
Diffusion-weighted (DW) MRI in Lung Cancers: ADC Test-retest Repeatability 

ABSTRACT:  

Purpose: To determine the test-retest repeatability of Apparent Diffusion Coefficient (ADC) 

measurements across institutions and MRI vendors, plus investigate the effect of post-processing 

methodology on measurement precision. 

Methods: Thirty malignant lung lesions >2cm in size (23 patients) were scanned on two occasions, 

using echo-planar-Diffusion-Weighted (DW)-MRI to derive whole-tumour ADC (b=100, 500 and 

800smm
-2

).  Scanning was performed at 4 institutions (3 MRI vendors). Whole-tumour volumes-of-

interest were copied from first visit onto second visit images and from one post-processing platform to 

an open-source platform, to assess ADC repeatability and cross-platform reproducibility. 

Results: Whole-tumour ADC values ranged from 0.66-1.94x10
-3

mm
2
s

-1
 (mean=1.14). Within-patient 

coefficient-of-variation (wCV) was 7.1% (95% CI 5.7–9.6%), limits-of-agreement (LoA) -18.0 to 

21.9%. Lesions >3cm had improved repeatability: wCV 3.9% (95% CI 2.9–5.9%); and LoA -10.2 to 

11.4%. Variability for lesions <3cm was 2.46 times higher. ADC reproducibility across different post-

processing platforms was excellent: Pearson’s R
2
 = 0.99; CoV 2.8% (95% CI 2.3-3.4%); and LoA -

7.4 to 8.0%). 

Conclusion: A free-breathing DW-MRI protocol for imaging malignant lung tumours achieved 

satisfactory within-patient repeatability and was robust to changes in post-processing software, 

justifying its use in multi-centre trials. For response evaluation in individual patients, a change in 

ADC >21.9% will reflect treatment-related change. 
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KEY POINTS: 

1.  In lung cancer, free-breathing DWI-MRI produces acceptable images with evaluable ADC 

measurement. 

2. ADC repeatability coefficient-of-variation is 7.1% for lung tumours >2cm. 

3. ADC repeatability coefficient-of-variation is 3.9% for lung tumours >3cm. 

4. ADC measurement precision is unaffected by the post-processing software used. 

5. In multicentre trials, 22% increase in ADC indicates positive treatment response. 

 

ABBREVIATIONS: 

DW-MRI = Diffusion-weighted magnetic resonance imaging 

ADC = Apparent diffusion coefficient 

NSCLC = Non small-cell lung cancer 

SCLC = Small-cell lung cancer 

EORTC = European Organization for Research and Treatment of Cancer 

CRUK = Cancer Research UK 

UK = United Kingdom 

GE = General Electric 

STIR = Short-tau inversion recovery 

NSA = Number of signal averages 

LoA = Limits of Agreement,  

wCV = Within subject Coefficient of Variation 

ICC = Intra-class correlation  

CCC = Concordance correlation coefficient 

IDL = Interactive digital language 

DICOM = Digital Imaging and Communications in Medicine 

EPSRC = Engineering and Physical Sciences Research Council 

NIHR = National Institute for Health Research (UK) 

NHS = National Health Service 

ICR = Institute of Cancer Research (UK) 

RMH = Royal Marsden Hospital (UK) 

MRC = Medical Research Council (UK) 

 

  



INTRODUCTION  

Diffusion-weighted MRI derived Apparent Diffusion Coefficient (ADC) is emerging as a potentially 

valuable imaging biomarker for quantifying treatment response in a number of tumour types, 

including in lung cancers. It is being applied as an end point in an increasing number of clinical trials 

both outside (1-3) and within the lung (Table 1, (4, 5)). In order to utilize change in ADC as a 

response biomarker, uncertainty in its quantitation must be lower than the change following treatment, 

which in lung tumours ranges between 16-90% (Table 1). Therefore in order to detect meaningful 

change with treatment, it is desirable that the uncertainty of the ADC measurement is <16%. This 

measurement uncertainty must include calculation of marker precision and bias estimation. The latter 

is carried out in test objects (6-8), while the former (defined as ‘the closeness of agreement between 

measured quantity values obtained by replicate’) is obtained through test-retest repeatability 

measurements under specified conditions. There are no reports of ADC measurement repeatability in 

lung cancers in a multi-centre setting, although inter and intra-observer coefficients of variation 

estimated from repeated measurements on the same data sets (reproducibility) have been estimated at 

3.7-11.4% (depending on lesion size and location in the chest) (9, 10).  

