-number gains and losses across the whole genome compared to
E tumors in both treatment naïve and resistant settings (Fig. 3b upper
vs lower genomewide plots, Supplementary Fig. 7c, naïve E vs EP gains
p =0.0002, resistant E vs EP gains p = 0.0013, naïve E vs EP losses
p =0.0244, resistant E vs EP losses p =0.1679, two-sided t-tests).

While no copy-number gains were observed to be significantly
more frequent in E TKI-resistant mouse tumors compared to E
treatment-naïve mouse tumors (Fig. 3b, upper panel), a higher fre-
quency of copy-number gains of genes implicated in TKI resistance
wasobserved in EP-resistantmouse tumors compared to EP treatment-
naïve tumors (Fig. 3b, lower panel). For example, a region of
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Fig. 2 | Trp53 loss results inmixed responses and therapy resistance inmurine
models of NSCLC. a Mouse-to-human across genome synteny histograms. Upper
panel E mice vs. patients with E tumors. Lower panel EP mice vs patients with EP
tumors. Significantly changed regions inboth species are coloredpink (gain) andblue
(loss). b Kaplan–Meier survival analysis of E (n= 10, yellow line) and EP (n= 17, green
line) mice, demonstrating the difference in OS after erlotinib treatment (p <0.0001,
HR 3.72, 95% CI: 1.65–8.38, log-rank Mantel–Cox test). c Differences in tumor
responses after one month of erlotinib treatment in E (n= 12 yellow) and EP (n= 16
green) mice, presented as % change in CT-measured tumor diameter. Each column

represents one mouse, and each dot represents one tumor within the mouse
(p =0.006464, two-sidedMann–Whitney U-test). The dotted lines show the Reiter et
al criteria for response (−30%) and progression (10%), respectively. d Bar chart
showing the proportion of sensitive and resistant tumors in E (yellow) and EP (green)
mice (p =0.0082, two-sided chi-squared test). The total number of mice in each
group are indicated in the bars. e Dot plot showing time to resistance in E (n= 13
yellow) and EP (n= 18 green) mice (P= <0.0001 two-sided Mann–Whitney U-test). f
Bar chart showing identified single-nucleotide variant-related resistancemechanisms
in E and EP mice. Source data are provided as a Source Data file.
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p =0.0392, two-sidedMann–WhitneyU-test). Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-024-47606-9

Nature Communications |         (2024) 15:4871 7



chromosome 6p, harboring MET and BRAF, was significantly more
frequently gained in EP resistant compared to EP treatment-naïve
tumors (Fig. 3b lower panel, p = 0.01135, see Methods). Similarly,
genomic regions in chromosomes 6q and 16p that, amongst others,
encode genes associated with EGFR TKI resistance, such as Kras and
Mapk113, were more significantly gained in EP TKI-resistant mouse
tumors compared to EP treatment-naïve mouse tumors (Fig. 3b lower
panel, p =0.0007, see Methods).

Based on these data, we analysed the copy-number status of
several additional genes that have been implicated in TKI
resistance12–14,42 and investigated the SCNAs between the two geno-
types. A significantly higher frequency of copy-number gains involving
published TKI resistance associated genes was observed in EP
treatment-naïvemouse tumors compared to E treatment-naïve tumors
(Fig. 3c and Supplementary Fig. 7d left panel p = 5e−10, Chi-squared
test), as well as in EP-resistant mouse tumors compared to E resistant
mouse tumors (Fig. 3c and Supplementary Fig. 7d right panel,
p = 2.7e−6, two-sided Chi-squared test), which may contribute to the
development of resistance.

To investigate the extent of heterogeneity within the naïve and
resistant E and EP tumors, the SCNAs in individual cells were inferred
fromscWGSdata, and cell-to-cell diversitywas estimatedbymeasuring
the fraction of the genome affected by different SCNAs between every
pair of cells obtained from the same tumor and the same group of cells
with the sameploidy (Fig. 3d,Methods). Consistentwith a role for TP53
pathway disruption in the potentiation of CIN, single cells from both
naïve and resistant mouse EP tumors were found to display sig-
nificantly higher genome ploidies than E tumors (Supplementary
Fig. 7e) and a higher prevalence ofWGD in resistant tumors (naïve E vs.
EP; p =0.1365, resistant E vs. EP; p =0.0060 two-sided Chi-squared
test, Supplementary Fig. 7f). A higher extent of cell-to-cell diversitywas
also observed between cells derived from EP tumors compared to
single cells from E tumors, which resulted in significantly higher intra-
tumorheterogeneity (asmeasuredby Shannonevenness index, Fig. 3e,
naïve p =0.0066 and resistant, p =0.0004 tumors, two-
sidedMann–WhitneyU-tests). The cell-to-cell diversity observed in the
EP tumors reflected a significantly higher weighted genome instability
index (wGII), consistent with the greater chromosomal complexity and
elevated burden of SCNAs43 in both naïve and resistant EP mouse
tumors compared to Emouse tumors (Supplementary Fig. 7g, h; naïve
p < 2.22e−16 and resistant p < 2.22e−16, two sided Mann–Whitney U-
tests). Taken together, these results suggest that the development of
resistance in E tumors is often driven by point mutations (Fig. 2f),
whereas both human and mouse EP tumors have greater SCNA het-
erogeneity leading to the selection of SCNAs encoding genes known to
drive resistance to EGFR TKIs.

To ascertain the contribution of WGD to the elevated genome
instability in EP tumors, we next examinedWGDevents in the Tx421 and
OncoSG cohorts and observed thatWGD tended to bemore frequent in
EP tumors than in E tumors (WGD frequency; Tx421 71.4% (E); 85.7%
(EP); OncoSG 65.3% (E); 84.8% (EP); (p =0.2383, Fig. 3f and p=0.008
Fig. 3g two-sidedChi-squared tests). However, these small differences in
WGD frequencies alone were unlikely to explain the profound pheno-
typic differences in resistance dynamics between E and EP tumors,
prompting us to investigate whether WGD could be associated with
elevated CIN in a manner dependent on p53 pathway dysfunction.
When further assessing the extent of genome instability, as measured
by the wGII, we observed higher wGII in WGD EP tumors compared to
WGD E tumors in the Tx421 and OncoSG cohort (Fig. 3h, i; Tx421;
p =0.031, OncoSG; p =0.0392, two-sided Mann–Whitney U-tests) sug-
gesting that WGD is associated with elevated CIN, which is more pro-
nounced on a p53 mutant background. This observation was also
recapitulatedwhenassessing the effect ofWGDongenome instability in
KRAS and KRAS/p53 pathway mutant tumors in the Tx421 cohort
(Supplementary Fig. 7i, p =0.0004, two-sided Mann–Whitney U-test).

Combined WGD and the presence of p53 dysfunction generates
a permissive landscape facilitating genetic resistance to TKI
Based on these data, we hypothesized that WGD, together with p53
dysfunction, accelerates cell-to-cell variation in the acquisition of
SCNAs, generating a diversity upon which selection can act. In the
context of EGFR TKI therapy, this genomic diversity may promote
more rapid acquisition of resistance and mixed responses seen
in the human and murine data compared to E tumors with
functional p53.

