Treating cancer with selective CDK4/6 inhibitors

Ben O’Leary¹, Richard S Finn², Nicholas C. Turner¹,³*

¹ The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, Fulham Road, London, SW3 6JB, UK.

² University of California Los Angeles, Los Angeles, CA, USA

³ Breast Unit, Royal Marsden Hospital, Fulham Road, London, SW3 6JJ, UK

*To whom correspondence should be addressed: nicholas.turner@icr.ac.uk
Abstract

At the heart of cancer as a pathological process lies uncontrolled cellular proliferation, mediated by dysregulation of the cell cycle machinery and activation of cyclin dependent kinase (CDKs) to promote cell cycle progression. First generation non-selective CDK inhibitors were hampered by toxicity and lack of efficacy. A new generation of selective CDK4/6 inhibitors, including ribociclib, abemaciclib and palbociclib, has allowed targeting of tumour types where CDK4/6 plays a pivotal role in the G1-S cell cycle transition with an improved therapeutic window between cancerous and normal cells. Pivotal phase III trials with palbociclib in advanced oestrogen receptor (ER) positive breast cancer have demonstrated substantial improvement in progression free survival with a well-tolerated toxicity profile. Mechanisms of acquired resistance to CDK4/6 inhibitors are beginning to emerge that may identify rational post-CDK4/6 therapeutic strategies. Selective CDK4/6 inhibitors face challenges in extending beyond ER positive breast cancer, and it will likely be necessary to identify both biomarkers predictive of response and combination therapies to optimise CDK4/6 targeting.

Introduction

Aberrant proliferation and deregulated cell division is one of the key hallmarks of cancer, and identifying therapeutic targets to block cell division has been a common approach to cancer treatment. For a cell to divide it must progress through a pre-determined number of stages regulated by a complex regulatory network termed the cell cycle, a process highly conserved between eukaryotes. Each stage of the cell cycle must be passed through in turn with strict control exercised by signalling checkpoints, for example precluding progression in the presence of genetic damage. Transition from one stage in the cell cycle to the next is controlled by the cyclin dependent kinases, activated by their partner cyclins. CDKs have therefore been long regarded as promising targets for cancer therapies, although many of the early first generation CDK inhibitors failed in clinical development, at least in part as non-selective pan-CDK inhibition was toxic.

These issues appear to have been overcome by more selective targeting of CDK4 and 6, a pair of kinases similar in structure and function that mediate transition from G0/1 to S phase. Three of these new CDK4/6 inhibitors – abemaciclib, palbociclib and ribociclib - have emerged through early phase trials as agents with promising anti-cancer activity and manageable toxicity, each with phase III trials in progress. Palbociclib is the agent furthest
through development, having received accelerated approval from the US FDA in February 2015 and also reporting recent pivotal phase III data; both of these in the setting of hormone receptor-positive advanced breast cancer, a disease in which the cyclin D/CDK4 axis is known to be critical. Further work is required to facilitate optimal selection of patients and to tackle the inevitable emergence of resistance in the metastatic setting. In this review we discuss the biological rationale for targeting CDK4/6, review the available clinical evidence to date for the agents most advanced in development, and discuss the challenges facing scientists and clinicians with regards optimising their use.

Targeting the cell cycle through CDK4/6 in cancer

CDK4/6 and the classical view of G1/S phase transition

The cell cycle is orchestrated by the interaction of cyclins with their partner serine/threonine cyclin-dependent kinases (CDKs). The importance of CDKs to the cell cycle was first elucidated in cdc28/cdc2 (the homologs to CDK1 in humans) in budding and fission yeast respectively, with the interacting cyclins described a decade later. It would take a further ten years for the homologs to be confirmed in mammalian systems and for the cyclin-CDK nomenclature to be adopted. To enter the cell cycle a cell must progress from G1 to S phase via the restriction point, a transition in part governed by the retinoblastoma protein (RB) and usually regulated through perturbations in a delicate balance between pro- and anti-mitotic signals. Although mitogenic signalling is critical for entry into the normal cell cycle, its importance is greatly reduced once the cell has entered S phase.

