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ABSTRACT  

Investigating the most likely causal variants identified by fine-mapping analyses may 

improve the power to detect gene-environment interactions. 

We assessed the interplay between 70 SNPs identified by genetic fine-scale mapping 

of susceptibility loci and 11 epidemiological breast cancer risk factors in relation to breast 

cancer. Analyses were conducted on up to 58,573 subjects (26,968 cases, 31,605 controls) 

from the Breast Cancer Association Consortium (BCAC), in one of the largest studies of its 

kind. Analyses were carried out separately for estrogen receptor positive (ER+) and estrogen 

receptor negative (ER-) disease. The Bayesian False Discovery Probability (BFDP) was 

computed to assess the noteworthiness of the results.  

Four potential gene-environment interactions were identified as noteworthy 

(BFDP<0.80) when assuming a true prior interaction probability of 0.01. The strongest 

interaction result in relation to overall breast cancer risk was found between CFLAR-

rs7558475 and current smoking (ORint =0.77, 95% CI: 0.67-0.88, Pint=1.8×10
-4

). The 

interaction with the strongest statistical evidence was found between 5q14-rs7707921 and 

alcohol consumption (ORint =1.36, 95% CI: 1.16-1.59, Pint=1.9×10
-5

) in relation to ER- 

disease risk. The remaining two gene-environment interactions were also identified in 

relation to ER- breast cancer risk and were found between 3p21-rs6796502 and age at 

menarche (ORint =1.26, 95% CI: 1.12-1.43, Pint=1.8×10
-4

) and between 8q23-rs13267382 and 

age at first full-term pregnancy (ORint =0.89, 95% CI: 0.83-0.95, Pint=5.2×10
-4

). 

 While these results do not suggest any strong gene-environment interactions, 

our results may still be useful to inform experimental studies. These may in turn, shed light 

on the potential interactions observed. 

 

 

Novelty and impact: Our results do not suggest any strong gene-environment interactions 

between the SNPs identified by fine-mapping and the investigated risk factors. 

 

Keywords: breast cancer, SNP, BCAC, gene-environment, interaction  
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BACKGROUND 

In 1968, MacMahon stated that “In no field are there more complex examples of the gene-

environment relationship than in experimental cancer research.” 
1
. Following his words and 

the general opinion that genetic and non-genetic risk factors do not give rise to the disease 

solely by acting on independent pathways, several studies have investigated gene-

environment interplay in relation to breast cancer risk. Studies of this type are motivated by 

the fact that the identification of gene-environment interactions in relation to breast cancer 

could provide insight into the biological mechanisms underlying the disease, allow the 

distinction of women at high risk from women at lower risk and improve the accuracy of risk 

prediction models. However, despite large-scale, international efforts, to date there are few 

single nucleotide polymorphisms (SNPs) for which the effect on breast carcinogenesis has 

been found to be modified by an epidemiological risk factor, and only one of these has been 

replicated 
2, 3

.  

Several breast cancer risk loci that were previously identified in genome-wide 

association studies (GWAS) were recently investigated further by genetic fine-scale mapping 

in the framework of the Collaborative Oncological Gene-environment Study (COGS) using 

samples from studies participating in the Breast Cancer Association Consortium (BCAC). 

The SNPs identified in the fine-mapping studies were further investigated in subsequent 

functional studies to identify potential causal associations. The consideration of causal 

variants may improve power to detect gene-environment interplay. However, if no 

interactions are detected, the weight of evidence against gene-environment interactions for 

the locus in question is strengthened.  Additionally, new susceptibility alleles were identified 

from genotypes generated by imputation using the 1000 Genomes Project reference panel. 

Therefore, in the present analyses, multiplicative gene-environment interaction in relation to 

breast cancer risk was assessed between 55 potentially causal as well as 15 newly identified  

SNP alleles, and the following 11 established epidemiological risk factors: age at menarche, 

oral contraceptive (OC) use, parity, age at first full-term pregnancy (FTP), number of FTPs, 

breastfeeding, use of menopausal hormone therapy (MHT), body mass index (BMI), adult 

height, smoking and alcohol consumption. We also investigated interactions in relation to 

estrogen receptor (ER) specific breast cancer risk since the different disease subtypes may 

arise through different pathways. The analyses reported in this paper are based on the largest, 

currently available dataset with genetic data and extensive epidemiological information.  
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METHODS 