To decipher the contribution of WGD in acquired drug resistance
on a background of p53 dysfunction, we used an isogenic clonal
EGFR/TP53 mutant human NSCLC PC9 cell model system, with and
without an additional WGD event. The LUAD cell line PC9 is triploid
and harbors both an oncogenic EGFR Ex19del and an inactivating TP53
mutation (p.Arg248Gln)11,44–47. Similar to other cancer cell lines26,48, a
small fraction of PC9 cells undergo spontaneous WGD events in cell
culture. Using single-cell sorting, we obtained cells with a relative DNA
content of 3N (triploid, 24 single-cell clones isolated) and isogenic cells
that had spontaneously undergone an additional WGD event with a
relative DNA content of 6N within the parental 3N population (hex-
aploid, 24 single-cell clones isolated; Supplementary Fig. 8a, b).

A subpopulation of PC9 cells harbors the EGFR T790M mutation,
which is the most frequent resistance mechanism in response to
erlotinib treatment11,45,49. However, all 24 triploid and 24 hexaploid-
derived early passage WGD cell populations were equally sensitive to
erlotinib (Supplementary Fig. 8c), indicating that T790M mutations
were absent from the clonal founder cells and that at baseline, these
clones had not acquired additional genetic alterations associated with
EGFR TKI resistance. Importantly, the IC50 values of these early pas-
sage triploids (T) and hexaploid (H) progenitor clones were compar-
able to the parental population (IC50 ≈ 15 nM), confirming that a
spontaneous WGD event alone on a p53 mutant background does not
confer drug resistance (Supplementary Fig. 8c). To investigate the
emergence and frequency of resistance, each of the 48 progenitor
clones were seeded into a full 96-well plate each (5000 cells per well)
and cultured in the presence of 1.5 µM erlotinib (we defined acquired
resistance as survival in a 100-fold higher concentration than the
observed median IC50 value of the parental clones50, see Supple-
mentary Fig. 8a, right panel, for workflow). The emergence of resistant
subclones was recorded after 5 weeks of continuous erlotinib treat-
ment. In parallel, each progenitor clone was cultured in the absence of
erlotinib to investigate a potential drift in copy-number status (Sup-
plementary Fig. 8d, see below).

Both triploid and hexaploid clones were able to generate
erlotinib-resistant subclones within the 5-week time period. A sig-
nificantly higher proportion of hexaploid progenitor clones generated
at leastone resistant subclone compared to their triploid counterparts,
indicating that within five weeks of drug exposure, a WGD event
together with p53 dysfunction promotes the development of drug
resistance (12/24 triploid vs 19/24 hexaploid progenitors, p =0.0346,
Chi-squared test, Fig. 4a, b). To investigate a mechanistic basis for this
observation, we performed WES of 34 triploid- and 40 hexaploid-
derived erlotinib-resistant subclones. Assessing the presence of known
resistance mechanisms across the subclones, we found that 15/34
triploid-resistant subclones harbored a T790M mutation and 11/34
triploid-resistant clones harbored a RAS/PI3K pathway activating
mutation. In contrast, 19/40 resistant hexaploid/genome-doubled
subclones harbored mutations in T790M (15/40) or the RAS/PI3K
pathway (4/40), with the remaining clones having no known point
mutation mechanism of resistance; Fig. 4c, left panel). In line with a
recent publication51, different routes to resistance were observed in
daughter clones derived from a single parent clone. We also observed
variability in the ploidy of daughter clones derived from the same
parental clone. Taken together, triploid-resistant subclones (26/34)
were significantly more likely to harbor an SNV as a mechanism of
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resistance compared to hexaploid, genome-doubled clones (19/40,
p =0.021, Chi-squared test),

Consistent with data presented for the EP mouse tumors (Sup-
plementary Fig. 7a–c),WGDwith p53 dysfunction was also found to be
significantly associated with an increase in the frequency of SCNA
acquisition across the genome in resistant PC9 hexaploid cells (Fig. 4d
and Supplementary Fig. 9a, Paired Wilcoxon test, p < 2.2e−16 for both

gains and losses, see Supplementary Data 3 for significantly gained or
lost genes in the two genotypes). Furthermore, we found a significant
difference in clone-to-clone diversity (measured as the fraction of the
genome with different SCNAs between every clone pair) between
hexaploid-resistant clones and triploid-resistant clones (Fig. 4e and
Supplementary Fig. 9b p = 6.611e−263, two-sidedMann–WhitneyU-test).
The results from the isogenic PC9 system reflect an increasedplasticity
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and ability to modify copy-number states in the resistant hexaploid
clones compared to triploid clones, suggesting that WGD is an alter-
native mechanism to generate resistance. Consistent with the
hypothesis that WGD events are positively selected for during the
development of EGFR TKI resistance in p53 mutant cells, flow-
cytometry analysis revealed that 22.6% (12/53) of resistant clones ori-
ginating from triploid progenitors had increased their ploidy more
than 1.5 times, (median of increased ploidy ≈6, range ≈4.5–7.5),
whereas only 1% of the resistant hexaploid clones further increased
their ploidy more than 1.5 times (one subclone out of 101 clones ana-
lysed Supplementary Fig. 9c).

Based on these findings, we would expect triploid clones, without
a known somaticmutation event, to acquire ploidy gains and SCNAs as
their mechanism of resistance. Consistent with this hypothesis, only
one of the six triploid clones investigated that underwent aWGD event
during the acquisition of EGFR TKI resistance developed a T790M
mutation. The remaining 5/6 previously triploid clones had sig-
nificantly higher numbers of copy-number gains in genes associated
with TKI resistance, such as FGFR3, NRAS, and ERBB2, compared to
clones which remained triploid after having acquired resistance
(Fig. 4c, right panel, p <0.00001, two-sided Chi-squared test). Con-
versely, six hexaploid clones, that displayed a reduction in their ploidy
to a triploid state, harbored a point mutation as a mechanism of
resistance (five subclones; T790M, one subclone; SPEN E1043X) fol-
lowing the acquisition of EGFR TKI resistance.

Thesedata support the roleofWGDon aTP53mutant background
in the expansion of genomic opportunities for the development of
treatment resistance, primarily through SCNA-basedmechanisms and,
less frequently, through pointmutation-driven resistancemechanisms
following a reduction in tumor ploidy status. Since the resistance of
hexaploid PC9 subclones and EP mouse tumors is likely driven by
SCNAs at a high frequency, we compared the copy-number profiles of
hexaploid PC9-resistant subclones with those of EP-resistant mouse
tumors through a synteny analysis to investigate the presence of
shared recurrent SCNA-driven mechanisms. We identified the pre-
sence of several genes previously implicated in TKI resistance altered
in both model systems, such as KRAS, SRC, and BRAF (Supplementary
Fig. 10a, gains; b, losses).

To validate potential copy-number mechanisms of erlotinib
resistance in PC9 cells, a functional siRNA screen was performed in
four hexaploid-resistant subclones with distinct copy-number changes
(Supplementary Fig. 10c) and in the parental PC9 cells. We used siRNA
to silence 43 genes significantly gained in any oneof the populations of
resistant hexaploid subclones that had been sequenced. Cell numbers
were scored by DAPI staining and scanning in a CellInsight CX7 High
content platform after 5 days of erlotinib treatment.

