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Abstract  

Although PARP inhibitors target BRCA1 or BRCA2 mutant tumour cells, drug 

resistance is a problem. PARP inhibitor resistance is sometimes associated 

with the presence of secondary or “revertant” mutations in BRCA1 or BRCA2. 

Whether secondary mutant tumour cells are selected for in a Darwinian 

fashion by treatment is unclear. Furthermore, how PARP inhibitor resistance 

might be therapeutically targeted is also poorly understood. Using CRISPR-

mutagenesis, we generated isogenic tumour cell models with secondary 

BRCA1 or BRCA2 mutations. Using these in heterogeneous in vitro culture or 

in vivo xenograft experiments where the clonal composition of tumour cell 

populations in response to therapy was monitored, we established that PARP 

inhibitor or platinum salt exposure selects for secondary mutant clones in a 

Darwinian fashion, with the periodicity of PARP inhibitor administration and 

the pre-treatment frequency of secondary mutant tumour cells influencing the 

eventual clonal composition of the tumour cell population. In xenograft studies 

the presence of secondary mutant cells in tumours impaired the therapeutic 

effect of a clinical PARP inhibitor. However, we found that both PARP inhibitor 

sensitive and PARP inhibitor resistant BRCA2 mutant tumour cells were 

sensitive to AZD-1775, a WEE1 kinase inhibitor. In mice carrying 

heterogeneous tumours, AZD-1775 delivered a greater therapeutic benefit 

than olaparib treatment. This suggests that despite the restoration of some 

BRCA1 or BRCA2 gene function in “revertant” tumour cells, vulnerabilities still 

exist that could be therapeutically exploited.  
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Introduction  

Heterozygous germ-line mutations in the BRCA1 or BRCA2 tumour 

suppressor genes strongly predispose to cancers of the breast, ovary, 

pancreas, and prostate (1,2). BRCA1 and BRCA2 are involved in homologous 

recombination (HR), a process used to repair DNA double-strand breaks 

(DSBs), and other DNA lesions that impair replication forks (3-6).  Extensive 

preclinical and clinical data has established that loss of BRCA1 or BRCA2 

function is associated with sensitivity to small molecule PARP inhibitors (7). 

Recently, the PARP inhibitor (PARPi) Lynparza (olaparib/AZD2281 – 

KuDOS/AstraZeneca) was approved for the treatment of platinum-responsive, 

BRCA1 or BRCA2 mutant high-grade serous ovarian carcinomas (HGSOC) 

(8). 

 

Despite a number of profound and sustained anti-tumour responses in 

patients treated with PARP inhibitors, drug resistance limits the overall 

effectiveness of these agents (9-12). A number of mechanisms of PARP 

inhibitor resistance have been identified, including upregulation of PgP drug 

transporters, loss of 53BP1 or REV7 function, or secondary “revertant” 

mutations within the BRCA1 or BRCA2 genes themselves (13,14). These 

secondary BRCA gene mutations restore BRCA1 or -2 open reading frames 

and encode proteins that have partial function (13-16). In some BRCA2 

mutant patients, initial clinical responses to PARPi are seen, followed by the 

emergence of profoundly PARPi resistant lesions (13). The gradual 

emergence of PARPi resistance during treatment has led to the hypothesis 

that PARPi treatment might provide a Darwinian selective pressure effect, 
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where a secondary mutant clone has a selective advantage over non-

secondary mutant tumour clones, once PARPi treatment is applied (7,17). 

Although this hypothesis has not as yet been tested, if such a Darwinian 

process did exist, a secondary mutant clone might be expected to gradually 

dominate a tumour cell population over the course of PARPi therapy. To date, 

only one approach for targeting tumour cell clones with secondary BRCA1/2 

mutations has been proposed, namely the use of thiopurines (18). The wide 

application of thiopurines in the treatment of cancer has been limited by safety 

concerns (18), suggesting that additional therapeutic approaches for targeting 

secondary BRCA1/2 mutant tumour cells might also be required.  

 

We set out to assess, both in vitro and in vivo, whether tumour cells with 

secondary BRCA1 or -2 gene mutations are selected for by PARPi treatment 

in a Darwinian fashion. To do this, we used CRISPR-Cas9 mediated gene 

targeting in BRCA1 or BRCA2 mutant tumour cells to generate daughter 

clones with secondary mutations. By mixing these secondary mutant clones 

with parental tumour cells in in vitro co-cultures or in vivo tumour xenografts, 

we established that PARPi treatment can select for secondary mutant clones 

in a Darwinian fashion. Using these same systems, we also found that 

exposure to a clinical WEE1 kinase inhibitor (AZD-1775) minimized the 

selection of secondary mutant tumour cells, targeting parental and secondary 

mutant cells to a similar extent, whilst having minimal effects on non-tumour 

cells.  
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Materials and Methods 

 

Cell lines 

CAPAN1 and SUM149 cells were obtained from American Type Tissue 

Collection. DLD1-BRCA2WT/WT and DLD1-BRCA2–/– cells were purchased 

from Horizon Discovery Inc. All cells were cultured according to the supplier’s 

instructions. All cells were STR typed to confirm identity and verified to be 

mycoplasma-free prior to the study.  

 

Small molecule inhibitors 

Olaparib, talazoparib, and AZD-1775 were obtained from Selleck Chemicals. 

Inhibitor stock solutions were prepared in DMSO and stored in aliquots at 

minus 20°C. Inhibitors were added to cell cultures so that final DMSO 

concentrations were constant at 1% (v/v). 

 

CRISPR-generated PARPi-resistant secondary mutant cell lines 

CAPAN1.B2.S* and SUM149.B1.S* were generated from CAPAN1 and 

SUM149 parental tumour cell lines. Parental lines were transiently transfected 

with 5 g of gRNA (described below) and 5 g of a Cas9 pMA-T expression 

vector (GE Healthcare) using Lipofectamine 2000 (Invitrogen) according to 

the manufacturer’s instructions. Twenty-four hours later, cells were re-plated 

into 15 cm dishes at 2000 cells/dish and exposed to 100 nM talazoparib for 

two weeks after which clones were cultured in talazoparib free media until 

visible. Clones were manually isolated, and re-plated into 96-well plates for 

expansion. DNA from clones was isolated using DNeasy Blood and Tissue Kit 
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(Qiagen) and PCR amplified using BRCA1 or BRCA2 primers described 

below. PCR products were subcloned using TOPO TA Cloning Kit, with 

pCR2.1-TOPO (Invitrogen). Sanger sequencing confirmed secondary BRCA1 

or BRCA2 mutations from 20 subcloned E.coli colony sequences per cell line. 

