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SUMMARY

The lateral ventricle subventricular zone (SVZ) is a
frequent and consequential site of pediatric and
adult glioma spread, but the cellular and molec-
ular mechanisms mediating this are poorly under-
stood. We demonstrate that neural precursor cell
(NPC):glioma cell communication underpins this pro-
pensity of glioma to colonize the SVZ through secre-
tion of chemoattractant signals toward which glioma
cells home. Biochemical, proteomic, and functional
analyses of SVZ NPC-secreted factors revealed the
neurite outgrowth-promoting factor pleiotrophin, along
with required binding partners SPARC/SPARCL1 and
HSP90B, as key mediators of this chemoattractant ef-
fect. Pleiotrophin expression is strongly enriched in
the SVZ, and pleiotrophin knock down starkly reduced
glioma invasionof theSVZ in themurinebrain.Pleiotro-
phin, in complex with the binding partners, activated
glioma Rho/ROCK signaling, and ROCK inhibition
decreased invasion toward SVZ NPC-secreted fac-
tors. These findings demonstrate a pathogenic role
forNPC:glioma interactions andpotential therapeutic
targets to limit glioma invasion.

INTRODUCTION

High-grade gliomas (HGGs) are a diffusely infiltrating group of

cancers with dire prognoses. The lateral ventricle subventricu-

lar zone (SVZ) stem cell niche is thought to be a tumor reservoir

for a range of HGGs including adult glioblastoma (GBM). Gli-

oma contact of neural stem cell niches, particularly the SVZ,

has been closely associated with decreased survival (Chai-

chana et al., 2008; Jafri et al., 2013; Mistry et al., 2017a,

2017b) and increased tumor recurrence (Adeberg et al., 2014;

Chen et al., 2015). Diffuse intrinsic pontine glioma (DIPG;

recently re-classified as diffuse midline glioma, H3K27M

mutant) (Louis et al., 2016) is the most common HGG of child-
hood and the leading cause of pediatric brain tumor-related

death, with a median survival of only 9 months and a 5-year

survival of <1% (Donaldson et al., 2006). DIPG tends to not

only infiltrate the brainstem where it originates, but also

spreads distantly to the lateral ventricle SVZ in �65% of cases

(Caretti et al., 2014). A point of debate regarding SVZ involve-

ment in adult GBM has been whether gliomas spread to the

SVZ or the cancer originates there. In DIPG, the tumor clearly

begins in the pons and from some anatomical distance spreads

to the SVZ, clarifying the propensity of HGGs to travel to the

SVZ niche. DIPG is thus an illustrative tumor type in which to

discern the mechanisms of SVZ invasion that may be broadly

relevant to HGGs. In the present study, we sought to under-

stand how and why DIPG and other HGGs spread so frequently

to the SVZ, hypothesizing that this predilection could be medi-

ated by interactions between the glioma cells and the neural

precursor cells (NPCs) that normally reside in the SVZ (Sanai

et al., 2004).

RESULTS

SVZ-DerivedDIPGCells Recapitulate InvasionPattern in
an Orthotopic Xenograft Model
We had the opportunity to culture DIPG at the time of early

postmortem autopsy from tumor in the pons and tumor in the

SVZ (cultures designated SU-DIPG-XIII pons and SU-DIPG-

XIII frontal lobe, also referred to as SVZ DIPG cells; Figure 1A;

please see Figures S1A–S1D for genomic and gene expression

characterizations of both cultures). In this case, the pontine

tumor had been treated with radiation therapy while the SVZ

metastases were treatment-naive. While tumor spread to the

lateral ventricle SVZ is frequent (Figures 1B, 1C, and S1E–

S1H), a culture of DIPG cells from an SVZ site of spread has

not previously been established and provides a rare and valu-

able resource. Pontine and SVZ DIPG cells were transduced

to express GFP and luciferase and subsequently orthotopically

xenografted into the pons of juvenile immunodeficient (NOD-

SCID-IL2R g-chain-deficient; NSG) mice. Bioluminescent imag-

ing (IVIS) indicated that SVZ DIPG cells invaded supratentorially

to the cerebrum (Figure 1D), while the pontine DIPG cells from
Cell 170, 845–859, August 24, 2017 ª 2017 Elsevier Inc. 845

mailto:mmonje@stanford.edu
http://dx.doi.org/10.1016/j.cell.2017.07.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2017.07.016&domain=pdf


Figure 1. DIPG Cells Isolated from an SVZ Site of Spread Invade to the Cerebrum and SVZ

(A) MRI (coronal, T1 post-gadolinium) and H&E micrograph (inset) of tumor in the SVZ of a 6-year-old female with DIPG (subject SU-DIPG-XIII). Scale bar, 50 mm.

(B and C) H&E micrographs of tumor in the lateral wall of the lateral ventricle SVZ in a 12-year-old female with DIPG (subject SU-DIPG-V). Scale bars, 1 mm

(B), 50 mm (C).

(D and E) DIPG cells isolated from tumor in the SVZ (SU-DIPG-XIII FL cells) recapitulate invasion of the forebrain when orthotopically xenografted in NSGmice as

shown in bioluminescent IVIS imaging (D), as well as invasion of the SVZ as shown by histological analysis (E). Lateral ventricle outlined in dashed white lines.

Scale bar, 40 mm.

(F) SU-DIPG-XIII FL cells (GFP+HNA+) and neural precursor cells (Sox2+GFAP+) in the SVZ stem cell niche in anNSGmouse orthotopically xenografted with DIPG

cells. Scale bar, 20 mm.

(G) SU-DIPG-XIII FL cells invade widely throughout the brain over time, with 100% of mice exhibiting tumor in the SVZ by 16 weeks post-xenograft.

See also Figure S1.
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Figure 2. Factors Secreted by NPCs Pro-

mote High-Grade Glioma Invasion

(A and B) Schematic and Matrigel invasion assay

results of DIPG cells invading toward mNPC CM

(A) or when co-incubated with mNPC CM (B).

DIPG cells invade preferentially toward SVZ

mNPC CM compared to other mNPC CM or un-

conditioned mNPC medium. Direct exposure to

4VZ mNPC CM modestly increases general DIPG

invasion. n = 3 replicates/wells in SU-DIPG-XIII FL

cells and analyzed by one-way ANOVA with Tukey

post hoc adjustment for multiple comparisons.

(C) 18 out of a panel of 24 patient-derived gli-

oma cultures (see Table S1) invade preferentially

toward SVZ hNPC CM compared to uncondi-

tioned hNPC medium. n = 3 replicates/wells and

analyzed by unpaired, two-tailed Student’s t tests

for comparison between unconditioned and

conditioned hNPC medium.

Data shown as mean ± SEM. *p < 0.05, **p < 0.01,

***p < 0.001.

See also Figure S2 and Table S1.
this case remained localized primarily to the hindbrain (Fig-

ure S1I). The ability of the SVZ DIPG cells to invade widely

may be due to higher expression of genes involved in extracel-

lular matrix degradation, including matrix metalloproteinases

and ADAM metallopeptidases (Figures S1C and S1D). Histolog-

ical analyses showed a diffusely infiltrating pattern of spread of

SVZ DIPG cells that consistently demonstrated spread into the

mouse SVZ (Figure 1E), with glioma cells in close proximity to

the SVZ NPCs within the stem cell niche (Figure 1F). Spread

of SVZ DIPG cells throughout the brain increased over time,

with 100% of mice exhibiting widespread tumor and infiltration

of the SVZ by 16 weeks post-xenograft (Figure 1G). This mouse

model of SVZ invasion recapitulates the clinical behavior of the

tumor and enables study of the mechanisms mediating inva-

sion of the NPC niche.
Secreted Factors from NPCs
Promote Glioma Invasion
To test the invasion of glioma toward

NPCs in vitro, we utilized a Boyden cham-

ber Matrigel invasion assay, which allows

for chemoattraction testing and mimics

invasion through an extracellular matrix.

A suspension of SVZ DIPG cells placed

on top of the Matrigel layer was allowed

to invade toward medium conditioned

by mouse NPCs (mNPC CM) isolated

from the lateral ventricle subventricular

zone (SVZ), third ventricular zone (3VZ),

or fourth ventricular zone (4VZ), or toward

unconditioned mNPC medium for 72 hr.

In this paradigm, SVZ DIPG cells showed

the strongest preferential invasion toward

SVZ mNPC CM, with less robust pre-

ferential invasion toward 3VZ or 4VZ

mNPC CM, compared to unconditioned

mNPC medium (Figure 2A). When the
paradigm was reversed (SVZ DIPG cells co-incubated with

mNPCCM and allowed to invade toward growth factor-deprived

medium), SVZ DIPG cells co-incubated with 4VZ mNPC CM

showed a small increase in general invasion (Figure 2B). Expo-

sure to medium conditioned by any of the mNPC populations

did not affect DIPG cell proliferation or viability (Figures S2A

and S2B). These data suggest that SVZ DIPG cells, which are

intrinsically invasive, can modestly increase general invasive-

ness upon direct exposure to molecules secreted by 4VZ

mNPCs and have strong preferential invasion toward chemoat-

tractant molecules secreted by SVZ mNPCs. To assess the rela-

tive specificity of invasion toward NPCs and to control for the

possible chemoattractant effects of molecules secreted by cells

in general, we tested invasion toward factors secreted by

cultured murine neurons and found only a minimal effect; SVZ
Cell 170, 845–859, August 24, 2017 847



Figure 3. NPC-Secreted Factors Promoting Invasion Are Proteins

(A and C) Boiling, but not RNase and/or DNase treatment, abrogates the invasion-promoting effects of SVZ hNPC CM (A) and 4VZ mNPC CM (C).

(B and D) Size fractionation of SVZ hNPC CM (B) and 4VZ mNPC CM (D) reveals that the invasion-promoting factor(s) are >30 kDa in size. All experiments

performed with n = 3 replicates/wells in SU-DIPG-XIII FL cells and analyzed by unpaired, two-tailed Student’s t tests for comparison between unconditioned

and conditioned medium (A and C) or by one-way ANOVA with Tukey post hoc adjustment for multiple comparisons (B and D). Data shown as mean ± SEM.

**p < 0.01, ***p < 0.001.

(E) Two-dimensional gel electrophoresis separating proteins in SVZmNPCCM (green) and 4VZmNPCCM (red) by size (vertical axis) and charge (horizontal axis).

(F) List of candidate proteins of interest identified from proteomic analysis that were differentially expressed in SVZ mNPC CM compared to 4VZ mNPC CM by a

factor of 1.5.
mNPCCMpromoted a substantiallymore robust increase inDIPG

invasion compared to murine neuronal CM (Figure S2C). We next

evaluated the CM from a culture of human fetal SVZ NPCs and

found a similar chemoattractant effect on SVZ DIPG cells (Fig-

ure 2C). Expanding these observations, we found that 18 out of

a panel of 24 patient-derived glioma cell cultures, including

DIPG, pediatric spinal cord glioma, pediatric cortical GBM, adult

GBM, and oligodendroglioma, demonstrated increased invasion

toward human SVZ NPC CM compared to unconditioned human

neural precursor cell (hNPC) medium (Figure 2C; Table S1). These
848 Cell 170, 845–859, August 24, 2017
results indicate that a range of molecularly distinct classes of

HGGs exhibit preferential invasion toward factors secreted by

SVZ NPCs.

NPC-Derived Secreted Factors Promoting Glioma
Invasion Are Proteins
We performed several biochemical analyses to determine the

nature of the NPC-secreted factors. Heat inactivation of SVZ

hNPCCM abrogated its chemoattractant effect, whereas RNase

andDNase treatment did not (Figure 3A). Size fractionation of the



CM showed that DIPG cells exhibited strong invasion toward

the >30 kDa fraction, but not toward the <30 kDa fraction

(Figure 3B). Together, these data indicate that the SVZ hNPC-

secreted chemoattractant(s) are protein(s) >30 kDa in size. Simi-

larly, the invasion-promoting factor(s) in the 4VZ mNPC CM also

appear to be protein(s) >30 kDa (Figures 3C and 3D). To identify

the invasion-promoting proteins present in SVZ and 4VZ

mNPC CM, we utilized 2D gel electrophoresis to separate the

secreted proteins by size and charge, followed by mass spec-

trometry to identify the differentially secreted protein spots

(Figure 3E). Spots differentially detected in SVZ mNPC CM

compared to 4VZ mNPC CM by a factor of 1.5 were selected

for further investigation. These analyses generated a list of

candidate proteins that were differentially secreted by SVZ and

4VZ mNPCs (Figure 3F).