Study subjects 

Data on subjects of European descent derived from 21 studies participating in the BCAC 

were pooled. A brief description of each study can be found in Supplementary Table 1. There 

were 12 population-based and 9 non-population based studies, each contributing at least 200 

cases and 200 controls with available SNP data and information on at least one 

epidemiological risk factor. Subjects were excluded from the gene-environment interaction 

analyses if they were male, of non-European origin, a prevalent case or had missing data on 

age at diagnosis or age at interview, the epidemiological risk factor in question or any of the 

adjustment variables. Hence, the number of study subjects for each SNP-risk factor pair 

varied with the availability of epidemiological data. Analyses were based on between 11,342 

subjects (5,445 cases, 5,897 controls) for effect modification by alcohol consumption, and 

58,573 subjects (26,968 cases, 31,605 controls) for effect modification by number of FTPs. 

The set of study subjects that were included in at least one gene-environment interaction 

model comprised 30,000 cases and 34,501 controls. All studies were approved by the relevant 

ethics committees and informed consent was obtained from all participants. 

 

SNP selection and genotyping 

Genotyping was carried out using an Illumina iSelect array (iCOGS) in the framework of the 

COGS project (www.nature.com/icogs). With the aim of detecting causal variants, a number 

of loci known to confer breast cancer risk at the time of the design of the iCOGS array were 

further investigated using fine scale genetic mapping. To improve SNP density, imputation of 

the respective regions was performed using the March 2012 release of the 1000 Genomes as 

reference panel. The functional follow-up work was not carried out centrally for all regions 

but divided between the different working groups of BCAC and thus the methods employed 

varied somewhat 
4-17

. In addition, imputed genotypes for 15 new susceptibility loci identified 

through a meta-analysis of 11 GWAS with genotypes SNPs generated by imputation using 

the 1000 Genomes Project March 2012 release as the reference panel were employed 
5
. A list 

of the 70 SNPs included in the analyses for the present report can be found in Supplementary 

Table 2. 
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Data filtering  

Data from the participating studies were centrally cleaned and harmonized. The information 

on epidemiological factors was collected at date of reference. In the case-control studies this 

was defined as the date of diagnosis for cases and the date of questionnaire for controls, and 

in the three cohort studies (CPSII, MCCS, UKBGS) information at baseline was used, unless 

follow-up information was available. Women who were 54 years or younger at reference 

were considered pre-menopausal and women who were older than 54 years at reference were 

considered postmenopausal. Subjects who were smokers within one year prior to reference 

date or used MHT within 6 months prior to reference date were considered to be current 

smokers and current MHT users. For the case-control studies, BMI was calculated using 

usual adult weight or weight one year prior to reference (ABCFS, CECILE, GENICA, 

kConFab, KBCP, MARIE, MCBCS, OFBCR, PBCS, SASBAC), or weight around the age of 

20 years (ESTHER, pKARMA, SEARCH). For the cohort studies (CPSII, MCCS, UKBGS), 

BMI was calculated using information from baseline or the latest available questionnaire 

prior to diagnosis, if available. 

 

Statistical analysis 

Association analyses of SNP alleles and breast cancer risk were carried out using logistic 

regression models adjusted for age at reference, study and ethnicity. In all models used in the 

present study, genotyped SNPs were treated as ordinal variables (counts of minor alleles) and 

imputed SNPs as continuous variables.  

The main effects of the epidemiological risk factors were also investigated using 

logistic regression models adjusted for reference age, study and self-assessed ethnicity. 

Heterogeneity across studies was explored by means of Cochrane’s Q-test. The 

epidemiological variables used in the present analyses were categorized as follows: age at 

menarche (per 2 years), ever use of OC (yes or no), ever parous (yes or no), number of FTPs 

among parous women (1,2,3, and ≥4 FTPs), ever breastfed (yes or no), age at first FTP (per 5 

years), adult BMI for pre- and postmenopausal women respectively (per 5 kg/m
2
), adult 

height (per 5 cm), current use of MHT in the form of estrogen and progesterone or estrogen 

only (yes or no), lifetime average alcohol intake (per 10g/day), current smoking (yes or no) 

and pack-years of smoking (per 10 pack-years).  