 

gRNA (in pMA-T vector): BRCA2, 5-GAGCAAGGGAAAATCTGTCC-3 and 

BRCA1, 5-CCAAAGATCTCATGTTAAG-3. The BRCA2 gRNA contains the 

c.6174delT mutation specific to the CAPAN1 cell line.  

 

Primers for PCR amplification were: BRCA1, 5-

TGCTTTCAAAACGAAAGCTG-3, 5-ACCCAGAGTGGGCAGAGAA-3; 

BRCA2, 5-CTGTCAGTTCATCATCTTCC-3, 5-

ATGCAGCCATTAAATTGTCC-3. 

 

 
Confocal microscopy 

Cells on glass coverslips were exposed to 5 Gy IR using an X-ray machine 

and then fixed and stained 5 hours later as described previously (19). Nuclei 

were stained using DAPI diluted in PBS (1:10,000 v/v), RAD51 using the 

Abcam (ab137323) antibody and H2Ax using the Millipore (05-636) antibody. 

At least 100 cells were assessed per coverslip. Cells scoring positive had > 5 

foci per nucleus. 

 

Immunoprecipitation (IP) and Western Blotting 
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IP and western blotting were performed as described previously (15,20). 

Antibodies targeting phospho-CDC(Y15) (#4539), PARP1 (#9542), -H2AX 

(#9718) (all Cell Signalling Technology), and tubulin (#T6074, Sigma) were 

employed in western blots.  

 

Cell-based Assays 

Short-term drug exposure and clonogenic assays were performed as 

described previously (21). In brief, cells were seeded either into 384-well or 6-

well plates at a concentration of 500 to 2,000 cells per well. After 24 hours, 

cells were exposed to olaparib, talazoparib, or AZD-1775. For short-term drug 

exposure, cell viability was assessed after five days of drug exposure using 

CellTiter-Glo Luminescent Cell Viability Assay (Promega) as per the 

manufacturer's instructions. For clonogenic assays, drug was replenished 

every three days for up to 14 days, at which point colonies were fixed with 

TCA and stained with sulforhodamine B. Colonies were counted and surviving 

fractions calculated by normalizing colony counts to colony numbers in 

vehicle-treated wells. Survival curves were plotted using a four-parameter 

logistic regression curve fit as described in (22). 

 

In vitro co-culture drug exposure assays  

Cells were plated in a fixed starting ratio of secondary mutant:parental cells in 

either 24 well or 6 well plates, or T75 flasks and exposed to either olaparib, 

talazoparib, or AZD-1775 for 14 or 21 days. In “constant drug exposure” 

experiments, media containing drug was replenished every three days. In 

“intermittent drug exposure” experiments, cells were exposed to media 
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containing drug for 24 hours after which, media was removed, cells were 

washed using PBS and then cells were re-cultured in media without drug for 

48 hours, at which point cells were “refed” with media containing drugs as 

before.  

 

DLD1 drug exposure assay 

DLD1-BRCA2WT-GFP and DLD1- BRCA2–/–-RFP cells were plated at one of 

the following ratios: 1:1, 1:10, 1:100, or 1:1000. Twenty-four hours later, cells 

were exposed to DMSO, olaparib, or talazoparib.  Aliquots of cell populations 

were analysed by flow cytometry, every 3-4 days, (LSR II, Beckman-Coulter) 

for GFP and RFP cell populations. Drug was replenished every three days. 

 

Droplet digital PCR (ddPCR) Assays 

Cells were pelleted and genomic DNA was extracted using the DNeasy Blood 

and Tissue Kit (Qiagen) following the manufacturer’s instructions. DNA 

concentration was measured using Qubit broad range detection kit 

(Invitrogen). Restriction digestion was performed with EcoRI (BD Biosciences) 

and final working dilutions were made at 5 g/uL per sample. DNA reaction 

mixtures were performed as described previously (23).  

Primers and probes were as follows: 

CAPAN1  

ddPCR PROBE: VIC-CTGGACAGATTTTC,  

FORWARD PRIMER: 5’- TCTCATCTGCAAATACTTGTGGGATT-3’ 

REVERSE PRIMER: 5’- TTGTCTTGCGTTTTGTAATGAAGCA-3’  
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CAPAN1.B2.S* 

ddPCR PROBE:  6FAM- CTGATACCTGATTTTC 

FORWARD PRIMER: 5’- TCTCATCTGCAAATACTTGTGGGATT -3’ 

REVERSE PRIMER: 5’- TTGTCTTGCGTTTTGTAATGAAGCA -3’ 

SUM149 

ddPCR PROBE: VIC- TTTGTCAACCTAGCCTTCCA 

FORWARD PRIMER: 5’- TGACAGCGATACTTTCCCAGA -3’ 

REVERSE PRIMER: 5’- GAGATCTTTGGGGTCTTCAGC -3’ 

SUM149.B1.S* 

ddPCR PROBE: 6FAM-ACCAGGTGCATTTGTTAACTTCA 

FORWARD PRIMER: 5’- TGACAGCGATACTTTCCCAGA -3’ 

REVERSE PRIMER: 5’- GCAAAACCCTTTCTCCACTTACT -3’ 

 

AZD-1775 sensitivity assessment 

One hundred forty-six cancer cell lines were profiled as described previously 

(21,24). In brief, cells were plated at a density of 250 or 500 cells per well. 

Twenty-four hours later, media containing WEE1 inhibitor was added to 

adherent cells. After five days of drug exposure, cell viability was measured 

using CellTitre-Glo (Promega). Luminescence data was log2 transformed and 

centered according to the plate median value. Surviving fractions were 

calculated relative to the DMSO-exposed control wells to generate AUC data.   

 

Xenograft experiments 

Female BALB/c nude mice aged 4-6 weeks and 15-22 g in weight (Charles 

River Laboratories) were inoculated subcutaneously with 5x106 tumour cells 
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into the right flank. When tumours reached 100 mm3, six animals from each 

cohort were sacrificed as sentinels to enable estimation of parental and 

secondary mutant tumour cell frequencies prior to treatment. Remaining 

animals were randomized into different treatment arms (n=6) as described in 

the main text. Mice were weighed once weekly; tumours were measured twice 

weekly. When tumours reached 1500 mm3, tumours were harvested and half 

of the tissue was formalin fixed, the other half was snap frozen in liquid 

nitrogen for DNA isolation.  