The classical view of the initiation of the cell cycle has the D-type cyclins, cyclins D1, D2 and D3, as the key drivers. The expression level of the D type cyclins is controlled by growth factor signalling, with transcription, turnover and nuclear transport all dependent on mitogenic signalling. In early G1, a pro-mitotic signalling balance results in increased expression of the D-type cyclins, which complex with and activate CDK4/6. This complex subsequently phosphorylates RB, and the other RB-like, 'pocket proteins' p130 and p107, at a number of positions. In its hypophosphorylated state, RB represses transcription of genes necessary for cell cycle progression through binding to the transactivation domain of the E2F transcription factor family of proteins. Increasing phosphorylation of RB by the cyclin D/CDK4 complex reduces inhibitory control of RB on the E2F transcription factor family. This initiates a positive feedback loop, as the E2Fs promote transcription of the E type cyclins, activating CDK2 and other proteins important for initiation of S phase and DNA synthesis (Figure 1B). CDK2-cyclin E further phosphorylates RB,
reducing E2F inhibition and promoting S phase entry. During S phase, CDK2 complexes with cyclin A and mediates transcriptional control of DNA synthesis.31-33 Throughout the progression through S phase and G2, RB remains hyperphosphorylated, returning to its hypophosphorylated state only following mitosis.34-36

Although regulation of the E2F family of transcription factors remains the best described mechanism through which RB exerts control over the cell cycle, there are likely to be others as RB interacts with over 100 other proteins, most of which are poorly described.37 Furthermore, there is evidence that RB exerts transcriptional control through chromatin remodelling; phosphorylation of RB leads to a weakening of its interaction with histone deacetylase and modulation of cyclin E and cyclin A transcription through its forming of regulatory complexes with SWI/SNF.38,39

The INK4 and CIP/KIP proteins also regulate and control cyclin D-CDK4/6 activity, known collectively as the cyclin dependent kinase inhibitors (CKI).19 The INK4 group consists of 4 structurally-related proteins, p16INK4A, p15INK4B, p18INK4C and p19INK4D, which specifically bind to CDK4 and CDK6 and have limited affinity for other CDKs.40-43 Of the INK4 group, p16 is the best described and is induced by a number of cellular mechanisms such oncogenic signalling, senescence, TGFβ and contact inhibition.44-46 (Figure 1A). Increased expression of p16 is a hallmark of tumours where functional RB protein has been lost. The CIP/KIP family is comprised of 3 proteins, the ubiquitously expressed p27 and p21, and a third member, p57, which is expressed in a limited number of tissues.47-52 In contrast to the INK4 family, the CIP/KIP proteins are able to bind to all the CDKs involved in the cell cycle to varying degrees and have both a positive and negative regulatory role. The control exerted through these two groups of proteins on the G1-S transition is complex and interlinked, incorporating a number of feedback loops. The best known inhibitor of cyclin D/CDK4 is p16, which contributes to G1 arrest in two ways. Firstly, to become functional, CDK4 requires cytoplasmic, post-translational folding in a complex involving HSP90, an interaction disrupted by p16.53-55 In addition, p16 can bind to CDK4 directly and inhibit its catalytic activity.40,55 The combination of these two mechanisms results in G1 arrest in cells with functional RB, but not RB-deficient cells.56 In contrast, the CIP/KIP proteins p21 and p27 can stabilise the formation of cyclin D/CDK4 complexes, sequestering these proteins facilitating activation of CDK2.57-61 (Figures 1A, 1B).

Non-classical G1/S phase transition and CDK4/6 inhibitor efficacy

The classical view of G1/S phase transition has cyclin D and CDK4/6 as the key initiators of G1/S transition with CDK2 activity dependent on prior activation of CDK4/6 (Figure 1A, 1B). However, doubts over this classical view of G1-S phase transition were raised by cdk4 and...
Cdk6 knockout mice. Cdk4-deficient mouse models were viable but small in size with reproductive and endocrine dysfunction. Similarly Cdk6-deficient models were also viable, but with hypocellularity in the thymus and spleen, and with a small reduction in peripheral blood cells. The lack of a severe phenotype in these single knockout mice was assumed to be due to compensation between cdk4 and cdk6. Surprisingly, although double knockouts for cdk4 and cdk6 succumbed to anaemia in the late stages of embryonic development, many non-haematological cell types showed normal proliferation. In addition, embryonic fibroblasts without cdk4 and cdk6 still entered S phase, although at a reduced efficiency, with evidence that D-type cyclins interacted with cdk2. Although murine models may be limited in predicting CDK dependency in human cells, the phenotype of the cdk4/6 knockout mouse predicted with high accuracy the toxicity profile seen with selective CDK4/6 inhibitors. The architecture of the classical view of the cell cycle, with the restriction point at G1/S, has also been challenged by the demonstration that CDK2 activity may persist directly after mitosis, with pre-mitosis levels of CDK2 and p21 activity predicting the fate of whether post-mitosis daughter cells continue to cycle or become quiescent.