Multiplicative gene-environment interaction was assessed by comparing logistic 

regression models with and without SNP-risk factor interaction terms by means of the 
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likelihood ratio test. All models on which the present study is based were adjusted for study, 

reference age and ethnicity, so as to capture genetic population sub structure. An interaction 

term between the epidemiological variable and an indicator for population based study design 

was included to protect against bias due to the differing selection of study participants in non-

population based versus population-based studies. Interactions of SNPs and epidemiological 

risk factors were also investigated in relation to estrogen receptor (ER) specific (ER+ or ER-) 

breast cancer risk, using cases and controls. Furthermore, potentially differential gene-

environment interaction according to ER status was assessed in case-only analyses comparing 

ER- cases to ER+ cases. The ER-specific models and the case-only analyses were adjusted in 

the same way as the interaction models for overall breast cancer risk. In order to elucidate the 

results of the interaction analyses, risk association between SNPs and breast cancer was 

investigated by stratifying on the epidemiological variables. 

MHT was sub-divided into estrogen only and combined (estrogen plus progestogen) 

therapy and investigated in relation to breast cancer risk using only post-menopausal women. 

All statistical models involving MHT use were further adjusted for former MHT use and 

current use of the MHT preparation (estrogen only or combined) not included in the 

interaction term. Additionally, interactions of SNPs and BMI among postmenopausal women 

were assessed in never- and former users of MHT only. All risk analyses were carried out 

using SAS 9.2. 

Between-study heterogeneity of the interaction odds ratio (OR) estimates was 

investigated using Cochrane’s Q-test and quantified by the ratio of true heterogeneity to the 

total observed variation, denoted I
2
. Heterogeneity was investigated for SNP-risk factor pairs 

with an interaction p-value below the Bonferroni corrected threshold of statistical 

significance for genetic main effects, computed by dividing the standard threshold of 0.05 by 

the number of SNPs (0.05/70>7×10
-4

). Interaction ORs were tested for heterogeneity across 

studies on basis of interaction p-values in models of overall or ER specific breast cancer risk, 

although the latter on the condition that a heterogeneity P-value <0.05 of ER+ versus ER- 

disease had been observed. Heterogeneity tests were conducted using the R package “rmeta” 

(version 2.2). 

 The Bayesian False Discovery Probability (BFDP) was computed in order to control 

the number of false-positive findings and assess the noteworthiness of the results 
18

. The cut-

off for noteworthiness is based on the ratio of the cost of a false non-discovery to the cost of a 

false discovery. As suggested in the literature, we set the cost of failing to discover a true 

association to four times the cost of a falsely reported one, classifying results with a 



 

10 
 

BFDP<0.8 as noteworthy. The BFDP was calculated for all SNP-risk factor pairs with an 

interaction P-value below the Bonferroni-corrected threshold given above (P<7×10
-4

). The 

BFDP was computed for two different prior probabilities of this (0.01, 0.001), under the 

assumption that the probability of observing a true interaction OR inside the interval 0.66-1.5 

was 95%. As a complementary measure to the BFDP, we also computed the Approximated 

Bayes Factor (AFP), which approximates the ratio of the probability of the data given that the 

null hypothesis is true, to the probability of the data given that the alternative hypothesis is 

true. The null hypothesis in this case is that the coefficient of the interaction term in the 

logistic regression model is equal to zero. 

 

RESULTS 

The studies included in the gene-environment interaction analyses are listed in Table 1 

together with the number of cases and controls, overall and by ER status. The median time 

between questionnaire and diagnosis was 3 years in the MCCS cohort, 2 years in the UKBGS 

cohort and 7 years in the CPSII cohort. 

The associations between SNP alleles and breast cancer risk in the subset of BCAC 

studies with risk factor data available were consistent with earlier reports and can be found in 

Supplementary Table 3 
4-14

. 

Main effects of the epidemiological variables on breast cancer risk across studies are 

presented in Supplementary Figure 1. These analyses were carried out using only population-

based studies and the results were consistent with what has been reported earlier in the 

literature 
3, 19-30

. Current use of OC, MHT use (E only, as well as E+P), alcohol consumption, 

height, as well as never having breastfed (versus ever having breastfed) were all factors that 

showed an increased risk of breast cancer. A reduction in risk was observed for older age at 

menarche, ever being parous, number of FTPs and high BMI among pre-menopausal women. 

For current smoking and pack-years of smoking, no significant association with breast cancer 

risk was detected.  