 

Cell cycle analysis 

 

Asynchronously growing CAPAN1 and CAPAN1.B2.S* cells were plated in 10 

cm dishes (5x105 cells/plate) and treated with 1 µM AZD-1775 or DMSO for 

72 hours. The cells were pulse labelled with 30 µM BrdU (Sigma, B5002) for 1 

hour prior to collection. Cells were harvested using trypsin, washed with PBS, 

fixed in cold 70% ethanol and stored at -20oC overnight. Samples were 

washed with 2 M NaCl/0.5% Triton X-100 and incubated for 30 minutes at 

room temperature. Cell pellets were resuspended in 0.1 M sodium tetraborate 

for 2 minutes and subsequent cell pellets were incubated at room temperature 

for 1 hour in anti-BrdU antibody (BD Biosciences, 347580) diluted in 0.5% 

TWEEN-20/1%BSA/PBS (1 µg antibody per 1 million cells). Sample pellets 

were washed in PBS/1% BSA. Cells were then incubated for 30 minutes at 

room temperature with goat anti-mouse IgG FITC antibody (Sigma, F0257) 

diluted in 0.5% TWEEN-20/1%BSA/PBS (1 µg antibody per 1 million cells). 

Cells were pelleted and resuspended in PBS containing 10 µg/ml RNaseA 
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(Sigma, R4642) and 20 µg/ml propidium iodide (Sigma, P-4170) and 

incubated at room temperature for 30 minutes. Cell cycle analysis was 

performed on a FACS LSR II and analysed using FlowJo software (FlowJo, 

USA). 

 

 

Results 
 

Generation of PARP inhibitor-resistant models harbouring secondary 

BRCA1 or BRCA2 mutations 

We used CRISPR-Cas9 mediated gene targeting to generate novel tumour 

cell models with secondary mutations in either BRCA1 or BRCA2 and then 

used these in in vitro and in vivo co-culture systems to assess the clonal 

evolution of tumour cell populations in response to therapy (Figure 1A). To 

generate these models we used two PARP inhibitor sensitive tumour cell 

lines, the pancreatic ductal adenocarcinoma tumour cell line, CAPAN1 

(BRCA2 mutation c.6174delT, p.S1982fs*22) (13,15,25), and the breast 

tumour cell line SUM149 (BRCA1 mutant c.2288delT, p.N723fsX13) (26). We 

designed specific CRISPR guide RNA (gRNA) expression constructs targeting 

PAM (protospacer adjacent motifs) sequences close to either the BRCA2 

c.6174delT mutation in CAPAN1 cells or the BRCA1 c.2288delT mutation in 

SUM149 cells, and transiently transfected these into cells, alongside a Cas9 

expression construct. We reasoned that the error-prone repair of DSBs in 

these BRCA-gene defective tumour cell lines would in some cells cause 

frameshift secondary mutations in either BRCA1 or BRCA2 that restored the 

open reading frame. In a CAPAN1-derived daughter cell clone, 
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CAPAN1.B2.S*, we identified a five base pair (bp) BRCA2 secondary 

mutation, c.[6174delT;6182del5], in addition to the parental c.6174delT 

mutation (c.6174delT : c.[6174delT;6182del5] allele ratio of 3:2) (Figure 1B, 

Table 1). The BRCA2 c.[6174delT;6182del5] secondary mutation in 

CAPAN1.B2.S* was predicted to restore the open reading frame of the gene 

and to encode a 3612 amino acid (aa) BRCA2 protein (Figure 1C), confirmed 

by western blotting (Supplementary Figure 1A). The secondary mutation in 

CAPAN1.B2.S* was associated with olaparib and also talazoparib resistance 

(Figure 1D and Supplementary Figure 1B, ANOVA p<0.0001) and the ability 

to form nuclear RAD51 foci in response to ionising radiation (Student’s t-test 

p<0.001, Figure 1E, 1F, Supplementary Figure 1C), a biomarker of functional 

DNA repair by BRCA2. The CAPAN1.B2.S* clone also exhibited a similar 

doubling time to the parental CAPAN1 clone, of 2.5 days (Supplementary 

Figure 1D). Using the same approach, we also identified other CAPAN1 

daughter clones with secondary mutations, including CAPAN1.B2.S*2, which 

had three different BRCA2 alleles (BRCA2 c.[6174delT;6185del5], BRCA2 

c.[6174delT;6183delG], and BRCA2 c.[6174delT;6184delTC]) and 

CAPAN1.B2.S*3, which also had three different BRCA2 alleles (BRCA2 

c.[6174delT;6183del6], BRCA2 c.[6174delT;6183del5], and BRCA2 

c.[6174delT;6185del3]) (Supplementary Table 1).              

 

Using a similar approach in SUM149 cells, we identified SUM149.B1.S*, a 

daughter clone which possessed a secondary mutation (an 80-bp BRCA1 

deletion, c.[2288delT;2293del80]), as well as the parental c.2288delT 

mutation (c.2288delT : c.[2288delT;2293del80] alleles in a 1:2 ratio) (Figure 
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1G, Table 1)). This secondary mutation was predicted to restore the open 

reading frame in the parental BRCA1 c.2288delT allele and to encode an 

1836 aa BRCA1 protein (Figure 1H, Supplementary Figure 2A). 

SUM149.B1.S* exhibited both olaparib and talazoparib resistance (Figure 1I, 

Supplementary Figure 2B, ANOVA p<0.0001), and restoration of RAD51 

nuclear localisation in response to DNA damage (Figure 1J, Supplementary 

Figure 2C, Supplementary Figure 2D, p<0.01, Student’s t test). SUM149 and 

SUM149.B1.S* cells exhibited similar proliferation rates (Supplementary 

Figure 2E). 