Despite caveats in interpreting murine and in vitro models, it seems the classical view of cell cycle entry, with the necessary role for CDK4/6, is likely overly simple in many cell types. As well as CDK4/6, other CDKs can initiate cell cycle entry due to redundancy between CDKs, and as such CDK4/6 is potentially redundant in these cells (Figure 1C). The exact mechanisms that underlie redundancy have been incompletely described, although binding of cyclin D1 to CDK2 and dysregulation of cyclin E expression may contribute (Figure 1C). CDK3 can also contribute to cell cycle entry, phosphorylating RB at the G0/G1 transition.

Leveraging cell cycle biology to find a therapeutic window

The ideal CDK-targeted therapy would block the CDK-mediated signalling in malignant cells but spare the aspects of CDK activity critical to normal cell function to avoid toxicity. Murine embryos lacking cdk1 fail to develop beyond the blastocyst stage, suggesting that inhibition of CDK1 by non-specific inhibitors could affect most or all cell types and result in toxicity. In addition, non-specific targeting of CDKs would inhibit CDKs 7, 8 and 9 whose functions are less well-described but include regulation of basal transcription, with CDK 7 also contributing to the cell cycle through its role as a CDK-activating kinase (CAK). This challenge in finding a therapeutic window with CDK inhibitors was reflected in the early clinical experience of pan-CDK inhibitors such as flavopiridol and roscovitine. Flavopiridol is a semi-synthetic flavone with activity against CDKs 1, 2, 4, 6, 7 and 9 and was extensively investigated in early phase trials. Responses were seen in phase II studies in
haematological malignancies, notably chronic lymphoid leukaemia, but dosing was limited by toxicity. Roscovitine, a purine-based compound active against CDKs 1, 2, 5, 7 and 9, failed to demonstrate convincing clinical activity in two phase I studies. The toxicity profile of roscovitine included nausea, vomiting and fatigue in addition to hepatic dysfunction and electrolyte abnormalities. Flavopiridol caused fatigue, but also diarrhoea and a degree of myelosuppression. It is difficult to delineate to what degree these toxicities were the result of on-target effects. Roscovitine, with less activity at CDK4/6 (IC$_{50}$ > 10µm), caused less myelosuppression, seen with both flavopiridol and the selective CDK4/6 inhibitors, both of which inhibit CDK4 at nanomolar concentrations (flavopiridol CDK 4 IC$_{50}$ 100nm, palbociclib CDK 4 IC$_{50}$ 11nm).

More selective targeting of CDK4/6 has a number of potential advantages over less selective inhibitors. Many normal cell types in the body may be capable of initiating the cell cycle despite CDK4/6 inhibition. Additionally, in contrast to the cytotoxic effects of less selective CDK inhibitors, CDK4/6 inhibitors are usually observed to be cytostatic, which may further limit their potential for clinical toxicity, although CDK4/6 inhibition-induced cell death has been noted in T cell leukaemia cell lines and xenografts.

Selecting target groups - the CDK4/6 axis deranged in cancer

Selection of target groups for CDK4/6 inhibitors relies on identification of tumour types where CDK4/6 drives G1/S transition, and where the effects of CDK4/6 inhibition cannot be rescued by alternative CDKs. Aberrations in the cyclin D-CDK4/6 axis are frequent in cancer. Cyclin D activity is increased in a number of malignancies, a notable example being mantle cell lymphoma. This is characterised by the t(11;14)(q13;q32) translocation that juxtaposes $CCND1$ with the IGH immunoglobulin heavy chain locus, resulting in the over expression of cyclin D1. Amplification and over expression of cyclin D has been described in head and neck cancers, breast cancers, non-small cell lung cancers, oesophageal cancers, melanoma, and glioblastoma.

A further potential activating mechanism in the cyclin D1/CDK4/6 axis is over-expression of the kinases, although activating somatic mutations are very rare. Amplifications of $CDK4$ are seen in well-differentiated and de-differentiated liposarcomas, as part of a 12q14.15 amplicon, though this also features $MDM2$ and $HMG2$ and there is uncertainty over which genes are the key drivers. Somatic amplifications in $CDK4$ have been noted in melanoma and glioblastoma and CDK6 in squamous cell oesophageal carcinoma and a small number of B-cell lymphoproliferative disorders which have
undergone translocations involving 7q21115-117. The relationship between amplification of CDK4, CDK4 activity, and CDK4/6 inhibition is unclear, with reports that both increased expression and amplification is associated with resistance to selective CDK4/6 inhibition112, 118. Germline CDK4 mutations in the p16-binding domain have been reported in a small number of families with predisposition to melanoma119-121. Loss of p16 function is common in cancer and implies absence of the primary inhibitory brake on CDK4/6-driven signalling. Homozygous deletions of p16 are seen in pancreas, bladder, breast and prostate cancers and glioblastoma122-124. An important role for p16 is also implied in melanoma by the common deletion of CDKN2A in melanoma-prone kindreds125. Conversely, loss of RB results in constitutive activation of E2F, cyclin E1 and CDK2 expression, and therefore loss of reliance on CDK4/6 to initiate G1-S phase transition126, 127.

