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Abstract 21 

Tumor heterogeneity is reflected and influenced by genetic, epigenetic and metabolic 22 

differences in cancer cells and their interactions with a complex microenvironment. This 23 

heterogeneity has resulted in the stratification of tumors into subtypes, mainly based on cancer-24 

specific genomic or transcriptomic profiles. Subtyping can lead to biomarker identification for 25 

personalized diagnosis and therapy, but stratification alone does not explain the origins of 26 

tumor heterogeneity. Heterogeneity has traditionally been thought to arise from distinct 27 

mutations/aberrations in “driver” oncogenes. However, certain subtypes appear to be the result 28 

of adaptation to the disrupted microenvironment caused by abnormal tumor vasculature 29 

triggering metabolic switches. Moreover, heterogeneity persists despite the predominance of 30 

single oncogenic driver mutations, perhaps due to second metabolic or genetic “hits”. In certain 31 

cancer types, existing subtypes have metabolic and transcriptomic phenotypes that are 32 

reminiscent of normal differentiated cells, whereas others reflect the phenotypes of stem or 33 

mesenchymal cells. The cell-of-origin may, therefore, play a role in tumor heterogeneity. In 34 

this mini-review, we focus on how cancer cell-specific heterogeneity is driven by different 35 
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genetic or metabolic factors alone or in combination using specific cancers to illustrate these 36 

concepts. 37 

 38 

 39 

 40 

Introduction 41 

Tumor heterogeneity refers to variations in genotype and phenotype between different tumors 42 

(inter-tumoral heterogeneity) or cells in a single tumor (intra-tumoral heterogeneity). The 43 

existence of inter-tumoral heterogeneity is well established and illustrated by the gene 44 

expression profiles used to stratify multiple cancer types, including, but not limited to, 45 

leukemias, glioblastoma, breast, pancreatic and colorectal tumors into their molecular subtypes 46 

(1-6). However, the true extent of intra-tumoral molecular heterogeneity is only just being 47 

elucidated, in part due to the recent exploitation of high-throughput genomic analyses of 48 

multiple biopsies from individual tumors or by the isolation and analysis of single cells (7). In 49 

general, heterogeneity in cancer cells can manifest itself in two key ways: first, by major 50 

genetic events such as somatic copy number aberrations (SCNAs) and mutations; and second, 51 
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phenotypic variations in transcript and protein expression levels, and, not insignificantly, major 52 

metabolic rewiring. These processes are mediated by, for instance, epigenetic programming.  53 

 54 

Microenvironment, Genetic and Metabolic Changes 55 

The Microenvironment and Nutrients Influence Metabolic Changes in Tumors Besides 56 

genetic differences, individual tumors also show differences in phenotypes including 57 

metabolism (5, 8). Malignant solid tumors frequently encounter mild to severe hypoxia 58 

(oxygen deficiency) due to insufficient tumor microvasculature quality and quantity, 59 

culminating in impaired oxidative phosphorylation (OXPHOS). This cellular stress induces 60 

changes in tumor transcription, respiration and metabolism, promoting highly abnormal 61 

neovasculature formation and, ultimately, allowing increased cancer cell survival, 62 

proliferation, invasion and metastasis (9). These cancer cells, independent of their oxygenation, 63 

increase glycolysis and produce more lactate (the Warburg effect) (10). Instead, the Pasteur 64 

effect states that presence of oxygen would inhibit glycolysis (11), suggesting that under 65 

normoxic conditions cancer cells may prefer OXPHOS. Irrespective of these different effects, 66 

highly metastatic prostate cancer cell lines under normoxic conditions were shown to undergo 67 

glycolysis, while less metastatic lines were OXPHOS dependent (12). Similar effects have been 68 

seen in glioma cell lines (13). Although the apparent differences in energy metabolism in 69 
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different tumors are attributable to their intrinsic genetic, epigenetic, and microenvironmental 70 

characteristics, they may also represent distinct subtypes (9). 71 

 72 

An example of hypoxia directly influencing metabolic programming via gene expression is the 73 

activity of pyruvate kinase isoforms M1 and M2 (PKM1/2), which are essential energy 74 

metabolism regulators critically involved in the final stages of glycolysis. Under hypoxic 75 

conditions, cancer cells expressing only PKM2 proliferate faster than those expressing only 76 