Pleiotrophin, in Combination with Required Binding
Partners, Promotes Glioma Invasion toward the SVZ
Wesubsequently tested the sufficiencyof eachof the eight candi-

date proteins to chemoattract DIPG cells. Using human recombi-

nant proteins in the Matrigel invasion assay, we tested directed

invasion of DIPG cells toward each candidate factor. No signifi-

cant increase in invasion was observed for individual candidate

proteins compared to unconditioned medium (Figure 4A). We

then tested DIPG invasion toward various combinations of the

candidate proteins and found the combination of four proteins:

pleiotrophin (PTN), secreted protein acidic and rich in cysteine

(SPARC), SPARC-like protein 1 (SPARCL1), and heat shock pro-

tein 90B (HSP90B), exhibits a chemoattractant effectmost similar

to that of theSVZhNPCCM (FigureS3A). Testingcombinations of

two, three, or all four of these proteins demonstrated that only the

combination of all four proteins was sufficient to recapitulate the

full invasion-promoting effect of SVZ hNPC CM (Figure 4B). PTN

is present in the highest concentration of the four proteins in

SVZ hNPC CM as estimated by immunoblot (Figure S3B). The

estimated concentrations of the four proteins in SVZ hNPC CM

were confirmed to be sufficient for DIPG invasion (Figure S3C).

In order to elucidate the nature of the interaction between the

four proteins, we performed biochemical analyses to determine

the size and binding interactions of the proteins of interest in SVZ

hNPC CM. By size exclusion chromatography of concentrated

SVZ hNPC CM and subsequent immunoblot analysis of the

eluted fractions, we found that the four proteins of interest all

coeluted at approximately the size that would be expected for

a complex of all four proteins (Figure 4C). With the exception of

SPARCL1, the four proteins had similar patterns of elution and

fractionated mostly at the larger size of all four proteins com-

bined rather than at the sizes of the single proteins. This sug-

gests that the proteins exist primarily as part of a four-protein

complex. Furthermore, in immunoprecipitation (IP) reactions,

we found that by immunoprecipitating any one of the four pro-

teins, all four proteins copurified and did not precipitate with a

control IgG antibody (Figure 4D). To assess the specificity of

the IP pull-down assay, three control proteins also present in

SVZ hNPCCM, 78 kDa glucose-regulated protein (GRP78), insu-

lin-like growth factor binding protein 2 (IGFBP2), and brevican

(BCAN), were immunoprecipitated and were not found to copur-

ify with any of the four proteins (Figure 4D). These results further
demonstrate that the four proteins physically interact and specif-

ically bind together as a single complex. Of the four identified

proteins, PTN was of particular interest, as it has been demon-

strated to promote adult GBM cell migration through autocrine/

paracrine action (Lu et al., 2005; Ulbricht et al., 2003). The

requirement of SPARC, SPARCL1, and HSP90B as binding part-

ners for PTN in promoting glioma invasion is consistent with the

role of SPARCandSPARCL1 as adaptor proteins that act as con-

nectingmolecules (Lane and Sage, 1994) and the role of HSP90B

as a chaperone protein facilitating the interactions of other pro-

teins (Wiech et al., 1992). The binding of these three proteins

may act to stabilize PTN, which has been shown to promote hap-

totactic glioma cell migration, i.e., migration toward immobilized

PTN, as opposed to chemotactic migration toward free soluble

PTN molecules (Lu et al., 2005; Ulbricht et al., 2003). Similar to

the conserved invasive response toward SVZ hNPC CM, we

found that 9out of 9 patient-derivedgliomacell cultures, including

DIPG, pediatric spinal cord glioma, adultGBM,andanaplastic oli-

godendroglioma, invaded toward the combination of PTN and its

three binding partners (Figure 4E). As an example of a cancerwith

known metastatic tropism for the brain, but that does not prefer-

entially spread to the SVZ, we tested a melanoma cell line and

found that it did not invade toward SVZ hNPC CM or toward the

PTN complex (Figure S3D). Together, these results indicate that

PTN and its three binding partners form a complex and signal as

a unit in promoting the directional invasion of a range of HGGs.

Expression of Pleiotrophin Is Strongly Enriched in the
Mouse and Human Postnatal SVZ
Pleiotrophin has been found to promote neurite outgrowth and

neuroblast migration during neurodevelopment (Li et al., 1990;

Rauvala and Pihlaskari, 1987; Maeda and Noda, 1998), as well

as migration of adult GBM cells through autocrine/paracrine

mechanisms (Lu et al., 2005; Ulbricht et al., 2003). We found

that PTN protein expression is enriched in the SVZ stem cell

niche compared to other brain regions, with PTN expression

strongest in the lateral ventricle SVZ, particularly in the lateral

walls, andmoderate expression in the third and fourth ventricular

zone in the adult murine brain (Figure 5A). In the developing post-

natal murine brain, we found that PTN protein ismore broadly ex-

pressed in the brain at P0–P5 and becomes largely restricted to

the lateral ventricle SVZ by P10 (Figures 5B and S4A). PTN pro-

tein is also expressed in the pia mater, which is interesting to

note as HGGs can also spread to the leptomeninges; in DIPG,

leptomeningeal spread has been observed in 25%–30% of

cases at the time of autopsy (Caretti et al., 2014) (Figures 5B

and S4A). Of the four identified proteins, PTN is the most local-

ized to the SVZ after early postnatal development in mice,

whereas SPARC, SPARCL1, and HSP90B are more broadly ex-

pressed in the brain (Figure S4A). In the childhood and adult hu-

man SVZ, we found strong PTN expression specific to the first

few millimeters subjacent to the ventricular epithelium and

expression co-localized with Nestin+ NPCs as well as extracellu-

larly (Figures 5C and 5D). NPCs isolated from the murine lateral

ventricle SVZ at P14 exhibit higher gene and protein expression

of PTN compared to NPCs isolated at the same age from the

3VZ, 4VZ, or hippocampal dentate gyrus (another neural stem

cell niche; Figures 5E and 5G). Whole SVZ tissue isolated from
Cell 170, 845–859, August 24, 2017 849



Figure 4. The Combination of PTN and Three Required Binding Partners Promotes DIPG Invasion toward SVZ hNPC CM

(A) No single candidate recombinant protein significantly increased DIPG invasion compared to unconditioned hNPC medium.

(B) The combination of four factors: PTN, SPARC, SPARCL1, and HSP90B, was sufficient for the full invasion-promoting effect toward SVZ hNPC CM. No

combination of two or three factors was sufficient. All experiments performed with n = 3 replicates/wells in SU-DIPG-XIII FL cells and analyzed by one-way

ANOVA with Tukey post hoc adjustment for multiple comparisons (A) or Dunnett post hoc adjustment for multiple comparisons to either SVZ hNPC CM or the

combination of all 4 factors (B).

(legend continued on next page)
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P42 mice also exhibits higher gene and protein expression of

PTN compared to cortical tissue (Figures 5F and 5H). These re-

sults demonstrate the specific enrichment of PTN in murine and

human postnatal SVZ NPCs, suggesting that this molecule could

mediate NPC:glioma chemoattraction and underlie the pattern of

SVZ invasion observed clinically. Together, these results sug-

gest that PTN is a primary factor responsible for the chemoat-

traction toward SVZ hNPC CM, and the other three proteins

act as accessory factors.

PTN Is Necessary for Glioma Invasion toward the SVZ
To test the necessity of the PTN complex for DIPG invasion

toward SVZ NPCs, we depleted each factor from SVZ hNPC CM

by two different methods. Immunodepletion of any of the four

proteins (withorwithoutaddbackof theother threeproteins) abro-

gated the chemoattractant effect of the CM (Figures 6A and S5A).

Small hairpin RNA (shRNA)-mediated knock down of SVZ hNPC

gene expression of any of the four genes decreased DIPG cell

invasion toward CM from those NPCs (Figure 6B). These results

indicate that each of the four proteins is necessary for DIPG inva-

sion toward SVZ NPCs in vitro. We then tested the necessity of

PTN for DIPG invasion of the SVZ in vivo. Stereotactic injec-

tion of lentivirus expressing shRNA targeting Ptn into the mouse

SVZ achieved effective knock down of pleiotrophin expression,

compared to a non-targeting scrambled shRNA control (Fig-

ure 6C). Tumor engraftment in the two groupswas equivalent (Fig-

ure S5B). At 16 weeks following pontine xenograft, we found that

fewer DIPG cells invaded the SVZ in mice with shRNA-mediated

knock down of Ptn in the SVZ, compared to mice that received a

scrambled shRNA control (Figures 6C and 6E). While the role of

PTN in postnatal SVZ NPCs remains to be elucidated, we as-

sessed the number of SVZ NPCs present following Ptn knock

down to confirm that the striking decrease in SVZ glioma invasion

was not explained by a reduction in the NPC population. We

found equivalent numbers of Sox2+ NPCs in mice injected with

Ptn shRNA or scrambled shRNA control vectors (Figures 6D and

6F), confirming that the observed reduction in glioma invasion

was not due to NPC loss but rather to decreased Ptn expression.

Taken together, these data demonstrate that PTN is necessary for

glioma invasion toward the SVZ NPC niche in vitro and in vivo.

Pleiotrophin has several known receptors and the one that has

been implicated in glioma migration is protein tyrosine phospha-

tase receptor type z (PTPRZ) (Lu et al., 2005; Müller et al., 2003;

Ulbricht et al., 2003). DIPGprimary tumor andcell culture samples

exhibit expression of the protein tyrosine phosphatase receptor
(C) Size exclusion chromatography. UV trace (above) shows overall protein elutio

complex of all four proteins, illustrated by western blot (WB) analyses. Vertical

sequence of elution fractions. For HSP90B, SPARC and PTN, three WB gels were

at the same time and imaged in parallel to accommodate two elution fractions o

column represents a single elution fraction analyzed for each of the four protein

once, and Westerns repeated in technical replicate.

(D) All four proteins copurified together in immunoprecipitation reactions for an

biological replicates. Three control proteins also present in SVZ hNPC CM—GRP

(E) 9 out of a panel of 9 patient-derived glioma cultures (see Table S1) invade prefe

NPC CM, compared to unconditioned hNPC medium. All experiments performe

tests for comparison between unconditioned hNPC medium and either the comb

Data shown as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.

See also Figure S3 and Table S1.
type z gene PTPRZ1 (Grasso et al., 2015; Nagaraja et al., 2017)

(Figure S5C). Robust shRNA-mediated knock down of PTPRZ1

expression in DIPG cells (Figure S5D) substantially decreases

baseline invasion (Figure S5E) and also mildly decreases cell

viability (Figure S5F). Normalizing for these effects, we find that

PTPRZ1 knock down in DIPG cells confers a partial abrogation

of invasion towardSVZhNPCCMor thePTNcomplex in vitro (Fig-

ure S5G). This suggests that while PTPRZ is necessary for the full

effect of the PTN complex, other receptors may also be involved.

To further test the hypothesis that PTPRZ is a relevant PTN recep-

tor to SVZ invasion, PTPRZ1 knock down or scrambled control

DIPG cells were xenografted to the pons.We found a dramatic ef-

fect on engraftment,withPTPRZ1knockdown resulting in 10-fold

lower bioluminescent signal on initial IVIS imaging (Figure S5H).

From these different initial tumor sizes, the rate of growth was

similar in mice xenografted with PTPRZ1 knock down or control

cells (Figure S5I). At 8 weeks, significantly fewer cells expressing

PTPRZ1 shRNA reached the SVZ (Figure S5J), but interpretation

of these results is complicatedby thesubstantial effectofPTPRZ1

knock down on DIPG xenograft engraftment.

