
ARTICLE

Relevance of Spatial Heterogeneity of Immune

Infiltration for Predicting Risk of Recurrence

After Endocrine Therapy of ER1 Breast Cancer

Andreas Heindl, Ivana Sestak, Kalnisha Naidoo, Jack Cuzick,
Mitchell Dowsett, Yinyin Yuan
Affiliations of authors: Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK (AH, YY); Centre for Molecular Pathology, Royal Marsden
Hospital, London, UK (AH, YY); Division of Molecular Pathology, The Institute of Cancer Research, London, UK (AH, YY); Centre for Cancer Prevention, Wolfson Institute
of Preventive Medicine, Queen Mary University of London, London, UK (IS, JC); The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research,
London, UK (KN, MD); Cellular Pathology, Guy’s and St Thomas’ NHS Trust, Westminster Bridge Rd, London, UK (KN); Ralph Lauren Centre for Breast Cancer Research,
Royal Marsden Hospital, London, UK (MD).

Correspondence to: Yinyin Yuan, PhD, Centre for Molecular Pathology and The Royal Marsden Hospital, 15 Cotswold Road, SM2 5NG, London (e-mail:
yinyin.yuan@icr.ac.uk).

Abstract

Background: Despite increasing evidence supporting the clinical utility of immune infiltration in the estrogen receptor–
negative (ER-) subtype, the prognostic value of immune infiltration for ERþ disease is not well defined.
Methods: Quantitative immune scores of cell abundance and spatial heterogeneity were computed using a fully automated
hematoxylin and eosin–stained image analysis algorithm and spatial statistics for 1178 postmenopausal patients with ERþ
breast cancer treated with five years’ tamoxifen or anastrozole. The prognostic significance of immune scores was compared
with Oncotype DX 21-gene recurrence score (RS), PAM50 risk of recurrence (ROR) score, IHC4, and clinical treatment score,
available for 963 patients. Statistical tests were two-sided.
Results: Scores of immune cell abundance were not associated with recurrence-free survival. In contrast, high immune spa-
tial scores indicating increased cell spatial clustering were associated with poor 10-year, early (0–5 years), and late (5–10 years)
recurrence-free survival (Immune Hotspot: LR-v2 ¼ 14.06, P < .001, for 0–10 years; LR-v2 ¼ 6.24, P ¼ .01, for 0–5 years; LR-v2 ¼
7.89, P ¼ .005, for 5–10 years). The prognostic value of spatial scores for late recurrence was similar to that of IHC4 and RS in
both populations, but was not as strong as other tests in comparison for recurrence across 10 years.
Conclusions: These results provide a missing link between tumor immunity and disease outcome in ERþ disease by
examining tumor spatial architecture. The association between spatial scores and late recurrence suggests a lasting memory
of protumor immunity that may impact disease progression and evolution of endocrine treatment resistance, which may be
exploited for therapeutic advances.

Estrogen receptor–positive (ERþ) subtype accounts for about
80% of all breast cancers, the most common cancer in women.
At diagnosis, the majority of ERþ patients have a good progno-
sis if treated with endocrine therapy. However, a subset of
patients is at risk for disease recurrence and death, particularly
after five years of adjuvant endocrine therapy. Differentiating
these patients from low-risk patients who can safely avoid

chemotherapy is a priority for breast cancer management (1).
Currently available prognostic tests to predict risk in endocrine-
treated patients include the widely used Oncotype DX 21-gene
recurrence score (RS) (2), the PAM50 risk of recurrence (ROR)
score (3), and the immunohistochemistry-based IHC4 test that
is combined with the clinical treatment score (CTS) to integrate
clinicopathological parameters (4). In particular, the amount of
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prognostic information provided for long-term (0–10 years) and
late (5–10) recurrence varies across these tests (5,6).

Immune infiltration is not explicitly accounted for in any of
the above tests. Increasing evidence supports the role of tumor-
infiltrating lymphocytes (TILs) in influencing disease progression
and treatment response in breast cancer (7–10). Characterization
of the nature of immune responses is key to understanding tu-
mor immunity and empowering immunotherapy. However, the
majority of reports focus on ER- and human epidermal growth
factor receptor 2–positive (HER2þ) breast cancers, where exten-
sive immune infiltration is more common and immune scores
were found to be highly predictive of survival and response to
chemotherapy (8,11–15). In contrast, there is a lack of definitive
data on the prognostic value of immune scores in ERþ breast
cancer following endocrine treatment (7,16). A major reason for
this is the absence of reproducible scoring methods to facilitate
large-scale studies of ERþ breast cancer. This also limits the
translation of immune scoring into clinical advances.

We have developed quantitative and reproducible
approaches to score lymphocytic infiltration (LI) in breast can-
cer, based on fully automated image analysis of routinely gener-
ated hematoxylin and eosin (H&E)–stained histology sections.
Quantitative immune scores of overall LI in tumors, as well as
intratumor lymphocyte ratio (ITLR), were associated with good
survival in ER- and ER-/HER2- breast cancer (17,18). In addition,
our automated image analysis scheme enables the study of
complex spatial patterns of TILs (19). The spatial interactions
among TILs and cancer cells generate complex ecological dy-
namics that can ultimately impact tumor progression and re-
sponse to treatment (8,20–22). In this study of 1178
postmenopausal breast cancer patients with ERþ disease,
patients enrolled in the Arimidex or Tamoxifen Alone or
Combined (ATAC) trial, our aims were to 1) establish the prog-
nostic value of H&E-based, quantitative scores of TIL abundance
as well as spatial heterogeneity for 10-year, early recurrence (0–
5 years) and late recurrence (5–10 years) after endocrine therapy;
2) compare their prognostic value with established prognostic
tests including RS, ROR, IHC4, and CTS; 3) evaluate a new
histology-based model that combines IHC4 and immune scores
as a cost-effective biomarker.