PKM1 (14). PKM2 exists as a less active dimer and a more active tetramer, the former being 77 

highly expressed in proliferating cancer cells and allowing upstream metabolites to accumulate 78 

to meet increased nucleotide, amino acid and serine biosynthesis needs (refer review (15)). 79 

This differential expression of PKM2 isoforms may represent distinct tumor subtypes. 80 

 81 

Mutated Metabolic Genes as Cancer Drivers A more self-evident entwining of metabolism 82 

and genetics is when mutations in genes encoding metabolic enzymes are a first cancer “hit”. 83 

Isocitrate dehydrogenase 1 (IDH1) is an enzyme that converts α-ketoglutarate (α-KG) to citrate 84 

in the tricarboxylic acid (TCA) cycle (16). However, mutated IDH1 can convert α-KG to 2-85 

hydroxyglutarate (2HG), inhibiting enzymes controlling epigenetic methylation and 86 

consequently altering global gene expression (16). IDH1 mutations are implicated in glioma 87 

(17) and acute myeloid leukaemia (AML) pathogenesis (18) and, interestingly, mutated IDH1 88 

enrichment partially defines the proneural glioblastoma subtype (6). Additionally, succinate 89 
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dehydrogenase (SDH) and fumarate hydratase, enzyme complexes involved in TCA cycle, also 90 

have links with cancer (original papers referred in (19)). Germline mutations resulting in the 91 

loss of one subunit of the SDH complex, SDHB, have been confirmed in a rare subset of renal 92 

cell carcinoma (20), and has shown association with therapeutic response to temozolomide in 93 

metastatic pheochromocytoma or paraganglioma (21) . 94 

 95 

Non-Metabolic Driver Mutations Affect Metabolism Clearly, cancer is not only caused by 96 

mutations in genes directly involved in metabolism, and first-hit mutations in non-metabolic 97 

genes also indirectly remodel tumor metabolism. Specific gene mutations often drive 98 

tumorigenesis in a large proportion of cases: TP53 is the most frequently mutated gene in many 99 

cancers (22), and KRAS is a proto-oncogene mutated in over 90% of pancreatic ductal 100 

adenocarcinomas (PDAs) (23). In this latter case, advanced PDAs in a Kras-driven genetically 101 

engineered mouse (GEM) model are dependent on continued mutant Kras signaling, which 102 

stimulates glucose uptake and reprograms downstream anabolic metabolism (24). In addition, 103 

tumors with mutant KRAS are addicted to a non-canonical glutamine-supported metabolic 104 

pathway that drives their growth and upregulates aerobic glycolysis (25).  105 

 106 

However, the requirement of mutant KRAS for tumor maintenance is heterogeneous, with well-107 

differentiated epithelial cell lines – specifically the classical PDA subtype (see below) – being 108 

more reliant on KRAS signaling (3, 26). If mutations in particular genes like KRAS are 109 
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dominant cancer drivers in most cases of certain cancer types, what causes heterogeneity and 110 

different phenotypes in these tumors as the disease progresses?  111 

 112 

Possible Origins of Tumor Heterogeneity Based on Driver Aberrations Cancer subtypes are 113 

mainly associated with distinct first-hit driver aberrations in normal cells (refer (27)), however, 114 

they can be genetic or metabolic aberrations (Figure 1A – left and right panels). Nevertheless, 115 

second-hit metabolic changes could lead to phenotypic heterogeneity in several ways in less 116 

heterogeneous tumors. For example, in cases in which a single mutated gene (e.g., KRAS in 117 

PDA) usually initiates tumorigenesis as a first hit, we hypothesize that tumor heterogeneity is 118 

instigated by a second hit to metabolic reprogramming induced by the microenvironment 119 

(Figure 1A – left panel). Inconsistent oxygenation and nutrient provision by imperfect 120 

microvasculature could lead to considerable microenvironment-based variability in different 121 

tumor regions (and between different tumors), prompting metabolic adaptation to local 122 

conditions that threaten cellular survival. For instance, metabolic reprogramming arising from 123 

obesity-related insulin resistance or excess reactive oxygen species (ROS) from mitochondrial 124 

metabolism could influence cancer cell proliferation and render them vulnerable to 125 

heterogeneity-causing mutations (refer (9)). Similarly, second-hit molecular or genetic changes 126 