HSP90 Inhibition as a Potential Therapeutic Strategy
BecauseHSP90B is a necessary component of thePTNcomplex,

and HSP90 inhibitors have been developed for clinical use, we

tested the possibility that HSP90 inhibition could be used as a

strategy to reduce SVZ invasion. Evaluating an HSP90 inhibitor

(tanespimycin, 17-AAG) that has been in advanced clinical trials,

we found that 17-AAG decreases invasion toward SVZ hNPC

CM in vitro, but only at concentrations above 1 mM (Figure S6A).

At high concentrations, 17-AAGalso decreasedDIPGcell viability

(Figure S6B), as has been reported for other HSP90 inhibitors

(Grasso et al., 2015). Brain penetration of 17-AAG has been

measured at <1 mM in rodent models (Egorin et al., 2001), so we

did not expect to find a therapeutic effect in vivo. Accordingly,

we did not find a difference in SVZ invasion between mice that

received 17-AAG following pontine xenograft compared to those

receiving vehicle control (Figure S6C). Because HSP90 targeting

with a more potent or brain penetrant antagonist may be a useful

strategy, we sought proof of principle demonstration that HSP90

inhibition could decrease SVZ invasion. Stereotactic injection of

shRNA-expressing lentivirus targeting the Hsp90b1 gene into

the mouse SVZ resulted in fewer DIPG cells invading the SVZ at

16 weeks following pontine xenograft, with no effect on initial tu-

mor engraftment or SVZ NPC density (Figures S6D–S6H). These

results support the concept that HSP90B is necessary for DIPG
n. All four proteins coeluted at approximately the 212 kDa size expected for a

lines demarcate separate WB gels placed side-by-side in image to show the

run to accommodate all fractions. For SPARCL1, an additional WB gel was run

mitted at the time of loading. A row represents the WB for a given protein. A

s, immunostained separately. Size exclusion chromatography was performed

y one of the four proteins, more so than with a control IgG; performed with

78, IGFBP2, and BCAN—did not copurify with any of the four proteins.

rentially toward the combination of four proteins similarly to toward human SVZ

d with n = 3 replicates/wells and analyzed by unpaired, two-tailed Student’s t

ination of the four proteins or SVZ hNPC CM.
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Figure 5. PTN Expression Is Enriched in the Postnatal SVZ

(A) PTN protein is highly localized to the SVZ and pia mater (white arrowhead) in the adult murine brain (left). PTN is expressed at lower levels in the 3VZ (left

middle) and 4VZ (right), and is undetectable in the hippocampus (right middle). Scale bar, 1 mm. LV, lateral ventricle; 3V, third ventricle; 4V, fourth ventricle.

(legend continued on next page)

852 Cell 170, 845–859, August 24, 2017



invasion of the SVZ and that effective HSP90 inhibition could

prove a useful strategy.

NPC-Secreted Factors Activate the Rho/ROCK Pathway
The Rho/Rho kinase (ROCK) pathway is linked to PTN-PTPRZ

signaling (Niisato et al., 2005; Tamura et al., 2006) and to tumor

invasion in general (see Parri and Chiarugi, 2010 for review). To

test the involvement of this pathway in DIPG invasion of the

SVZ, we exposed DIPG cells to unconditioned hNPC medium

or SVZ hNPC CM for a range of time points between 0.5–

120minand subsequentlymeasuredRhoAandROCKactivation.

Exposure to SVZ hNPC CM for 1–5 min resulted in an increase in

RhoA activation compared to exposure to unconditioned hNPC

medium (Figure 7A). ROCKactivation occurs at a later time point,

after exposure to SVZ hNPC CM for 60–120 min (Figure 7B).

Exposure to the PTN complex activated RhoA and ROCK at

levels similar to exposure to SVZ hNPC CM (Figures 7C and

7D). DIPG cells with shRNA-mediated knock down of PTPRZ1

exhibited abrogation of RhoA and ROCK activation when

exposed to SVZ hNPC CM or the PTN complex, compared to

scrambled control DIPG cells (Figure S7A), further supporting

that PTN-PTPRZ signaling results in activation of the Rho/

ROCK pathway. Exposure of DIPG cells to two different ROCK

inhibitors decreased DIPG invasion toward SVZ hNPC CM (Fig-

ures 7E and 7F), without affecting cell viability (Figures S7B and

S7C). These results implicate the involvement of the Rho/ROCK

pathway in promoting DIPG invasion in response to the SVZ

NPC-secreted PTN complex. Thus, DIPG cells originating in the

pons invade widely throughout the brain, and when in proximity

to SVZ NPCs, are drawn in to the SVZ by PTN and its three

required binding partners (Figure 7G). NPC-secreted PTN and

binding partners activate the Rho/ROCK pathway in DIPG cells,

which promotes glioma cell migration and invasion (Figure 7H).

DISCUSSION

The present study demonstrates a pathogenic role for NPC:

glioma interactions and defines glioma chemoattractants

secreted by SVZ NPCs. While NPCs are known to migrate to-

ward and track glioma cells (Aboody et al., 2000; Li et al., 2007)

in response to glioma-secreted cytokines (Ehtesham et al.,

2004; Imitola et al., 2004) and additional signals (An et al.,

2009; Staflin et al., 2009), glioma migration/invasion toward

NPCpopulations has been under recognized. Pleiotrophin, along

with three required binding partners, mediates chemoattraction

toward the SVZ. Pleiotrophin, specifically enriched in the SVZ af-

ter early postnatal neurodevelopment and secreted by SVZ
(B) PTN protein expression near the lateral ventricles and in the pia (white arrow

(C) PTN protein is highly expressed in the human SVZ of an 8-year-old female (lef

the SVZ and is also present extracellularly. Scale bar, 1 mm.

(D) High-magnification images of PTN expression co-localizing with Nestin+ NPC

(E and G) Ptn gene (E) and PTN protein expression (G) are higher in SVZ mNPCs

isolated at the same age. Gene expression values shown are normalized to Actb e

by one-way ANOVA with Tukey post hoc adjustment for multiple comparisons.

(F and H) Ptn gene (F) and PTN protein expression (H) are higher in the SVZ comp

Actb expression. qPCR experiments performed with n = 3 mice and analyzed by

Data shown as mean ± SEM. *p < 0.05, **p < 0.01.

See also Figure S4.
NPCs, interacts with three additional proteins secreted by

NPCs that together mediate invasion of a range of molecularly

and clinically distinct glioma types and activates the Rho/

ROCK pathway in glioma cells. Taken together, the findings

presented here identify pleiotrophin and its binding partners as

key chemoattractant proteins secreted by SVZ NPCs that are

necessary and sufficient for glioma invasion of the SVZ niche.

Implications for Glioma
The SVZ is a site of frequent spread in HGG, and glioma spread

to the SVZ is associated with decreased survival (Chaichana

et al., 2008; Jafri et al., 2013; Mistry et al., 2017a, 2017b) and

increased tumor recurrence (Adeberg et al., 2014; Chen et al.,

2015). Notably, decreased survival and increased early recur-

rence in adult GBM are associated specifically with glioma con-

tact of the lateral ventricle SVZ (Mistry et al., 2017b) for reasons

that have yet to be fully elucidated. Ongoing clinical studies seek

to improve outcomes by increasing the radiation dose to the SVZ

in GBM patients, as retrospective analyses indicate that inci-

dental radiation to the SVZ robustly correlates with progres-

sion-free survival (Chen et al., 2013; Evers et al., 2010; Lee

et al., 2013). In DIPG, mortality typically results from brainstem

disease, but spread to the SVZ can result in increased morbidity

and mortality. As more effective disease control is achieved in

the pons for children with DIPG, regions of distant spread such

as the SVZ may emerge as a larger clinical problem.

Understanding DIPG invasion of the SVZ informs not only the

pathobiology of this important pediatric cancer, but also clarifies

mechanisms of SVZ involvement that are conserved across

HGG types. DIPG travels some distance between its origins

in the pons and the lateral ventricle SVZ. The pattern of DIPG

spread found at the time of autopsy is widespread and multi-

directional (Caretti et al., 2014), consistent with an intrinsic

invasiveness of DIPG cells (Nagaraja et al., 2017) that may be

exacerbated by factors in the local microenvironment such as

4VZ NPCs as above. When DIPG cells invade the forebrain, the

demonstrated chemoattractant effect of SVZ NPCs may then

act at short to medium range to draw invading cells to the SVZ

niche. Additional growth-promoting factors present in the SVZ

stem cell niche may function to encourage blooming of substan-

tial masses when glioma cells arrive there.

Pleiotrophin Has Pleiotrophic Roles in Development and
Cancer
Pleiotrophin (PTN), also known as heparin-binding growth-asso-

ciatedmolecule, is adevelopmentally regulated, secretedgrowth

factor with numerous and diverse roles in brain development,
heads) in the postnatal murine brain at P0, P5, and P10. Scale bar, 1 mm.

t) and a 68-year-old male (right). PTN protein co-localizes with Nestin+ NPCs in

s in the SVZ of a 68-year-old male. Scale bar, 25 mm.

isolated from P14 wild-type (WT) mice, compared to 3VZ, 4VZ, or DG mNPCs

xpression. qPCR experiments performed with n = 3 wells of cells and analyzed

ared to cortex of P42 mice. Gene expression values shown are normalized to

unpaired, two-tailed Student’s t test.
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Figure 6. PTN Is Necessary for Glioma Invasion toward the SVZ

(A) DIPG cells invade less toward SVZ hNPCCMafter immunodepletion of any or a combination of the four proteins. Depletion of target proteins was confirmed by

western blot.

(B) DIPG cells invade less toward CM from SVZ hNPCs that had any or all of the four proteins knocked down by shRNA-expressing lentivirus, compared to

CM from SVZ hNPCs expressing a scrambled shRNA control. Knock down efficacy was confirmed by western blot. In vitro experiments performed with n = 3

replicates/wells in SU-DIPG-XIII FL cells and analyzed by one-way ANOVA with Tukey post hoc adjustment for multiple comparisons.

(C and E) Fewer orthotopically xenografted GFP+ HNA+ SU-DIPG-XIII FL cells invaded the SVZ, defined as a 200 mm-wide region adjacent to the lateral ventricles

(outlined in dashed white lines), when lentivirus expressing sh-Ptn (right) was injected into the SVZ, compared to lentivirus expressing a scrambled shRNA control

(left). Scale bar, 200 mm (C). In vivo experiments performed with n = 5 mice per group. Stereological cell counts at 16 weeks following xenograft analyzed by

unpaired, two-tailed Student’s t test. Each data point = one mouse (E).

(D and F) The density of Sox2+ NPCs in the SVZ was equivalent in mice injected with lentivirus expressing sh-Ptn (right) or scrambled shRNA control (left). Scale

bar, 50 mm (D). In vivo experiments performed with n = 5 mice per group. Stereological cell counts at 16 weeks following xenograft analyzed by unpaired,

two-tailed Student’s t test. Each data point = one mouse (F).

Data shown as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.

See also Figures S5 and S6.
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Figure 7. NPC-Secreted Factors Activate

the Rho/ROCK Pathway

(A and B) Exposure of DIPG cells to SVZ hNPCCM

activated RhoA after 1–5 min (A) and ROCK after

60–120min (B), compared to unconditioned hNPC

medium.

(C and D) Exposure to PTN and the three binding

partners in unconditioned hNPC medium acti-

vated RhoA (C) and ROCK (D) similarly to SVZ

hNPC CM.

(E and F) Treatment with ROCK inhibitors GSK

429286 (E) or GSK 269962A (F) decreased DIPG

invasion toward SVZ hNPC CM in a dose-depen-

dent manner.

(G) Schematic illustrating the model of glioma cells

originating in the pons invading generally in the

ventral pons, and being drawn at short to medium

range into the SVZ upon exposure to PTN and the

three binding partners secreted by SVZ NPCs.

(H) Schematic illustrating the model of glioma

chemoattraction toward NPC-secreted PTN and

the three binding partners, subsequent activation

of the Rho/ROCK pathway in glioma cells, and

promotion of glioma cell migration and invasion.

All experiments performed with n = 3 replicates/

wells in SU-DIPG-XIII FL cells and analyzed by

unpaired two-tailed Student’s t tests for compar-

ison between unconditioned and conditioned

hNPC medium (A and B) or by one-way ANOVA

with Tukey post hoc adjustment for multiple

comparisons (C–F). Data shown as mean ± SEM.

*p < 0.05, **p < 0.01, ***p < 0.001.