Methods of deriving ADC suffer from inconsistent methodology across different centres, both in data 

acquisition and analysis; a wide variety of lesion segmentation methodologies and software packages 

have been presented for ADC quantitation (Table 1 (11-20)). However, even when acquisition and 

analysis methods are standardised, uncertainty resulting from different scanner platforms and different 

post-processing algorithms between institutions, which is inherent in multicentre trials, is unknown. 

The EORTC/CRUK imaging biomarker validation roadmap stresses the huge importance of 

multicentre multivendor repeatability/reproducibility studies to ensure that imaging biomarkers can 

translate beyond single-centre use (21). The purpose of this study therefore was to determine the 

repeatability of ADC measurements acquired on a test-re-test basis using a common and generalizable 

free breathing DW-MRI protocol, across four university hospitals and 3 different MRI vendor 

platforms. It was performed under EORTC Innovative Medicines Initiative (IMI) QuIC-ConCePT 

project (Quantitative Imaging in Cancer: Connecting Cellular Processes with Therapy), for which the 

variation in ADC measurement precision was investigated as a function of lesion size, post-processing 

methodology and ADC summary statistic employed. The ultimate aim was to validate the use of ADC 

for treatment response assessment in lung cancer in a multi-centre setting (www.imi.europa.eu). 

MATERIALS AND METHODS 

Patients 

This prospective, multicentre study was performed following local Ethics Review Board approval in 

Italy, the Netherlands and the UK. Across four university hospitals, patients with at least one lung 

http://www.imi.europa.eu/


tumour > 2 cm in size identified on CT and without contra-indication to MRI were invited to 

participate. Written informed consent was obtained for the 27 patients enrolled (15 men, 12 women, 

age range 41 – 86 years). Between May 2014 and September 2015, 25 of the 27 patients were scanned 

on two occasions >1 hour and <1 week apart (median interval 4.29 hours). In 2 patients, the 

repeatability scans were inconsistent with the imaging protocol for the study and their data was 

excluded from the analysis (Table 2). For these patients, the DW-imaging had been performed with 

insufficient signal averages (NSA < 4), providing lower signal-to-noise ratio than was obtained for the 

remaining patients. The remaining 23 patients underwent test-retest repeatability imaging according to 

the study protocol. Of these 23 patients, 15 patients had primary lung cancer (14 NSCLC and 1 small 

cell lung cancer (SCLC)), 8 had metastatic lung lesions (3 from colorectal carcinoma; 1 from renal 

cell cancer; and 1 uterine leiomyosarcoma) and 3 had an undocumented primary site. 6 of the 23 

patients were treatment naïve (5 of whom had lung cancer and 1 metastatic renal cell cancer). The 

other 17 had either received treatment >1 week prior to enrolment (chemotherapy or radiotherapy to 

lungs in 11 patients), or treatment status was not documented by the scanning site (6 patients). For the 

11 in whom prior treatment had been documented, 6 received chemotherapy alone, 3 received a 

combination of chemotherapy and radiotherapy and 2 had received radiotherapy alone. The mean 

interval between end of treatment and baseline scan was 63 weeks, so that no on-going post-treatment 

effects were present.  Analysis was possible for 30 lung lesions >2cm in size.  

Quality Assurance 

Quality assurance was carried out prior to scanning and then every 3 months, using a previously 

described temperature controlled sucrose phantom, to confirm ADC stability on the 1.5 T MR 

scanners at the four sites (22). 

Image Data Acquisition 

All imaging experiments were performed during free breathing, using phased-array body coils (2 

anterior and 2 posterior elements) on the following platforms: GE Optima 1.5T (site A); Philips 

Achieva 1.5T (sites B and G); Siemens Avanto 1.5T (site E). DW-MR imaging comprised twice 

refocused spin-echo sequences with single-shot echo planar readout, using a short-tau inversion 

recovery (STIR) fat suppression technique, over a large field of view. 5mm transverse slices with no 

slice gap were obtained through the whole lung, using 30-60 slice scanning volumes per series of DW 

images. Each series of DW images was either performed four times, or once with NSA=4 (GE, and 

Philips). Images were acquired at three b-values (100, 500 and 800 s/mm
2
). DW sequence parameters 

included b values greater than 100s/mm
2
, in order to reduce the effects of perfusion on the ADC 

estimate (Table 2). 