Methods

Study Population

Classical clinicopathologic factors (age, nodal status, tumor size,
grade, randomized treatment) were collected from patients with
ERþ primary breast cancer in the ATAC trial who were randomly
assigned to either anastrozole or tamoxifen (Supplementary Table
1, available online) (23). A total of 1178 eligible patients who did
not receive chemotherapy and from whom H&E-stained slides
from formalin-fixed, paraffin-embedded tissues were available
were included (Figure 1). Of these, 963 patients were scored with
prognostic scores including IHC4, RS, ROR46, and CTS (Table 1).

A total of 1037 tumors were HER2-, 909 of which were scored
with prognostic scores. A subset of 91 TransATAC samples were
randomly selected and scored on H&E sections according to in-
ternational recommendations (24) by a histopathologist (KN).
Baseline demographics and clinical characteristics for all
patients included in this analysis are provided in
Supplementary Table 1 (available online). This study was ap-
proved by the South-East London Research Ethics Committee,
and all patients included gave informed consent.

H&E Image Analysis and Validation

We curated a digital database of H&E histology slides for
TransATAC and applied our histology image analysis pipeline
(Supplementary Figure 1A, available online) (17). In brief, the
image analysis pipeline exploits the nuclear morphological dif-
ferences among cancer cells, lymphocytes, and stromal cells to
differentiate them in H&E histological tissue sections. Cancer
cell nuclei are generally large in size and demonstrate greater
variability in appearance as compared with lymphocyte and
stromal cell nuclei; lymphocyte nuclei are typically small,
round, and homogeneously basophilic, and nuclei of stromal
cells including fibroblasts and endothelial cells are more elon-
gated. The pipeline consisted of four stages: 1) unsupervised
segmentation of the nuclei; 2) supervised classification of indi-
vidual cell nuclei into cancer, lymphocyte, other cell nuclei, and
artefacts; 3) kernel smoothing to correct local sporadic errors;
and 4) a hierarchical multiresolution model fitting to identify
cancer cell clusters to further improve classification accuracy.
The classifier was previously validated in molecular taxonomy
of breast cancer international consortium (METABRIC) to have
an overall accuracy of 90.1% and a high correlation between im-
age analysis and pathological scores in the entire cohort (17).

To evaluate the accuracy of our image analysis pipeline for
TransATAC, a test set of 627 cells randomly sampled from three
images was annotated by a pathologist (DNR) blinded to image
analysis results (Supplementary Figure 1A, available online).
Accuracy rates for identifying the three cell types were 93.8% for
cancer cells, 87.9% for lymphocytes, and 84.2% for stromal cells
(Supplementary Figure 1B, available online). The balanced accu-
racy rates as the average for sensitivity and specificity for the
three cell types were 0.864 for cancer, 0.839 for lymphocytes,
and 0.876 for stromal cells (Supplementary Figure 1C, available
online). On average, 217 101 cancer cells (SD ¼ 178 677.5 cancer
cells), 25 956 lymphocytes (SD ¼ 35 365.21 lymphocytes), and
161 341 stromal cells (SD ¼ 91 862.59 stromal cells) were identi-
fied in each TransATAC whole-section sample, with a total of
525 718 198 cells identified in the whole cohort.

Automated Scoring of Immune Cell Abundance and
Spatial Heterogeneity

Immune cell abundance scores include Lymphocytic Infiltration
(LI), which summarizes the fraction of lymphocytes in all cells in
the tumor section; and Intratumor Lymphocyte Ratio (ITLR),
Adjacent-to-Tumor Lymphocyte Ratio (ATLR), and Distal-To-
Tumor Lymphocyte Ratio (DTLR), which are defined as the num-
ber of specific types of lymphocytes normalized by the number of
cancer cells (17,18). Intratumor Lymphocytes (ITLs), Adjacent-to-
Tumor Lymphocytes (ATLs), and Distal-To-Tumor Lymphocytes
(DTLs) were identified using unsupervised clustering based on
their spatial proximities to cancer cells, which was quantified
using a kernel density method on the distribution of cancer cells.

Immune cell spatial scores quantify the amount of spatial
clusters, or hotspots, formed by lymphocytes and/or cancer
cells within the section (Figure 2) (13). Getis-Ord spatial analysis
was carried out to identify tumor regions with statistically sig-
nificant spatial clustering of immune cells, that is, immune hot-
spots. This means that the frequency of immune cells
appearing at these locations is greater than expected by chance
given the distribution of all cells in the entire tumor section and
that, importantly, the difference between the actual and
expected value is statistically significant. A P value was
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Figure 1. Consort diagram for the availability of samples for analysis from the Arimidex, Tamoxifen Alone or Combined (ATAC) trial. ER ¼ estrogen receptor; IHC ¼
immunohistochemistry; PgR ¼ progesterone receptor; ROR ¼ risk of recurrence score; RS ¼ recurrence score.