See also Figure S7.
homeostasis, and regeneration. Pleiotrophin has several

possible receptors, including protein tyrosine phosphatase re-

ceptor type z (PTPRZ), anaplastic lymphoma kinase (ALK),

N-syndecan, neuroglycan, integrin avb3, and lipoprotein recep-

tor-related protein (LRP) (González-Castillo et al., 2015), and as

such, the functional effects of pleiotrophin binding are cell

context-specific. Pleiotrophin was originally recognized to pro-

mote neurite outgrowth (Kinnunen et al., 1999; Li et al., 1990;

Rauvala and Pihlaskari, 1987) and subsequently found to pro-

mote haptotactic neuroblast migration along radial glial pro-

cesses from the subventricular germinal zone to the developing

cortical plate during corticogenesis (Maeda and Noda, 1998).

Additional functions of pleiotrophin range from supporting
dendrite and axonal regeneration (Blon-

det et al., 2005; Mi et al., 2007) to modu-

lation of synaptic plasticity (Lauri et al.,

1998; Pavlov et al., 2002). Pleiotrophin

and PTPRZ are both highly expressed

in human white matter oligodendroglial

precursor cells (OPCs), and PTN-PTPRZ

signaling promotes postnatal OPC differ-

entiation during developmental myelina-

tion and remyelination after injury (Har-

roch et al., 2002; Sim et al., 2006).

In prenatal human OPCs, PTN-PTPRZ

signaling promotes proliferation, popula-

tion expansion, and self-renewal through
downstream regulation of the Wnt pathway (McClain et al.,

2012). Underscoring the broad roles for pleiotrophin in neurode-

velopment, pleiotrophin knockout mice exhibit aberrant cogni-

tive behavior as well as anomalies in corticogenesis (Hienola

et al., 2004; Krellman et al., 2014).

Here, we show that after development, pleiotrophin expres-

sion is highly enriched in the murine and human SVZ. The iden-

tification of pleiotrophin as a protein secreted by murine and

human SVZ NPCs is consistent with reports identifying PTN in

the secretomes of various neural stem cell populations (Furuta

et al., 2004; Lee et al., 2012). While this suggests a role for

pleiotrophin in the postnatal SVZ niche, the in vivo function of

pleiotrophin and the reasons for its elevated expression in the
Cell 170, 845–859, August 24, 2017 855



SVZ compared to other neural stem cell niches remain to be fully

elucidated.

In addition to its roles in normal neurodevelopment, plasticity,

and regeneration, pleiotrophin also has many roles in cancer,

including involvement in tumor growth (Tsirmoula et al., 2012;

Wellstein et al., 1992) and invasion and metastasis (Czubayko

et al., 1996; Wu et al., 2005). Pleiotrophin is expressed by HGG

cells, and expression levels are inversely correlated with overall

patient survival (Zhang et al., 2015). Autocrine/paracrine secre-

tion of pleiotrophin promotes adult GBM migration via PTN-

PTPRZ signaling (Lu et al., 2005; Ulbricht et al., 2003). Like

neuroblasts during corticogenesis (Maeda and Noda, 1998),

GBM cells exhibit robust haptotactic migration toward immobi-

lized pleiotrophin, but only show weak chemotactic migration

toward free soluble pleiotrophin (Lu et al., 2005; Ulbricht et al.,

2003). The finding here that NPC-secreted pleiotrophin re-

quires three binding partners may reflect a similar requirement

for immobilization to encourage haptotactic migration into

the SVZ.

The Rho/ROCK Pathway in Glioma Migration and
Invasion
Rho/Rho kinase (ROCK) signaling is a well-established pathway

in cell migration. It is a complex pathway, and its role in glioma

migration and invasion may be context-specific. In normal

cell migration, active ROCK promotes the LIM kinase/cofilin

pathway, thereby promoting stabilization of actin filaments (Mae-

kawa et al., 1999; Sumi et al., 2001). In a parallel pathway, active

ROCK inhibits myosin light chain phosphatase, thus promoting

actin and myosin crosslinking. This leads to contraction of the

trailing edge and forward motion of the cell and thereby in-

creases cell migration (Mitchison and Cramer, 1996). Consistent

with the potential pro-motility effects of modulating Rho/ROCK

pathway activity in either direction, the role of Rho/ROCK in gli-

oma migration and invasion is complex and seemingly contra-

dictory. Some studies found that inhibition of ROCK decreased

glioma migration (Lin et al., 2009; Oellers et al., 2009), while

another study found that inhibition of ROCK increased glioma

migration and invasion (Salhia et al., 2005). Here, we find that

pleiotrophin and its binding partners activate the Rho/ROCK

pathway in glioma cells, and treatment with ROCK inhibitors de-

creases their invasion toward factors secreted by SVZ NPCs,

thus implicating this prominent migration pathway in glioma inva-

sion of the SVZ.

Neurite Outgrowth and Axon Guidance Molecules in
Glioma Invasion
An emerging theme in glioma pathobiology is malignant hijacking

of neurodevelopmentalmechanisms (seeBaker et al., 2015 for re-

view), including the re-purposing of traditional neurite outgrowth

and axon guidance molecules to regulate glioma invasion. One

major family of axon guidancemolecules, the ephrins andEph re-

ceptors, promote migration and invasion in adult GBM (Nakada

et al., 2010; Sikkema et al., 2012) and in DIPG (Nagaraja et al.,

2017).Netrinsareanother classof chemoattractant cues forpath-

finding axons that promote GBM invasion (Shimizu et al., 2013).

On the other hand, signals that are chemorepulsive to the axonal

growth cone prove inhibitory to glioma invasion. SLIT/ROBO
856 Cell 170, 845–859, August 24, 2017
signaling, canonically involved in axon pathfinding as a chemore-

pulsive ligand-receptor system (Brose et al., 1999; Kidd et al.,

1999), functions similarly as a chemorepellant in glioma (Mertsch

et al., 2008). Semaphorins function chiefly as short-range inhibi-

tory signals for developing axons, and HGGs express both sem-

aphorins and the receptors plexins and neuropilins (Rieger et al.,

2003); semaphorin signaling has been found to limit glioma

motility (Li and Lee, 2010; Zhou et al., 2012).

As amolecule that promotes neurite outgrowth and neuroblast

migration, pleiotrophin appears to similarly promote glioma

tropism toward a preferred niche. Identification of pleiotrophin

and its binding partners as chemoattractant factors secreted by

NPCs begins to explain how and why glioma cells preferentially

invade the SVZ. Targeting the pleiotrophin complex, including

HSP90 inhibition, and downstream Rho/ROCK signaling emerge

as therapeutic strategies to limit or prevent tumor invasion of the

SVZ in high-grade gliomas.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-human nuclei clone 235-1 Millipore MAB 1281

Goat anti-pleiotrophin C-19 Santa Cruz Biotechnology sc-1394

Goat anti-Sox2 R&D AF2018

Rabbit glial fibrillary acidic protein Stem Cell Technologies 60128

Rat myelin basic protein Abcam Ab7349

Alexa 594 donkey anti-goat IgG Jackson ImmunoResearch 705-585-147

Alexa 405 donkey anti-mouse IgG Jackson ImmunoResearch 715-475-151

Alexa 647 donkey anti-rabbit IgG Jackson ImmunoResearch 711-605-152

Alexa 647 donkey anti-mouse IgG Life Technologies A-31571

Alexa 647 donkey anti-rat IgG Jackson ImmunoResearch 712-605-150

Mouse anti-pleiotrophin H-6 Santa Cruz Biotechnology sc-74443

Rabbit anti-SPARC Santa Cruz Biotechnology sc-390199

Mouse anti-SPARCL1 Santa Cruz Biotechnology sc-25574

Rabbit anti-HSP90B GeneTex GTX101448

Rabbit normal IgG Santa Cruz Biotechnology sc-2027

Mouse normal IgG Santa Cruz Biotechnology sc-2025

Goat anti-SPARC R&D AF941

Goat anti-SPARCL1 R&D AF2728

Rabbit anti-GRP78 Abcam ab21685

Rabbit anti-PTPRZ Thermo Fisher PA5-51041

Rabbit beta-actin Cell Signaling 4970S

Goat anti-rabbit IgG-HRP Cell Signaling 7074S

Horse anti-mouse IgG-HRP Cell Signaling 7076S

Donkey anti-goat IgG-HRP Santa Cruz Biotechnology sc-2020

Mouse anti-SPARC AON-1 Santa Cruz Biotechnology sc-33645

Mouse anti-HSP90B H9010 Thermo Fisher 37-9400

Mouse anti-nestin clone 10C2 Millipore MAB 5326

Rabbit anti-IGFBP2 Cell Signaling 3922S

Rabbit anti-brevican H-94 Santa Cruz Biotechnology sc-292927

Alexa 488 donkey anti-mouse IgG Jackson ImmunoResearch 711-545-152

Chemicals, Peptides, and Recombinant Proteins

Human brevican R&D 4009-BC-050

Human pleiotrophin R&D 252-PL-050

Human SPARC R&D 941-SP-050

Human SPARCL1 R&D 2728-SL-050

Human GRP78 Abcam ab78432

Human HSP90B Sigma-Aldrich SRP0183

Human IGFBP2 PeproTech 350-06B

Human IGFBP4 PeproTech 350-05B

GSK 429286 Tocris 3726

GSK 269962A A gift from Craig Thomas, NCATS N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

17-AAG SelleckChem S1141

Critical Commercial Assays

BioCoat growth factor reduced Matrigel

invasion chambers

Corning 354483

Pierce Crosslink Magnetic IP/Co-IP kit Thermo Scientific 88805

BCA protein assay Thermo Scientific 23225

G-LISA RhoA absorbance-based

activation assay

Cytoskeleton BK124

Rho-associated kinase (ROCK)

activity assay

Millipore CSA001

CellTiter-Glo assay Promega G9242

Deposited Data

Whole exome sequencing of SU-DIPG-XIII This paper EGAS00001002326

RNA sequencing of SU-DIPG-XIII This paper GSE99812

Raw data and statistics for non-sequencing data This paper http://dx.doi.org/10.17632/pbbsb6nx5f.1

Experimental Models: Cell Lines

Human patient-derived high-grade glioma

cell cultures; see Table S1

Venkatesh et al., 2015;

Nagaraja et al., 2017; this paper

Table S1

CHL-1 melanoma cells ATCC ATCC CRL-9446

Experimental Models: Organisms/Strains

Mouse: NOD-SCID-IL2R gamma

chain-deficient (NSG)

The Jackson Laboratory JAX: 005557

Mouse: C57BL/6J The Jackson Laboratory JAX: 000664

Mouse: CD1 The Jackson Laboratory JAX: 022

Oligonucleotides

Primer: mouse Ptn forward:

50 CTCTGCACAATGCTGACTGTC 30
PrimerBank 12857177a1

Primer: mouse Ptn reverse:

50 CTTTGACTCCGCTTGAGGCTT 30
PrimerBank 12857177a1

Primer: mouse Actb forward:

50 GGCTGTATTCCCCTCCATCG 30
PrimerBank 6671509a1

Primer: mouse Actb reverse:

50 CCAGTTGGTAACAATGCCATGT 30
PrimerBank 6671509a1

Primer: human PTPRZ1 forward:

50 GCTTTGATGCGGACCGATTTT 30
PrimerBank 91208427c3

Primer: human PTPRZ1 reverse:

50 ACGACTAACACTTTCGACTCCA 30
PrimerBank 91208427c3

Primer: human ACTB forward:

50 CATGTACGTTGCTATCCAGGC 30
PrimerBank 4501885a1

Primer: human ACTB reverse:

50 CTCCTTAATGTCACGCACGAT 30
PrimerBank 4501885a1

Human PTN shRNA: 50 CCGGAGGC

AAGAAACAGGAGAAGATCTCGAGA

TCTTCTCCTGTTTCTTGCCTTTTTT 30

Sigma TRCN0000002774

Mouse Ptn shRNA: 50 CCGGGCACAA

TGCTGACTGTCAGAACTCGAGTTCT

GACAGTCAGCATTGTGCTTTTTG 30

Sigma TRCN0000071676

Human SPARC shRNA: 50 CCGGCCAGG

TGGAAGTAGGAGAATTCTCGAGAATTCT

CCTACTTCCACCTGGTTTTT 30

Sigma TRCN0000008711

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Human SPARCL1 shRNA: 50 CCGGATAC