Anatomical images of the whole chest were also obtained, using axial T1-weighted (T1-W) turbo 

spin-echo sequence and a three-dimensional (3D) T2-W turbo spin echo sequence with variable flip 

angle. 

Image Data Analysis 

Bright regions on the high-b value images that are iso- or hypo-intense to spinal cord on the ADC 

maps are features that have been shown to differentiate tumour from pleural fluid or pulmonary 

collapse and were used to delineate tumour (23) (Figure 1). With reference to the high b-value images 

and ADC maps (so as to differentiate tumour from adjacent atelectasis), tumour size (maximum lesion 

dimension) was evaluated on the anatomical T1W imaging using an electronic calliper (performed in 

OsiriX, Pixmeo, Geneva, Switzerland).  

Segmentation was performed on every slice on which tumor was present, to encompass the whole 

tumour cross section, by an experienced radiologist (AW) using both a region growing technique 

(where a user defined seed is grown and checked by the operator for registration, to include all nearest 

neighbour pixels that lie within the mean +/- a specified number of standard deviations of the original 

seed mean value - ADEPT, Institute of Cancer Research, UK) and a freehand drawing technique 

(OsiriX). Freehand segmentation in Osirix was performed with reference to the region growing 

boundaries defined in ADEPT, in order to define anatomically co-registered tumour regions on the 

two software packages (Figure 2).  

Whole-tumour segmentation was performed on the computed (or ‘virtual’) high b (=800 smm
-2

) value 

images rather than the acquired b=800smm
-2

 images as the former provide higher SNR, in 

combination with good image quality and background suppression, while at the same time ensuring 

exact anatomical registration with the ADC images (24). Segmentation was performed for images 

obtained at the first patient visit (DWI-1), for all lesions that were: (a) >2cm in size and; (b) present 

on at least 3 consecutive slices. These regions were copied slice by slice onto anatomically co-

registered tumour regions on images obtained at the second patient visit (DWI-2), so as to generate 

anatomically matched test-retest ADC measurements.  

ADC and computed DW-MR images were generated by applying a mono-exponential decay model to 

signal decay with increasing b-value (Levenberg- Marquardt algorithm) in both software packages 

(24). Measurements generated in OsiriX were used to calculate multi-centre, cross vendor, within-

patient ADC test-retest repeatability.  

For those lesions in which image analysis was possible on the 2 different post-processing platforms 

(25 of 30 lesions), the reproducibility of the ADC measurement using 2 different software packages 

was evaluated.  



Statistical Analysis 

Statistical analysis was performed in Graph-pad Prism Version 6 (GraphPad Software Inc. 

CA, USA). Data used for comparison was tested for normality (d’Angostino Pearson) and log-

transformed if non-normal. Normally distributed data were compared using a Student’s t-test.  

Test-retest repeatability and measurement precision for whole tumour median ADC (ADCmed) was 

assessed with Bland-Altman plots, as well as by calculating Limits of Agreement (LoA), within 

subject Coefficient of Variation (wCV), and intra-class correlation (ICC). These parameters were 

calculated for ADC values measured for all lesions and separately for lesions 2- 3cm and lesions > 

3cm. Differences in test-retest ADCmed measurement variability between scanning institutions (sites 

A, B, E and G) were assessed using one-way ANOVA. Variability for this purpose was defined by the 

difference in ADC value per lesion on test-retest scanning [(ADC-1) – (ADC-2)]. Differences in ADC 

measurement variability based on lesion size (<3cm versus >3cm) were assessed using the F-test (25). 

For the ADC values generated on the two post-processing platforms, differences between the absolute 

ADC values and test-retest ADC value variability were assessed for significance using paired 

Student’s t-test. For this analysis, difference in ADC variability using each post-processing platform 

was calculated by considering: [(ADC-1) – (ADC-2)]ADEPT; compared with [(ADC-1) – (ADC-

2)]OsiriX. Pearson’s correlation coefficient was also calculated for ADC estimates derived using the two 

post processing platforms and agreement of ADC values between the platforms was assessed using 

Bland-Altman analysis and the concordance correlation coefficient (CCC) (8).  