Erlotinib resistance was assessed by comparing cell numbers fol-
lowing gene silencing in the presence or absence of erlotinib (see
Methods, Fig. 4f). In total, of the 43 gained genes investigated, 10,
includingNRAS, ERBB3,HRAS, BRAF,NRAS,HRAS and BRAF led to EGFR

TKI-re-sensitization (p < 0.05, light blue triangles) in at least one hex-
aploid subclone after siRNA mediated knockdown (Fig. 4f) suggesting
that, depending on the subclone, copy-number gains in these genes
might contribute to TKI resistance and that different resistance
mechanismsmight be adopted by the individual resistant subclones in
line with reported results51.

These clinical, in vivo and in vitro data indicate that loss of p53 in
the context of mutated EGFR and WGD, leads to an altered and mal-
leable genomic landscape which accelerates the evolution of SCNAs
under selection pressure, such as that imposed by targeted therapy. In
turn, this facilitates the emergence of resistant subclonesmore rapidly
through the acquisition of SCNAs encompassing genes functionally
implicated in drug resistance and, less commonly, following a reduc-
tion in ploidy, through SNV-based mechanisms (Fig. 4g). Clinically,
TP53 dysfunction with WGD likely expands the potential routes to
therapy resistance during clonal evolution, contributing to earlier
treatment failure, that can manifest as mixed responses to therapy
within individual patients.

Discussion
Despite the clinical efficacy of EGFR TKI therapy in oncogenic EGFR
mutation-driven LUAD, resistance develops in themajority of patients.
This is associated with additional oncogenic mutations and
SCNAs13,14,21. Except for gatekeeper mutations such as T790M, suc-
cessfully targeting these resistancemechanisms has been challenging,
and in a large proportion of patients, a clear resistance mechanism is
not always evident. Our analyses indicate that there is greater com-
plexity in the response of tumor lesions than is evident from conven-
tional RECISTv1.1 definitions. We demonstrate that mixed responses,
where there are both responding and progressing lesions within an
individual patient, are common in patients with NSCLC treated with
either chemotherapy or EGFR TKI therapy, and are likely associated
with reduced clinical benefit. Understanding the mechanisms under-
lying mixed responses may help identify new therapeutic approaches
to forestall resistance, including both novel systemic therapies or early
intervention with ablative local therapies.

CIN, WGD, and an increased prevalence of SCNAs have all been
associated with a worse prognosis in several tumor histologies22,28,52.
Our work demonstrates the plasticity rendered by p53 dysfunction
together with WGD in driving a diversity of resistance mechanisms
through somatic mutations and SCNAs. We observed a high degree of
concordance between the human andmurine datasets suggesting that
the GEMMs used in this study provide relevant models to study clonal
evolution in human EGFR-driven LUAD in both the naïve and EGFR TKI-
treated settings. We identify syntenic genomic regions affected by
SCNAs in both mice and patients that may contribute to the early
development of resistance observed following TKI therapy in EP
tumors. For example, PTEN was significantly lost in naïve EP, but not E
tumors (Fig. 2a), and PTEN loss has been shown to contribute to TKI
resistance36.

Fig. 4 | Genome doubling permits elevated ploidy and promotes multiple
avenues to therapy resistance in the presence of p53 pathway dysfunction.
a Plot showing the number of resistant subclones generated from each of the 24
triploid and 24 hexaploid progenitor clones after 5 weeks of culture in 1.5μM
erlotinib. b Number of triploid (blue) and hexaploid (red) progenitor PC9 clones
that generated at least one erlotinib-resistant subclone (p =0.0346, chi-squared
test). c Left panel: Presence of somatic mutations in genes related to the EGFR
pathway (black squares) is reported across all triploid (upper blue row) and hex-
aploid (upper red row) resistant daughter clones derived fromeither triploid (lower
blue row) or hexaploid (lower red row) parental clones. Right panel: Ploidy-relative
copy-number gains (red colors) are reported for resistant daughter clones that
have changed their ploidy state for 13 genes whose gain is known to have a role in
TKI resistance. d Frequency of copy-number gains (positive y-axis) and losses
(negative y-axis) are reported across either triploid (blue) or hexaploid (red)

resistant daughter clones, highlighting events affecting oncogenes and tumor
suppressors. e Clone-to-clone diversity measured by computing the copy-number
difference (fraction of genome with different copy numbers reported in blue col-
ors) between either left all pairs of triploid and hexaploid resistant daughter clones
derived from the same parental clone (triangles), or right all pairs of triploid and
hexaploid resistant daughter clones. f Impact of siRNA mediated repression of
gained genes on re-sensitization of erlotinib-resistant hexaploid PC9 subclones. By
factoring in effects on viability, the effect of gene silencing on erlotinib resistance
was scored. Tiles corresponding to genes exhibiting a significant treatment-varying
response upon knockdown (p <0.05) in a hexaploid subclone are colored. Hue
corresponds to the direction of change, and brightness to the erlotinib treatment
status. Gene names depicted in bold did not impact parental PC9 viability. gModel
depicting factors contributing to tumor resistance in E and EP tumors. Source data
are provided as a Source Data file.
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A recent study revealed that WGD occurs in almost 30% of all
sequenced tumors22 and we have recently proposed WGD as a
mechanism that mitigates the accumulation of deleterious mutations23.
Our in vivomodels indicate that althoughE tumors frequently exhibited
WGD, these tumors predominantly had homogenous responses to
treatment. Thesedata suggest thatWGDalonedoesnotpromotemixed
responses in tumors with a functioning p53 signaling pathway (Figs.1e,
2c). Instead, the isogenic model data presented here demonstrates
that it is in the context of p53 dysfunction that WGD broadens the
potential routes to acquired resistance by increasing somatic copy-
number diversity. Importantly, an acute genome doubling event in PC9
cells on the background of p53 dysfunction is insufficient for EGFR TKI
resistance. Resistance only emerges more frequently after 5 weeks of
TKI exposure in these cells, a similar time course to the first CT scan
after initiating TKI therapy in the AURA trials.

These data suggest that in addition to common EGFR resistance
mechanisms such as T790M, the combination of WGD and p53 dys-
function provides the SCNA diversity required to generate resistant
clones capable of withstanding the selection pressure generated by
EGFR TKI therapy. We identified that the knockdown of several genes
gained in resistant PC9 hexaploid subclones conferred erlotinib re-
sensitization, many of which have been previously associated with
EGFR/RAS/PI3K pathway activation in different systems13,53. Taken
together, our data suggest a vital role for TP53 loss in permitting
subsequent mixed somatic copy-number evolution following a WGD
event, thereby expanding the possible routes to erlotinib resistance,
resulting in early treatment failure and contributing to the dynamic
nature of lesion-to-lesion response within individuals. Our data con-
firms the association of reduced overall survival in the context of EGFR
and TP53 co-mutations and suggests that the presence of TP53 path-
way alterations in EGFR-driven lung cancer might act as a surrogate
marker of CIN and identify patients at increased risk of mixed tumor
responses to TKI therapy and earlier progression.