CCAATCTGATGATATTTCTCGAGAAATA

TCATCAGATTGGGTATTTTTT 30

Sigma TRCN0000373631

Human HSP90B1 shRNA: 50 CCGGCCTG

TGGATGAATACTGTATTCTCGAGAATAC

AGTATTCATCCACAGGTTTTT 30

Sigma TRCN00000029425

Mouse Hsp90b1 shRNA: 50 CCGGGCTATT

CAGTTGGATGGGTTACTCGAGTAACCCA

TCCAACTGAATAGCTTTTTG 30

Sigma TRCN0000071925

Human PTPRZ1 shRNA: 50 CCGGATACCT

AAGTCTTCGTTAATACTCGAGTATTAACG

AAGACTTAGGTATTTTTT 30

Sigma TRCN0000356374

Scrambled shRNA: 50 CCTAAGGTTAA

GTCGCCCTCGCTCGAGCGAGGGCG

ACTTAACCTTAGG 30

Addgene 1864

Software and Algorithms

Tophat2 Kim et al., 2013 https://ccb.jhu.edu/software/tophat/

featureCounts Liao et al., 2014 http://bioinf.wehi.edu.au/featureCounts/

DESeq2 Love et al., 2014 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

Gene Ontology Consortium Ashburner et al., 2000 http://www.geneontology.org/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Michelle

Monje (mmonje@stanford.edu). SU cell cultures will be distributed through the Monje lab with a material transfer agreement (MTA)

with Stanford University.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice and housing conditions
All animal procedures were approved by the Stanford University Administrative Panel on Laboratory Animal Care and performed in

accordance with institutional and National Institutes of Health guidelines. All experiments were performed on NOD-SCID-IL2R

gamma chain-deficient (NSG) or BL6/CD1mice, withmale and female animals used equally. Animals were housed according to stan-

dard guidelines with free access to food and water in a 12 hr light/dark cycle.

Patient-derived glioma cell culture
All human tissue studies were performed with informed consent and in accordance with Institutional Review Board (IRB)-approved

protocols. Authenticity of all cultures was routinely monitored and validated using short tandem repeat (STR) DNA fingerprinting.

DIPG cell cultures were generated as tumor neurospheres from early post-mortem tissue as previously described (Caretti et al.,

2014; Lin and Monje, 2017; Monje et al., 2011; Venkatesh et al., 2015). Briefly, tumor tissue was collected under sterile conditions,

and transported in Hibernate-A (Thermo Scientific, Waltham, MA) on ice to the laboratory. The tissue was mechanically dissociated,

followed by gentle rotation in enzymatic dissociation buffer (HEPES-HBSSwith DNase I and liberase) at 37�C.Cells were then passed

through a 100 mm cell strainer, and processed through a sucrose gradient to remove myelin. The resulting dissociated cells were

treated with ACK lysis buffer (Thermo Scientific, Waltham, MA) to remove red blood cells, and plated in a serum-free medium

designated ‘‘Tumor Stem Medium (TSM),’’ consisting of: Neurobasal (-A) (Invitrogen, Carlsbad, CA), B27 (-A) (Invitrogen,

Carlsbad, CA), heparin (2 mg/mL; Stem Cell Technologies, Vancouver, BC, Canada), human-EGF (20 ng/mL; Shenandoah Biotech,

Warwick, PA), human-bFGF (20 ng/mL; Shenandoah Biotech, Warwick, PA), PDGF-AA (10 ng/mL; Shenandoah Biotech,

Warwick, PA), and PDGF-BB (10 ng/mL; Shenandoah Biotech, Warwick, PA).

The pediatric and adult glioblastoma cultures were obtained at the time of biopsy or autopsy, as indicated in Table S1, and were

cultured and validated in the same way as for DIPG tissue described above.

The oligodendroglioma cultures were obtained at the time of biopsy, and generated similarly to the cultures described above and

as previously described (Venkatesh et al., 2015). Briefly, the tissue was chopped finely, followed by gentle rotation in liberase at 37�C.
Cells were triturated 8 times through a 10 mL serological pipette, followed by 8 times through a 1 mL pipette tip. The cells were then
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passed through a 100 mm cell strainer, a sucrose gradient, and treated with ACK lysis buffer as described above. Cells were cultured

in flasks coated with Matrigel (BD Biosciences, San Jose, CA).

All glioma cells described above were cultured in ‘‘Tumor Stem Medium (TSM),’’ a defined, serum-free medium described above.

Neural precursor cell culture and generation of conditioned medium
Human subventricular zone neural precursor cells were a generous gift from Siddhartha Mitra and Samuel Cheshier. The cells

were cultured from the subventricular zone of the lateral ventricles (SVZ) from a 19-week fetus. Cells were cultured as a monolayer

in human neural precursor cell medium (hNPC medium), consisting of: Neurobasal (-A) (Invitrogen, Carlsbad, CA), B27 (-A) or N2

(Invitrogen, Carlsbad, CA), heparin (2 mg/mL; Stem Cell Technologies, Vancouver, BC, Canada), human-EGF (20 ng/mL; Shenandoah

Biotech,Warwick,PA),human-bFGF (20ng/mL;ShenandoahBiotech,Warwick,PA), andhuman-LIF (20ng/mL;Millipore,Bedford,MA).

Mouse neural precursor cells were cultured from WT BL6/CD1 mice at P14 as described by Walker and Kempermann (2014). The

subventricular zone of the lateral ventricles, third ventricular zone, and fourth ventricular zone were microdissected. The tissue was

minced and gently dissociated, passed through a 40 mm filter, and plated. Cells were cultured as a monolayer in mouse neural

precursor cell medium (mNPC medium), consisting of: Neurobasal (-A) (Invitrogen, Carlsbad, CA), B27 (-A) or N2 (Invitrogen, Carls-

bad, CA), heparin (2 mg/mL; Stem Cell Technologies, Vancouver, BC, Canada), mouse-EGF (20 ng/mL; Peprotech, Rocky Hill, NJ),

and mouse-FGF-2 (20 ng/mL; Peprotech, Rocky Hill, NJ).

Conditioned medium was collected from mouse and human neural precursor cells at passage 5-10. Cells were grown in medium

containing B27 (-A) for functional assays involving glioma cells, or in media containing N2 for proteomic and size exclusion chroma-

tography analyses. After passaging, cells were plated in fresh NPC medium, and allowed to grow for 7 days, with addition of fresh

medium on day 3-4. On day 7, cells were spun down, and the conditionedmediumwas collected and passed through a 0.22 mmfilter.

Conditioned medium was either used immediately or frozen at �80�C for future experiments.

Neuron culture and generation of conditioned medium
Mouse hippocampal neurons were cultured fromWT BL6/CD1 mice at P0 as described by Beaudoin et al. (2012). The hippocampus

was microdissected, minced, and gently dissociated. Cells were cultured in flasks coated with poly-L-lysine. Cells were plated

initially in serum neuronal medium, consisting of: Minimal Essential Medium with Earle’s salts (Invitrogen, Carlsbad, CA), glucose,

and fetal bovine serum. All serum neuronal medium was removed after the first 4 hr, and cells were subsequently cultured in

serum-free neurobasal medium, consisting of: Neurobasal (Invitrogen, Carlsbad, CA), B27 (Invitrogen, Carlsbad, CA), and Glutamax

(Invitrogen, Carlsbad, CA). Serum-free neurobasal medium was refreshed every 3-4 days.

Conditionedmediumwas collected frommouse hippocampal neurons at 3weeks after plating. At 2 weeks after plating, all medium

was replaced with fresh serum-free neurobasal medium. Fresh medium was added after 3-4 days, and on day 7, the conditioned

medium was collected and passed through a 0.22 mm filter. Conditioned medium was either used immediately or frozen at �80�C
for future experiments.

Culture of CHL-1 melanoma cells
CHL-1 melanoma cells (ATCC, Manassas, VA) were cultured in ‘‘Tumor Stem Medium (TSM),’’ a defined, serum-free medium

described above.

Orthotopic xenografting and lentiviral injections
NSG mice at age P34-36 were orthotopically xenografted with SU-DIPG-XIII frontal lobe CMV-GFP-luciferase cells, in a similar

procedure to as previously described (Grasso et al., 2015; Venkatesh et al., 2015). Briefly, a single-cell suspension of SU-DIPG-

XIII frontal lobe CMV-GFP-luciferase cells at passage 16-19 was prepared in sterile HBSS immediately before beginning the xeno-

graft procedure. 600,000 cells in 3 mL were stereotactically injected into the pons of the left hemisphere of NSG mice, through a

31-gauge burr hole. Stereotactic coordinates used were: 1 mm lateral to midline, 0.8 mm posterior to lambda suture, and 5 mm

deep. Cells were injected at a rate of 0.4 mL/min using a digital pump and a 31-gauge Hamilton syringe. After infusion of cells, the

syringe needle was kept in place for 2 min, and then withdrawn manually at a rate of 0.875 mm/min to minimize the backflow of cells.

Mice used for shRNA lentivirus studies received shRNA-expressing lentivirus in the SVZ at P27-29 and DIPG cells in the left pons at

P34-36. For lentiviral injections, 2 mL of shRNA-expressing lentivirus were stereotactically injected into the SVZ. Stereotactic coor-

dinates used were: 1.3 mm lateral to midline, 0.1 mm posterior to bregma suture, and 2 mm deep. Virus was injected and the needle

was withdrawn according to the same procedure as described above.

Human SVZ samples
All human tissue studies were performed with informed consent and in accordance with Institutional Review Board (IRB)-approved

protocols. Human SVZ samples demonstrating PTN expression were obtained at autopsy from an 8-year-old female and a 68-year-

old male. Human SVZ samples demonstrating glioma invasion were obtained at the time of autopsy from subjects described in

Caretti et al., 2014 and in Table S1.
Cell 170, 845–859.e1–e9, August 24, 2017 e4



METHOD DETAILS

Bioluminescent IVIS imaging
Mice were imaged using an IVIS Spectrum to ensure tumor engraftment and monitor tumor size. Mice were anesthesized under 1%

isoflurane, intraperitoneally injected with luciferin (15 mg/kg), and imaged for bioluminescence every minute until the peak total flux

was reached.

Drug treatment of mice
Orthotopically xenografted mice that were treated with 17-AAG or a vehicle control received treatment from 1 week after xenograft

until sacrifice. 17-AAG was freshly formulated immediately before injections at 10 mg/mL in 5% DMSO/ 95% corn oil. Mice received

50 mg/kg 17-AAG 5 days per week (5 days on, 2 days off). Vehicle-treated control mice received 5 uL/g 5% DMSO/ 95% corn oil on

the same dosing schedule. Mice were perfused 8 weeks after xenograft.

Perfusion and immunohistochemistry
Mice were intraperitoneally injected with Avertin (tribromoethanol) for anesthesia, and then transcardially perfused with 20 mL of

ice-cold PBS. Brains were dissected out and fixed in 4% paraformaldehyde in PBS overnight at 4�C, and were then transferred

to 30% sucrose in PBS for cryoprotection. Brains were embedded in Tissue-Tek O.C.T. (Sakura, Torrance, CA). Brains from mice

older than P10 were sliced into 40 mm coronal or sagittal sections using a sliding microtome (Microm HM450; Thermo Scientific,

Waltham, MA). Brains from mice age P0 to P10 were sliced into 25 mm coronal sections using a cryostat (Leica Biosystems

CM3050 S; Wetzlar, Germany). For immunohistochemistry, a 1 in 6 series of 25 mm or 40 mm sections was incubated in blocking so-

lution (3% normal donkey serum, 0.3% Triton X-100 in TBS) at room temperature for 1 hr. Sections were incubated in primary anti-

bodies diluted in 1% blocking solution (1% normal donkey serum, 0.3% Triton X-100 in TBS) overnight at 4�C, rinsed in TBS the

following day, and then incubated in secondary antibodies diluted in 1% blocking solution overnight at 4�C. The following day, sec-

tions were rinsed and mounted using ProLong Gold mounting medium with or without DAPI (Life Technologies, Carlsbad, CA).