Breast cancer subtype dependency on cyclin D1

In luminal oestrogen receptor (ER) positive breast cancer, representing approximately 75\% of breast cancer, ER signalling activates the cyclin D promoter, and in many ER positive breast cancers cyclin D1 is expressed at a high level with or without CCND1 gene amplification95, 97. Cyclin D1 is also known to have a number of CDK-independent functions that likely contribute to breast cancer pathogenesis128. Cyclin D1 binds to and facilitates ER transcription activity128, likely reinforcing the dependence of ER positive luminal breast cancer on cyclin D1. In contrast, expression of cyclin E1 is low in ER-positive breast cancer129, and RB1 is rarely inactivated by mutation130.

Therefore ER-positive, luminal breast cancer presents the archetypal model for CDK4/6 inhibitors, reflecting the particular dependence of luminal breast cancer on cyclin D1 to initiate G1-S phase transition. In addition, as breast cancers become resistant to endocrine therapy they remain dependent on cyclin D1 and CDK4 to drive proliferation131. In contrast to luminal breast cancer, basal-like triple negative breast cancer is characterised by loss of RB132-134 and by high expression of cyclin E1129. Consequently basal-like breast cancer cell lines are resistant to CDK4/6 inhibition126. High expression of cyclin E2 has been found in luminal B breast cancers and is correlated with shorter time to distant progression135, although the role of Cyclin E2 in CDK4 inhibitor sensitivity remains to be determined135.
Preclinical development of the selective CDK4/6 inhibitors

Three CDK4/6 inhibitors have currently reached early phase trials, abemaciclib (LY-2835219, Eli Lilly), palbociclib (PD-0332991, Pfizer), and ribociclib (LEE011, Novartis), with phase III data now available for palbociclib. These orally-administered compounds of similar structure (figure 2) bind in the ATP-binding pocket of CDK4 and CDK6\(^5\)\(^,\)\(^{136}\) (figure 3A), and all show a high degree of selectivity over CDK1 and CDK2. Preclinical work in cell lines and xenografts has focused on malignancies with established derangements in the cyclin D/CDK4/p16 axis and has revealed the predominant effect of CDK4/6 inhibitors to be cytostatic rather than inducing cell death and apoptosis.

Abemaciclib inhibits CDK4/6 at low nanomolar concentrations and has been shown to to reduce the phosphorylation of RB in colorectal and melanoma xenografts, inducing G1 arrest\(^137\)\(^,\)\(^{138}\). In addition to CDK4 and 6, abemaciclib also reported activity at CDK9 although it is unclear whether this translates into inhibition of CDK9 in cellular activity\(^138\). Abemaciclib was also able to effect growth regression in vemurafenib-resistant melanoma models, where cyclin D1 was noted to be elevated in conjunction with MAPK pathway reactivation\(^139\).

Palbociclib is also active at low nanomolar concentration at CDK4 and 6, but with limited activity against other CDKs or tyrosine kinases\(^140\)\(^,\)\(^{141}\). Palbociclib was active in mantle cell lymphoma xenografts\(^142\), and in glioblastoma cell lines, where in addition to functional RB co-deletion of CDKN2A was found to predict sensitivity\(^112\)\(^,\)\(^{143}\)\(^,\)\(^{144}\). In ovarian cell lines response was found to be most marked in cancers with low p16 expression, with deletions in CDKN2A associated with response and amplification of CCNE1 associated with resistance\(^127\). Work in renal cell carcinoma identified low E2F1 expression as another potential marker for sensitivity in addition to p16 loss\(^145\). Additionally, palbociclib has demonstrated activity in acute myeloid leukaemia and myeloma, combined with bortezomib, in both cell line and xenograft models, although particular biomarkers for sensitivity were less clear in these experiments\(^146\)\(^-\)\(^{148}\). It has also shown activity in RB-replete prostate cancer\(^149\) and in hepatocellular carcinoma, where curiously some activity in RB-deficient cells was observed, potentially through compensation via other pocket proteins\(^150\).