Table 1. Immune scores and prognostic scores*

Type and name Definition Reference

Immune abundance scores
(based on H&E)
Lymphocytic Infiltrate Fraction of lymphocytes in all cells. Cells were identified using automated

histology image analysis.
Yuan et al. 2012 (17)

Intratumor Lymphocyte
Ratio

The number of intratumor lymphocytes normalized by the number of cancer
cells. Intratumor lymphocytes were identified as the cluster of lymphocytes to
be the closest to cancer cells based on their spatial proximity in unsupervised
clustering.

Yuan et al. 2015 (18)

Adjacent-Tumor Lymphocyte
Ratio

The number of adjacent-to-tumor lymphocytes normalized by the number of
cancer cells. Adjacent-to-tumor lymphocytes were identified as the intermedi-
ate cluster of lymphocytes based on their spatial proximity to cancer cells in
unsupervised clustering.

Distal-Tumor Lymphocyte
Ratio

The number of distal-tumor lymphocytes normalized by the number of cancer
cells. Distal-tumor lymphocytes were identified as the cluster of lymphocytes
to be the furthest away from cancer cells based on their spatial proximity in
unsupervised clustering.

Immune spatial scores (H&E)
Cancer Hotspot Fraction of tissue displaying spatial clustering of cancer cells. Tumor regions

with spatial clustering of cancer cells were identified using Getis-Ord hotspot
analysis, which assigned statistical significance of difference between ob-
served local cancer cell density and global mean.

Nawaz et al. 2015 (13)

Immune Hotspot Fraction of tissue displaying spatial clustering of immune cells. Tumor regions
with spatial clustering of immune cells were identified in a similar way as
cancer hotspots.

Immune-Cancer Hotspot Fraction of tissue displaying spatial clustering of immune and cancer cells simul-
taneously, in other words, tumor regions that are both immune hotspots and
cancer hotspots.

Prognostic scores
IHC4 (IHC) Immunohistochemistry-based score as a combination of ER, PgR, HER2, Ki67

expression, previously derived using TransATAC samples.
Cuzick et al. 2011 (4)

CTS (clinical) Clinical treatment score that considers node status, size, grade, age, and treat-
ment, previously derived using TransATAC samples.

Cuzick et al. 2011 (4)

RS (Molecular) Oncotype DX 21-gene recurrence score based on RNA expression of 21 prespeci-
fied Oncotype DX genes.

Paik et al. 2004 (2)

ROR (Molecular) PAM50 risk of recurrence score that combines molecular signatures with clinical
information on tumor size.

Nielsen et al. 2010 (3)

*Unless specified otherwise, the scores were predefined for validation in external cohorts. H&E ¼ hematoxylin & eosin; IHC ¼ immunohistochemistry.
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Figure 2. Illustration of the pipeline for identifying spatial hotspots with visual examples, and the Kaplan-Meier estimates for 10-year recurrence according to immune

spatial scores in the validation set, split into two groups using cutoffs selected in the training set. A) An example of a TransATAC hematoxylin and eosin image and

corresponding map of identified cancer and immune cells. Scale bar illustrates 2.5 mm. B–D) Visual examples of hotspots and Kaplan-Meier curves illustrating survival

associations with immune spatial scores. Scale bar illustrates 35 lm. Kaplan-Meier curves were calculated and tested for equality using the log-rank test. The numbers

of patients at risk in each group at various time points are given below each graph. All statistical tests were two-sided. HR ¼ hazard ratio (95% confidence interval). CI ¼
confidence interval; H&E ¼ hematoxylin and eosin; HR ¼ hazard ratio.
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computed for each spatial region, which can be used to deter-
mine statistical significance using a significance level of .05.
Previously, tumors with a high amount of regions that are both
immune hotspots and cancer hotspots (immune-cancer hot-
spots) were found to have good prognosis in ER- cancer (13).
Here for comparison in ERþ breast cancer, Cancer Hotspot and
Immune Hotspot scores that examine only one type of cell at a
time were also included.

For validation of the intercorrelations among immune
scores, H&E-stained, whole-section images of 743 ERþ, treat-
ment-naı̈ve primary tumors from the METABRIC study (25) were
analyzed using the same methods. All patient specimens were
obtained with appropriate ethical approval from the relevant in-
stitutional review boards.

Statistical Analyses

Our primary objective was to assess whether immune scores
had statistically significant prognostic information for predict-
ing 10-year recurrence in postmenopausal women with breast
cancer given either tamoxifen or anastrozole monotherapy but
not chemotherapy. Secondary analyses included determining
the prognostic ability of immune scores in predicting early (0–
5 years) and late recurrences (5–10 years) in patients divided
into subgroups by HER2 status, and the additional prognostic in-
formation provided by tests in multivariable comparisons in-
cluding age (<65, �65 years), nodal status (0, 1–3, 4þ), tumor size
(�1 cm, >1 to� 2 cm, >2 to� 3 cm, >3 cm), central read grade
(poor, intermediate, well differentiated), and randomized treat-
ment (anastrozole vstamoxifen). Hazard ratios are for a change
in 1 SD in the overall data set to compare the effect size between
different immune scores. The contribution of each of the varia-
bles was evaluated by the change in likelihood ratio v2 (LR-v2;
1 df, significance level v2 ¼ 3.84) in three ways: by univariate
analyses, as an addition to a model containing only the clinical
variables, and as a difference in LR-v2 when the variable was
added to the IHC4 score. Sample splitting was used, in which
the immune score was dichotomized by using half the data as
the training set, and then the cutoff points for each score were
evaluated in the remaining half of the data as the validation set.
Because the use of optimizing cutoffs may lead to overestima-
tion of prognostic power, dichotomized variables were only
used for analysis presented in Figure 2, B–D, and continuous
variables were used elsewhere. For measuring correlation
among immune scores and with pathological TIL scores,
Spearman’s correlation was used. All statistical analyses were
performed using STATA version 13.1 or R version 3.3.1. All sta-
tistical tests were two-sided, and a P value of less than .05 was
considered statistically significant.