could lead to distinct tumor subtypes in less heterogeneous tumors. Due to the wide-ranging 127 
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effects of metabolic and molecular reprogramming on phenotype, these adaptations could be 128 

the origin of different genetic and epigenetic subtypes.  129 

  130 

Epigenetics Facilitates Metabolism-Transcription Feedback While both molecular and 131 

metabolic heterogeneity undoubtedly exist, their origin is debatable. Although tumor diversity 132 

is well represented by molecular/genetic profiles, this does not imply that the heterogeneity is 133 

completely molecular/genetic in origin. Gene expression is dependent on many factors 134 

including epigenetic modifications that regulate chromatin structure and DNA accessibility to 135 

transcriptional machinery. Epigenetic enzymes may be modulated not only by their own 136 

expression and that of their regulators, but also by the availability of metabolites they require 137 

as substrates or cofactors (28). For example, tet methylcytosine dioxygenase 2 (TET2) and 138 

lysine demethylase 3A (KDM3A) are two epigenetic enzymes that employ the metabolite α-139 

KG as a cofactor. In the presence of mutant IDH1, which can convert α-KG to 2HG (16) (see 140 

above), 2HG competitively inhibits α-KG’s binding to TET2 and KDM3A, influencing 141 

epigenetic marks (refer (29)). In this way, genetics, epigenetics and metabolism interact in a 142 

system to form a complex feedback mechanism.  143 

 144 

Evidently, interactions between the tumor microenvironment, metabolism, and genetics are 145 

diverse and complex. The microenvironment regulates metabolic pathways via the epigenome 146 

and also influences them directly (refer (28)). Genomic aberrations (e.g. mutations) can affect 147 
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metabolic genes and non-metabolic genes with indirect actions on metabolism (17). The 148 

different outcomes of these interactions are a potential source of the heterogeneity that can lead 149 

to distinct cancer subtypes. 150 

 151 

Context-Specific Molecular and Metabolic Heterogeneity 152 

Transcriptomic PanNET Subtypes and Their Associated Metabolic Profiles Given the 153 

potential for metabolic heterogeneity to influence cancer cell phenotypes and, by extension, 154 

tumor subtypes, it is sensible to analyze transcriptomic and metabolic profiles together when 155 

attempting to stratify patients. By jointly analyzing mRNA and microRNA (miR) 156 

transcriptomes, we recently stratified human PanNETs into three molecular subtypes with 157 

distinct metabolic profiles (5). One subtype, the “insulinoma-like tumors” (IT; with increased 158 

insulin production), showed increased pyruvate carboxylase (PC) and cytoplasmic malic 159 

enzyme 1 (ME1) expression consistent with active pyruvate cycling, a process utilized by 160 

mature β cells to sustain glucose-stimulated insulin secretion. In contrast, the “metastatic-like 161 

primary” (MLP) subtype showed greater monocarboxylate transporter 1 (SLC16A1/MCT1) and 162 

hexokinase 1 (HK1) expression, which is suppressed in mature β cells (5). Transcriptomic 163 

PanNET subtypes appear to have distinct metabolic preferences.  164 

 165 

Transcriptomic PDA Subtypes PDAs have often been regarded as homogeneous due to the 166 

overwhelming prevalence of driver KRAS mutations. However, for the first time, we 167 
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demonstrated that PDAs, like other cancers, can be classified into three gene expression 168 

subtypes using a 62-gene signature (PDAssigner) (3). One subtype, “classical PDAs”, is 169 

characterized by high adhesion-associated, ribosomal and epithelial gene expression, and 170 

elevated GATA6 expression (3), which is essential for pancreatic development (30). 171 

 172 

The second PDAssigner subtype shows high expression of tumor cell-derived exocrine genes 173 

and was hence named “exocrine-like” (3) (corroborated by Moffitt et al. (31)). We took 174 

particular care to enrich cancer cells by microdissection for PDA subtyping to identify cancer-175 

specific subtypes, and further validated the presence of exocrine-like subtype by performing 176 

immunohistochemistry to detect the cancer cell-specific expression of exocrine-like subtype 177 

proteins on gene expression subtype matched PDA samples (3). The presence of exocrine-like 178 

subtype was validated by Noll et al. (32), by deriving matched exocrine-like PDA patient-179 

derived xenograft tumors and cell lines. In addition, they have shown this subtype to be 180 

resistant to tyrosine kinase inhibitors and paclitaxel via a novel mechanism, suggesting the 181 

requirement for different personalized approach for this cancer subtype (32).  182 