The influence of ADC summary statistic on repeatability used was assessed by calculating wCV, 

LoA, ICC and measurement variability [(ADC-1) – (ADC-2)] for whole tumour mean ADC values 

(ADCmean), as had previously been performed for ADCmed. ADCmean test-retest variability was 

compared with corresponding ADCmed variability using the paired Student’s t-test. In addition, 

Pearson’s R
2
, concordance correlation coefficient and coefficient of variation (CoV) between paired 

ADCmean and ADCmed values were calculated. The absolute ADC values (ADCmed and ADCmean) were 

also compared for difference using the Student’s t-test with (Holm-Bonferroni corrected) level of 

significance set as p = 0.0125. 

RESULTS 

ADC measurements of the test object from all scanners at all time-points fell within the expected 

range, indicating that quality assurance specifications for the study were met (22). 

Evaluable lesions ranged in size from 21 to 94mm (Table 3). Median ADC (ADCmed) values for whole 

tumour were in the range 0.66 to 1.94 x10
-3

mm
2
/s (mean = 1.14 x10

-3
mm

2
/s, sd = 0.33 x10

-3
mm

2
/s). 

Equivalent mean tumour ADC (ADCmean) values were in the range 0.64 to 1.97 x 10-
3
mm

2
/s (mean = 



1.16 x10
-3

mm
2
/s, sd 0.31 x10

-3
mm

2
/s). The highest value of ADC was recorded for patient 4, in whom 

artefact from a subcutaneous metallic foreign body distal to but at the same level as the treatment 

naive right upper lobe NSCLC is likely to have influenced diffusion weighted signal decay.   

Averaged ADCmed values and the repeatability of whole lesion analysis from the two imaging time-

points are summarized in Table 3. Within patient ADCmed coefficient of variation (wCV) for all 

lesions was: 7.1% (95% CI 5.7 – 9.6%); limits of agreement (LoA) were -18.0 to 21.9%; and ICC was 

0.94 (95% CI 0.88 to 0.97). The equivalent repeatability results using ADCmean were very similar: 

wCV for all lesions was 7.0% (95% CI 5.6 to 9.3%); LoA -17.5 to 21.3%; ICC 0.95 (95% CI 0.89 to 

0.97). In line with this, there was no significant difference in ADC measurement variability for 

ADCmean compared with ADCmed (p=0.41). A strong correlation was observed between ADCmed with 

ADCmean, where: Pearson’s R
2
 = 0.98; CoV 3.0 % (95% CI 2.6 – 3.7%); LoA -6.3 to 10.9%; and 

concordance correlation coefficient (CCC) 0.99 (95% CI 0.980 to 0.992). Despite this, absolute 

ADCmed values were significantly different from ADCmean (p=0.007), although the magnitude of this 

difference was small (mean ADCmed = 1.14, range = 0.66 to 1.94 x10
-3

mm
2
/s, whereas mean ADCmean 

=1.16, range = 0.64 to 1.97 x 10-
3
mm

2
/s). Nonetheless, these results reflect a systematic shift toward 

higher values for ADCmean compared with ADCmed.  

Considering the effect of lesion size, ADCmed repeatability for lesions > 3cm (n=16) is summarised 

by: wCV of 3.9% (95% CI 2.9 – 5.9%); LoA -10.2 to 11.4%; and ICC 0.98 (95% CI 0.95 to 0.99). In 

comparison, ADCmed measurement variability for lesions <3 cm (n=14) was c. 2.5 times higher, with: 

wCV of 9.6% (95% CI 7.0 – 15.2%); LoA -23.3 to 30.5%; and ICC 0.92 (95% CI 0.77 to 0.97). This 

difference in ADC measurement variability for lesions >3cm compared with lesions < 3cm reached 

statistical significance [F(15,13) = 0.13, p = 0.0002]. Bland Altman plots in Figure 3 (a-c) summarise 

these data. Comparing lesions >3cm with lesions <3cm, no significant difference was observed 

between these groups in terms of either the interval between scans (Mann-Whitney p=0.24) or prior 

treatment status (Fischer exact test p = 0.17). From the one-way ANOVA, the scanning institution had 

no significant effect on test-retest ADCmed measurement variability [F(3,26) = 0.87, p = 0.47)], a 

result that is confirmed by the overlapping 95% confidence intervals for wCV (Table 3, Figure 3 (d)). 

Similarly, there was no significant difference in absolute ADCmed values between primary and 

metastatic lesions (p = 0.58), nor between treatment naïve and previously treated patients (p =0.74).  