 

Darwinian selection of BRCA1- or BRCA2-proficient clones by PARPi 

treatment in vitro 

To assess whether a Darwinian selective process might operate in the case of 

PARPi resistance, we mixed parental and secondary mutant tumour cells in in 

vitro co-cultures (i.e. CAPAN1 parental with CAPAN1.B2.S* secondary mutant 

cells, or SUM149 with SUM149.B1.S* cells) and then exposed the co-cultures 

to two different BRCA-gene selective drugs, olaparib or the platinum salt 

cisplatin (Figure 2A). We then monitored the relative frequency of each clone 

in response to drug exposure using droplet digital PCR (ddPCR) (27). To do 

this, we used duplex PCR reactions that included fluorophore-labelled digital 

PCR probes that were complementary to either parental or secondary mutant 

alleles (Supplementary Table 2, see methods). In pilot experiments where we 

mixed CAPAN1 and CAPAN1B2.S* cells in 1:1, 1:10, 1:100 ratios, we were 

able to accurately detect these different ratios using the ddPCR assay 

(Supplementary Figure 3). Using this ddPCR approach, we assessed whether 
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olaparib or cisplatin exposure would preferentially select for the secondary 

mutant clones in either CAPAN1 plus CAPAN1B2.S* co-cultures or SUM149 

plus SUM149.B1.S* co-cultures. In these experiments we exposed co-

cultures to either: (i) DMSO (the drug vehicle), (ii) constant exposure to 

olaparib (drug replenished every three days), (iii) intermittent exposure to 

olaparib (where drug was applied for 24 hours then washed out and 

replenished with media not containing drug for 48 hours), (iv) constant 

exposure to cisplatin (drug replenished every three days), or (v) intermittent 

24 hour pulses of cisplatin (where drug was applied for 24 hours then washed 

out and replenished with media not containing drug for 48 hours)  (Figure 2A). 

As expected, in both CAPAN1 and SUM149 co-cultures, constant exposure to 

either olaparib or cisplatin caused a greater reduction in the total tumour cell 

population size than intermittent drug exposure (Figure 2B). For example, in 

the CAPAN1 co-culture, 37% of the cell population survived after 14 days 

when exposed to constant olaparib, compared to 55% when intermittent drug 

exposure was used (Figure 2B). Despite these reductions in population size, 

both olaparib and cisplatin exposure caused an increase in the relative 

frequency of the secondary mutant clones compared to the parental clone 

(Figure 2C), effects replicated when mixed cultures were exposed to a 

chemically distinct PARP inhibitor, talazoparib (Supplementary Figure 4A). 

We found that the enrichment in the secondary mutant clones compared to 

the parental clones was most profound when cultures were constantly 

exposed to either olaparib or cisplatin, compared to intermittent drug 

exposures (Figure 2C). In cultures exposed to the drug vehicle, the proportion 

of CAPAN1.B2.S* and SUM149.B1.S* in DMSO exposed cultures remained 
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the same throughout the experiment (1:20 secondary mutant:parental clone, 

Supplementary Figure 4B). We therefore concluded that whilst constant drug 

exposure elicited a more profound reduction in the size of the tumour cell 

population, it did enrich for secondary mutant clones. 

 

We then assessed whether the initial frequency of a secondary mutant clone 

in a tumour cell population might influence the time taken for this clone to 

dominate the population when it was exposed to the selective pressure of 

PARP inhibitor therapy. To do this, we generated CAPAN1.B2.S* : CAPAN1 

mixed in vitro cultures with 1:1, 1:20, and 1:40 clone ratios and then exposed 

these to olaparib. We then estimated the temporal evolution of the culture in 

response to drug treatment by using ddPCR to measure CAPAN1.B2.S* : 

CAPAN1 ratios over time (Figure 2D). We found that in each culture, olaparib 

exposure caused an increase in the frequency of the secondary mutant clone 

compared to DMSO exposed cultures, with the fraction of CAPAN1.B2.S* 

cells in each PARPi exposed culture gradually increasing over time (Figure 

2D). We also found that the initial frequency of the secondary mutant clone 

prior to drug treatment influenced the ability of the secondary mutant clone to 

eventually dominate the population (i.e. >75% of the cell population) once 

cells were exposed to PARP inhibitor, as might be expected of a Darwinian 

process (Figure 2D, compare 1:1, 1:20 and 1:40 ratio cultures).  

 

We also used a different model system, isogenic DLD1 tumour cell lines with 

or without targeted mutations in BRCA2 (DLD1.BRCA2WT/WT and 

DLD1.BRCA2–/– (28,29), to validate these observations. We labelled 
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DLD1.BRCA2WT/WT cells with a green fluorescent protein (GFP) and 

DLD1.BRCA2–/– cells with a red fluorescent protein (RFP) marker to enable 

detection and monitoring of co-culture populations via FACS (Supplementary 

Figure 5A). We found that in the absence of drug exposure, the 

DLD1.BRCA2WT/WT cells exhibited a selective advantage over DLD1.BRCA2–/–

cells, as previously shown (28) (Supplemental Figure 5B), and that these cells 

exhibit more than a 10-fold difference in olaparib sensitivity (Figure 3A). We 

then mixed DLD1.BRCA2WT/WT cells into DLD1.BRCA2–/– cells in vitro at 

starting ratios of 1:1, 1:10, 1:100 and 1:1000, exposed these co-cultures to 

either olaparib or talazoparib, and monitored the temporal evolution of the 

population in response to PARPi (Supplementary Figure 5A). Similar to the 

CAPAN1 and SUM149 isogenic models, we observed that olaparib and 

talazoparib both selected for DLD1.BRCA2WT/WT cells over DLD1.BRCA2–/– 

cells in a Darwinian fashion (Figure 3B). For example, both olaparib and 

talazoparib exposure resulted in a 3-fold increase in DLD1.BRCA2WT/WT cells 

compared to the DMSO exposed cell population after 13 days of drug 

exposure (Figure 3B). Additionally, we noticed that the time taken for the 

DLD1.BRCA2WT/WT clone to reach clonal dominance was less in cell 

populations that had higher starting proportion of DLD1.BRCA2WT/WT cells 

(Figure 3C, D, E), as observed in the CAPAN1 co-culture model.  