 183 

The third subtype, the “quasi-mesenchymal PDAs” (QM-PDA), exhibits high mesenchymal 184 

gene expression, representing a possible association with cancer-associated fibroblasts/stroma. 185 

Moreover, we clearly demonstrated increased glycolytic gene expression, including MCT1, 186 

hexokinase 2 (HK2) and glucose transporter 3 (SLC2A3/GLUT3) in QM-PDAs. Hence, QM-187 
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PDAs are a highly glycolytic PDA subtype with worse prognosis than the classical and 188 

exocrine-like subtypes (3). These subtypes were validated by independent studies involving 189 

patient PDA tumors (31-33) and cell lines (8), and by ourselves using GEM model-derived 190 

PDA cell lines (34). Although referred to as “basal-like” (based on a similarly-named breast 191 

cancer subtype) in Moffitt et al. (31), the QM-PDA subtype nomenclature was chosen to reflect 192 

the presence of both tumor and stromal genes in the signature (3, 31). Interestingly, the PDA 193 

subtypes in Bailey et al. (33) almost entirely conformed to our PDAssigner subtypes, except 194 

for an additional “immunogenic” subtype, where their a) “squamous” subtype represent our 195 

QM-PDA subtype, b) “pancreatic progenitor” represent our classical subtype and c) “aberrantly 196 

differentiated endocrine exocrine (ADEX)” represent our exocrine-like subtype (33). 197 

Conversely, there was lower concordance between the Moffitt and Bailey subtypes (33). 198 

 199 

Importantly, classical and QM-PDA cell lines with different transcriptomes and metabolomes 200 

exhibit differential responses to two common therapies: classical PDA cell lines were more 201 

sensitive to erlotinib and QM-PDA lines to gemcitabine (3), despite increased mutant KRAS 202 

dependence in the classical subtype (3, 26). Patients with classical subtype tumors, therefore, 203 

may derive benefit from KRAS signaling related therapies, although this has yet to be realized 204 

clinically. However, this data provides clues as to why current clinical responses to erlotinib 205 

and gemcitabine in combination are heterogeneous in unselected PDA patients. Moffitt et al. 206 

have shown that basal-like (QM-PDA) subtype patients were associated with better response 207 
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to adjuvant therapy compared to those with classical subtype PDA (31), further suggesting 208 

personalized treatment options in this aggressive cancer type. 209 

 210 

Metabolomic PDA Subtypes Complementary to the transcriptomic subtypes described above, 211 

metabolic profiling has also revealed three PDA subtypes (8): “glycolytic” PDAs (QM-PDAs), 212 

with elevated glycolysis and serine pathways, increased MCT1 expression, and high glutamine 213 

incorporation into TCA cycle metabolites; “lipogenic” PDAs (classical PDAs), with lipid and 214 

electron transport chain metabolite enrichment and high lipogenesis gene expression, high 215 

oxygen consumption and mitochondrial content, and high glucose incorporation into TCA 216 

cycle metabolites; and “slow proliferating” PDAs low in amino acids and carbohydrates. These 217 

subtype-specific cell lines were also shown to have different responses to various metabolism-218 

based inhibitors (8). 219 

 220 

Putative Cell-of-Origin and Metabolic Phenotypes 221 

An alternative hypothesis to distinct driver aberrations leading to different subtypes is that 222 

cancer cells with different cells-of-origin (27) or those which have undergone epithelial-223 
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mesenchymal transition (EMT) and having distinct molecular and/or metabolic profiles 224 

develop into distinct subtypes based on the cell’s metabolic dependencies (Figures 1B and C).  225 

 226 

The Cell-of-Origin/Phenotype of PanNETs Combined transcriptomic and metabolic profiling 227 

can reveal patterns in phenotypes of cancer subtypes that are reminiscent of their normal 228 

counterpart cells, probably reflecting different cellular origin. In PanNET, IT tumors are 229 

clinically characterized as well differentiated, functional (secrete insulin) and low grade (have 230 

low Ki67-based proliferation index), which infrequently metastasize, and share gene 231 

expression and metabolism with mature islet β cells. Conversely, the proliferation rate in IT 232 

cells is comparatively higher than in β cells irrespective of the infrequent somatic mutations in 233 

tumors (5). Hence, ITs are likely to arise from more differentiated β cells. In this way, they are 234 

probably similar to the exocrine PDA subtype (3) and enterocyte and goblet-like/metabolic 235 

colorectal cancer (CRC) subtypes (see below) (4), which all retain characteristics of their 236 

normal differentiated cells (all these are represented generally in Figure 1B – left panel). 237 