Primary antibodies used were: mouse anti-human nuclei clone 235-1 (1:100; Millipore, Bedford, MA), goat anti-pleiotrophin (1:250;

Santa Cruz Biotechnology, Santa Cruz, CA), mouse anti-SPARC (1:100; Santa Cruz Biotechnology, Santa Cruz, CA), goat anti-

SPARCL1 (1:100; R&D Systems, Minneapolis, MN), mouse anti-HSP90B (1:100; Thermo Fisher, Waltham, MA), mouse anti-nestin

(1:250; Millipore, Bedford, MA), goat anti-Sox2 (1:50; R&D Systems, Minneapolis, MN), rabbit glial fibrillary acidic protein (1:200;

Stem Cell Technologies, Vancouver, Canada), and rat myelin basic protein (1:200; Abcam, Cambridge, MA).

Secondary antibodies used were: Alexa 594 donkey anti-goat IgG (1:500; Jackson ImmunoResearch, West Grove, PA), Alexa 405

donkey anti-mouse IgG (1:500; Jackson ImmunoResearch, West Grove, PA), Alexa 488 donkey-anti-mouse IgG (1:500; Jackson

ImmunoResearch, West Grove, PA), Alexa 647 donkey-anti-rabbit IgG (1:500; Jackson ImmunoResearch, West Grove, PA), Alexa

647 donkey anti-mouse IgG (1:500; Life Technologies, Carlsbad, CA), and Alexa 647 donkey anti-rat IgG (1:500; Jackson

ImmunoResearch, West Grove, PA).

Analysis of tumor spread over time
For analysis of DIPG spread in the mouse brain over time, 25 mice were orthotopically xenografted as described above. 8 mice were

sacrificed at 4weeks post-xenograft, 8micewere sacrificed at 8weeks post-xenograft, and 9micewere sacrificed at 16weeks post-

xenograft. A 1:6 series of sagittal slices was stained and imaged, and the anatomical locations of GFP+ HNA+ cells throughout each

mouse were noted and compared with the Allen Brain Atlas.

Matrigel invasion assay
To test for chemoattraction and invasion toward neural precursor cell conditioned medium or another candidate chemoattractant, a

single-cell suspension of 100,000 tumor cells in Tumor StemMedium (TSM) base (with B27 (-A) and heparin, without growth factors)

was seeded in the top inserts of BioCoat growth factor reducedMatrigel invasion chambers (Corning, Bedford, MA), after rehydration

of the inserts. Chemoattractant medium was added to the bottom of the chamber. All conditions were plated in triplicate. After 72 hr,

medium was aspirated, and the non-invading cells on top of the layer of Matrigel were scrubbed off. The invading cells were fixed in

4% paraformaldehyde and then stained with 0.1% crystal violet in 10%methanol in distilled water. The number of invading cells was

quantified by the intensity of the crystal violet dye on the invading side of the Matrigel. The dye was collected in 10% acetic acid, and

absorbance was measured at 595 nm.

To test for phenotypic change induced by direct exposure to neural precursor cell conditioned medium, 100,000 DIPG cells were

seeded in the top inserts of the Matrigel invasion assay in conditioned medium, and TSM base (with B27 (-A) and heparin) was plated

in the bottom chambers. The rest of the procedure was performed as described above.

To test the ROCK or HSP90 inhibitors in the Matrigel invasion assay, the inhibitors were added to the suspension of glioma cells in

TSM base (with B27 (-A) and heparin) seeded in the top inserts at the appropriate concentrations, and neural precursor cell condi-

tioned medium was plated in the bottom chambers. The rest of the procedure was performed as described above.
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Biochemical assays
For protein denaturation, medium samples were boiled for 7 min at 100�C. For RNA and DNA degradation, medium samples were

treated with RNase and/or DNase at 2 mg/mL for one hour. For size fractionation, medium samples were spun in 30 kDa Amicon ul-

tracentrifugal filters (Millipore, Bedford, MA), and volumes were normalized by addition of fresh unconditioned NPC medium. All ex-

periments were performed in triplicate.

Two-dimensional gel electrophoresis
Two-dimensional gel electrophoresis (2-D DIGE) and the subsequent protein identification processes were performed by Applied

Biomics, Inc (Hayward, CA), as previously described (Venkatesh et al., 2015). The procedure is summarized in brief below.

Sample preparation and CyDye labeling

Protein sample buffer was exchanged into 2-D cell lysis buffer (30 nM Tris-HCl, pH 8.8, containing 7 M urea, 2 M thiourea, and 4%

CHAPS), and protein concentration was measured by the Bio-Rad protein assay method (Hercules, CA). Proteins were labeled with

CyDye, and the labeled samples were mixed together. The 2x 2-D sample buffer (8 M urea, 4% CHAPS, 20 mg/mL DTT, 2%

pharmalytes, and trace amount of bromophenol blue), 100 mL destreak solution and rehydration buffer (7 M urea, 2 M thiourea,

4% CHAPS, 20 mg/mL DTT, 1% pharmalytes, and trace amount of bromophenol blue) were added to the labeling mix.

IEF and SDS-PAGE

After loading the labeled samples, IEF (pH 3-10) was run according to the GE Healthcare protocol. The IPG strips were incubated in

fresh equilibration buffer-1 (50 mM Tris-HCl, pH 8.8, containing 6M urea, 30% glycerol, 2% SDS, trace amount of bromophenol blue

and 10mg/mL DTT), and subsequently rinsed in fresh equilibration buffer-2 (50 mM Tris-HCl, pH 8.8, containing 6 M urea, 30% glyc-

erol, 2% SDS, trace amount of bromophenol blue, and 45 mg/mL lodoacetamide) and SDS-gel running buffer. The strips were trans-

ferred into 12% SDS-gels, which were run at 15�C until the dye front ran out of the gels.

Image Scan and Analysis

Immediately after SDS-PAGE, gel images were scanned using Typhoon TRIO (GE Healthcare, Waukesha, WI). The images were

analyzed by Image Quant software (version 6.0, GE Healthcare, Waukesha, WI), and quantitation analysis was done with DeCyder

software (version 6.5, GE Healthcare, Waukesha, WI). In-gel DeCyder analysis was used to obtain the fold change of protein expres-

sion levels.

Protein identification by mass spectrometry
Spot picking and trypsin digestion

Based on the in-gel analysis and spot picking design by DeCyder software, spots of interest were picked up by Ettan Spot Picker

(Amersham BioSciences, Piscataway, NJ). The gel spots were washed and digested with modified porcine trypsin protease (Trypsin

Gold, Promega, Madison, WI). The digested tryptic peptides were desalted using Zip-tip C18 (Millipore, Bedford, MA), and

the peptides were eluted using matrix solution (a-cyano-4-hydroxycinnamic acid 5 mg/mL in 50% acetonitrile, 0.1% trifluoroacetic

acid, 25 mM ammonium bicarbonate) and spotted on the AB SCIEX MALDI plate (Opti-TOF 384 Well Insert, AB SCIEX, Framing-

ham, MA).

Mass spectrometry

MALDI-TOFMS and TOF/TOF tandemMS/MS were performed using an AB SCIEX TOF/TOF 5800 System (AB SCIEX, Framingham,

MA). In reflectron positive ion mode, MALDI-TOFmass spectra were acquired, with an average of 4000 laser shots per spectrum. For

each sample, TOF/TOF tandem MS fragmentation spectra were acquired, with an average of 4000 laser shots per fragmentation

spectrum on each of the 10 most abundant ions in each sample (excluding known background ions such as trypsin autolytic

peptides).

Database search

The resulting peptide mass and associated fragmentation spectra were submitted to search the Swiss-Prot database via a GPS

Explorer workstation equipped with MASCOT search engine (Matrix Science, Boston, MA). Searches were performed with no con-

straining protein molecular weight or isoelectric point, with variable oxidation of methionine and carbamidomethylation of cysteine

residues, and with one missed cleavage allowed. Candidates with either ion C.I.% or protein score C.I.% greater than 95 were

considered significant.

Recombinant proteins used
BCAN, PTN, SPARC, SPARCL1 (R&D Systems, Minneapolis, MN), GRP78 (Abcam, Cambridge, MA), HSP90B (Sigma-Aldrich,

St. Louis, MO), IGFBP2, and IGFBP4 (PeproTech, Rocky Hill, NJ).

Size exclusion chromatography
Human SVZ neural precursor cell conditioned medium was concentrated to 5 mg/mL using 3 kDa Amicon ultracentrifugal filters

(Millipore, Bedford, MA), and subsequently centrifuged at 21,000 x g for 10 min. Prior to running the sample, the column was cali-

brated with size standards using the Gel Filtration High Molecular Weight Calibration Kit (GE Healthcare, Waukesha, WI) to ensure

proper calibration. 500 mL of conditioned medium was fractionated on a Superose 6 10/300 GL column (GE Healthcare, Waukesha,

WI) via elution with 1.5 column volumes of gel filtration buffer (25 mM HEPES [pH 7.5], 150 mM NaCl, 1 mM DTT) at a flow rate of
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0.25 mL/min and collecting 250 mL fractions. Each fraction was then analyzed by immunoblotting. The approximate molecular

weights of the eluted proteins were determined by comparing with proteins of known molecular weight (Gel Filtration Calibration

Kit; GE Healthcare, Waukesha, WI).

Immunoprecipitation
Immunoprecipitation reactions were conducted using the Pierce Crosslink Magnetic IP/Co-IP Kit (Thermo Scientific, Waltham, MA).

25 mL of Pierce Protein A/G Magnetic Beads per reaction were rinsed and incubated with 5 mg of antibody on a rotating platform for

15 min at room temperature. Antibodies used were: mouse anti-pleiotrophin (Santa Cruz Biotechnology, Santa Cruz, CA), rabbit

anti-SPARC (Santa Cruz Biotechnology, Santa Cruz, CA), mouse anti-SPARCL1 (Santa Cruz Biotechnology, Santa Cruz, CA), rabbit

anti-HSP90B (GeneTex, Irvine, CA), rabbit normal IgG (Santa Cruz Biotechnology, Santa Cruz, CA), and mouse normal IgG (Santa

Cruz Biotechnology, Santa Cruz, CA). Beads were rinsed, and subsequently crosslinked to the antibodies using 0.02 mM DSS for

30min at room temperature. Beadswerewashed and then incubatedwith amixed combination of 250 mL neural precursor cell condi-

tioned medium and 250 mL IP lysis/wash buffer overnight at 4�C. The following morning, beads were washed, resuspended in

Laemmli loading buffer, and boiled at 100�C for 5 min to release the bound antigens from the beads. Samples were loaded imme-

diately onto western blots for analysis of the bound antigens, or stored at�20�C for future analysis. For western blot analysis, 2% of

the input conditioned medium was loaded, and 5% of the IP bound antigen samples were loaded.

For immunodepletion reactions, 100 mL of beads and 20 mg of antibody were used per reaction. Beads were incubated overnight

with pure conditionedmedium, and subsequently, the beads aswell as the unbound sample (the depleted conditionedmedium) were

collected. The depleted conditionedmediumwas used immediately in theMatrigel invasion assay, with an aliquot set aside for confir-

mation of depletion by western blot. The rest of the procedure was performed as described above.

Western blot analysis
Conditioned medium samples were mixed with Laemmli loading buffer (1:4) and boiled for 5 min at 100�C. Cells or tissue samples

were lysed in RIPA buffer and protease inhibitors, incubated on ice for 30min, and centrifuged for 15min at 15,000 rpmat 4�C. Protein
concentration in the lysates was determined using the BCA protein assay (Thermo Scientific, Waltham, MA). The protein concentra-

tion of the samples was normalized, and samples were mixed with Laemmli loading buffer (1:4) and boiled for 5 min at 100�C.
Samples were run on Bio-Rad Mini-Protean TGX precast gels (Bio-Rad, Hercules, CA), and the protein was transferred onto

polyvinylidene fluoride (PVDF) membranes. Membranes were blocked with 5% bovine serum albumin (BSA) in TBST for 1 hr, and

incubated in primary antibodies diluted in 1% BSA/TBST overnight at 4�C. Primary antibodies used were: mouse anti-pleiotrophin

(1:100; Santa Cruz Biotechnology, Santa Cruz, CA), goat anti-SPARC (1:100; R&D Systems, Minneapolis, MN), goat anti-SPARCL1

(1:000; R&D Systems, Minneapolis, MN), rabbit anti-HSP90B (GeneTex, Irvine, CA), rabbit anti-GRP78 (1:500, Abcam, Cambridge,

MA), rabbit anti-PTPRZ (1:2000; Thermo Fisher, Waltham, MA), and rabbit beta-actin (1:2000; Cell Signaling, Danvers, MA). Second-

ary antibodies conjugated to horseradish peroxidase (HRP) were added for 1 hr at room temperature (1:1000). Secondary antibodies

used were: goat anti-rabbit IgG-HRP (Cell Signaling, Danvers, MA), horse anti-mouse IgG-HRP (Cell Signaling, Danvers, MA), and

donkey anti-goat IgG-HRP (Santa Cruz Biotechnology, Santa Cruz, CA). Proteins were visualized using Clarity Western ECL Sub-

strate (Bio-Rad, Hercules, CA).