 

Darwinian selection of secondary mutant tumour cells also operates in 

vivo 

We also assessed whether a Darwinian process influenced the in vivo 

response to PARPi treatment. To do this, we generated cohorts of mice 
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bearing subcutaneous xenografts consisting of a mixture of CAPAN1 parental 

and CAPAN1.B2.S* secondary mutant tumour cells (Figure 4A). We found 

that inoculating 5x106 tumour cells at a 1:1 CAPAN1:CAPAN1.B2.S* ratio 

reproducibly generated 100 mm3 xenografts 10 days after innoculation, where 

each clone was present in equal proportion (Figure 4B). When tumours 

reached 100 mm3, tumour bearing mice were randomised into the following 

treatment cohorts to assess the selective pressure of PARPi treatment in vivo: 

(i) olaparib (50 mg/kg) administered once daily, (ii) olaparib (50 mg/kg) 

administered every other day, (iii) olaparib (50 mg/kg) administered twice a 

week on days 1 and 4, (iv) drug vehicle administered daily. In addition sentinel 

mice were sacrificed prior to treatment so that the CAPAN1:CAPAN1.B2.S* 

ratio in tumours prior to therapy could be confirmed (Figure 4A, 

Supplementary Figure 6A). We found that 50 mg/kg olaparib treatment, 

administered daily, every other day, or twice weekly, though well-tolerated, did 

not decrease tumour growth compared to the vehicle (p > 0.05 ANOVA for 

tumour volume in each olaparib treatment cohort vs. vehicle, Supplementary 

Figure 6B, Supplementary Figure 6C). We hypothesized that the absence of 

overall anti-tumour efficacy in this particular case might be due to failure to 

inhibit the PARPi secondary mutant clone in xenografts. To test this, we 

isolated tumour DNA from olaparib treated mice (after 28 days treatment) and 

assessed the relative ratio of parental vs. secondary mutant clones by 

ddPCR. In mice that received drug vehicle alone, the ratio of parental vs. 

secondary mutant clones remained unchanged at 50 % (data not shown). 

However, in mice that received olaparib treatment, the relative frequency of 

CAPAN1.B2.S* cells increased in response to therapy (Figure 4C). This 
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increase in CAPAN1.B2.S* frequency, in preference to the parental clone, 

was dependent upon the periodicity of PARPi administration, e.g. daily 

administration of olaparib caused the greatest increase in CAPAN1.B2.S* 

enrichment, followed by every other day treatment and then bi-weekly 

administration (Figure 4C, 4D). This suggested that PARPi administration also 

selected for secondary mutant tumour cell clones in vivo and that the degree 

of secondary mutant clone selection was related to the extent of selective 

pressure applied.  

 

AZD-1775, a WEE1 kinase inhibitor, targets both parental and secondary 

BRCA mutant clones in vitro and in vivo 

The co-culture model systems described above allowed us to establish that 

PARPi resistance, when driven by secondary mutations in BRCA1 or BRCA2, 

can operate along Darwinian principles. We also assessed whether we could 

identify therapeutic vulnerabilities that would allow targeting of both parental 

and secondary mutant tumour cell clones as a means to minimise the impact 

of secondary mutation. We assessed whether small molecule WEE1 cell cycle 

checkpoint kinase inhibitors (WEE1i) (30) might have utility in this regard. We 

focused on WEE1 inhibitors for a number of reasons. WEE1 prevents 

premature mitotic entry by phosphorylating and inhibiting cyclin-dependent 

kinases such as Cyclin Dependent Kinase 1 (CDK1) (31,32). This activity is 

particularly critical in tumour cells with p53 pathway defects; p53 defects often 

co-occur with BRCA mutations, and although secondary mutations in 

BRCA1/2 drive PARPi resistance, resistant tumours and cell lines remain p53 

mutant (13). CAPAN1.B2.S* and SUM149.B1.S* clones retained the p53 
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mutations present in CAPAN1 and SUM149 parental tumour cell clones 

(Supplementary Figure 7, Supplementary Figure 8). We also found that in an 

analysis of in vitro sensitivity to the clinical WEE1 kinase inhibitor, AZD-1775, 

in a panel of tumour cell lines, CAPAN1.B2.S* and SUM149.B1.S* were 

amongst the most sensitive of 146 lines profiled (Figure 5A). We confirmed 

this AZD-1775 sensitivity in subsequent clonogenic survival experiments and 

found that, when compared to non-tumour breast epithelial cell lines (MCF10A 

and MCF12A), both CAPAN1 and SUM149-derived secondary mutant tumour 

cell clones retained profound sensitivity to AZD-1775 seen in parental tumour 

cells (average 22 fold difference in AUC, p < 0.0001 versus MCF10A or 

MCF12A, ANOVA, Figure 5B). We confirmed these observations using co-

culture systems and found that at SF50 concentrations (concentration required 

to inhibit 50% of cells) of either olaparib or AZD-1775, olaparib exposure 

increased the relative frequency of the secondary mutant clones, but AZD-

1775 did not (Figure 5C). This observation was confirmed when we used 

ddPCR to monitor the frequency of the secondary mutant clone over time in 

co-cultures exposed to AZD-1775 (Figure 5D). We also observed that 

parental and secondary mutant SUM149 and CAPAN1 clones were sensitive 

to additional small molecule cell cycle checkpoint inhibitors including PF-

477736, a CHK1 inhibitor (33), and VX-970, an ATR inhibitor (34) when 

compared to non-tumour epithelial cells (Supplementary Figure 9A, 

Supplementary Figure 9B). This suggested that even when partial BRCA1 or 

BRCA2 protein function was restored by secondary mutation, vulnerability to 

small molecule inhibitors that target cell cycle checkpoints still existed. These 

effects did not appear to represent a relatively non-specific sensitivity to 
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cytotoxic agents in the parental and secondary mutant tumour cells, as these 

did not display an overtly distinct level of sensitivity to paclitaxel, capecitabine 

or gemcitabine when compared to MCF10 or MCF12A cells (Supplementary 

Figure 9C-F).  

 

Previous studies have shown that WEE1 inhibitors cause tumour cell 

cytotoxicity by reducing the extent of CDC2 phosphorylation at Y15 (35). We 

found that in both CAPAN1 and CAPAN1.B2.S* cells, AZD-1775 exposure 

caused a decrease in CDC2 Y15 phosphorylation, an effect that was 

enhanced with prolonged drug exposure (Figure 5E). We noted that AZD-

1775 exposure caused an increase in H2AX phosphorylation (H2AX), a 

biomarker of DNA damage, in both CAPAN1 and secondary mutant 

CAPAN1.B2.S* cells (Figure 5E). This increase in H2AX was commensurate 

with an increase in PARP cleavage, a measure of apoptosis (Figure 5E). 

Using FACS profiling, we found that AZD-1775 exposure had a very similar 

effect on cell cycle fractions in both CAPAN1 and CAPAN1.B2.S* cells, both 

of which demonstrated a profound reduction in the fraction of cells in active S-

phase, with a commensurate increase in the proportion of cells in non-

replicating S (Supplementary Figure 10). In CAPAN1 cells, AZD-1775 

exposure caused a reduction in the active S-phase fraction from 25.9 % to 3.4 

% (with a 3.9 to 52.1 % increase in non-replicating S phase), whilst 

CAPAN1.B2.S* cells showed a reduction in active S from 27.8 % to 4.2 % 

(with a 3.3 to 51.4 % increase in non-replicating S). These observations were 

reminiscent of those seen in H3K36me3-deficient cells, where WEE1 

inhibition also caused a severe reduction in the active S phase fraction (36). 
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This suggested that WEE1 inhibition targeted CAPAN1 cells in S–phase, 

regardless of whether BRCA2 was dysfunctional (as in CAPAN1) or 

somewhat reconstituted by the presence of a secondary BRCA2 mutation (as 

in CAPAN1.B2.S*). 