Our clinical analyses of a total of 508 lesions from 99 patients is
not without limitations: the tissue samples analysed were taken from
three different trials (AURA trial phase 2 expansion cohort, AURA2
trial, and AURA3 trial) and were limited to those patients with tissue-
based somatic tumor analyses as well as available imaging for long-
itudinal analyses. However, there was no difference in clinical char-
acteristics between patients with E and EP tumors (Supplementary
Fig. 2b). Furthermore, the PFS times observed with this smaller cohort
are comparable to those seen in the AURA3 study. Finally, although
data based on plasma analysis of TP53 from the AURA3 trial showed
minimal differences in PFS between TP53 mutant and wild-type
patients35 contrary to our tissue based analysis, clonal hematopoiesis
of indeterminate potential (CHIP) complicates plasma mutation calls
(particularly for TP53) and calling TP53 copy number loss from ctDNA
is challenging.

In conclusion, these findings demonstrate that EGFR activation,
togetherwith TP53 pathway inactivation andWGD, remodels the copy-
number landscape to create an environment which is permissive for
the development of diverse mechanisms of resistance to TKI therapy
resulting in mixed response dynamics in vivo. A better understanding
of SCNA-driven resistance mechanisms is required to develop strate-
gies that improve outcomes in this setting where high levels of CIN are
tolerated. Successful approaches may involve a combination of local
therapy to remove or ablate sources of complex genotypes that con-
tain TKI-resistant clones together with a combination of drug treat-
ments to target SCNA-driven resistance. While our study focused on
TP53 mutations in EGFR-mutated LUAD, we propose that the conclu-
sions drawn with respect to response heterogeneity may be generally
applicable in tumors with a clonal actionable driver oncogene and loss
of p53 function. Our findings suggest that assessing TP53 status may
guide more informed discussions regarding TKI success rates, and the
potential clinical benefit of frequent disease monitoring.

Methods
All regulated animal procedures were approved by The Francis Crick
Institute BRF StrategicOversightCommittee, incorporating theAnimal
Welfare and Ethical Review Body, conforming with UK Home Office
guidelines and regulations under the Animals (Scientific Procedures)
Act 1986 including Amendment Regulations 2012. The TRACERx
observational study (NCT01888601) has an approval from the UK
research and ethics committee (13/LO/1546).

Animal procedures
Animals were housed in ventilated cages with unlimited access to food
(2018 Autoclavable Rodent Breeding Diet, ENVIGO RMS UK LTD,
T.2018S.12) and water. EGFR-L858R [Tg(tet-O-EGFR∗L858R)56Hev]54

mice were obtained from the National Cancer Institute Mouse Repo-
sitory. R26tTA [Gt(ROSA)26Sortm1(tTA)Roos]55 and Trp53fl/fl
[Trp53tm1Brn]56 mice were obtained from Jackson laboratory. Mice
were backcrossed onto a C57Bl6/J background and further crossed to
generate Rosa26tTaLSL/tet(O)EGFRL858R and Rosa26tTaLSL/tet(O)
EGFRL858R/Trp53flox/flox mice. After weaning, the mice were geno-
typed (Transnetyx, Memphis, USA) and placed in groups of one to five
animals in individually ventilated cages, with a 12-h daylight cycle.
Recombination (animal age 2–6.5 months) was initiated by adenoviral
CMV-Cre (Viral Vector Core, University of Iowa, USA) delivered via
intratracheal intubation (single dose, 2.5 × 107virus particles/50μl).
The animal cohorts used for experiments were balanced for sex.

Micro-CT imaging
For tumor emergence, tracking and measurements, the thorax was
scanned once a month using a Bruker, Skyscan 1176. Mice were anes-
thetized using isoflurane, and the acquired CT images were processed
using RespGate for respiratory gating and NRecon for z-stack image
reconstruction. For tumor diametermeasurement, volume calculation
and viewing, we used a combination of CT-Analyser and DataViewer.
The final resolution of reconstructed z-stacked images was 50μm/
pixel. An object was deemed a tumor if its measured diameter was at
least 300μm and if, by comparing two consecutive monthly CT scans,
the size had increased orwas absent in the previous scan. No regulated
procedures undertaken in this project exceeded the permitted limits
(10% weight loss over a 24 h period). Mice were sacrificed immediately
after observing any difficulty breathing or if projected/expected to
start showing distress before the next CT scan. Observation of difficult
breathing included when a mouse was under general anesthesia while
micro-CT scanning. Including general anesthesia in abnormal breath-
ing distress also enabled us to maintain high and consistent quality of
micro-CT images and tumor volume and diameter measurements.
Calculated diameters were analysed using GraphPad Prism 7 for sta-
tistical graph design.

Tissue harvest, histology, tumor burden analysis, image
cytometry
After sacrifice, lung tissue was immediately removed, and individual
tumor nodules were isolated from one lung lobe. In order to generate
single cells, tumors were cut into small pieces and incubated in 1ml
collagenase/dispase (MERCK, 102696380011, 1mg/ml in PBS) at 37 °C
for 15min with continuous shaking. Tumor material was pipetted up
and down until able to pass easily through a p1000 tip, allowed to
sediment, and the supernatant was removed and placed on ice. A fresh
aliquot of collagenase/dispase was added to the tissue, and the sam-
ples were incubated for an additional 15min. The material was com-
bined and passed through a 100 µm cell strainer before washing the
cells once in PBS and freezing in 90%FBS/10%DMSO. The remaining
lung lobes were fixed overnight in 10% neutral buffered formalin,
transferred to 70% ethanol and processed for paraffin embedding.
Tissue sections (4μm) were stained with H&E or immunostained with
anti-Ki67 (Abcam, ab15580) using the ROCHE Ventana platform,
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antibody dilution 1:1000 with 24min CC1 antigen retrieval and OM
anti-rabbit HRP (05269679001). Lung and tumor area quantifications
were carried out onH&E-stained slides. Tumor gradingwas carried out
by a trained pathologist according to published criteria57. Paraffin-
embedded blocks were used for image cytometry analysis. Formalin-
fixed paraffine-embedded tumors were used for the preparation of
nuclei suspensions, the nuclei were stained with Feulgen–Schiff. The
samples were analyzed with the Fairfield DNA Ploidy system (Fairfield
Imaging, Kent, UK) which measures the optical density and nuclear
area. The integrated optical density of each nucleus was calculated,
with lymphocytes used as internal reference cells to determine the
position of the diploid fraction58.

Mouse therapy regimens
Mice were weighed weekly and treated with erlotinib (ERL; 5mg/ml in
0.3% methylcellulose/H2O, Mon-Fri, 25mg/kg) or chemotherapy
(mixed suspension of carboplatin and paclitaxel, 3.33 and 0.66mg/ml
respectively) via intraperitoneal injection (See Supplementary Table 4
for mouse treatments). Mice began therapy upon identifying at least
one lung tumor with a minimal diameter of 1mm. If multiple smaller
tumorswere found (granular appearanceof lungs),micewere scanned
again after 2 weeks, and if it was thought that the animal’s welfare
could be compromised within the next 2 weeks, therapy was initiated.
Mice initially treatedwith chemotherapy (4weeks, twodosesperweek,
16.65mg/kg carboplatin and 3.3mg/kg paclitaxel) were allowed to
recover for one month before starting ERL treatment. In cases where
CT scans showed small or no treatment response, ERL was given
immediately. For generating resistant tumors, an alternating monthly
ERL on and off schedule was changed to continuous therapy after the
detection of resistance by micro-CT.