Results

Correlations Among Immune Scores

Four immune abundance scores (overall Lymphocytic
Infiltration, Intratumor Lymphocyte Ratio, Adjacent-to-Tumor
Lymphocyte Ratio, and Distal-To-Tumor Lymphocyte Ratio) and
three spatial scores (Immune Hotspot, Cancer Hotspot,
Immune-Cancer Hotspot) were calculated based on fully auto-
mated histology image analysis on whole-section slides
(Figure 2, Table 1). There was a strong, negative correlation be-
tween ITLR and DTLR (r ¼ -0.888) (Table 2), indicating that lym-
phocytes either infiltrate into close contact with cancer cells or

largely stay in the stromal area. Correlations among spatial
scores were also strong (r ¼ 0.502–0.796), suggesting that spatial
clustering of cancer cells and lymphocytes tends to co-occur in
the same tumors. These data were further validated in the
METABRIC cohort (n¼ 743) (Table 2) (25). We then compared the
automated scores to a pathologist’s TIL score (24) in a subset of 91
TransATAC samples. Overall, a weak correlation between the
pathologist’s score and all automated scores was found (r < 0.260),
with the highest correlation observed between TIL scoring and
DTLR (r¼ 0.259) (Supplementary Figure 2, available online).

Prognostic Value of Immune Scores

None of the immune abundance scores provided significant
prognostic information for recurrence (P > .1). In contrast, high
spatial scores were associated with poor recurrence-free sur-
vival across 10 years in the univariate analysis (Immune
Hotspot: n¼ 1178, LR-v2 ¼ 14.06, P < .001) (Table 3). When di-
chotomized, immune spatial scores were also prognostic
(Immune Hotspot training set: n¼ 589, P ¼ .01, hazard ratio [HR]
¼ 1.88, 95% confidence interval [CI] ¼ 1.16 to 3.07; validation set:
n¼ 589, P ¼ .002, HR¼ 2.21, 95% CI¼ 1.35 to 3.63) (Figure 2;
Supplementary Figure 3, available online). In addition, immune
spatial scores were statistically significantly prognostic for early (0–
5 years) and late recurrence (5–10 years; Immune Hotspot 0–5 years:
LR-v2 ¼ 6.24, P ¼ .01; 5–10 years: LR-v2 ¼ 7.89, P ¼ .005) (Table 3). In
the multivariable analysis adjusted for clinical variables as
expressed by the CTS including node status, tumor size, grade, age,
and treatment, spatial scores remained prognostic for all three
time windows, except for Immune Hotspot for early recurrence
and Immune-Cancer Hotspot for late recurrence (Table 3).

None of the patients in this study received trastuzumab if
their tumors were HER2þ, as is current practice. In the HER2-
population (n ¼ 1037), again spatial scores but not abundance
scores were prognostic for all time windows (Table 3). In the
multivariable analysis, spatial scores were prognostic for all
time windows except for Immune Hotspot and Immune-Cancer
Hotspot for early recurrence (Table 3). We henceforth focused
on spatial scores only.

Comparison of Immune Spatial Scores With RS, IHC4,
ROR, and CTS

The prognostic value of spatial scores for late recurrence (5–
10 years) is similar to that of IHC4 and RS in both the overall
population (Immune Hotspot: LR-v2 ¼ 6.93; IHC: LR-v2 ¼ 6.75; RS:
LR-v2 ¼ 6.79) and the HER2- population (Immune Hotspot: LR-v2

¼ 9.80; IHC4: LR-v2 ¼ 10.87; RS: LR-v2 ¼ 7.78) (Figure 3). None of
these scores, however, added to IHC4 and RS for early recur-
rence (DLR-v2 � 3.84) or was as prognostic as ROR and CTS in
any time window (Figure 3). We then examined the additional
prognostic value of spatial scores to IHC4 and RS for 0 to
10 years and late recurrence. Immune-Cancer Hotspot provided
statistically significant prognostic value when added to IHC4
and RS for years 0 to 10 whereas Immune Hotspot also added
prognostic value to IHC4 and RS for late recurrence (DLR-v2 >

3.84) (Table 4). Cancer Hotspot, on the other hand, added prog-
nostic information to IHC4 and RS in both time windows
(Table 4). In the HER2- population, Immune Hotspot and
Immune-Cancer Hotspot added statistically significant prog-
nostic information to IHC4 and RS in both time windows
(Table 4). Again, Cancer Hotspot added statistically significant
information to IHC4 and RS in both time windows (Table 4).
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However, none of the spatial scores provided prognostic infor-
mation beyond that of CTS or ROR in the HER2- or the overall
population (DLR-v2 � 3.84).