  

To investigate whether WEE1 inhibitor sensitivity in PARPi sensitive and 

resistant clones also operated in vivo, we assessed the effect of AZD-1775 

treatment on mice bearing mixed CAPAN1/CAPAN1.B2.S* xenografts (each 

clone present at a 1:1 ratio, Figure 5F). Mice with established tumours were 

treated with either AZD-1775, olaparib or drug vehicle. Sentinel mice 

sacrificed prior to treatment showed the CAPAN1:CAPAN1.B2.S* ratio in 

tumours prior to therapy was 1:1 (Figure 5G). We used the time taken for 

tumours to reach 1500 mm3 as a surrogate measure of survival (Figure 5H) 

and found that whilst olaparib treatment had minimal benefit (p=0.86, Log 

ranked Mantel-Cox test compared to vehicle), AZD-1775 treatment led to a 

significant survival benefit (p=0.011 Log ranked Mantel-Cox test compared to 

olaparib) (Figure 5I). Consistent with these observations, ddPCR analysis of 

tumours at the end of treatment showed that olaparib therapy caused a 

relative enrichment in the frequency of the secondary mutant clone (p = 0.058 

compared to vehicle, Student’s t test) whilst AZD-1775 did not (p = 0.43, 

compared to vehicle, Student’s t test) (Figure 5J).  

 

Discussion 

In this study we used CRISPR-generated BRCA1 or BRCA2 secondary 

mutant daughter clones alongside isogenic parental cell lines to demonstrate 
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that PARPi exposure selects for secondary mutant clones in a Darwinian 

manner, both in vitro and in vivo. We found that the extent of selection for 

secondary mutant clones was influenced by the frequency of drug 

administration. In mice bearing tumours comprised of an equal proportion of 

BRCA2 mutant and BRCA2 secondary mutant tumour cells, olaparib had 

minimal effects on tumour growth but did preferentially select for the 

secondary mutant daughter clone over the parental tumour cell.  It would be 

reasonable to infer that high frequencies of secondary mutant cells hinder the 

therapeutic effectiveness of PARP inhibitors. We also found that a WEE1 

inhibitor, AZD-1775, had a greater therapeutic effect on mixed 

parental/secondary mutant tumours than olaparib. This example suggests that 

therapeutic vulnerabilities might still exist in tumours that have a high 

frequency of secondary mutant clones. Our data also suggest that secondary 

mutant and parental tumour cells also show sensitivity to other cell cycle/DNA 

damage repair inhibitors, including CHK1 and ATR inhibitors (Supplementary 

Figure 9). It seems possible that whilst secondary BRCA1 or BRCA2 gene 

mutations restore some HR function, these are unlikely to reverse the 

complex set of genomic rearrangements, aneuploidy and p53 mutations found 

in BRCA1 or BRCA2 mutant tumours prior to treatment (37). We hypothesise 

that it is these latter characteristics that sensitise tumour cells to drugs such 

as WEE1 inhibitors, perhaps explaining why AZD-1775 targeted both parental 

and secondary mutant clones. This hypothesis remains to be tested, but the 

observation that secondary mutant tumour cells are sensitive to AZD-1775 

raises the possibility that therapeutic vulnerabilities still exist in PARPi 

resistant tumours.  
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In clinical studies, the maximum tolerated dose (MTD) for single-agent AZD-

1775 was identified as 225 mg twice per day orally over 2.5 days per week for 

2 weeks per 21-day cycle, a dosing regime sufficient to elicit a number of anti-

tumour responses (38). In our in vivo studies (Figure 5) we used 30 mg/kg 

AZD-1775 twice-daily treatments for the entire duration of the study (150 

days). This treatment approach was well tolerated in mice and based on prior 

mouse-based experiments using this WEE1 inhibitor (39). Nevertheless, it is 

possible that a similar constant dosing approach may not be well-tolerated in 

humans. Subsequent work might assess the potential of using intermittent 

WEE1 inhibitor dosing schedules to assess whether these also elicit a survival 

benefit in experiments similar to those shown in Figure 5. 

 

One implication of this work is that the detection of secondary BRCA1 or 

BRCA2 mutations in patients could be important in influencing the choice of 

therapy. At present, secondary mutations in BRCA1 or BRCA2 can be 

detected by Sanger DNA sequencing (14-16) or by targeted DNA capture and 

deep sequencing (13). Circulating tumour DNA and circulating tumour cells 

might also display some of the secondary BRCA1 or BRCA2 mutations found 

in solid tumours. Detecting secondary mutations in such liquid biopsies might 

allow the early emergence of secondary mutations to be identified as a 

biomarker predicting the eventual clinical manifestation of PARPi resistance. 

One avenue we will now explore is to utilise the in vivo system we have 

described here to assess this possibility. A key quality of the model systems 

described here is that they allow the construction of co-cultures and 
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xenografts where the frequency and identity of secondary mutants is known. 

This will hopefully facilitate experiments that aim to examine further principles 

that govern clonal evolution and influence drug resistance in BRCA1 or 

BRCA2 mutant cancers. Alongside these models, we also note that the first 

patient derived xenograft tumours (PDX) with PARPi resistance-causing 

mutations have been recently described (40). These provide another system 

in which to assess how the clonal structure of tumours evolve in response to 

therapy. The combined use of engineered systems, such as that described 

here, alongside PDX systems will be critical in establishing what factors 

determine the response to treatment, and importantly, what therapeutic 

approaches could be taken to minimise the impact of secondary BRCA1/2 

gene mutations.  
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Figure and Table legends 

Figure 1. Characterization of BRCA1 and BRCA2 secondary mutant, 

PARP-inhibitor resistant clones. 

A. Schematic showing experimental design. SUM149 and CAPAN1 cells were 

transfected with Cas9 and CRISPR gRNA expression constructs targeting 

BRCA1 or BRCA2, respectively, to induce DSB and subsequently create a 

secondary BRCA1 or BRCA2 mutation reinstating the open reading frame.  