Dissection of mouse SVZ and cortex
The SVZ and cortex weremicrodissected from P42WTBl6/CD1mice for RNA and protein analyses. The SVZwasmicrodissected as

described in Walker and Kempermann (2014), and a piece of lateral cortex was taken far from the SVZ. Tissue samples were imme-

diately homogenized in TRIzol Reagent for RNA extraction or in RIPA buffer for protein extraction.

qPCR
Cells or tissue were lysed and homogenized in TRIzol Reagent (Life Technologies, Carlsbad, CA) and RNA was extracted according

to reagent protocol. RNA was treated with dsDNase, and cDNA was synthesized using Thermo Scientific Maxima First Strand cDNA

Synthesis Kit for RT-qPCR with dsDNase (Thermo Fisher Scientific K1671). RT-PCR was performed on Eppendorf Mastercycler

Realplex2 using Universal SYBR Green Supermix (BioRad, Hercules, CA). Differential expression was determined using the deltaCt

method. Primers used were as follows:

Mouse Ptn forward: 50 CTCTGCACAATGCTGACTGTC 30; mouse Ptn reverse 50 CTTTGACTCCGCTTGAGGCTT 30; mouse

Actb forward: 50 GGCTGTATTCCCCTCCATCG 30; mouse Actb reverse: 50 CCAGTTGGTAACAATGCCATGT 30; human PTPRZ1

forward: 50 GCTTTGATGCGGACCGATTTT 30; human PTPRZ1 reverse: 50 ACGACTAACACTTTCGACTCCA 30; human ACTB

forward: 50 CATGTACGTTGCTATCCAGGC 30; human ACTB reverse: 50 CTCCTTAATGTCACGCACGAT 30.

shRNA-expressing lentivirus preparation and infection
shRNA constructs against human and mouse PTN, human SPARC, human SPARCL1, human and mouse HSP90B1, and human

PTPRZ1 from the RNAi consortium human collection were purchased from Sigma (St. Louis, MO). Scrambled shRNA was a gift
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from David Sabatini (Addgene plasmid #1864). 293T cells were co-transfected with the shRNA constructs and packaging plasmids

(pDelta 8.92 + VSV-G) to generate lentiviral particles. Lentiviral particles were concentrated using the polyethylene glycol (PEG) pre-

cipitation method, resuspended in PBS, and stored at �80�C.
For lentiviral infection, DIPG cells or neural precursor cells were exposed to shRNA-expressing lentivirus for 48 hr. Puromycin was

added 48 hr after infection to select for virally infected cells. After removal of puromycin, shRNA-treated neural precursor cells were

grown for 7 days (with addition of medium on day 3-4) for generation of conditioned medium. After removal of puromycin, shRNA-

treated DIPG cells were grown for at least one passage before experimental use. shRNA construct sequences were as follows:

Human PTN shRNA: 50 CCGGAGGCAAGAAACAGGAGAAGATCTCGAGATCTTCTCCTGTTTCTTGCCTTTTTT 30; Mouse Ptn shRNA:

50 CCGGGCACAATGCTGACTGTCAGAACTCGAGTTCTGACAGTCAGCATTGTGCTTTTTG 30; Human SPARC shRNA: 50 CCGGCC

AGGTGGAAGTAGGAGAATTCTCGAGAATTCTCCTACTTCCACCTGGTTTTT 30; Human SPARCL1 shRNA: 50 CCGGATACCCAAT

CTGATGATATTTCTCGAGAAATATCATCAGATTGGGTATTTTTT 30; Human HSP90B1 shRNA: 50 CCGGCCTGTGGATGAATACTG

TATTCTCGAGAATACAGTATTCATCCACAGGTTTTT 30; Mouse Hsp90b1 shRNA: 50 CCGGGCTATTCAGTTGGATGGGTTACTCG

AGTAACCCATCCAACTGAATAGCTTTTTG 30; Human PTPRZ1 shRNA: 50 CCGGATACCTAAGTCTTCGTTAATACTCGAGTATTAAC

GAAGACTTAGGTATTTTTT 30; Scrambled shRNA: 50 CCTAAGGTTAAGTCGCCCTCGCTCGAGCGAGGGCGACTTAACCTTAGG 30.

RhoA and ROCK activation assays
SU-DIPG-XIII frontal lobe cells were starved in TSM base (without B27 (-A) supplement, heparin, or growth factors) for 48 hr prior to

treatment. After treatment, cells were lysed in the RhoA activation assay kit cell lysis buffer (Cytoskeleton, Denver, CO). Lysates were

incubated on ice for 1 min, clarified by centrifugation at 10,000 x g, 4�C for 1 min, and the supernatants were snap-frozen and stored

immediately at�80�C. Protein concentrations weremeasured by the BCA protein assay (Thermo Scientific, Waltham,MA), and sam-

ples were diluted to 0.5 mg/mL by the addition of cell lysis buffer.

RhoA activation assays were performed using the G-LISA RhoA absorbance-based activation assay (Cytoskeleton, Denver, CO).

Lysate samples were incubated in a 96-well plate with pre-linked Rho GTP-binding protein for 30 min at 4�C shaking at 400 rpm.

Wells were incubated in anti-RhoA primary antibody (1:250) at room temperature for 45 min shaking at 400 rpm. Secondary HRP-

labeled antibody (1:62.5) was added at room temperature for 45 min shaking at 400 rpm. Results were visualized by addition of

HRP detection reagents for 12 min at 37�C, and the absorbance was read at 490 nm. All assays were performed in triplicate.

ROCK activation assays were performed using the Rho-associated kinase (ROCK) activity assay (Millipore, Bedford, MA). Cell

lysates were incubated in wells of a myosin phosphatase target subunit 1 (MYPT1) pre-coated 96-well plate, for 30 min at 30�C
with moderate shaking. Wells were incubated in anti-phospho-MYPT1(Thr696) primary antibody (1:1000) for 1 hr with moderate

shaking. Goat anti-rabbit IgG HRP secondary antibody (1:2000) was added for 1 hr with moderate shaking. Results were visualized

with TMB/E substrate, incubating in the dark for 10min, and absorbance was read at 450 nm. All assays were performed in triplicate.

Pharmacologic inhibition
DIPG cells were treated with a dose curve of GSK 429286 (Tocris, Bristol, United Kingdom), GSK 269962A (a kind gift from Craig

Thomas, National Center for Advancing Translational Sciences), or 17-AAG (SelleckChem, Houston, TX). All experiments using phar-

macologic inhibitors used vehicle DMSO as a control.

Whole exome sequencing
Samples underwent sequencing on an Illumina HiSeq 2500 using Agilent’s v6 SureSelect whole exome capture set. Short read se-

quences from whole exome or whole genome sequencing were aligned to the hg19 assembly of the human genome using bwa.

Following duplicate removal with Picard tools variants were called using the Genome Analysis toolkit according to standard Best

Practices (Broad) including local re-alignment around Indels, downsampling and variant calling with the Unified Genotyper. Variants

were annotated with the variant Effect predictor v74 from Ensembl tools and ANNOVAR to include annotations for variant allele fre-

quency in 1000 genomes dbSNP v 132 and the ExAc database as well as functional annotation tools SIFT and PolyPhen.

Coverage of aligned reads was binned into known exons with BEDTools and log2 ratios of median coverage in tumor and normal

sequences were processed with in-house scripts. CBS binary segmentation was applied to each dataset to provide smoothed log2
ratios. Genes within common CNVs in normal individuals were excluded from further analysis with reference to the CNV map of the

human genome. Exon-level median log ratios and smoothed values were thresholded to call gains and losses above and below log2
ratios of ± 0.3 with a contig of �1MB and amplifications and deletions above and below a threshold of ± 1.5 with a minimum of 3

contiguous exons.

The accession number for whole exome sequencing data deposited in The European Genome-phenome Archive (EGA) database

is EGA: EGAS00001002326.

RNA sequencing
RNA sequencing was performed as previously described (Nagaraja et al., 2017). Cells were lysed in TRIzol Reagent (Life Technolo-

gies, Carlsbad, CA) and RNA was extracted according to reagent protocol. 2 mg of total RNA was used for poly(A)+ purification using

Dynabeads mRNA Purification Kit (Thermo Fisher Scientific 61006). mRNA was fragmented using RNA Fragmentation Reagent

(Ambion AM8740) and purified using ethanol precipitation. First strand synthesis was performed with SuperScript II (Invitrogen
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18064-014) followed by second strand synthesis using DNA Polymerase I (Invitrogen 18010-025) and RNaseH (Invitrogen 18021-

014). cDNA was purified using MinElute PCR Purification Kit (QIAGEN 28606).

Purified cDNA was end-repaired using T4 polymerase, Klenow fragment, and T4 PNK and then A-tailed using (exo-) Klenow.

NEBNext Multiplex Oligo adaptors (New England BioLabs, E7335S) were ligated using Quick Ligation Kit (New England Biolabs,

M2200L) overnight at RT. Adaptors were cut using USER Enzyme and adaptor-ligated libraries were purified by agarose gel electro-

phoresis. Libraries were amplified using NEBNext Multiplex Oligo primers and final libraries were purified using Ampure XP beads.

Sequencing was performed on an Illumina NextSeq by Stanford Functional Genomics Facility.

Reads were aligned to the hg19 genome using tophat2 (Kim et al., 2013). Transcript abundance was calculated using

featureCounts against a RefSeq gene annotation (Liao et al., 2014). Differential testing was done using DESeq2 with default me-

dian normalization (Love et al., 2014). Gene Ontology on upregulated genes was performed using Gene Ontology Consortium

(Ashburner et al., 2000). Volcano plot was made in R.

RNA sequencing data are deposited in the GEO database. Accession number GEO: GSE99812.

CellTiter-Glo assay
To assess cell viability, 5,000 DIPG cells per well were seeded in base medium or conditioned medium in a 96-well plate. Inhibitors

were added at the appropriate concentrations. After 72 hr, CellTiter-Glo reagent 2.0 (Promega,Madison,WI) was added at a 1:1 ratio,

and cells were lysed. Luminescence was measured after stabilization of signal for 10 min at room temperature.

QUANTIFICATION AND STATISTICAL ANALYSIS

Stereological cell counting
For quantification ofDIPG invasion of theSVZafter knockdownof targets in theSVZ, 5NSGmiceper groupwere injectedwith shRNA-

expressing lentivirus in bilateral SVZs and orthotopically xenografted with SU-DIPG-XIII FL in the left pons. Mice were perfused for

analysis 16weeks after xenograft. A 1:6 series of coronal slices fromeachmousebrainwas immunostained and imaged, and the num-

ber of GFP+ HNA+ glioma cells within 200 mm of the lateral ventricles in all slices containing lateral ventricles was manually counted.

For quantification of DIPG invasion of the SVZ in mice xenografted with PTPRZ1 knock down DIPG cells or scrambled shRNA con-

trol cells, or in mice treated with 17-AAG or vehicle control, 8 NSG mice per group were orthotopically xenografted in the left pons.

Mice were perfused for analysis 8 weeks after xenograft. A 1:6 series of coronal slices from each mouse brain was immunostained

and imaged, and the number of GFP+ HNA+ glioma cells within 200 mm of the left lateral ventricle in all slices containing lateral ven-

tricles was manually counted.