 238 

In contrast, MLP subtype tumors are poorly differentiated and non-functional (i.e. no hormones 239 

can be detected in the blood) and are associated with liver metastases and high tumor grades. 240 

This subtype possesses a typical pancreatic stem/precursor cells or immature β cell 241 
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transcriptional signature and expresses genes associated with fibroblasts, stroma, stem cells, 242 

and hypoxia (see Figure 1B).  243 

 244 

The Cell-of-Origin/Phenotype of Colorectal Tumors We discovered five clinically pertinent 245 

colorectal cancer (CRC) subtypes by mRNA profiling of 1,290 tumors (“stem-like”, “transit 246 

amplifying” (TA), “enterocyte”, “goblet-like”, and “inflammatory” subtypes) (4). 247 

Comparisons with known colon-crypt cell type gene signatures revealed likely cell-of-248 

origin/phenotype candidates (see Figure 1B). For example, the goblet-like and enterocyte 249 

subtype signatures were associated with those of the normal goblet and enterocyte cells (colon 250 

crypt top), while the stem-like subtype was associated with the crypt base, implicating these 251 

sites as the putative cell-of-origins for these subtypes. The stem-like subtype (with low 252 

differentiation marker expression) showed high stem cell, myoepithelial/mesenchymal and 253 

stromal gene expression.  254 

 255 

Although these profiles were subsequently independently confirmed (35), other studies have 256 

concluded that CRCs can be divided into between three and six subtypes (36). Reconciliation 257 

of these subtypes has revealed that these classifications were in fact in broad agreement for 258 

four subtypes, with the remainder being further subdivisions of these “consensus molecular 259 

subtypes” (CMS) (36). One of these four CMS subtypes, which maps to our differentiated 260 

goblet-like subtype, was dubbed the “metabolic” (or CMS3) subtype (36) due to its enrichment 261 
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for several metabolic gene signatures, and was associated with high KRAS mutation frequency, 262 

whose influence on metabolism is discussed above (24, 25). 263 

 264 

Epithelial and Mesenchymal Signatures in Cancer Subtypes EMT is a phenotypic switch in 265 

which cancer cells convert to a more invasive and metastasis-capable (mesenchymal) state. 266 

Since EMT is reversible it cannot simply be attributed to a genetic event, but instead is likely 267 

to represent a comprehensive reprogramming of the genetic, epigenetic, and metabolic profiles 268 

of the cell. This reprogramming is triggered by extracellular signaling, which results in genetic 269 

and metabolic adaptation to the microenvironment (refer (37)).  270 

 271 

Tumor stratification into subtypes can also reveal an epithelial or mesenchymal classification 272 

(Figure 1C). In PDA, the classical subtype expresses high levels of epithelial genes including 273 

CDH17 and CEACAM6, while QM-PDAs are enriched for the mesenchymal gene TWIST1 (3, 274 

8). In CRC, the stem-like (CMS4) subtype represents a mesenchymal phenotype, whereas 275 

goblet-like (CMS3) and enterocyte (subset of CMS2) CRCs represent epithelial phenotypes 276 

(4). Similarly, in PanNETs, the IT subtype exhibits differentiated cell-based markers, whereas 277 

MLPs have mesenchymal signature along with increased glycolytic genes. Moreover, the 278 

mouse MLP subtype can be further subdivided into those that express low or high insulin 279 

gene/protein (“MLP Ins-lo” and “Ins-hi”): the Ins-lo subtype probably originates from 280 

pancreatic stem/islet precursor cells (Figure 1B), while the Ins-hi tumors are likely to be the 281 
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result of epithelial-mesenchymal transition from mature β cells or the progression of β cell-282 

derived IT tumors based on their gene expression profiles (see Figure 1C) (5). This suggests 283 

that the epithelial and mesenchymal phenotypes in PanNET subtypes are products of their 284 

cells-of-origin and a consequence of subsequent reprogramming between the epithelial and 285 

mesenchymal states (5). Nevertheless, it would be interesting to examine the interactions of 286 

genetic, epigenetic and metabolic factors that trigger EMT in these subtypes. 287 