IHC41Immune Spatial Score

To evaluate a new biomarker based entirely on histology slides,
we sought to determine the prognostic value of a combined
model of IHC4 and spatial scores for 0 to 10 years and late recur-
rence. The prognostic value of IHC4 and that of RS are similar in
the two-time windows and populations (DLR-v2 � 3.84). For pre-
dicting recurrence across 10 years, Cancer Hotspot combined
with IHC4 achieved a better performance than RS alone in both
cohorts (overall population: DLR-v2 ¼ 9.23; in HER2-: DLR-v2 ¼
6.54) (Figure 3). For predicting late recurrence, prognostic value
higher than RS was observed for IHC4 combined with any of the
spatial scores in both populations, except for Immune-Cancer
Hotspot in the overall population (Figure 3). However, none of
the combined scores outperformed CTS and ROR. Finally, IHC4
combined with spatial scores added prognostic value to CTS,
similar to that achieved by the RS but lower than ROR in the
overall population (IHC4þ Immune Hotspot: DLR-v2 ¼ 22.64; IHC4þ
Immune-Cancer Hotspot: DLR-v2 ¼ 22.96; IHC4þ Cancer Hotspot:
DLR-v2¼ 23.38; RS: DLR-v2¼ 23.53; ROR: DLR-v2¼ 29.18).

Discussion

In this study, we aimed to establish the prognostic value of im-
mune scores for recurrence in ERþ breast cancer patients
treated with anastrozole or tamoxifen. While immune response
and immunotherapy for ER- diseases have been under the spot-
light, correlation of TILs with outcomes in ERþ disease is less
clear (16), with many studies reporting the lack of statistically
significant prognostic association (11,15,26,27). In line with

these reports, we did not find prognostic value in immune
abundance scores that only account for the amount of TILs in
the entire histology section or in specific tumor regions includ-
ing intratumor, adjacent tumor, and distal tumor, as scored by
digital histology slide image analysis. In contrast, our immune
scores based on the spatial heterogeneity of TILs were highly
prognostic, particularly for late recurrence after five years of en-
docrine therapy. This suggests a lasting memory of tumor im-
munity on disease progression and evolution of treatment
resistance in ERþ cancer. Such spatial heterogeneity may reflect
spatial distribution patterns of different immune cell subsets.
Intratumor heterogeneity of cancer cells may also in turn influ-
ence immune spatial distribution through cytokine secretion
and neoantigen presentation. While the biological mechanisms
remain to be investigated, our finding has clinically significant
implication, which suggests that TILs have been previously
overlooked in ERþ diseases because of the lack of in-depth anal-
ysis of TILs on the tissue spatial organization level. Our findings
highlight the importance of examining not just cell abundance
but also spatial patterns that can be indicative of immune func-
tional phenotypes and disease prognosis.

In contrast to our observation in ER- tumors (13), high
Immune-Cancer Hotspot score, indicating increased spatial
clustering in immune and cancer cells, correlated with poor
prognosis in ERþ breast cancer. However, this is consistent with
our previous finding that immune gene signature was associ-
ated with poor response to endocrine therapy in a neoadjuvant
setting (28,29). The difference may be due to immune composi-
tion and functionality in the two subtypes and mechanisms by
which immune response contributes to hormonal therapy resis-
tance (30,31). In a recent study of immune composition in 7270
breast cancers, a higher fraction of T-regulatory cells and M2
macrophages and a lower fraction of M1 macrophages were
found in ERþ compared with ER- cancers (12). Therefore, com-
pared with ER- subtype, the immune landscape of the ERþ

Table 2. Correlations among immune scores and clinical variables in TransATAC and METABRIC*

Data set/variable ITL ATL DTL LI
Cancer
Hotspot

Immune
Hotspot

Immune-Cancer
Hotspot Age Grade Node Size Treatment

TransATAC
ITL � � � � � � � � � � � �
ATL –0.317 � � � � � � � � � � �
DTL –0.888 –0.154 � � � � � � � � � �
LI –0.01 0.381 –0.174 � � � � � � � � �
Cancer Hotspot –0.422 0.309 0.289 0.167 � � � � � � � �
Immune Hotspot –0.395 0.409 0.213 0.476 0.796 � � � � � � �
Immune-Cancer Hotspot –0.408 0.203 0.327 0.341 0.502 0.75 � � � � � �
Age 0.01 0.018 –0.019 –0.036 0.145 0.077 0.033 � � � � �
Grade –0.168 0.126 0.114 0.144 0.268 0.287 0.243 0.128 � � � �
Node 0.007 0.212 –0.018 0.213 0.096 0.096 0.107 0.188 0.099 � � �
Size 0.021 �0.012 –0.016 –0.051 0.231 0.194 0.155 0.247 0.171 0.322 � �
Treatment 0.028 �0.03 –0.014 0.044 –0.023 0.021 0.048 –0.002 –0.014 0.007 0.024 �

METABRIC
ITL � � � � � � � � � � � �
ATL –0.276 � � � � � � � � � � �
DTL –0.83 –0.306 � � � � � � � � � �
LI 0.077 0.199 –0.191 � � � � � � � � �
Cancer Hotspot –0.331 0.035 0.307 0.062 � � � � � � � �
Immune Hotspot –0.319 0.16 0.223 0.29 0.849 � � � � � � �
Immune-Cancer Hotspot –0.253 0.051 0.221 0.152 0.796 0.824 � � � � � �

*ATLR ¼ Adjacent-to-Tumor Lymphocyte Ratio; DTL ¼ Distal-To-Tumor Lymphocyte Ratio; ITLR ¼ Intratumor Lymphocyte Ratio; LI ¼ Lymphocytic Infiltration;

METABRIC ¼Molecular Taxonomy of Breast Cancer International Consortium.
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subtype is characterized by increased T-cell regulation and
macrophage polarization toward protumorigenic M2, which is
consistent with our results.