For quantification of neural precursor cells in the SVZ after knock down of targets in the SVZ, a 1:6 series of coronal slices from each

mouse was immunostained and imaged, and the number of Sox2+ neural precursor cells in a 20x z stack was manually counted. The

density of Sox2+ cells was calculated as cells/mm3.

Statistical analyses
All statistical analyseswere performed usingGraphPad Prism. The Shapiro-Wilk normality test was used to confirmGaussian distribu-

tion for parametric analyses. For parametric datasets, unpaired two-tailed Student’s t tests were used for comparisons between two

samples, and group mean differences between more than two samples were assessed using one-way analysis of variance (one-way

ANOVA) with Tukey or Dunnett post hoc tests to adjust for multiple comparisons. For nonparametric datasets, unpaired two-tailed

Mann-Whitney testswere used for comparisonbetween two samples. A level of p < 0.05was used to determine significant differences.

DATA AND SOFTWARE AVAILABILITY

Patient-derived cell cultures
All patient-derived glioma cell cultures can be obtained through the Monje Lab with a materials transfer agreement with Stanford

University. Contact Michelle Monje (mmonje@stanford.edu).

Sequencing data
The accession numbers for all DNA and RNA sequence data reported in this paper are EGA: EGAS00001002326 and GEO:

GSE99812.

Raw data and statistics
Raw data and statistics for all non-sequencing data are available through Mendeley Data: http://dx.doi.org/10.17632/pbbsb6nx5f.1.
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Supplemental Figures

Figure S1. Characterization of Pontine and SVZ DIPG Cells, Related to Figure 1
(A and B) Copy-number plots of whole exome sequencing of DIPG cells isolated from the pons (A) and from an SVZ site of spread (B) from the same individual (SU-

DIPG-XIII).

(legend continued on next page)



(C) Volcano plot of RNA sequencing comparing DIPG cells isolated from the pons and from an SVZ site of spread from SU-DIPG-XIII. x axis represents log2(fold

change) of frontal lobe over pons; y axis shows -log10(Benjamini-Hochberg adjusted p value) from differential testing. Points in red represent those with adjusted

p values less than 0.1.

(D) GO biological processes significantly overexpressed in the frontal lobe compared to the pontine culture of SU-DIPG-XIII. p values shown are Bonferroni

adjusted.

(E–H) H&E of tumor in the lateral wall of the lateral ventricle SVZ in SU-DIPG-XVII (E), SU-DIPG-III (F), and SU-DIPG-VI (G and H). Low-magnification images are

shown in the left panels: scale bar, 1 mm. High-magnification images are shown in the right panels: scale bar, 50 mm.

(I) Pontine DIPG cells are found primarily in the hindbrain in orthotopic xenografts by bioluminescent IVIS imaging, compared to SVZDIPG cells, which are found in

the forebrain and hindbrain.



Figure S2. mNPC CM Has No Effect on DIPG Cell Proliferation or Viability, Related to Figure 2

(A) Cell proliferation of DIPG cells (fraction of Ki67+ cells) when exposed to unconditioned or conditioned mNPC medium.

(B) Cell viability of DIPG cells by the CellTiter-Glo assay when exposed to unconditioned or conditioned mNPC medium.

(C) DIPG cells invade less toward murine neuron conditioned medium compared to SVZ mNPC CM.

All experiments performed with n = 3 replicates/wells (A, C) or n = 4 replicates/wells (B) in SU-DIPG-XIII FL cells and analyzed by one-way ANOVAwith Tukey post

hoc adjustment for multiple comparisons. Data shown as mean ± SEM. ***p < 0.001.



Figure S3. Invasion of DIPG Cells toward Candidate Recombinant Proteins, Related to Figure 4

(A) DIPG cells invade differentially toward various combinations of the eight candidate recombinant proteins. The combination of PTN, SPARC, SPARCL1, and

HSP90B most closely replicates the invasion-promoting effect toward SVZ hNPC CM.

(B) Estimation of the concentration of PTN, SPARC, SPARCL1, and HSP90B in SVZ hNPC CM by western blot and ImageJ analyses. Vertical lines demarcate

separate gels placed side-by-side in image in top and bottom rows, middle two rows each represent a single gel.

(C) The combination of PTN, SPARC, SPARCL1, and HSP90B is sufficient for DIPG invasion at 100nM as well as with each factor at its estimated concentration in

the conditioned medium.

(D) CHL-1 melanoma cells invade similarly toward unconditioned hNPCmedium, SVZ hNPC CM, and the combination of PTN, SPARC, SPARCL1, and HSP90B.

Experiments performed with n = 3 replicates/wells in SU-DIPG-XIII FL cells (A, C) or in CHL-1 melanoma cells (D) and analyzed by one-way ANOVA with Tukey

post hoc adjustment for multiple comparisons. Data shown as mean ± SEM. *p < 0.05, **p < 0.01.



Figure S4. Expression of PTN and Its Binding Partners, Related to Figure 5

(A) Expression of PTN, SPARC, SPARCL1, and HSP90B in the forebrain at the level of the lateral ventricles in postnatal mice ages P0, 2, 5, 10, 14, and 21. PTN is

more broadly expressed in the forebrain in P0-P5 mice, and becomes more restricted to the SVZ by P10. PTN is also expressed in the pia mater. SPARC,

SPARCL1, and HSP90B are more broadly expressed in the brain.



Figure S5. Necessity of PTN or PTPRZ, Related to Figure 6

(A) DIPG cells invade less toward SVZ hNPC CM after immunodepletion of any one of the four proteins, with or without add back of the other three proteins.

Depletion of target proteins was confirmed by western blot (see Figure 6A). n = 3 replicates/wells in SU-DIPG-XIII FL cells and analyzed by one-way ANOVA with

Tukey post hoc adjustment for multiple comparisons.

(legend continued on next page)



(B) Tumor engraftment was equivalent in mice that received injections of shRNA lentivirus targeting Ptn into the SVZ, compared to a scrambled shRNA control.

In vivo experiments were performed with n = 5 mice per group. Bioluminescent flux measurements were analyzed by unpaired, two-tailed Mann-Whitney test.

Each data point = one mouse.

(C) Gene expression of the PTN receptor PTPRZ1 in DIPG primary tissue and cultures from published RNA-seq datasets and the present RNA-seq data from SU-

DIPG-XIII (Grasso et al., 2015; Nagaraja et al., 2017). RNA-seq of the primary tissue was performed with one replicate. RNA-seq of the cell cultures were per-

formed with two replicates.

(D) Exposure of DIPG cells to shRNA lentivirus targeting PTPRZ1 achieved effective knock down of PTPRZ1 gene expression as measured by qPCR, and of

PTPRZ protein levels as measured by western blot, compared to a scrambled shRNA control or no shRNA exposure. qPCR experiments performed with n = 3

wells of cells and analyzed by one-way ANOVA with Tukey post hoc adjustment for multiple comparisons.

(E) Knock down of the PTN receptorPTPRZ1 in SU-DIPG-XIII FL cells resulted in a decrease in baseline DIPG invasion toward unconditioned hNPCmedium. n = 3

replicates/wells in SU-DIPG-XIII FL cells expressing PTPRZ1 or scrambled shRNA and analyzed by unpaired, two-tailed Student’s t test.

(F) DIPG cells with knock down of PTPRZ1 had amild decrease in cell viability by the CellTiter-Glo assay compared to a scrambled control or no shRNA exposure.

Cell viability was measured in base medium without growth factors. n = 4 replicates/wells in SU-DIPG-XIII FL cells expressing PTPRZ1, scrambled, or no shRNA

and analyzed by one-way ANOVA with Tukey post hoc adjustment for multiple comparisons.

(G) Knock down ofPTPRZ1 partially abrogates DIPG invasion toward SVZ hNPCCMor the PTN complex, compared to a scrambled control. n = 3 replicates/wells

in SU-DIPG-XIII FL cells expressing PTPRZ1 or scrambled shRNA and analyzed by unpaired, two-tailed Student’s t tests for comparison between PTPRZ1 knock

down cells or scrambled shRNA control cells.

(H and I) DIPG cells with knock down of PTPRZ1 exhibited 10-fold decreased total tumor size at two weeks following orthotopic xenografting, indicating

decreased engraftment (H), but similar xenograft growth over time compared to scrambled shRNA control cells (I).

(J) Fewer DIPG cells with knock down of PTPRZ1 invaded the SVZ when orthotopically xenografted into mice, compared to scrambled shRNA control cells.

In vivo experiments were performed with n = 8 mice per group. Bioluminescent flux measurements were analyzed by unpaired, two-tailed Mann-Whitney test for

engraftment (H) or unpaired, two-tailed Student’s t test for growth (I). Stereological cell counts at 8 weeks following xenograft were analyzed by unpaired, two-

tailed Mann-Whitney test (J). Each data point = one mouse.

Data shown as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.



Figure S6. Inhibition of HSP90 by Drug and shRNA Lentivirus, Related to Figure 6
(A) Treatment of DIPG cells with an HSP90 inhibitor, 17-AAG, resulted in decreased invasion toward SVZ hNPC CM at high doses.

(B) Cell viability of DIPG cells treated with increasing doses of 17-AAG, by the CellTiter-Glo assay.

(legend continued on next page)



In vitro experiments performed with n = 3 replicates/wells (A) or n = 4 replicates/wells (B) in SU-DIPG-XIII FL cells and analyzed by one-way ANOVA with Tukey

post hoc adjustment for multiple comparisons.

(C) Orthotopically xenografted mice that were treated with 17-AAG exhibited no difference in the number of DIPG cells invading the SVZ compared to a vehicle

treatment control. In vivo experiments were performed with n = 8 mice per group. Stereological cell counts at 8 weeks following xenograft were analyzed by

unpaired, two-tailed Student’s t test. Each data point = one mouse.

(D) Tumor engraftment was equivalent in mice that received injections of shRNA lentivirus targeting Hsp90b1 into the SVZ, compared to a scrambled shRNA

control.

(E and G) Fewer orthotopically xenografted GFP+ HNA+ SU-DIPG-XIII FL cells invaded the SVZ, defined as a 200 mm-wide region adjacent to the lateral ventricles

(outlined in dashed white lines), when sh-Hsp90b1 lentivirus (right), compared to a scrambled shRNA control (left), was injected into the SVZ. White filled ar-

rowheads denote areas of strong HSP90B expression in the SVZ (left); open arrowheads denote similar regions with low HSP90B expression after knock down

(right). Scale bar, 200 mm. Control data are from the same mice as in Figures 6C–6F; these knock down experiments were run in parallel with a common control.

(F and H) The density of Sox2+ NPCs in the SVZ was equivalent in mice injected with lentivirus expressing sh-Hsp90b1 (right) or scrambled shRNA control (left).

Scale bar, 50 mm. Control data are from the same mice as in Figures 6C–6F; these knock down experiments were run in parallel with a common control.

In vivo experiments (D–H) were performed with n = 5 mice per group. Bioluminescent flux measurements were analyzed by unpaired, two-tailed Mann-Whitney

test (D). Stereological cell counts at 16 weeks following xenograft were analyzed by unpaired, two-tailed Student’s t test. Each data point = one mouse (G and H).

Data shown as mean ± SEM. **p < 0.01, ***p < 0.001.



Figure S7. Rho/ROCK Activation and ROCK Inhibition in DIPG Cells, Related to Figure 7
(A) shRNA-mediated knock down of PTPRZ1 in DIPG cells resulted in decreased activation of RhoA and ROCK upon exposure of DIPG cells to SVZ hNPC CM or

to the PTN complex, compared to a scrambled shRNA control. n = 3 replicates/wells in SU-DIPG-XIII FL cells expressing PTPRZ1 or scrambled shRNA and

analyzed by unpaired, two-tailed Student’s t tests for comparison between PTPRZ1 knock down cells or scrambled shRNA control cells.

(B and C) Treatment of DIPG cells with two ROCK inhibitors: GSK 429286 (B) or GSK 269962A (C) do not affect cell viability at sub-mM concentrations. All

experiments performed with n = 4 replicates/wells in SU-DIPG-XIII FL cells and analyzed by one-way ANOVA with Tukey post hoc adjustment for multiple

comparisons.

Data shown as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.
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