DNA purification and processing
Genomic DNA was purified using AllPrep DNA/RNA Mini Kit (Qiagen)
from cells, fresh frozen tissue, and matched-normal control tissue
(tail), following the manufacturer’s recommendations. After an initial
quality control by gel electrophoresis, DNA was quantified using
QubitTM dsDNA BR Assay Kit (Thermo Fisher Scientific) and
BioAnalyzer.

Whole-exome sequencing—mouse data
WES was performed by the Advanced Sequencing Facility at The
Francis Crick Institute using the Agilent SureSelectXT Mouse All Exon
Kit for library preparation. Sequencing was performed on HiSeq 4000
platforms.

Alignment—mouse. All sampleswerede-multiplexed and the resultant
FASTQ files aligned to mm10 using bwa-mem (bwa v0.7.15). De-
duplication was performed using Picard (v2.1.1) (http://broadinstitute.
github.io/picard). Quality control metrics were collated using FASTQC
(v0.10.1—http://www.bioinformatics.babraham.ac.uk/projects/fastqc/),
Picard, and GATK (v3.6). SAMtools (v1.3.1) was used to generate mpi-
leup files from the resultant BAM files. Thresholds for base phred score
and mapping quality were set at 20. A threshold of 50 was set for the
coefficient of downgrading mapping quality, with the argument for
base alignment quality calculation being deactivated. The median
depth of coverage for all samples was 92x (range: 58–169x).

Variant detection and annotation—mouse. Variant calling was per-
formed using VarScan2(v2.4.1), MuTect(v1.1.7), and Scalpel(v0.5.3)59–61

The following argument settings were used for variant detection
using VarScan2:

--min-coverage 8 --min-coverage-normal 10 --min-coverage-tumor
6 --min-var-freq0.01 --min-freq-for-hom0.75 --normal-purity 1 --p-value
0.99 --somatic-p-value 0.05 --tumor-purity 0.5 --strand-filter 0.

For MuTect, only “PASS” variants were used for further analyses.
With the exception of allowing variants to be detected down to a VAF
of 0.001, default settings were used for Scalpel insertion/deletion
detection.

To minimize false positives, additional filtering was performed.
For single-nucleotide variants (SNVs) or dinucleotides detected by
VarScan2, a minimum tumor sequencing depth of 30, variant allele
frequency (VAF) of 5%, variant read count of 5, and a somatic p value
<0.01 were required to pass a variant. For variants detected by VarS-
can2 between 2 and 5%VAF, themutation also needs to be detected by
MuTect.

As for insertions/deletions (INDELs), variants need tobepassedby
both Scalpel (“PASS”) and VarScan2 (somatic p value <0.001). A mini-
mum depth of 50x, 10 alt reads, and VAF of 2% was required.

For all SNVs, INDELs and dinucleotides, any variant also detected
in thepairedgermline samplewithmore thanfive alternative reads or a
VAF greater than 1% was filtered out.

The detected variants were annotated using Annovar62.

Human EGFR transgene amplicon sequencing of mouse tumors
FASTQ files were aligned to hg19 obtained from the GATK bundle
(v2.8) using bwa-mem (bwa v0.7.15)63,64. Analyses were performed
using R (version 3.3.1) and the bam2R function of the deepSNV (v1.18.1)
R library65. The median depth of coverage of sequenced EGFR exons
(19,20,21) was 5290x (range: 2238-8040). Variants associated with
resistance to EGFR tyrosine kinase inhibitors were queried using
deepSNV’s bam2R function, with the arguments q = 20 and s = 2. The
variants explored include: T790M, D761Y, L861Q, G796X, G797X,
L792X, and L747S. L858R, the driver mutation in the mouse model
used, was identified in every sequenced sample.

Synteny analysis
To perform synteny mapping, we leveraged the genomic ranges R
package with homology mapping from the human to the mouse gen-
ome (Synteny Portal66) to calculate the rate of gains and losses
observed in mouse tumors in each homogenous region of the human
genome.

Identification of recurrent SCNAs
The sampling and simulation method proposed by ref. 25 was used to
identify recurrent SCNAs in different cohorts with inferred copy-
number profiles in this study. Briefly, given a cohort of N tumors with
inferred copy-number profiles, the rate of gains Rg,t and the rate of
losses Rl,t in each tumor t is estimated as the fraction of the genome
affected by related events. Using the estimated rates, the background
distribution of gains and losses is obtained by performing 1000 simu-
lations. Specifically, for each simulation, the copy-number state of
each tumor t is determined using a Bernoulli model with a probability
of Rg,t for gains and Rl,t for losses, and the resulting total number of
expectedgains or losses is obtainedby summingover all tumors.Using
the simulated total numbers of gains and losses across all simulations,
background empirical distributions are computed as well as a 95%
confidence interval, which is used to define a threshold on frequencies
for defining recurrent gains and losses, respectively. To determine the
deviation from euploidy as a measure for SCNA amplitude, we calcu-
lated the binwise non-absolute deviation from copy number state 2
across all curated single-cell WGS libraries. The mean deviation was
thenplotted across the genomicpositions by genotype (Evs EP) andby
treatment group (naïve vs resistant).

Single-cell whole-genome sequencing
Lung tumors were either snap frozen as whole tissue, or homogenized
into single-cell suspensions and frozen in FBSwith 10%DMSO. Samples
were stored at −80 °C until further processing. For single-cell analysis,
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we performed single-cell DNA sequencing using an established
protocol67,68.

Preparation. To isolate nuclei for flow sorting from frozen tissues,
samples were dissociated by pushing small tissue fragments through a
70 µmstrainer using a syringeplunger in nuclei isolation buffer (10mM
Tris-HCl pH 8.0, 0.32M sucrose, 5mM CaCl2, 3mM Mg(Ac)2, 0.1mM
EDTA, 1mM DTT, 0.1% Triton X-100 (v/v)). Nuclei were spun down at
1000 × g for 5min at 4 °C and resuspended into PBS with 2% BSA,
10 µg/mL Hoechst 33258, and 10 µg/mL propidium iodide (PI). Single-
cell suspensions were prepared for flow sort by resuspension in nuclei
staining buffer (100mM Tris-HCl pH 7.5, 154 nM NaCl, 1mM CaCl2,
0.5mM MgCl2, 0.2% BSA, 0.1% NP40 (v/v), 10 µg/mL Hoechst 33258,
and 10 µg/mL PI). Isolated nuclei suspensions were collected into FACS
tubes with 70 µm strainer caps. Both frozen tissue and single-cell sus-
pension samples were incubated on ice for at least 15min prior to flow
sorting. Intact single nuclei from predetermined DNA populations
were sorted using a FACSJazz (BD Biosciences) into 96-well plates
containing ProFreeze-CDM (Lonza) buffer and 7.5% DMSO. Plates were
sealed and centrifuged at 500 × g for 5min at 4 °C and stored at−80 °C
until library preparation.