B. DNA sequence for CAPAN1.B2.S* showing 5 bp deletion in BRCA2. PAM 

sequence is underlined in blue. 

C. Predicted BRCA2 protein structure for CAPAN1.B2.S*. The predicted 

amino acid length is shown. 

D. Dose-response survival curves for CAPAN1.B2.S* (red) and CAPAN1 

parental cell lines exposed to olaparib (P <0.0001, ANOVA). Error bars 

represent SEM (standard error of the mean) from triplicate experiments. 

E. Representative images for nuclear RAD51 foci formation in CAPAN1 and 

CAPAN1.B2.S* cells following IR exposure. Scale bar = 10 m. 

F. Bar chart illustrating quantitation of nuclear RAD51 foci. Cells containing 

more than five foci were counted as positive. Mean ± SEM for three 

independent experiments are shown. p values were calculated using 

Student’s t test. 

G. DNA sequence for SUM149.B1.S* showing 80 bp deletion in BRCA1. PAM 

sequence is underlined in blue. 

H. Predicted BRCA1 protein structure for SUM149.B1.S*. The predicted 

amino acid length is shown. 
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I. Dose-response survival curves for SUM149.B1.S* (green) and SUM149 

parental cells exposed to olaparib (P <0.0001, ANOVA). Error bars represent 

SEM from triplicate experiments. 

J. Bar chart illustrating quantitation of nuclear RAD51 foci. Cells containing 

more than five foci were counted as positive. Mean ± SEM (standard error of 

the mean) for three independent experiments are shown. p values were 

calculated using Student’s t test. 

 

Figure 2. Olaparib exposure induces Darwinian selection favouring 

secondary BRCA mutants in vitro. 

A. Experimental schematic. Secondary mutant and parental cells were mixed 

at a 1:20 ratio and then exposed to DMSO, olaparib, or cisplatin. After drug 

exposure, populations were analysed for surviving fraction and secondary 

mutant:parental proportions using ddPCR.  

B. Bar graph illustrating the effect of drug exposure on population surviving 

fraction in either CAPAN1.B2.S*:CAPAN1 or SUM149.B1.S*:SUM149 co-

cultures.  

C. Bar graph illustrating the increase in secondary mutant clone frequency 

following 14 days of drug exposure.  

D.  Graphs showing the frequency of CAPAN1B2*S cells in 

CAPAN1/CAPAN1B2* co-cultures exposed to 500 nM olaparib. Clone 

frequency was estimated by ddPCR at the time points shown. Error bars 

represent SEM from three independent measurements. 
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Figure 3. PARPi-induced selectivity operates in BRCA2 isogenic DLD1 

tumour cells. 

A. Dose-response curves illustrating 6-well clonogenic survival data for 

BRCA2 isogenic cells, DLD1.BRCA2WT/WT and DLD1.BRCA2–/–, exposed to 

olaparib over 14 days. Error bars represent SEM from triplicate experiments.  

B. Bar graph illustrating the increase in DLD1.BRCA2WT/WT frequency in a 

1:100 starting DLD1.BRCA2WT/WT:DLD1.BRCA2–/– ratio co-culture following 13 

days of drug exposure.  

C. Bar graph showing starting ratio of DLD1.BRCA2–/– to DLD1.BRCA2WT/WT 

influences time (days) for DLD1.BRCA2WT/WT cells to reach clonal dominance 

(75% of cell population). 

D-E. Graphs showing time required for DLD1.BRCA2WT/WT-GFP to reach 

clonal dominance (75%, dotted line) when exposed to either 25 nM or 100 nM 

of olaparib (D) or 10 nM of talazoparib (E) in DLD1.BRCA2WT/WT 

:DLD1.BRCA2–/– co-cultures.   

 

Figure 4. PARPi-induced Darwinian selection of BRCA proficient tumour 

cells in vivo. 

A. Experimental schematic of mixed CAPAN1:CAPAN1.B2.S* xenografts 

treated with olaparib. 

B. Bar chart illustrating CAPAN-1 (white) and CAPAN1.B2.S* (red) cell 

frequency in tumour xenografts prior to drug treatment. Values shown for 

each animal were derived from three tumour sections with mean ± SEM 

shown. 
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C. Bar graph illustrating the increase in secondary mutant clone frequency in 

tumours following 28-day olaparib treatment (n=6, mean ± SEM shown). p 

values were calculated by Student’s t test. 

D. Correlation between fold increase in the frequency of the secondary mutant 

clone and the periodicity of olaparib administration.  

 

Figure 5. PARPi-resistant, secondary mutant clones and parental tumour 

cells are sensitive to AZD-1775 in vitro and in vivo. 

A. Waterfall plot comparing AUC values collated from a five day exposure to 

AZD-1775 from 146 cancer cell lines.  

B. Dose-response survival curves illustrating 6-well clonogenic survival data 

in CAPAN1, CAPAN1.B2.S*, SUM149, SUM149.B1.S*, MCF-10A and MCF-

12A cells exposed to AZD-1775.     

C. Bar graph illustrating the increase in secondary mutant clone frequency 

following 14 days of drug exposure.  

D. Graph showing the frequency of CAPAN1B2*S cells in 

CAPAN1/CAPAN1B2* co-cultures exposed to AZD-1775. Clone frequency 

was estimated by ddPCR and the time points shown. Error bars represent 

SEM from three independent measurements. This experiment was conducted 

alongside the experiment described in Figure 2D; to allow comparison, the 

response to olaparib and DMSO exposure from Figure 2D is re-plotted here. 

E. Western blot for CAPAN1 and CAPAN1.B2.S* cells lysates probed for 

pCDC2(Y15), -H2AX (a DNA damage marker), and cleaved PARP1 (a 

marker of apoptosis). Tubulin was used as a loading control.  
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F. Experimental schematic of mixed CAPAN1:CAPAN1.B2.S* xenografts 

treated with olaparib or AZD-1775. 

G. Bar chart illustrating CAPAN-1 (white) to CAPAN-1.B2.S* (red) clone ratio 

in in tumour xenografts prior to drug treatment. Values shown from six 

sentinel animals with mean ± SEM shown. 

H. Tumour volume plotted against length of treatment for individual xenografts 

comprised of CAPAN1:CAPAN1.B2.S* mixed tumour cells over 150 days 

(n=18 total, n=6 in each cohort).  

I. Survival curves using maximum tumour size (1500 mm3) as a surrogate for 

survival from the experiment shown in E. 