ADC reproducibility using two different post-processing software packages was possible for DW-

MRI performed at sites A, B and E. For 5 lesions scanned at site G, due to storing and transfer of the 

image data in a ‘JPEG lossless’ format, in which grey-scale bit-depth of the DICOM files is 

compressed, quantitative analysis was not possible on ADEPT (IDL). For the remaining 25 lesions, 

agreement (measured on a per-lesion basis) between ADCmed values generated on two different post-

processing platforms was excellent, with: Pearson’s R
2
 = 0.99; CoV 2.8% (95% CI 2.3 – 3.4%); LoA 



-7.4 to 8.0%; and concordance correlation coefficient (CCC) 0.99 (95% CI 0.989 to 0.996) (Table 4). 

This is demonstrated graphically in the correlation, Bland Altman and box-plots in Figure 4. In 

addition, for the two different post-processing platforms, no significant differences were seen in terms 

of either the absolute ADCmed values generated (p = 0.13) or for test-retest ADCmed variability (p= 

0.73). 

DISCUSSION 

This study demonstrates a wCV of < 10% for ADC (both median and mean values) in malignant lung 

lesions across multiple institutions, using a whole lung DW-MRI protocol during free breathing and 

different post-processing software packages. It is the first study to confirm multi-centre within-patient 

test-retest repeatability in malignant lung lesions and indicates that within a clinical trial, a measured 

ADC change of >22% is an acceptable threshold for indicating response, as it would be above the 

95% limits of agreement for test-retest scanning (LoA = -18.0 to 21.9%). This change is a little 

greater than the change recorded following treatment in some single centre reports in the literature 

(Table 1). Nevertheless, the similarity of the absolute ADC values between data in these reports and 

our cohort endorses our ADC repeatability measurement and justifies its use in future multicentre 

clinical trials (6).  However, due to the wide range of individual ADC test-retest variability, 

generalisability of our findings to assess response of individual patients in the clinical setting would 

require justification.  Our data nonetheless demonstrates acceptable cohort wCV, for the purpose of 

measuring treatment-related change in a clinical trial. Furthermore, ADC is a very promising 

biomarker that will allow quantitative interrogation of tumour microstructure and cell membrane 

integrity (http://qibawiki.rsna.org/index.php), potentially reflecting treatment-induced changes early 

during therapy, where size based measurements are non-informative because they do not reflect 

changes in tumour biology (26). 

The choice of ADC summary statistic significantly altered absolute ADC values: ADCmed was 

significant different from ADCmean, despite strong correlation between the two values. This is likely 

due to the bimodal ADC distribution within mixed necrotic/solid tumours. This difference highlights 

the importance of consistent methodology within and between trials before absolute ADC 

measurements can be compared, so as to mitigate against risks (27). Repeatability was equivalent for 

both metrics, indicating that choice of either metric is acceptable. The effect of lesion size on ADC 

repeatability for lung tumours is in line with prior reports on reproducibility (9). Significantly better 

repeatability was seen for lesions >3cm than smaller lesions. This reflects the greater effect of 

respiratory motion on smaller lesions. When respiratory excursion in the z-axis is greater than half of 

tumour size, volume averaging between normal lung and tumour occurs for all locations within 

tumour. It is interesting to note that for lesions <3cm in size, half of this dimension was similar to the 

mean diaphragm excursion expected during quiet respiration, reported in prior studies to lie between 

1.4 to 1.7 cm (9, 28). This effect of lesion size is also likely to have accounted for differences in wCV 

http://qibawiki.rsna.org/index.php


observed between institutions in our study - Site E had greater mean lesion size than site A and 

tendency to a lower wCV, although this latter difference did not reach statistical significance. Use of 

motion compensation protocols when assessing small lesions may well be warranted in the future in a 

single centre setting. Any measures employed should take into account the dependence of respiratory 

motion upon tumour location in the chest (29). 

Perfusion related ADC bias was minimised by using b=100s/mm
2
 as the lowest b-value (30, 31) with 

the upper b-values dictated by previously observed ADC values in lung tumours ((32, 33), Table 1). 

The b=500s/mm
2
 acquisition ensured that ADC values from predominantly mucinous/necrotic 

tumours (high ADC) were accurately represented, as in these tumours signal at b=800s/mm
2
 has a 

significant noise contribution. The satisfactory ADC measurement repeatability in lung tumours has 

enabled roll-out into a European multicentre trial assessing NSCLC treatment response to neo-

adjuvant chemotherapy [EORTC 1217 https://clinicaltrials.gov/show/NCT02273271].  