 The complete results from the interaction analyses, showing the risk association 

between SNPs and breast cancer across categories of the epidemiological variables, are 

presented in Supplementary Table 4. We identified four SNP-risk factor pairs with at least 

one interaction P-value <7×10
-4

 in relation to overall, ER+ or ER- breast cancer risk, as 

presented in Table 2. All of these interactions were classified as noteworthy (BFDP<0.8) 

assuming a prior probability of true interaction of 0.01 but no result remained noteworthy at 

the 0.001 level (Table 3).  
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First evidence of an interaction in relation to overall disease risk was noted between 

the variant CFLAR-rs7558475 and current smoking (ORint =0.77, 95% CI: 0.67-0.88, 

Pint=1.8×10
-4

). This result was considered noteworthy (BFDP=0.40) assuming a prior 

probability of true interaction of 0.01 and the ABF=0.007 indicated that the data were almost 

140 times more likely given the alternative hypothesis than given the null. Breast cancer risk 

was reduced among current smokers carrying the minor allele (G) (ORper-allele=0.76, 95% CI: 

0.66-0.88, P=2.2×10
-4

) compared to that of non-smoker carriers (ORper-allele=0.99, 95% CI: 

0.91-1.08, P=0.9) where no risk association was observed. When comparing ER- cases to 

ER+ cases, the results did not indicate any effect heterogeneity (Phet=0.48). There was no 

strong evidence of interaction, neither with respect to ER+ risk (Pint=0.0014) nor with respect 

to ER- risk (Pint=0.75). 

The most promising result of the gene-environment interaction analyses in terms of 

noteworthiness, was considered noteworthy at the 0.01 probability level and was noted 

between the variant 5q14-rs7707921 located in an intron of the autophagy related 10 

(ATG10) gene, and alcohol consumption (ORint =1.36, 95% CI: 1.16-1.59, Pint=1.9×10
-5

) in 

relation to ER- breast cancer. This result had the lowest BFDP=0.33, and conditioning on the 

alternative, the data were about 200 times more likely as compared to conditioning on the 

null (ABF=0.005). Carriers of the minor allele (T) of rs7707921 had an increased risk of ER- 

breast cancer if they consumed more than 20g of alcohol per day (ORper-allele=2.56, 95% CI: 

1.45-4.62, P=0.001) but not if they consumed less than 20 g of alcohol per day (ORper-

allele=1.07, 95% CI: 0.92-1.24, P=0.36). A strong effect heterogeneity was detected when 

comparing ER- cases to ER+ cases (Phet=6.7×10
-6

). Together with the absence of interaction 

in relation to ER+ disease (Pint=0.79) and overall breast cancer risk (Pint=0.70), this indicated 

that the interaction might be specific to ER- disease.  

In addition, indications of two further interactions were noted in relation to ER- 

disease risk. One of these was between 3p21-rs6796502 and age at menarche (ORint =1.26, 

95% CI: 1.12-1.43, Pint=1.8×10
-4

) which had BFDP=0.49, and of which the ABF 

(ABF=0.010) implied that the data were 100 times more likely under the alternative 

hypothesis than under the null. Carriers of the minor allele (A) of 3p21-rs6796502 who 

experienced their menarche no later than the age of 11 years had a reduced risk of ER- breast 

cancer (ORper-allele=0.70, 95% CI: 0.54-0.90, P=0.006), whereas there was no association with 

disease risk of the genetic variant for women who had their menarche between the age of 12 

and 13 years (ORper-allele=0.88, 95% CI: 0.76-1.02, P=0.08), or after the age of 14 years 

(ORper-allele=1.16, 95% CI: 0.99-1.34, P=0.06). While the observed interaction was in relation 
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to ER- disease risk, no effect heterogeneity was detected when comparing ER- and ER+ cases 

(Phet=0.53) nor was there any indication of any interaction in relation to overall breast cancer 

risk (Pint=0.94). Hence, it is not possible to conclude that the observed interaction is specific 

for ER- disease. 