 288 

Concluding Remarks 289 

Overall, there appears to be at least three broad divisions of the origins of tumor heterogeneity 290 

and subtypes based on metabolic, genetic and/or molecular changes. The first are subtypes with 291 

initial tumorigenic driver genetic or metabolic aberration(s) that give rise to different tumor 292 

subtypes (Figure 1A – left and right panels). Nonetheless, an initial aberration as a first hit 293 

in their normal counterparts is probably followed by the gain of additional secondary genetic 294 

or metabolic aberration(s) that further drive progression and affect patient prognosis (Figure 295 

1A – left panel). In the second main group of cancers, cell-of-origin determines the subtypes, 296 

with certain differentiated subtypes maintaining the transcriptomic and other important 297 

characteristics of their well-differentiated normal counterparts (38) (e.g. pyruvate cycling (5)) 298 

and being addicted to more normal cellular energy metabolism. Most of these subtypes have 299 

favorable prognosis (Figure 1B – left panel). Others, probably originating from 300 

stem/precursor cells, are likely to shift their energy metabolism toward glycolysis and other 301 
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malignant metabolisms, and have a poorer prognosis (Figure 1B – right panel). Finally, the 302 

malignant potential and metabolic reprograming are inversely correlated with differentiated 303 

cell-based marker expression, with epithelial and mesenchymal/stemness signatures resulting 304 

in different prognoses (Figure 1C). Whether this context-specific metabolic reprogramming 305 

in different subtypes is triggered from the outset of tumor proliferation or occurs as a result of 306 

cellular adaptation still needs to be determined. 307 

 308 

Nevertheless, it has recently become clear that tumor heterogeneity influences therapeutic 309 

efficacy in a variety of cancer types. Stratifying patients into groups that best respond to 310 

treatment based on the individual tumor’s driver molecular aberrations has had clinical success. 311 

For example, tamoxifen and trastuzumab are two drugs that have subtype-specific benefits in 312 

patients with estrogen-receptor and HER2-positive breast cancers, respectively (39, 40). Our 313 

recent work and that of others has indicated that these molecular indicators of drug/subtype 314 

specificity are also likely to exist in other cancers (3, 4, 6, 31, 35, 41, 42). However, whether 315 

metabolic changes, cell-of-origin and EMT could be exploited for personalized/precise cancer 316 

therapies requires increased attention. 317 

 318 

 319 
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Figures 433 

Figure 1. Various origins of tumor heterogeneity. (A) Driver aberrations determine the 434 

characteristics of the ensuing tumor and, consequently, two driver aberrations (genetic or 435 

metabolic; aberration-1, e.g. KRAS mutation, shown as a red star inside the cell in the left panel, 436 

and a different one - aberration-2, e.g. an EGFR mutation, shown as a yellow star inside the 437 

cell in the right panel) can result in distinct tumor subtypes (Subtypes A or B). Subsequently, 438 

a second metabolic or genetic hit can determine tumor subtypes (left panel). A homogeneous 439 

tumor derived from a cell with a particular tumor-initiating driver aberration-1 can acquire a 440 

further metabolic or genetic hit for subsequent tumor progression. The nature of the second hit 441 

determines the associated characteristics of the progressing tumor subtype, leading to 442 

heterogeneity (Subtypes C or D). (B) Heterogeneity can arise depending on the cell-of-origin. 443 

In certain cases, tumors that arise from well-differentiated cells (e.g.,  cells) can result in a 444 

subtype (Subtype E) that maintains both the metabolic and genetic profiles of the original cell-445 

of-origin, and mostly have favorable prognosis (shown with a Kaplan-Meier curve). On the 446 

other hand, those tumors arising from stem/precursor cells with fewer markers of 447 

differentiation (Subtype F) probably have fewer metabolic and genetic characteristics of their 448 

parental cells and have a poorer prognosis (shown with a Kaplan-Meier curve). (C) EMT can 449 

lead to distinct tumor subtypes. Tumors originating from epithelial or mesenchymal cells can 450 

result in distinct subtypes (Subtypes G and H, respectively) with different prognoses (shown 451 

with a Kaplan-Meier curve). EMT is shown with a reversible arrow. 452 

 453 