For library preparation and sequencing, DNA was fragmented
using micrococcal nuclease (MNase) followed by end-repair, A-tailing,
and Illumina adapter ligation. AMPpure XP beads and 80% ethanol
were used for clean-up steps between reactions. Barcoding and library
amplification were performed using a multiplexing primer mix and
PCR for 17 cycles. All liquid handling prior to pooling was done using a
Bravo Automated Liquid Handling Platform (Agilent). Libraries were
subsequently pooled, cleaned using ethanol, and size-selected using
2% E-Gel EX agarose gels with SYBR Safe Stain. Mono- and dinucleo-
somal bands were excised, and DNA was isolated using a Zymoclean™
Gel DNA Recovery kit. Libraries were quantified using a Qubit fluo-
rometer (Thermo Fisher Scientific), and library fragment size dis-
tributions were assessed on a Bioanalyzer (Agilent). Library pools were
diluted to 2 nM and sequenced on an Illumina NextSeq500 at ERIBA
(Groningen, The Netherlands). FASTQ-files were generated using
standard Illumina software (bcl2fastq v1.8.4).

Analysis. De-multiplexed FASTQs were aligned to the mouse genome
mm10 using Bowtie2 (v2.2.4)69. Duplicate reads were removed using
BamUtil (v1.0.3)70. Single-cell copy-number profiles were generated
using AneuFinder (v1.8.0)70. The ploidies of the cells were estimated
using flow-cytometry analyses described above. AneuFinder was per-
mitted to find copy-number solutionswith a ploidy range of ±0.5 of the
flow-cytometry estimated ploidy (the “most.frequent.state”). The
“edivisive” method was used for copy-number detection. Blacklisted
regions were generated from the published euploid reference67. Copy-
number profiles were generated with bin sizes of 2Mb and GC cor-
rection. The number of random permutations was set at 20; and the
sig.lvl argument was set at 0.05.

For quality control of scDNA-seq, we used several metrics auto-
matically generated by the AneuFinder, as well as additional metrics.
Additional QC metrics included the median absolute deviation of
coverage in each copy-number (CN) segment and the median devia-
tion from the coverage equivalent to the copy number called in each
CN segment. First multi-variant clustering is performed (clusterBy-
Quality function from the AneuFinder package) on the automatically
calculated metrics by AneuFinder using all cells in the study. We
excluded any cell clusters in which the average read count in each 2
megabase (Mb) bin was <100 and the SOS (sum of squares between
rawand scaledCNprofiles)was>3 × 106.We thenperformedadditional
filters on each of the remaining cells using read count, SOS, entropy,
spikiness, complexity, and our own QC metrics (see associated code).
Finally, we performed a visual QC of the remaining cells and removed
an additional 63 cells where the raw sequencing coverage poorly fit the

calculated copy number. This was caused by either highly variable
sequencing coverage within bins or due to incorrect ploidy estimation
in these cases. In total, 499/2448 cells (18%) were removed during the
quality control process.

Filtering and QC. Using the inferred single-cell copy numbers, we
filtered and excluded cells from two specific groups of cells. Firstly, we
identified andexcluded fromdownstreamanalysis normal diploid cells
(likely corresponding to normal epithelia contamination or infiltrating
lymphocytes) as any cell with no or very few SCNAs, that is, a fraction
of the genome <5% with a total copy number of 2. The same filtering
threshold has been applied to cellswith <5%of total copy numbersof 4
as these cells might correspond to in G2 cell cycle phase. Second, cells
with noisy inferred copy-number profiles are frequent in single-cell
sequencing due to the presence of cells in the S-phase of the cell cycle
with actively replicating DNA (12–42%), cells with a low number of
sequenced reads (~8%), and doublets (>2%). To prevent an impact on
downstreamanalysis, we have identified cells with noisy profiles as any
cell that only shared <33% of SCNAs breakpoints or whole-
chromosomal aberrations with the other cancer cells from the same
tumor. After excluding normal diploid cells and cancer cells with noisy
copy-number profiles, the remaining cells were used for downstream
analysis. On this basis, after sequencing, data from2/9 E-resistantmice
were excluded from further analysis due to the low quality of
resulting cells.

Human clinical survival and imaging data
For all imaging analysis, the criteria for a mixed/heterogeneous
response was defined by Reiter and colleagues15. The RECIST database
was queried for NSCLC patients who had at least two lesions, one of
which shrank by 30% or more, and these patient’s RECISTv1.1 mea-
surements were subsequently used for the analysis of response to
erlotinib andcytotoxic chemotherapy. Informedconsent for all patients
within the AURA studies used for this analysis was taken by the sponsor
(AstraZeneca) for the clinical trial activity and for the sharing of
sequencing and imaging data with external collaborators. Patients from
the AURA cohorts (Suppl. Table 3) were combined for the relevant
analysis. For the survival analysis all patients had somaticTP53 and EGFR
mutation status assessedby the FoundationOne commercial assay from
Foundation Medicine. Only pathogenic mutations were used to assign
the relevant genotype. Patients who had consented to share imaging
and had at least two measurable lesions were included in the sub-
sequent analysis (see consort diagram). DIACOM files containing CT
axial imaging performed with contrast were reviewed for each patient.
All measurable lesions were included irrespective of whether they were
defined as target lesions. Themeasurements of lesion dimensions were
performed by two clinical oncologists (MS and CH). RadiAnt DICOM
Viewer 5.5.0 software was used. The longest diameter of each lesion
from axial imaging was summed and compared to the baseline osi-
mertinib CT scan. The percentage change frombaselinewas assessed at
thefirst scan (~12weeks since commencementofosimertinib) andat the
time of maximum response. We adopted the Reiter et al thresholds for
grading the degree of response of an individual lesion to define it as
responding, stable, or progressing. Two time points were used for
determiningmixed responses in this study: (i) the responseof all lesions
at the first follow-up scan performed 6–8 weeks after the beginning of
the treatment or (ii) the best response ever achieved by a lesion was
used to call the heterogeneity of response. Homogeneous responsewas
recorded if at least one lesion attained at least partial response, i.e.,
≥30% shrinkage of the largest diameters, and the remaining lesions did
not increase in size by more than 10%, and there were no new lesions.
Otherwise, a mixed response was recorded.

The EORTC RECIST database was queried for mixed responses as
outlined in the text. The response assessment closed to 12 weeks fol-
lowing initiation of treated was used for the analysis.

Article https://doi.org/10.1038/s41467-024-47606-9

Nature Communications |         (2024) 15:4871 13



Additional AURA2/3 patient treatment information
Patients in the AURA3 trial were previously treated only with a first
generation of EGFR TKI (gefitinib or erlotinib), whereas patients in the
AURA2 trial and the AURA-extension cohorts additionally received one
or more lines of chemotherapy before switching to osimertinib. The
subset used for theoverall survival analysis includedpatientswhowere
selected because of a poor response to osimertinib (defined as those
with progressive or stable disease only or those with partial or com-
plete response but a PFS of less than six months). For this subset,
pretreatment targeted sequencing data were analysed; patients with
deleterious mutations in TP53 (affecting splice sites, DNA binding,
transactivation domains, and tetramer binding), TP53 deletion, or
MDM2/4 amplification were defined as having p53 pathway disruption
(EP; 82 of 117).

University of California, San Francisco (UCSF) clinical cohort
analysis
We analyzed patients with metastatic non-small cell lung cancer
(NSCLC) with EGFR exon 19 deletions, L858R, or T790M mutations
who received osimertinib therapy between 2015 and 2021. Tumor
genomic analysiswas conducted using theUCSF 500CancerGene test,
which employs next-generation sequencing to detect somatic altera-
tions in a panel of 529 cancer genes.