The free breathing protocol used in his study is easily implemented in multicentre trials and both 

generalizable across centres and suitable for the lung cancer patient group, in whom breath-hold 

capacity is limited. Ease of implementation was strong factor in devising the protocol and it could be 

further refined if proposed for single centre use. For example, motion compensation measures could 

be applied at the expense of scan duration in the single centre setting (9), where image quality may be 

improved by reducing the effect of respiratory motion. One limitation of our data is that lesions < 2cm 

were not included in the analysis. Future evaluation of smaller lesions would be best achieved after 

applying a successful respiratory compensation protocol.  

The effect of gradient non-linearity on ADC accuracy and reproducibility has been highlighted as area 

of concern for clinical trials and poor inter-scanner reproducibility has been cited as reducing the 

diagnostic value of ADC (34). In light of this, each patient included in this study had examinations 

performed on the same scanner with identical acquisition parameters at each visit. However, even 

when using the same scanner, changing tumour position within the B0 field and relative to the DWI 

scanning volume can distort tumour ADC estimates, due to non-linearity of both the spatial encoding 

and diffusion encoding gradients (34). Inconsistent patient position is likely to have a negative impact 

on repeatability, a factor that was minimised in our study by consistent patient and scanning volume 

positioning by dedicated research technologists.  

It is interesting to note that no significant difference was observed between ADC values for treatment 

naïve compared with patients that had received treatment. Lesion segmentation in our study included 

necrotic areas of tumour for some patients, potentially leading to bias in the ADC measured, while for 

patient 4 (treatment naïve), metallic artefact at the same slice position as tumour caused encoding and 

diffusion gradient distortion. However, the small difference in ADC between the two imaging time-

https://clinicaltrials.gov/show/NCT02273271


points for this patient (1.34%) indicates that any artefact induced alteration of ADC did not have an 

adverse effect on repeatability. 

Our data demonstrate the robustness of mono-exponential log linear ADC fitting. Prior reports have 

shown that post-processing of quantitative MRI parameters can have a profound impact measurement 

uncertainty, especially with dynamic contrast enhancement (35-37). In our analysis of ADC, the fact 

that the two software packages did not utilize perfectly matched regions of interest at each location 

within tumour (because we were unable to export regions of interest from one package to the next), 

demonstrated the robustness of ADC measurement in the chest. The region growing segmentation 

methodology is a technique previously shown to produce acceptable intra- and inter-observer 

reproducibility (9) and our analysis illustrates that cognitive registration of regions matched between 

software packages on the b=800 smm
-2

 images suffices. To be clinically meaningful, the measurement 

needs to be repeatable across multiple observers, software platforms and imaging platforms (2, 38).  

This study adds to existing data by confirming the validity of post-processing on a widely available, 

open-source DICOM browser such as Osirix. The data from this study provides the first step in 

demonstrating the viability of ADC for the purpose of treatment response evaluation in lung cancer 

and justifies its application to future clinical trials.  

CONCLUSION 

We have demonstrated satisfactory test-retest repeatability and reproducibility of ADC measurements 

in lung tumours, using an easily implemented free breathing DW-MRI protocol across multiple 

institutions. These results justify the more widespread interrogation of ADC as a potential biomarker 

in phase II and III clinical trials, where its role in predicting outcomes following therapy now requires 

evaluation (39). If proposed for more widespread use, ADC also provides a robust measurement that 

is not unduly influenced by different post processing software packages, showing very close 

agreement and satisfactory reproducibility between our in house analysis software and open-source 

DICOM browser based Osirix. Further interrogation of the methodology, including with motion 

compensation and high resolution single lesion coverage would be essential before applying ADC 

quantitation to individual patients in the clinical setting. 
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Figure 1: Comparison of anatomical T2w (4 (a)) and DW-MRI (4 (b) and (c)) images for a left upper 

lobe tumour 

 

Figure 1 (a): Coronal anatomical T2-SPACE image through a left hilar mass, causing distal left lower 

lobe collapse. Primary tumour is not differentiated from adjacent collapse. 

 
Figure 1 (b): Corresponding b=800 image which, like the ADC map delineates tumour boundaries 

more clearly than on the anatomic T2W images (4a) 



.  
Figure 1 (c): Corresponding ADC on which tumour has higher restricted diffusion compared with 

distal atelectasis, demonstrating tumour boundaries clearly. 