In breast cancer models, palbociclib shows synergy with trastuzumab and tamoxifen treatment in HER2-amplified and ER-positive cells respectively, which are both luminal cancer types and therefore reliant on cyclin D1 to activate CDK4/6\(^99\)\(^,\)\(^{126}\)\(^,\)\(^{151}\)\(^,\)\(^{152}\). Synergy with endocrine therapy in ER-positive breast cancer at least in part reflects the simultaneous effects of endocrine therapy suppressing cyclin D1, and palbociclib inhibiting CDK4/6. In the
presence of CDK4/6 inhibition alone, persistent cyclin E2 continues to allow a low level of S phase entry153, and synergy is seen with endocrine therapy through suppressing residual cyclins. Treatment with palbociclib also results in growth arrest in breast cancer cell lines with \textit{in vitro} derived resistance to endocrine therapy, but which remain dependent on CDK4/6154.

Ribociclib inhibits CDK4/6 at nanomolar concentrations155 and as a single agent ribociclib has demonstrated growth inhibition in neuroblastoma and liposarcoma cell lines, resulting in G1 arrest, a reduction in the phosphorylation of RB at Ser780 and Ser807/811 and significantly reduced tumour burden seen in xenografts156, 157.

Efficacy and toxicity in early phase trials

Early phase studies into the selective CDK4/6 inhibitors showed a manageable toxicity profile with indications of promising clinical activity. Single agent efficacy appeared to manifest as predominantly as stable disease, hypothesised to be as a result of the cytostatic nature of these agents, although responses were demonstrated in particular in combination with endocrine therapy in breast cancer. Toxicity profiles vary between the inhibitors for reasons that are not understood, but which may have ramifications for optimising their clinical use and in combination with other therapies.

Abemaciclib

The initial phase I study for abemaciclib recruited a cohort of 55 patients of multiple tumour types, 52% experienced diarrhoea, 5% at grade 3158. Neutropaenia was far less prevalent than in the trials of ribociclib and palbociclib, allowing for continuous dosing. One patient with a homozygous deletion of \textit{CDKN2A} had a partial response. In a further phase I trial in non-small cell lung cancer, 51% achieved at least stable disease with 41% of patients on treatment for at least 4 cycles159. In the metastatic breast cancer cohort of the phase I study, 33% had a partial response, despite relatively heavy pre-treatment, with a progression free survival for 9.1 months in 36 ER-positive patients160.

Palbociclib

Two of the phase I studies of single agent palbociclib were conducted in RB-expressing cancers, with efficacy manifesting predominantly as stable disease161, 162. The third study involving 17 patients with mantle cell lymphoma resulted in 5 of the 17 patients experiencing a progression-free survival of over 12 months163. Similar dose-limiting toxicities were seen across the studies with grade 3 or 4 neutropaenia the most common. This required intermittent therapy for recovery of neutropaenia, establishing the dose of 125mg daily with 3
weeks on treatment and the fourth week off161,162. Three of the phase I patients enrolled with teratoma syndrome, refractory to surgery and with confirmed strong expression of RB, achieved at least stable disease and remained on treatment for between 18 and 24 months164. A further similar case in a paediatric patient has also been reported165. A phase II study looking at this further treated 30 patients with relapsed, RB-proficient germ cell tumours and observed 8 patients with a progression free survival greater than 24 weeks166.

Thirty seven patients with RB-proficient breast cancer were included in a phase II study of palbociclib as a single agent, with two partial responses and a further 5 patients achieving stable disease for at least 6 months despite heavy pre-treatment167. A phase II trial recruiting exclusively patients with liposarcoma found that 66% of 29 evaluable patients had not progressed at 12 weeks, with one patient having a partial response168.

Ribociclib

Ribociclib has been tested as a single agent in phase I with two dosing schedules, either continuously or 3 weeks on, 1 week off. In a cohort of 132 advanced solid tumours and lymphomas the predominant dose-limiting toxicity was cytopaenias, particularly neutropaenia and leukopaenia, with the most common side effects of all grades otherwise being nausea and fatigue169. Two patients experienced a partial response, one with melanoma and one with breast cancer, both of them with amplification of \textit{CCND1}. In a trial of 14 patients with \textit{NRAS}-mutated melanoma who received ribociclib in conjunction with binimetinib, a MEK inhibitor, 6 had a partial response170. There are ongoing phase Ib/II studies examining ribociclib in combination with BYL719, a PIK3CA inhibitor, or everolimus in conjunction with an aromatase inhibitor in post-menopausal breast cancer. Although limited data have been reported, no safety concerns have been raised171,172.

Differences between CDK4/6 inhibitors

Whilst the early stage efficacy and toxicity of palbociclib and ribociclib are very comparable, abemaciclib shows differences. Abemaciclib has a different toxicity profile with less bone marrow suppression and increased diarrhoea. In terms of efficacy it possibly has a higher response rate as a single agent in pre-treated breast cancer. Of the three inhibitors, abemaciclib is the more potent against CDK4 as opposed to CDK6 on \textit{in vitro} kinase assays. However, it is unclear whether this could explain possible increased activity or the more marked diarrhoea, and the potential role of CDK9 inhibition by abemaciclib is unknown.