Patients were stratified based on tumor genomics: (1) those with
TP53 pathway disruption, including p53 mutations and MDM2 ampli-
fications. (2) those with wild-type TP53. We analyzed treatment
response by assessing radiographic changes in the size of individual
malignant lesions. We compared the largest diameter of each lesion
between pretreatment imaging and the first surveillance scan while
also noting the emergence of any new lesions.

Cell culture
PC9 cells were obtained from Cell Services at The Francis Crick Insti-
tute, UK, where short tandem repeat profiling andmycoplasma testing
is routinely performed to ensure cell identity and quality. The STR
testing for the batch of banked PC9 cells used in this project was
performed on 22/07/2020 and 12/08/2020. Cells were maintained at
37 °C in 5%CO2 in RPMIorDulbecco’sModified EagleMedium (DMEM)
with high glucose and L-glutamine, respectively (Invitrogen), supple-
mented with 10% FBS, 1× PenStrep (Sigma). Cells were incubated with
10μg/mL Hoescht 33342 (Sigma) for 1 h at 37 °C. Cells were single-cell
sorted and assessed for ploidy (Supplementary Fig. 8a).

Flow-cytometry
Clonal cell populations were cultured in 10 cm dishes until ~60% con-
fluency, harvested by trypsinization (0.05% trypsin, Thermo Fisher
Scientific), washed with PBS, and fixed/permeabilized by drop-wise
addition of 2ml 70% ethanol while stirring and stored at 4 °C until
further use. On the day of analysis, fixed cells were washed twice with
PBS and stained using 50mg/ml propidium iodide solution (PI; up to
2ml per cell pellet), filtered through 30mm nylon mesh into 5ml
round bottom polystyrene tubes (Corning) and incubated at 4 °C
overnight. DNA index of cell populations was measured the following
day using a BD LSR Fortessa flow cytometer. Fixed parental PC9 cells
were used as controls for all cytometry analysis batches. The same
gating strategy (Supplementary Fig. 8a) was used in all experiments,
and the analysis and inference of ploidy was performed using
FlowJo10 software.

Erlotinib dose-response curve
Cellswere seeded, 2000 cells perwell, in 100 µL, in triplicate in96-well,
black, transparent flat-bottom plates, and treated with erlotinib (dose
700–0 µM) for 96 hours in standard culturing conditions. Cell viability
was assessed using CellTiter-Blue(Promega) according to the manu-
facturer’s recommendations. Fluorescence was measured using an

EnVision 2102 MultiLabel Reader, at 560Ex/590Em nm. All measure-
ments were normalized against background fluorescence. Final data
analysis, graphing, calculation of IC50, and statistical analysis was
performed using Microsoft Excel and GraphPad Prism software. Bio-
logical replicates were separated by one cell passage and data from
three biological replicates were combined for the calculation of IC50
and plotting of the dose-response response curve per cellular group.

Generating erlotinib-resistant subclones
We randomly selected 48 progenitor clones (24 triploid and 24 hex-
aploid) and plated each clone into one 96-well, flat-bottom culture
plate, at a density of 5000 cells per well. Cells were cultured in stan-
dardconditions in 200μl completemediaperwell, supplementedwith
1.5μMerlotinib. Themedia was changed twice per week. After 5 weeks
of incubation, plates were inspected under the microscope, and wells
with viable colonies were labeled for expansion. Expansion followed a
standardprotocol of passaging through 24-well and6-well plates to 10-
and 15-cm culture dishes (Falcon). All subclonal populations were
expanded with media containing 1.5 μM erlotinib.

Whole-exome sequencing—PC9 cell lines
WES was performed by the Advanced Sequencing Facility at The
Francis Crick Institute using the Twist BioScience Agilent Human Core
Exome Kit for library preparation. Sequencing was performed on
HiSeq 4000 platforms.

Alignment—PC9 cell line. All samples were de-multiplexed and the
resultant FASTQfiles aligned to the hg19 genomeusing bwa-mem (bwa
v0.7.15). De-duplication was performed using Picard (v1.107) (http://
broadinstitute.github.io/picard). Quality controlmetrics were collated
using FASTQC (v0.11.5- http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/), Picard, and GATK (v3.6). SAMtools (v1.3.1) was
used to generatempileupfiles from the resultant BAMfiles. Thresholds
for base phred score and mapping quality were set at 20. A threshold
of 50 was set for the coefficient of downgradingmapping quality, with
the argument for base alignment quality calculation being deactivated.
The median depth of coverage for all samples was 155x (90-251x).

Variant detection and annotation—PC9 cell lines. Variant detection
was performedusingMuTect2 (GATKv4.1.3) using a tumor-only variant
calling workflow (https://docs.gdc.cancer.gov/Data/Bioinformatics_
Pipelines/DNA_Seq_Variant_Calling_Pipeline/).

First, OXOG (oxidation of guanine to 8-oxoguanine) artifact
metrics were calculated using the CollectSequencingArtifactMetrics
command. Pileup summaries for all the cell lines were created using
theGetPileupSummaries command,with the gnomadcommonbiallelic
SNPs provided (https://gnomad.broadinstitute.org/downloads). Con-
tamination metrics were calculated using the CalculateContamination
command. Variant calling was performed using MuTect2, with the
gnomad germline reference provided, as well as a panel of normal
samples created by 4136 TCGA curated normal samples (gatk4_mu-
tect2_4136_pon.vcf.gz). The resulting VCF was sorted using Picard
(v2.18.11). The FilterMutectCalls command was used to filter any con-
taminated variant calls identified from the CalculateContamination
step. Additional orientation bias filtering was performed using the
FilterByOrientationBias command. Variants that failed MuTect2 filter-
ing were excluded from downstream analyses (variants identified as
“clustered_events”, “slippage”, “weak_evidence”, “base_qual”, “strand_-
bias”, “contamination”,” multiallelic”, “map_qual”, “position”, “frag-
ment”). To further minimize false calls, a minimum variant depth of
coverage of 50x was needed, with more than 10 reads supporting the
alternate allele for INDELs/multi-nucleotide variants, 5 reads support-
ing the alternate allele for SNVs, and a variant allele frequency of more
than 2% being required. Variant annotation was performed using
Annovar. Variants with an SNP frequency in the population of more
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than 5% were filtered from downstream analyses (using exac database
and 1000genomes project). Driver mutations in cancer genes (genes
found in the cancer gene census (v90)70,71 and a pan-cancer consensus
oncogene list generated by ref. 72) were explored as possiblemutation
mechanisms of resistance.

Somatic copy number aberration detection—PC9 cell lines. Bed-
Tools (v2.26) was used to extract the read counts across 1Mb bins in
the sequenced progenitor and resistant cell lines using the multicov
function. Bins with no coverage in the progenitor or resistant cell lines
were removed from downstream analyses.

Single SNPs were identified from the progenitor cell lines using
platypus (v0.8.1). Default parameters were used apart from the gen-
Indels flag set to FALSE. The resistant cell lines were genotyped based
on the variants identified in the progenitor cell line. Only autosomal
chromosome SNPs in resistant cell lines with a coverage depth of at
least 40 and variant count of at least 10 were kept for downstream
analyses. A two-sided binomial test was used to define SNPs as het-
erozygous (comparing BAF to 0.5, with p value threshold of 0.05).