Finally, an indication of a gene-environment interaction was found between 8q23-

rs13267382 and age at first FTP (ORint=0.89, 95% CI: 0.83-0.95, Pint=5.2×10
-4

) in relation to 

ER- disease risk. This interaction had BFDP=0.61 assuming a true, prior interaction 

probability of 0.01, and ABF=0.016, indicating that the data are about 60 times more likely 

conditioning on the alternative than on the null. There was no interaction observed in relation 

to disease risk, when considering ER+ breast cancer (Pint=0.98), or overall breast disease risk 

(Pint=0.47), and no effect heterogeneity was found when comparing the risk of ER- and ER+ 

breast cancer (Phet=0.99). Our findings indicated a modest reduction in ER- breast cancer risk 

among minor allele (A) carriers who were aged 30 or above at their first FTP (ORper-

allele=0.79, 95% CI: 0.68-0.91, P=0.001), whereas for women who had their first child at 

younger ages the allele had no effect on risk. 

 

DISCUSSION 

 From the analyses presented in this work, four SNP-risk factor pairs were identified, 

for which Pint<7×10
-4

, and all of the interactions were considered noteworthy (BFDP<0.8) 

assuming a true prior interaction probability of 0.01. One of the results was detected in 

relation to overall breast cancer risk, while the three remaining results appeared to be specific 

for ER- disease. 

The strongest gene-environment interaction in relation to overall breast cancer risk 

was noted between rs7558475 located in the CASP8 and FADD like apoptosis regulator 

(CFLAR) gene and current smoking (Pint=1.8×10
-4

). The protein product of CFLAR regulates 

apoptosis, thus it is possible that CFLAR genetic variants affect response to DNA damage 

caused by tobacco associated carcinogens and therefore modify breast cancer risk conferred 

by smoking. However, although rs7558475 is located in a CFLAR enhancer region, reports 

from recent functional studies and expression quantitative trait locus (eQTL) analyses did not 

provide any convincing evidence regarding functionality 
6, 31

. Hence, further work is required 

to understand possible biological mechanism related to the observed interaction. 

The strongest statistical evidence of interaction was found in relation to ER- breast 

cancer risk and was noted between an intron variant 5q14-rs7707921 in the autophagy related 
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10 (ATG10) gene, and alcohol consumption (Pint=1.9×10
-5

). Autophagy, which is considered 

a survival mechanism of the cell, may act as a tumor suppressor but also influence cell 

survival by promoting tumor growth, and has been suggested as a target in cancer therapy 
32

. 

It has been reported that autophagy could have a protective effect on esophageal epithelial 

cells responding to ethanol-induced oxidative stress 
33

. Also, while ethanol promotes 

oxidative stress in cancer associated fibroblasts, it has been reported to induce autophagy 

resistance in epithelial cells 
34

. Given the above information, it is conceivable that alcohol 

consumption could influence the effect on breast cancer risk of an autophagy related 

polymorphism. However the biological mechanism needs to be further investigated. The 

position of the variant ATG10-rs7707921 does not coincide with any strong regulatory 

elements. The eQTL analyses carried out within the framework of BCAC showed a strong 

association between the T allele of rs7707921 and expression of the ribosomal protein S23 

gene (RPS23) in breast tissue as well as a moderate association between the allele and 

expression of the ATPase, H+ transporting, lysosomal accessory protein 1-like (ATP6AP1L) 

gene 
5
. The RPS23 gene encodes a ribosomal protein and the ATP6AP1L is also protein 

coding but the genes have not yet been implicated in ER- breast cancer risk and their 

expression levels have not been assessed in relation to alcohol consumption or oxidative 

stress. Further work is thus needed to understand how the protein products of these genes 

could interact with alcohol consumption to modify the risk association of rs7707921 with 

ER- breast cancer. 

Furthermore, we found an indication of a possible interaction between 3p21-

rs6796502 and age at menarche (Pint=1.8×10
-4

) in relation to ER- breast cancer. Our results 

suggest that the reduced risk of ER- breast tumors among carriers of the A-allele are modified 

for women with late age at menarche ≥ 14 years. However, according to a recent functional 

study, the SNP is not located in the vicinity of any genes or enhancer regions in mammary 

cell lines, nor are there any significant results available from eQTL analyses 
5
. In addition, no 

significant effect heterogeneity was found when comparing the interaction between ER- and 

ER+ cases to support that the result could to be specific to ER- disease. It is thus necessary to 

first confirm this interaction with further data before attempting any biological explanation. 