There appear to be differences in absorption across the blood-brain barrier between the inhibitors although the evidence is partially conflicting. Abemaciclib appears better absorbed
across the blood brain barrier than palbociclib, an observation potentially relevant for the treatment of patients with brain metastases or CNS tumours. Nonetheless, there are case studies involving effective treatment of patients with palbociclib for intracranial teratoma.

Randomised studies of CDK4/6 inhibitors in breast cancer

Although later stage randomised studies are recruiting with CDK4/6 inhibitors in multiple cancer types, the only published evidence to date comprises data from breast cancer, where our discussion will focus.

Two randomised studies have reported with palbociclib in hormone receptor positive advanced breast cancer. The first study to report was the randomised open-label phase II study, PALOMA-1/TRIO-18, conducted in patients with advanced ER-positive, HER2-negative breast cancer untreated for advanced disease. Patients had either no prior adjuvant aromatase inhibitor (AI) or had stopped adjuvant AI therapy at least a year prior to relapse. One hundred and sixty five patients were randomised between letrozole alone or in combination with palbociclib, with the study recruiting two consecutively accrued cohorts. The first cohort recruited all ER-positive HER2-negative, the second cohort further restricted based on either amplification of CCND1 or loss of p16. The intention was for the first cohort to be exploratory, and second the primary cohort for PFS analysis. However, after an unplanned interim analysis demonstrated significantly improved PFS and a low probability of a difference with selection, the study was amended to stop accrual to the CCND1 and p16 selection and to analyse both cohorts together. At the final PFS analysis and a median follow up of 30 months, this analysis demonstrated an improvement in median PFS from 10.2 months to 20.2 months with the addition of palbociclib to letrozole (HR 0.488, 95%CI 0.319 – 0.748, p = 0.0004, figure 4). Consistent with prior studies the principal toxicity was neutropaenia, although no cases of febrile neutropaenia were reported. Low grade (1-2) fatigue and nausea were also more prevalent with the addition of palbociclib (36% v 22% and 23% versus 12% respectively), along with slightly higher levels of the side-effects typically seen with aromatase inhibitors such as hot flushes and arthralgia.

The PALOMA 1/ TRIO 18 study served as the basis for accelerated approval of palbociclib by the FDA on February 3, 2015.

Phase III registration studies

11
The first phase III study to report with a CDK4/6 inhibitor was the PALOMA-3 study, a double blind, randomised controlled trial of 521 patients with advanced, hormone receptor positive, HER2-negative breast cancer that had progressed on prior endocrine therapy. Patients were randomised in a 2:1 ratio between palbociclib and fulvestrant versus placebo and fulvestrant\(^2\), fulvestrant being a selective oestrogen receptor degrader with activity in breast cancer after progression on prior endocrine therapies\(^{175}\). The study was positive at the pre-planned interim analysis, with revealed a median PFS 9.2 months for the palbociclib/fulvestrant arm compared with 3.8 months with placebo/fulvestrant, (hazard ratio of 0.42, 95%CI 0.32 – 0.56, p < 0.001, figure 4). The majority of enrolled women were post-menopausal, although 21% were pre-menopausal and treated with a GnRH agonist to induce ovarian suppression.

Consistent with PALOMA-1/TRIO18 the toxicity profile included frequent haematological adverse events, but also a small increase in mostly grade 1/2 fatigue, alopecia and stomatitis. Although a relatively large proportion of the palbociclib arm experienced grade 3 or 4 neutropaenia (62%) and 31% required a dose reduction, the palbociclib dose intensity was 91.7% and only 2.6% patients stopped palbociclib due to adverse effects. As in PALOMA-1/TRIO18, despite the high rate of neutropaenia the rate of febrile neutropaenia was minimal at 0.6% in both arms. Infections, mainly of grade 1 or 2 severity, were seen more frequently with palbociclib (32.4% versus 24.4%). Global quality of life was significantly improved on palbociclib compared to placebo, as measured using the QLQ-C30. The PALOMA3 study will lead to registration of palbociclib in many territories.

In terms of ongoing phase III trials the confirmatory PALOMA-2/TRIO-22 study, testing the combination of palbociclib/letrozole versus placebo/letrozole in first-line treatment of advanced ER positive breast cancer, has completed accrual but is yet to report. Both abemaciclib and ribociclib are also currently in phase III trials. MONARCH-2 (NCT02107703), with a similar design to PALOMA-3 but testing abemaciclib is currently recruiting, and the MONALEESA-7 trial (NCT02278120) is examining the combination of ribociclib with endocrine therapy in pre-menopausal women with advanced hormone receptor positive breast cancer\(^{176, 177}\).