Copy-number calling. Existing copy-number calling methods require
DNA sequencing ofmatched-normal samples for each tumor sample to
be analysed, whichwere not available for the considered PC9 cell lines.
However, for every derived PC9 subclone analysed in this study, DNA
sequencing data from each corresponding progenitor PC9 clone is
available. Moreover, in this study, we were only interested in identi-
fying SCNAs that have been specifically acquired in the derived PC9
cell lines while excluding those SCNAs in the corresponding pro-
genitor. In fact, only the former can correspond to potential
mechanisms of resistance. To reach these goals, we proposed a copy-
number calling approach which extends existing methods by using
progenitor sequencing data instead of matched-normal sequencing
data and only identifies novel SCNAs in the derived cell line. As such,
the proposed method is composed of four steps.

First, DNA sequencing reads are counted in fixed-size genomic
bins. In particular, BedTools (v2.26) was used to extract the read counts
across 1Mb bins in the sequenced progenitor and resistant cell lines
using themulticov function. Bins with no coverage in the progenitor or
resistant cell lines were excluded from downstream analyses.

Second, germline single-nucleotide polymorphisms (SNPs) were
identified from theprogenitor cell lines using platypus (v0.8.1). Default
parameters were used apart from the genIndels flag set to FALSE. The
resistant cell lines were genotyped based on the variants identified in
the progenitor cell line. Only autosomal chromosomeSNPs in resistant
cell lines with a coverage depth of at least 40 and variant count of at
least 10 were kept for downstream analyses. A two-sided binomial test
wasused to define SNPs as heterozygous (comparingBAF to0.5,withp
value threshold of 0.05).

Third, the existing segmentation algorithm DNAcopy (v1.54) was
used with default settings to identify genomic segments resulting from
SCNAs. Since read-depth ratios are required as an input to this algo-
rithm,wecalculated read-depth ratios for everygenomicbin as the ratio
of the corresponding read counts in the resistant cell line to those in the
progenitor cell line. To account for a different total number of
sequencing reads that are sequenced in different samples, the read-
depth ratiowas further divided by the ratio of the total number of reads
in the progenitor cell line to the total number of reads in the resistant
cell line. As such, DNAcopy combines neighboring genomic bins that
are affected by the same SCNA and are part of the same genomic seg-
ment. Moreover, an estimated read-depth ratio is provided for each
genomic segment, which is a value proportional to the corresponding
copy-number variation from the progenitor to the derived cell line.

Lastly, we identied genomic regions affected by copy-number
gains or losses using allelic-balancedgenomic regions as a reference. In
fact, similar to previous copy-number studies, we assume that allelic-

balanced genomic regions (i.e., genomic regions in which every cell
has the same number of copies, such as (1, 1), (2, 2), etc.) are always
present. Note that this is a reasonable assumption since SCNAs do not
generally affect every genomic region, and the remaining genomic
regions are affected by zeroormoreWGDs. As such, we identify allelic-
balanced genomic regions as genomic bins in which the hypothesis of
allelic balance (allele frequency equal to 0.5) cannot be excluded for
>20% of the putative SNPs in such bin (a threshold of 20% has been
chosen to account for the presence of somatic variants and homo-
zygous SNPswith sequencing errors). Specifically, we perform this test
using a standard Binomialmodel for sequencing data. We thus use the
read-depth ratios for all the genomic bins in allelic-balanced segments
to empirically estimate the distribution of read-depth ratios for these
regions. Since multiple copy-number states can underly allelic-
balanced genomic region, we use a Gaussian model for read-depth
ratios as in previous studies, and we separate the distributions of dif-
ferent copy-number states using a Gaussian use a Gaussian mixture
model (edivisive method of mclust algorithm, v5.4.5). We then select
the largest distribution as a reference, and we use the reference
Gaussian distribution to identify lost bins using a two-sided Z-test.
Given the expected number of false positives based on the chosen size
of the fixed-size genomic bins, a significance level of 0.1% has been
used. As such, genomic bins affected by SCNAs are identified as bins
for which the reference distribution can be rejected, and the gained or
lost status is defined according to whether the values are higher or
lower than expected, respectively. Lastly, gained and lost cancer genes
are selected as those found in the cancer gene census (v90)71, and a
pan-cancer consensus oncogene list is generated by ref. 72.

Resistant PC9 subclone erlotinib re-sensitization screen
A selection of hexaploid erlotinib-resistant subclones with recurrent
copy-number gains identified through WES analysis were screened to
identify genes required for maintenance of resistance. Using Dhar-
mafect 2 (Horizon Discovery), cells were reverse transfected in 96-well
plateswith 37.5 nM siRNApools in the presenceor absenceof 1.5μg/ml
erlotinib and cell growth was monitored in an incucyte or cytomat
incubator for up to 5 days until confluent. Cells were subsequently
fixed with 4% paraformaldehyde and stained with 1μg/ml dapi. Plates
were scanned in a CellInsight CX7 High content platform and valid
object counts weremeasured. Plate positional normalization using the
outer product of row and columnmedians across the entire screenwas
performed to reduce the influence of edge effects. The screen was
performed in triplicate and UBB was used as a positive control to
assess loss of viability. Non-targeting controls were used for parental
PC9 cells and resistant subclones to establish baseline conditions. For
each gene, a linear model on log-transformed data was fitted in R73 to
account for a three-way interaction of perturbation status (against
control), subclone and erlotinib treatment, along with a plate effect.
Estimatedmarginal means from thatmodel, and their standard errors,
for the erlotinib treatment: knockdown interaction per subclone
were used to p values (unadjusted p-values < 0.05 were deemed sta-
tistically significant).

Statistics and reproducibility
For analysis of patient data, no a priori sample size calculations were
performed, and cohort sizes were dependent on patient data avail-
ability from both observational and clinical trials. Analysis of murine
and human imaging data were performed in blinded fashion with
respect to Trp53/TP53 status respectively. For statistical analysis of
cellular diversity, single-cell data from two mice was excluded due to
too low coverage to reliably perform the analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
Source data are provided with this manuscript74. The sequencing data
generated in this study have been deposited in ENAwith the accession
numbers PRJEB55482, PRJEB55481, and PRJEB55479 and is publicly
available. Processed data (including copy-number profiles and related
analysis) for the E/EP mouse tumors and for the PC9 resistance cell
lines are available in Zenodo at [https://doi.org/10.5281/zenodo.
10156620]. The whole-exome data (from the TRACERx study) used
during this study has been deposited at the European
Genome–phenome Archive, accession code EGAS00001006494.
Access is controlledby theTRACERxdata access committee. Details on
how to apply for access are available on the linked page. Data from the
TCGA and OncoSG can be found at https://www.cbioportal.org/ and
https://src.gisapps.org/OncoSG/ respectively. Data from the AURA
trials is available on request from AstraZeneca https://vivli.org/
ourmember/astrazeneca/. Clinical parameters from the San Fran-
cisco Clinical Cohort are available upon request in a de-identified
manner from Dr. Bivona or Dr. Blakely. Biological materials are avail-
able on request Source data are provided with this paper.

Code availability
The code to reproduce the single-cell and PC9 analysis and figures in
this study is available in GitHub at [https://github.com/zaccaria-lab/
TP53loss_WGD]. / [https://doi.org/10.5281/zenodo.10658423].
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