J. Bar chart showing proportion of CAPAN1.B2.S* tumour cells following 

treatment from the experiment shown in E (n=6, mean ± SEM). P values were 

calculated by Student’s t test. 

 

Supplementary Figure 1.   

A. Western blot of lysates with anti-BRCA2 antibodies show almost full length 

BRCA2 is present in CAPAN1.B2.S*. 

B. Dose-response survival curves for talazoparib for CAPAN1.B2.S* (red) 

compared to the parental cell line (P <0.0001, ANOVA). Error bars represent 

SEM from triplicate experiments. 

C. Bar chart illustrating quantitation of nuclear -H2AX foci. Cells containing 

more than five foci were counted as positive. Mean ± SEM (standard error of 

the mean) for three independent experiments are shown. p values were 

calculated using Student’s t test. 
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D. Fold change in cell count plotted against time in CAPAN1 and 

CAPAN1.B2.S* show isogenic cell lines have similar growth rates. Error bars 

represent SEM from triplicate experiments. 

 

Supplementary Figure 2.   

A. IP followed by western blotting of lysates with anti-BRCA1 antibodies 

showing re-expression of near full-length BRCA1 in SUM149.B1.S*. B, 

BRCA1 IP; IgG, control IP. 

B. Dose-response survival curves for talazoparib for SUM149.B1.S* (green) 

compared to the parental cell line (P <0.0001, ANOVA). Error bars represent 

SEM from triplicate experiments. 

C. Representative images for nuclear RAD51 foci formation in SUM149 and 

SUM149.B1.S* cells following IR exposure. Scale bar = 10 m. 

D. Bar chart illustrating quantitation of nuclear -H2AX foci. Cells containing 

more than five foci were counted as positive. Mean ± SEM (standard error of 

the mean) for three independent experiments are shown. p values were 

calculated using Student’s t test. 

E. Fold change in cell count plotted against time in SUM149 and 

SUM149.B1.S* show isogenic cell lines growth rates. Error bars represent 

SEM from triplicate experiments. 

 

Supplementary Figure 3. Sensitive of ddPCR assay can detect up to 

1:100 secondary mutant to parental tumour cell events. 

ddPCR plots showing droplet populations observed for 1:2, 1:10, or 1:100 

starting ratios of secondary mutant:parental tumour cells with either 
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CAPAN1.B2.S* (blue, FAM amplitude) or CAPAN1 (green, VIC amplitude). 

Key: Black drops- empty droplets, blue- CAPAN1.B2.S* DNA FAM positive 

droplets, green- CAPAN1 DNA VIC positive droplets. 

 

Supplementary Figure 4. Olaparib and talazoparib select for secondary 

mutant tumour cells. 

A. CAPAN1/ CAPAN1.B2.S* or SUM149/ SUM149.B1.S* mixed cultures (1:10 

secondary mutant:parental cell ratio) were exposed to either either 1 μM 

olaparib or 0.1 μM talazoparib for 21 days. The frequency of secondary 

mutant cells was monitored by ddPCR. Graphs show the frequency of 

secondary mutant tumour cells in the population over time. 

B. No fitness discrepancy between parental and secondary mutant clone 

observed for mixed CAPAN-1 or SUM149 co-cultures. Bar graphs showing 

day 1 and day 14 DMSO exposed controls for both CAPAN1 and SUM149 

mixed secondary mutant:parental tumour cell populations. 

 

Supplementary Figure 5.  DLD1.BRCA2WT/WT tumour cells have a fitness 

advantage over DLD1.BRCA2–/– cells in vitro. 

A. Experimental schematic for evaluating mixed cell populations consisting of 

DLD1.BRCA2WT/WT-GFP and DLD1.BRCA2–/–-RFP cells at different starting 

ratios (1:1, 1:10, 1:100, 1:1000) over 40 days. Cells were exposed to either 

olaparib or talazoparib at a low and high dose and periodically monitored by 

FACS analysis.  
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B. Graph showing temporal evaluation of DLD1.BRCA2WT/WT tumour cell 

population within mixed DLD1.BRCA2WT/WT-GFP:DLD1.BRCA2–/–-RFP co-

cultures over 40 days. 

 

Supplementary Figure 6. Olaparib has little efficacy in mixed CAPAN-1 

xenografts.  

A. Bar chart illustrating CAPAN-1 (white) to CAPAN-1.B2.S* (red) ratio in day 

0 (pretreatment control) xenografts (n=6, mean ± SEM). 

B. Tumour response in mixed CAPAN1:CAPAN1.B2.S* xenografts treated for 

28 days with 1) vehicle, 2) olaparib – 50 mg/kg (daily), 3) olaparib – 50 mg/kg 

(every-other-day), and 4) olaparib – 50 mg/kg (2x/weekly) (n=6, mean ± 

SEM). 

C. Tolerability of olaparib treatment in vivo over 28 day exposure (n=6, mean 

± SEM). 

 

Supplementary Figure 7. Exome sequencing of CAPAN-1.B2.S* show 

retention of TP53 mutations. 

A-D. Exome sequencing confirms CAPAN1.B2.S* cells retained same TP53 

mutation (A) and variants (B-D) as observed in the CAPAN1 parental cell line.  

 

Supplementary Figure 8. Exome sequencing of SUM149.B1.S* show 

retention of TP53 mutation. 

A. Exome sequencing confirms SUM149.B1.S* cells retained the same TP53 

mutation as observed in the SUM149 parental cell line.  
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Supplementary Figure 9. BRCA-proficient and -deficient cells exhibit 

sensitivity to additional DNA damaging agents. 

A-B. Five day dose-response survival curves for (A) PF-477736, (B) VX-970, 

(C) Gemcitabine, (D) Paclitaxel, (E) Doxorubicin and (F) Vinorelbine for 

CAPAN1, CAPAN1.B2.S*, SUM149 or SUM149.B1.S* compared to MCF-10A 

and MCF-12A cell lines. Error bars represent SEM from triplicate experiments. 

 

Supplementary Figure 10. AZD-1775 causes an active S phase reduction 

in both CAPAN1 and CAPAN-1.B2.S* cells. 

BrdU and propidium iodide (PI) FACS profiling plots are shown with the 

fraction of cells in each cell cycle phase indicated. CAPAN1 and 

CAPAN1.B2.S* cells were exposed to 1 µM AZD-1775, or DMSO for 72 

hours. Following this, the cell cycle distribution of the cells was assayed by 

BrdU/PI FACS analysis as shown. 