The interaction observed between the intron variant 8q23-rs13267382 of the long 

intergenic non protein coding RNA 536 gene (LINC00536) and age at first FTP (Pint=2.6×10
-

4
) suggests that the variant is associated with a reduced risk of ER- breast cancer with older 

age at first FTP, whereby the association was statistically significant for women who were at 

least 30 years of age at their first FTP. Overall, this variant was not reported to be associated 
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with ER- disease risk 
5
, which is confirmed in the current report. Neither this SNP nor any 

variants in high linkage disequilibrium with it are positioned in the vicinity of any regulatory 

genomic feature. As for the interaction with 3p21-rs6796502, there was not clear evidence for 

this interaction to be specific to ER- disease. Therefore, further data are required to confirm 

this interaction.  

 The present work is subject to a number of limitations. First, despite central 

harmonization of the data, substantial heterogeneity was observed in the risk estimates of the 

epidemiological risk factors across studies, which brought about the inclusion of a product 

term of study design and epidemiological variable in the interaction models, and the 

quantification of epidemiological main effects based on the population based studies. Second, 

the study population consisted predominantly of case-control studies (only three cohort 

studies), which are known to be prone to selection bias and recall bias, as well as associated 

misclassification of risk factors. However, gene-environment interaction estimates were 

similar in the overall study population compared to the subset of population based studies 

(data not shown). Misclassification of epidemiological risk factors is known to reduce the 

power to detect interactions, rather than increasing the probability of false-positive findings 

35
. Hence, the present study is more likely to be subject to limited power than to spurious 

gene-environment interactions. Also, our findings are based on study participants of 

Caucasian origin so that they may not be generalizable to other populations. For the ER 

specific risk analyses, in particular in the subgroup of ER- cases (N=4,662), the power was 

diminished due to the reduced sample size. 

 However, the present study also has several strengths. To begin with, the interaction 

analyses are based on the largest dataset presently available. The four indicated interactions 

were based on 11,337 subjects (5,385 cases, 5,952 controls) in analyses with respect to 

alcohol consumption, and 19,427 subjects (9,073 cases, 10,354 controls) for current smoking, 

as well as 43,513 subjects (20,147 cases, 23,366 controls) in the analyses of age at menarche 

and 37,819 subjects (17,382 cases, 20,508 controls) in the analyses of age at first FTP.  

Taken together, the results presented in this report are not in line with the existence of 

strong modification of the allelic effects on breast cancer risk by the epidemiological risk 

factors investigated. However, the results presented in this report contribute to the global 

body of knowledge on gene-environment interactions by generating hypotheses, thereby 

providing guidance for future functional studies and large scale replication studies.   
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Table 1. Participating studies 

Study Full study name Study design Country 
Cases 

Controls 
all ER- ER+ 

ABCFS 
Australian Breast Cancer Family 

Study 
Population-based Australia 790 261 456 551 

ABCS Amsterdam Breast Cancer Study Mixed Netherlands 1245 292 800 1177 

BBCC 
Bavarian Breast Cancer Cases and 

Controls 
Mixed Germany 553 86 456 457 

BREOGAN Breast Oncology Galicia Network Mixed Spain 1561 329 1251 1423 

CECILE CECILE Breast cancer Study Population-based France 900 128 751 999 

CGPS 
Copenhagen General Population 

Study 
Mixed Denmark 2209 269 1592 4506 

CPSII Cancer Prevention Study II Population-based USA 1655 35 1205 1940 

ESTHER ESTHER Breast Cancer Study Population-based Germany 471 98 302 502 

GENICA 
Gene-Environment Interaction and 

Breast Cancer in Germany 
Population-based Germany 456 114 333 427 

KBCP Kuopio Breast Cancer Project Population-based Finland 411 93 303 251 

LMBC 
Leuven Multidisciplinary Breast 

Centre 
Mixed Belgium 2424 378 2069 1045 

MARIE 
Mammary Carcinoma Risk Factor 

Investigation 
Population-based Germany 1656 371 1278 1778 

MCBCS Mayo Clinic Breast Cancer Study Mixed USA 1554 254 1295 1893 

MCCS 
Melbourne Collaborative Cohort 

Study 
Population-based Australia 478 117 343 490 

MTLGEBCS 
Montreal Gene-Environment Breast 

Cancer Study 
Population-based Canada 489 64 421 436 

PBCS NCI Polish Breast Cancer Study Population-based Poland 519 
 

519 424 

pKARMA 

Karolinska Mammography Project for 

Risk Prediction of Breast Cancer-

prevalent cases 

Mixed Sweden 2822 410 2328 5469 

SASBAC 
Singapore and Sweden Breast Cancer 

Study 
Population-based Sweden 1163 144 663 1378 

SBCS Sheffield Breast Cancer Study Mixed UK 751 107 367 848 

SEARCH 
Study of Epidemiology and Risk 

Factors in Cancer Heredity 
Mixed UK 7478 1119 5371 8050 

UKBGS UK Breakthrough Generations Study Population-based UK 415 47 231 457 

TOTAL 30000 4716 22334 34501 
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Table 2. SNP-risk factor pairs with interaction P-values <7×10
-4