Patient selection, anticipating resistance and future challenges

Though there are a number of plausible biomarkers for CDK4/6 inhibition, for example cyclin D, CDKN2A and RB (figure 3B), the only selection marker currently confirmed in the clinical setting is ER positivity in breast cancer. It is anticipated that further positive selection
markers may be difficult to identify for ER positive breast cancer, as this subtype of breast cancer is often dependent on cyclin D1 and therefore CDK4/6 to drive proliferation. Of note, amplification of \(CCND1 \) and/or loss of \(CDKN2A \) status offered no further selection advantage in the phase II PALOMA-1 study, although this data is very limited and requires further confirmation.

Further work remains to identify the potential biomarkers of resistance to CDK4/6 inhibitors in ER positive breast cancer. RB loss is an obvious candidate, but loss of RB is rare in ER positive breast cancer, although there are few data on whether RB loss changes in frequency with resistance to prior therapy. Amplification of E2F or loss of p21, commonly observed in cancers and linked to tamoxifen resistance, are two plausible markers of resistance that have been proposed. Identification of the potential of cyclin E-CDK2 to rescue CDK4/6 inhibition, potentially through assessment of cyclin E levels, or through gene expression predictors of RB1/E2F proficiency could be interesting future approaches. In terms of resistance, breast cancer cell lines with derived resistance to palbociclib select loss of RB and amplification of cyclin E, favouring the non-classical G1-S transition phenotype. Cell lines with acquired cyclin E1 amplification show sensitivity to CDK4/6 and CDK2 combination inhibition, potentially identifying a therapeutic strategy for cell lines with acquired resistance.

Other tumour types likely show subtype sensitivity to CDK4/6 inhibitors such as mantle cell lymphoma. However, in many other tumour types biomarkers are likely to be important in identifying selective dependence on cyclin D1-CDK4/6. The phase II/III Lung-MAP trial has an experimental arm where patients with recurrent squamous cell carcinoma are allocated to palbociclib on the basis of aberrations in \(CDK4 \) and \(CCND1:3 \) (NCT02154490). The SIGNATURE trial includes patients treated with ribociclib on the basis of cyclin D/p16/CDK4 aberrations. More information regarding the efficacy of various biomarkers will become available with ongoing biopsy-driven studies examining CDK 4/6 inhibitors in the neo-adjuvant setting and at progression on CDK 4/6 therapies.

Combination therapy with CDK4/6 inhibitors

Which endocrine therapy in ER positive breast cancer?

CDK4/6 inhibitors have been developed almost exclusively in combination with endocrine therapies in ER positive breast cancer, based on sound preclinical evidence of combination efficacy. The selection of the most active endocrine therapy for an individual patient is likely important for combination, though also dictated by the licensed indications. For endocrine-naïve patients, combination with an aromatase inhibitor is likely advantageous, as per
PALOMA1, whereas in patients with endocrine pre-treated breast cancer fulvestrant is suitable, as per PALOMA3. There are no data at this time for continuing the endocrine therapy beyond resistance whilst adding in CDK4/6 inhibitor, and therefore it is uncertain if this approach would be efficacious.

In breast cancer particularly there appears to be a strong case for combining PI3K inhibitors and mTOR inhibition with CDK4/6 inhibitors (figure 5). If, as has been shown in breast cancer cell lines, endocrine resistance is in part mediated through ligand-independent ER interacting with CDK4 and with PI3K hyper-activation131, and CDK4/6 inhibition can overcome resistance to both PI3K inhibition179 and endocrine therapy126, then combination could prevent the emergence of resistance (table 1). Similarly, CDK4/6 inhibition could also offer a means to address the activity of ligand-independence conferred by activating mutations in ESR1180-182. There is also a strong rationale for the use of CDK4/6 in combination with HER2-directed therapy in HER2-amplified breast cancers. Increased cyclin D1 is found in cellular and mouse models of HER2 over expression and in transgenic mice with activating mutations in HER2151, with evidence that cyclin D1 and CDK4 is required for tumorigenesis in these cancers183. Consistent with this, palbociclib was observed to be synergistic with trastuzumab in HER2-amplified cells126. This combination is being taken forward in a number of early phase trials (NCT01976169, NCT02448420).