Strengths of this study include the large patient cohort with
long-term follow-up systematically collected in a well-
documented clinical trial, well-characterized samples that ena-
ble a direct comparison with established biomarkers, and fully
automated and reproducible methods for immune scoring.
These allowed us to evaluate quantitative immune scoring
based entirely on H&E-stained tumor slides, which are readily
generated as part of clinical routine. Comparison of the auto-
mated immune scores with a pathologist’s score following rec-
ommendations for TIL evaluation in breast cancer (24) in a
subset of samples showed a weak correlation overall. This is,
however, unsurprising when one considers that the automated
scores include regions of the tumor that are excluded on patho-
logical evaluation. Indeed, the latter includes stromal TILs only,
which are assessed as percentage surface area that is inflam-
matory as opposed to fibroblastic (25). In contrast, the auto-
mated scores count either the absolute number of lymphocytes
in relation to cancer cells or the frequency of (co-)clustering of
immune and cancer cells. Thus, the information gleaned from
these methods potentially provides different biological informa-
tion about the interaction between these cell types, and, as
demonstrated herein, can provide valuable prognostic informa-
tion. Developing a histology-based test as such thus has the
advantages of cost-effectiveness and general applicability. The
prognostic value of immune scores for late recurrence is similar
to that of IHC4 and RS, which is the most widely used test for re-
sidual risk of recurrence following surgery and endocrine.
Although they did not add prognostic value to CTS, in almost all
occasions immune scores add prognostic information to the in-
dividual components that make up CTS, including node status,
size, grade, age, and treatment. Because CTS was developed and
optimized using TransATAC samples (4), the independent prog-
nostic value of immune scores remains to be validated in fur-
ther endocrine adjuvant therapy studies with homogeneous
treatments such as POETIC (32). In addition, the strong prognos-
tic value of CTS and ROR could be partly explained by the use of
tumor size in their calculation, which is a highly prognostic fac-
tor. Furthermore, IHC4 combined with immune score is statisti-
cally significantly more prognostic than RS, particularly for late
recurrence. The clinical utility of IHC4þ immune scores as a
combined histology-based test is well worth exploring.

Table 4. Additional prognostic value of immune spatial scores to IHC4 and RS in all patients and HER2- subgroup

Patient group

0–10 y 5–10 y

HR (95% CI) DLR-v2 P* HR (95% CI) DLR-v2 P*

All patients (n¼ 963) (n¼ 824)
Cancer Hotspot to IHC4 1.22 (1.08 to 1.37) 9.72 .002 1.24 (1.04 to 1.47) 5.57 .02
Cancer Hotspot to RS 1.25 (1.11 to 1.41) 12.46 <.001 1.27 (1.07 to 1.49) 6.97 .008
Immune Hotspot to IHC4 1.13 (1.01 to 1.27) 3.93 .05 1.19 (1.02 to 1.40) 4.10 .04
Immune Hotspot to RS 1.14 (1.02 to 1.28) 4.50 .03 1.21 (1.03 to 1.42) 4.71 .03
Immune-Cancer Hotspot to IHC4 1.17 (1.04 to 1.31) 5.87 .02 NS NS NS
Immune-Cancer Hotspot to RS 1.15 (1.02 to 1.29) 4.76 .03 NS NS NS

Her2 subgroup (n¼ 848) (n¼ 733)
Cancer Hotspot to IHC4 1.26 (1.11 to 1.43) 11.73 <.001 1.32 (1.12 to 1.57) 9.31 .002
Cancer Hotspot to RS 1.29 (1.14 to 1.46) 14.28 <.001 1.37 (1.16 to 1.61) 11.82 <.001
Immune Hotspot to IHC4 1.14 (1.02 to 1.30) 4.56 .03 1.23 (1.05 to 1.44) 5.71 .02
Immune Hotspot to RS 1.15 (1.02 to 1.30) 4.84 .03 1.26 (1.08 to 1.47) 7.12 .008
Immune-Cancer Hotspot to IHC4 1.17 (1.04 to 1.33) 5.64 .02 1.24 (1.04 to 1.48) 4.95 .03
Immune-Cancer Hotspot to RS 1.13 (0.99 to 1.29) 3.22 .07 1.23 (1.03 to 1.47) 4.69 .03

*Likelihood ratio v 2, P value two-sided. CI ¼ confidence interval; HER2 ¼ human epidermal growth factor receptor 2; HR ¼ hazard ratio; RS ¼ Oncotype DX 21-gene

recurrence score; NS ¼ not statistically significant.

Immune–Cancer Hotspot

Immune–Cancer Hotspot

Immune–Cancer Hotspot

Immune–Cancer Hotspot

Likelihood score

Likelihood score

5–10 y

0–10 y

5–10 y

0–10 y

A

B

Figure 3. Barplots of likelihood scores for immune spatial and prognostic scores

as well as combination of IHC4 and each immune spatial score (IHC4þI) for time

windows of 0–10 and 5–10 years in (A) overall population and (B) human epider-

mal growth factor receptor–negative population. Kaplan-Meier curves were cal-

culated and tested for equality using the log-rank test. The numbers of patients

at risk in each group at various time points are given below each graph. All sta-

tistical tests were two-sided. CTS ¼ clinical treatment score; ROR ¼ risk of recur-

rence score; RS ¼ recurrence score.A
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Weaknesses of our study include the use of a single histol-
ogy slide per tumor, such that intratumor heterogeneity cannot
be fully addressed, and the lack of immune markers that may
provide further insights into immune functions in ERþ disease
and better predictors due to little residual tissue available. In
addition, whether our methods can sufficiently address chal-
lenges arising from variability in factors that include fixation,
staining, and acquisition in a clinical setting needs to be evalu-
ated before implementation. Our results also only apply to
women who are chemotherapy-free.