 

 
Figure 1 (d): Colour overlay of the b800 DW images onto the Coronal T2W images, acquired in 

expiration with a respiratory trigger from the dome of the diaphragm. Images are matched for slice 

location in the z-direction. Co-registration of the free breath b800 images with the end expiratory 

SPACE images is an interesting observation. 

 

  



Figure 2: Comparative ROIs generated using axial images in two different post-processing packages: 

 

 
Figure 2 (a): ROI generated using axial images in ADEPT (b800 image) 

 
Figure 2 (b): ROI generated using axial images in ADEPT (ADC image) 



 

Figure 2 (c): ROI generated using axial images in Osirix (b800 image) 

 
Figure 2 (d): ROI generated using axial images in Osirix (ADC image) 
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Figure 3 (a): Bland Altman plot of test-retest repeatability for all lesions 
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Figure 3 (b): Bland Altman plot of test-retest repeatability for lesions >3cm 
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Figure 3 (c): Bland Altman plots of test-retest repeatability for lesions <3cm 
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Figure 3 (d): Box plot of ADCmed (x10
-3

mm
2
/s) measurement variability by site (sites A, B, E and G) 
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Figure 4 (a): Scatterplot of ADCmed values (x10
-3

mm
2
s

-1
) obtained for whole lesion segmentation on 

ADEPT (IDL based) and Osirix (c-DWI) post-processing software packages 
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Figure 4 (b): Bland Altman plot of ADCmed values obtained for whole lesion segmentation on 

ADEPT (IDL based) and Osirix (c-DWI) post-processing software packages 
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Figure 4 (c): Boxplot confirming no significant difference in test-retest ADCmed value variability for 

measurements generated by analysis on ADEPT (IDL based) and Osirix (c-DWI) software 

 

Table 1: ADC parameters and tumour segmentation methodologies used within the literature to date. 

Author, year Patient group ADC metric measured % ADC increase with 

treatment 

Reischauer 2014 

(11) 
9 patients, 13 lesions, 

NSCLC ADC 1 

week after 

chemotherapy start 

Mean ADC from freehand 

whole tumour segmentation 

performed on ADC maps 

16.2% ADC increase for 

RECIST responders  

Yu 2014 (12)  25 patients, NSCLC 

ADC after 1 cycle 

chemotherapy 

Mean ADC from freehand 

segmentation of single 

central largest tumour slice 

performed on ADC maps 

90% ADC increase for 

RECIST responders 

Tsuchida 2013 

(13) 
28 patients, NSCLC 

ADC after 1 cycle 

chemotherapy 

Mean ADC from freehand 

segmentation of single 

central largest tumour slice 

on b=800 images 

21.5% cutoff for ΔADC 

differentiated RECIST 

responders from non-

responders 

Yabuuchi 2011 

(14) 

28 patients, NSCLC 

ADC after 1 cycle 

chemotherapy 

Mean ADC within 3 

representative regions of 

interest on ADC maps 

‘Good ADC increase’ 

(mean ΔADC =  35.9%) 

had longer PFS and OS 

than ‘poor ADC increase’ 

Sun 2011  (15)  21 patients, NSCLC 

ADC 1 week after 

chemotherapy 

‘Average’ ADC from 

freehand segmentation of 

single central largest tumour 

slice on ADC maps 

36% ADC increase for 

RECIST responders 

Okuma 2009 

(16)  
17 patients. Lung 

tumour ADC 3 days 

after radiofrequency 

ablation (RFA) 

‘Average’ ADC from setting 

an ROI in tumour on the 

single central largest tumour 

slice on ADC maps 

29.6% ADC increase 

following RFA (higher 

increase for those that 

showed later local control) 

Chang 2012 

(17)  
7 patients, NSCLC 

ADC mid- chemo-

radiotherapy  

‘Average’ ADC from 

100mm2 ROI placed central 

largest tumour slice on ADC 

maps 

67.7% ADC increase for 

RECIST responders 

Ohno 2012 (18)  64 patients, NSCLC Mean ADC from circular No ADC change measured 



ADC pre chemo-

radiotherapy 

ROIs placed on every 

tumour slice on the b=0 and 

b=1000 images  

(baseline value only) 

Regier 2012 

(19) 
41 patients, NSCLC 

ADC pre 

radiotherapy 

Mean and minimum ADC 

values from polygonal ROIs 

encompassing whole tumour 

on ADC maps 

No ADC change measured 

(baseline value only) 