, overall and by ER status across categories of epidemiological risk factors 

SNP / Risk Factor stratum cases/controls overall ER+ ER- 
Pcase-only    OR (95% CI) Pinteraction OR (95% CI) Pinteraction OR (95% CI) Pinteraction 

CFLAR-rs7558475 / current smoking no 7698/8835 0.99 (0.91-1.08)  1.00 (0.91-1.09)  0.96 (0.81-1.14)   

 yes 1375/1519 0.76 (0.66-0.88)  0.78 (0.66-0.91)  0.91 (0.63-1.31)   

 all 9073/10354 0.96 (0.88-1.04) 1.8×10
-4

 0.96 (0.88-1.05) 0.0014 0.96 (0.82-1.12) 0.75 0.48 

          

5q14-rs7707921 / alcohol consumption <20g/day 4904/5411 1.16 (1.08-1.24)  1.18 (1.10-1.27)  1.07 (0.92-1.24)   

 ≥20g/day 481/541 1.16 (0.94-1.43)  1.08 (0.86-1.36)  2.59 (1.45-4.62)   

 all 5385/5952 1.16 (1.09-1.23) 0.70 1.17 (1.09-1.25) 0.79 1.15 (0.99-1.32) 1.9×10
-5

 6.7×10
-6

 
          

3p21-rs6796502 / age at menarche ≤ 11 years 3350/3609 0.73 (0.65-0.83)  0.75 (0.65-0.86)  0.70 (0.54-0.90)   

 12-13 years 9503/10893 0.93 (0.86-0.99)  0.93 (0.86-1.00)  0.88 (0.76-1.02)   

 ≥ 14 years 7294/8864 0.95 (0.88-1.03)  0.92 (0.84-1.01)  1.16 (0.99-1.34)   

 all 20147/23366 0.90 (0.86-0.95) 0.94 0.89 (0.85-0.94) 0.73 0.94 (0.86-1.04) 1.8×10
-4

 0.53 

          

8q23-rs13267382 / age at first FTP <20 years 2085/1830 1.01 (0.92-1.11)  1.00 (0.90-1.11)  1.12 (0.94-1.33)   

 20-24 years 6944/8246 0.92 (0.88-0.97)  0.91 (0.86-0.96)  1.00 (0.91-1.11)   

 25-29 years 5388/6877 0.97 (0.92-1.02)  0.98 (0.92-1.03)  0.91 (0.81-1.02)   

 ≥ 30 years 2965/3555 0.92 (0.85-0.99)  0.94 (0.87-1.02)  0.79 (0.68-0.91)   

 all 17382/20508 0.94 (0.92-0.97) 0.47 0.95 (0.91-0.98) 0.98 0.95 (0.89-1.01) 5.2×10
-4

 0.99 
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Table 3. Bayesian False Discovery Probabilities (BFDP) for SNP-risk factor pairs with interaction P-values <7×10
-4 

Breast Cancer 

Subtype 
SNP / Risk factor ORinteraction(95%CI) 

BFDP
1
,  

prior probability of true interaction 
ABF

2
 

0.01 0.001  

      

Overall  CFLAR-rs7558475 / current smoking 0.77 (0.67-0.88) 0.40 0.87 0.007 

ER- 5q14-rs7707921 / alcohol 1.36 (1.16-1.59) 0.33 0.83 0.005 

ER- 3p21-rs6796502 / age at menarche 1.26 (1.12-1.43) 0.49 0.91 0.010 

ER- 8q23-rs13267382 / age at first FTP 0.89 (0.83-0.95) 0.61 0.94 0.016 

1
The BFDP was calculated assuming that the true interaction OR is between 0.66 and 1.50 

2
Approximated Bayes Factor (ABF) is an approximation of the rate of the probability of the data given the null to the probability of the data given the 

alternative hypothesis. 

 

 

 