Furthermore, our study also provides relevant information
for new treatment strategy in the high-risk ERþ population
identified by immune scores. Our findings support different im-
munosuppressive mechanisms in the ERþ and ER- subtypes,
and in light of these results call for the development of novel
cancer therapeutics targeting the pathways that reverse these
mechanisms specifically for ERþ disease. This may also help ex-
plain why anti-PD1 checkpoint inhibition, despite demonstrat-
ing activity as monotherapy in early-phase trials in ERþ breast
cancer, had low response rates compared with triple-negative
breast cancer and was highly variable among trials (33,34).
Further, we speculate that immune scores may be useful as pre-
dictive biomarkers for immunotherapy, given the limited clini-
cal utility of PDL1 expression in guiding patient selection (35).

In summary, enabled by fully automated image analysis of
histology sections, our study provided an additional dimension
to the analysis of immune functional phenotype in breast can-
cer. Spatial data provided by histology, once quantitatively ana-
lyzed, will aid the identification of clinically relevant features,
potentially yielding predictions more powerful than measure-
ments of cell abundance that ignore the spatial context.

Funding

This work was supported by the Royal Marsden National
Institutes of Health Biomedical Research Centre grant A105.
MD and YY acknowledge support by the Royal Marsden
National Institutes of Health Biomedical Research Centre. MD
acknowledges a Breast Cancer Now grant (CTR-Q4-Y1). JC and
IS acknowledge a CRUK grant (C569/A16891). YY acknowledges
support by CRUK (C45982/A21808), Breast Cancer Now
(2015NovPR638) and the Wellcome Trust (105104/Z/14/Z).

Notes

The funder had no role in the design of the study; the collection,
analysis, or interpretation of the data; the writing of the manu-
script; or the decision to submit the manuscript for publication.

We thank Andrew Dodson and Daniel Nava Rodrigues for
technical and pathological support. M. Dowsett has received
commercial research grants and speakers bureau honoraria
from AstraZeneca.

MD and YY designed the experiments. AH, IS, KN, and JC
performed the analyses. AH, IS, and YY wrote the manuscript.
All authors have approved the manuscript.

References
1. Dowsett M, Goldhirsch A, Hayes DF, Senn HJ, Wood W, Viale G. International

Web-based consultation on priorities for translational breast cancer re-
search. Breast Cancer Res. 2007;9(6):R81.

2. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of
tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):
2817–2826.

3. Nielsen TO, Parker JS, Leung S, et al. A comparison of PAM50 intrinsic subtyp-
ing with immunohistochemistry and clinical prognostic factors in
tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res.
2010;16(21):5222–5232.

4. Cuzick J, Dowsett M, Pineda S, et al. Prognostic value of a combined estrogen
receptor, progesterone receptor, Ki-67, and human epidermal growth factor
receptor 2 immunohistochemical score and comparison with the Genomic
Health recurrence score in early breast cancer. J Clin Oncol. 2011;29(32):
4273–4278.

5. Sestak I, Dowsett M, Zabaglo L, et al. Factors predicting late recurrence for es-
trogen receptor-positive breast cancer. J Natl Cancer Inst. 2013;105(19):
1504–1511.

6. Sestak I, Dowsett M, Ferree S, Baehner FL, Cuzick J. Retrospective analysis of
molecular scores for the prediction of distant recurrence according to base-
line risk factors. Breast Cancer Res Treat. 2016;159(1):71–78.

7. Savas P, Salgado R, Denkert C, et al. Clinical relevance of host immunity
in breast cancer: From TILs to the clinic. Nat Rev Clin Oncol. 2016;13(4):
228–241.

8. Denkert C, von Minckwitz G, Brase JC, et al. Tumor-infiltrating lymphocytes
and response to neoadjuvant chemotherapy with or without carboplatin in
human epidermal growth factor receptor 2–positive and triple-negative pri-
mary breast cancers. J Clin Oncol. 2015;33:983–991.

9. Denkert C, Loibl S, Noske A, et al. Tumor-associated lymphocytes as an inde-
pendent predictor of response to neoadjuvant chemotherapy in breast can-
cer. J Clin Oncol. 2010;28:105–113.

10. Gu-Trantien C, Loi S, Garaud S, et al. CD4(þ) follicular helper T cell infiltration
predicts breast cancer survival. J Clin Invest. 2013;123:2873–2892.

11. Loi S, Sirtaine N, Piette F, et al. Prognostic and predictive value of tumor-
infiltrating lymphocytes in a phase III randomized adjuvant breast cancer
trial in node-positive breast cancer comparing the addition of docetaxel to
doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol.
2013;31:860–867.

12. Bense RD, Sotiriou C, Piccart-Gebhart MJ, et al. Relevance of tumor-
infiltrating immune cell composition and functionality for disease outcome
in breast cancer. J Natl Cancer Inst. 2017;109(1): djw192.

13. Nawaz S, Heindl A, Koelble K, Yuan Y. Beyond immune density: Critical role
of spatial heterogeneity in estrogen receptor-negative breast cancer. Mod
Pathol. 2015;28(12):1621.