Bernardin 2014 

(9)  
8 patients (2 NSCLC, 

2 SCLC, 4 metastatic 

lung lesions) 

Mean and median ADC from 

segmentation of the central 3 

slices of tumour 

No ADC change measured 

(ADC inter-and intra-

observer reproducibility) 

Weiss 2016 (20) 10 patients, NSCLC 

ADC pre chemo-

radiotherapy 

Mean ADC from whole 

tumour and metastatic lymph 

node segmentation on 

b=1000smm-2 images 

19-26% relative ADC 

increase from baseline 

 

Table 2: DW-Imaging parameters (SS-EPI = single shot echo planar imaging) 

Sequence SS-EPI Orientation Axial (whole lung) 

Acq. matrix 128 x 112 

(87.5%) 
N

o
 signal averages 1, repeated 4x 

FOV read (mm) 380 Frequency bandwidth 

(Hz per pixel) 
1400 – 1800 

FOV phase (mm) 273mm PE direction AP 

Pixel size (mm) 3 x 3 Acceleration factor 2 

Slice gap (mm) 0 Fat suppression STIR  (TI : 180 ms) 

Slice thickness (mm) 5 b-values / s mm
-2 100, 500, 800 

TR (ms) ≥ 8000 Parallel imaging Yes 

TE (ms) 72 Diffusion gradient mode Trace (Gradient over-

plus) 

 

  



Table 3: Within patient repeatability of duplicate ADCmed (x10
-3

mm
2
/s) on test-retest scanning of 

pulmonary masses, for ADC measurement on Osirix. 

 

Lesion 

Overall mean of 

ADCmed (x10
-

3
mm

2
s

-1
) (+ sd) 

wCV of ADCmed 

(%) (95% CI) 

[95% LoA (%)] 

ADCmed ICC 

(95% CI) 

Mean lesion 

diameter (cm) 

(+ sd) 

All lesions (n=30), 

whole tumour 

segmentation 

1.14 (0.33) 7.1 (5.7 – 9.6) 

[-18.0 to 21.9] 

0.94 (0.88 to 

0.97) 

4.5 (2.4) 

Site A 

(10 lesions) 

1.08 (0.35) 9.5 (6.6 - 16.7) 

[-23.0 to 29.9] 

0.93 (0.75 to 

0.98) 

3.3 (1.7) 

Site B 

(2 lesions) 

1.44 (0.11) 4.1 (2.1 -26.1) 

[-10.7 to 12.0] 

0.97 (-0.80 to 

1.00 

2.6 (0.3) 

Site E 

(13 lesions) 

1.19 (0.34) 4.8 (3.5 – 7.8) 

[-12.5 to 14.3] 

0.95 (0.86 to 

0.99) 

5.5 (2.5) 

Site G 

(5 lesions) 

1.01 (0.25) 7.8 (4.8 - 19.2) 

[-19.4 to 24] 

0.90 (0.32 to 

0.99) 

4.9 (2.6) 

Lesions > 3cm 1.17 (0.30) 3.9 (2.9 – 5.9) 

[-10.2 to 11.4] 

0.98 (0.95 to 

0.99) 

6.2 (2.0) 

Lesions < 3cm 1.10 (0.37) 9.6 (7.0 – 15.2) 

[-23.3 to 30.5] 

0.92 (0.77 to 

0.97) 

2.5 (0.3) 

 

  



Table 4: Reproducibility of duplicate pulmonary mass ADCmed (x10
-3

mm
2
s

-1
) values generated on 

different post-processing platforms (IDL based ADEPT and Osirix) (CCC= concordance correlation 

coefficient) 

 

Lesion 

Overall mean of 

ADCmed (x10
-

3
mm

2
s

-1
) (+ sd) 

CoV of ADCmed 

(%) 

(95% CI of 

CoV) 

[95% LoA] 

CCC for  

ADCmed on 

ADEPT vs 

Osirix 

(95% CI) 

Mean lesion 

diameter (cm) 

(+ sd) 

n=25 lesions, 

segmentation 

performed on  ADEPT 

 

1.17 (0.36) 

 

2.8 (2.3 – 3.4) 

 

[-7.4 to 8.0] 

 

0.99 (0.989 to 

0.996) 

 

 

4.5 (2.4) 

n=25 lesions, 

segmentation 

performed on  Osirix 

 

1.16 (0.34) 
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