14. Dieci MV, Criscitiello C, Goubar A, et al. Prognostic value of tumor-infiltrating
lymphocytes on residual disease after primary chemotherapy for triple-
negative breast cancer: A retrospective multicenter study. Ann Oncol. 2014;25:
611–618.

15. Loi S, Michiels S, Salgado R, et al. Tumor infiltrating lymphocytes are prog-
nostic in triple negative breast cancer and predictive for trastuzumab benefit
in early breast cancer: Results from the FinHER trial. Ann Oncol. 2014;25:
1544–1550.

16. Luen S, Virassamy B, Savas P, Salgado R, Loi S. The genomic landscape of
breast cancer and its interaction with host immunity. Breast. 2016;29:
241–250.

17. Yuan Y, Failmezger H, Rueda OM, et al. Quantitative image analysis of cellu-
lar heterogeneity in breast tumors complements genomic profiling. Sci
Translat Med. 2012;4:157ra43.

18. Yuan Y. Modelling the spatial heterogeneity and molecular correlates of
lymphocytic infiltration in triple-negative breast cancer. J R Soc Interface.
2015;12.

19. Yuan Y. Spatial heterogeneity in the tumor microenvironment. Cold Spring
Harb Perspect Med. 2016;6(8).

20. Demaria S, Kawashima N, Yang AM, et al. Immune-mediated inhibition of
metastases after treatment with local radiation and CTLA-4 blockade in a
mouse model of breast cancer. Clin Cancer Res. 2005;11:728–734.

21. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in
human tumours: Impact on clinical outcome. Nat Rev Cancer. 2012;12:
298–306.

22. Gentles AJ, Newman AM, Liu CL, et al. The prognostic landscape of genes
and infiltrating immune cells across human cancers. Nat Med. 2015;21(8):
938–945.

23. Dowsett M, Cuzick J, Wale C, et al. Prediction of risk of distant recurrence us-
ing the 21-gene recurrence score in node-negative and node-positive post-
menopausal patients with breast cancer treated with anastrozole or
tamoxifen: A TransATAC study. J Clin Oncol. 2010;28(11):1829–1834.

24. Salgado R, Denkert C, Demaria S, et al. The evaluation of tumor-infiltrating
lymphocytes (TILs) in breast cancer: Recommendations by an International
TILs Working Group 2014. Ann Oncol. 2015;26(2):259–271.

25. Curtis C, Shah SP, Chin SF, et al. The genomic and transcriptomic architec-
ture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:
346–352.

26. Dieci MV, Criscitiello C, Goubar A, et al. Prognostic value of tumor-infiltrating
lymphocytes on residual disease after primary chemotherapy for triple-
negative breast cancer: A retrospective multicenter study. Ann Oncol. 2014;25:
611–618.

27. Ali HR, Provenzano E, Dawson SJ, et al. Association between CD8þT-cell infil-
tration and breast cancer survival in 12 439 patients. Ann Oncol. 2014;25(8):
1536–1543.

A
R

T
IC

LE

A. Heindl et al. | 9 of 10

Deleted Text: intra-tumor
Deleted Text: for 
Deleted Text: including 
Deleted Text: ,
Deleted Text:  
Deleted Text: and
Deleted Text: and
Deleted Text: <underline>Acknowledgement and disclosure:</underline> 
Deleted Text: <underline>Author contribution:</underline> 


28. Dunbier AK, Ghazoui Z, Anderson H, et al. Molecular profiling of aromatase
inhibitor-treated post-menopausal breast tumors identifies immune-related
correlates of resistance. Clin Cancer Res. 2013;19(10):2775–2786.

29. Gao Q, Patani N, Dunbier AK, et al. Effect of aromatase inhibition on functional
gene modules in estrogen receptor-positive breast cancer and their relationship
with antiproliferative response. Clin Cancer Res. 2014;20(9):2485–2494.

30. Wei C, Cao Y, Yang X, et al. Elevated expression of TANK-binding kinase 1
enhances tamoxifen resistance in breast cancer. Proc Natl Acad Sci U S A. 2014;
111(5):E601–E610.

31. Jansen MP, Foekens JA, van Staveren IL, et al. Molecular classification of
tamoxifen-resistant breast carcinomas by gene expression profiling. J Clin
Oncol. 2005;23(4):732–740.

32. Dowsett M, Smith I, Robertson J, et al. Endocrine therapy, new biologicals,
and new study designs for presurgical studies in breast cancer. J Natl Cancer
Inst Monographs. 2011:120–3.

33. Dirix LY, Takacs I, Nikolinakos P, et al. Avelumab (MSB0010718C), an anti-PD-
L1 antibody, in patients with locally advanced or metastatic breast cancer: A
phase 1b JAVELIN solid tumor trial. Cancer Res. 2016;76(Suppl 4):S1–04.

34. Rugo HS, Delord JP, Im SA, et al. Preliminary efficacy and safety of pembroli-
zumab (MK-3475) in patients with PD-L1 positive, estrogen receptor-positive
(ERþ)/HER2-negative advanced breast cancer enrolled in KEYNOTE-028.
Cancer Res. 2016;76(Suppl 4):S5–07.

35. Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer
immunotherapy. Mol Cancer Ther. 2015;14(4):847–856.

A
R

T
IC

LE

10 of 10 | JNCI J Natl Cancer Inst, 2018, Vol. 110, No. 2


	djx137-TF1
	djx137-TF3
	djx137-TF4
	djx137-TF5
	djx137-TF6