Combination strategies in other malignancies

A number of combination strategies with CDK4/6 inhibitors are also being pursued in haematological malignancies, including with bortezomib in myeloma184, with preclinical evidence to support the combination of CDK4 inhibition with ibrutinib or PI3K inhibition in mantle cell lymphoma185, 186 (table 1). There is also evidence for CDK4/6 inhibition in combination with MAPK pathway inhibition with MEK or BRAF inhibitors in melanoma187 and colorectal cancer188 (figure 5). CDK4/6 inhibition can also re-sensitise melanoma cell lines with \textit{BRAF V600E} mutation to vemurafenib once resistance has developed139. The mechanism of all these combinations in part reflects suppression of cyclin D/E levels to limit the ability of alternative CDKs to bypass CDK4/6 inhibition. RAS signalling has also been shown to promote cycling by reducing levels of p27189.

In lung cancer cell lines and xenografts, knock down of CDK4 was seen to produce a greater degree of inhibition in \textit{KRAS}-mutant cells than those with \textit{KRAS} wild type190, in keeping with previous work which had suggested a degree of synthetic lethality between \textit{Cdk4} ablation and KRAS activity191. In addition, the potential of using CDK4/6 inhibitors to prevent repopulation between cycles of chemotherapy has been raised for cancers dependent on CDK4/6, but this presents substantial scheduling challenges in the clinic. A
large number of early stage clinical trials examining combinations of therapies with CDK4/6 inhibitors are currently under way.

Conclusions

Targeting the cell cycle machinery directly in cancer treatment is a logical therapeutic approach, but one that has proved challenging without appropriate selection. Selective CDK4/6 inhibitors combined with appropriate selection of the target population now has proven efficacy, and will change the standard of care for patients with advanced ER positive breast cancer. Extending the benefit outside ER positive breast cancer will require identification of cancer subtypes that show dependence on the cyclin D/CDK4/6/RB pathway, the identification of effective clinical biomarkers to expand indications, and effective drug combinations to mitigate resistance.

References

Acknowledgments

We acknowledge NHS funding to the Royal Marsden NIHR Biomedical Research Centre.

Figure legends

Figure 1. Classical and non-classical models of the cell cycle in RB-proficient cells.
A. Resting cells in G0/early G1. The retinoblastoma protein RB is hypophosphorylated and inhibits the transcriptional activity of the E2F family of proteins. The INK4 protein p16, acts as a brake on the activation of CDK4/6.

B. The classical model of G1/S transition. Mitogenic and oestrogen receptor signalling upregulates the transcription of the D type cyclins. The D-type cyclins complex with CDK4/6 to phosphorylate RB, activating the E2F family of proteins that results in transcription of cyclins E, A and CDK2. The phosphorylation of RB also effects chromatin remodelling in favour of transcription (not shown). CDK4/6/cyclin D complexes sequester the CIP/KIP proteins, reducing their inhibitory effect on CDK2, and reducing the threshold for activation of CDK2 by E-type cyclins. As cyclin E rises, it complexes with CDK2 to hyperphosphorylate RB, forming a positive feedback loop via E2F to push the cell from G1 to S phase.

C. The non-classical model of G1/S transition. CDK2 is active in early G1 complexing with cyclins E and potentially cyclin D directly. Both CDK4/6 and CDK2 phosphorylate RB, and drive G1/S transition. The mechanisms through which CDK2 becomes active in G1 without requiring prior CDK4/6 activation are poorly understood, although in some rapidly proliferative cells CDK2 remains active immediately after mitosis.

D – D-type cyclins, E – E-type cyclins, A – cyclin A, CDK2 – cyclin dependent kinase 2, CDK4/6 – cyclin dependent kinase 4 or 6, RB – retinoblastoma protein, P = phosphate group

Figure 2. The structure of selective CDK4/6 inhibitors with the half-maximal inhibitory concentrations (IC50) for a number of cyclin-dependent kinases.

Figure 3. The cell cycle and the role of CDK4/6 inhibition.

A. G1 arrest caused by CDK4/6 inhibition. CDK4/6 inhibitors interact with CDK4 and 6 to prevent their kinase activity via ATP-competitive binding. The cyclin D/CDK4/RB/p16 axis is commonly deranged in cancer, for example through over expression of cyclin D or under expression of p16. In these cases CDK4/6 inhibitors can block the disinhibited phosphorylation of RB, leading to G1 arrest in the absence of an escape mechanism.

B. Potential mechanisms of resistance to CDK4/6 inhibition. In cancer cells deficient in RB, the E2F transcription family in constitutively active and CDK4/6 is redundant. In RB-replete cells, overexpression of cyclin E or loss of the CIP/KIP proteins may bypass CDK4/6
inhibition by activating CDK2. E2F amplification is another posited mechanism for bypassing RB,

D – D-type cyclins, E – E-type cyclins, A – cyclin A, CDK2 – cyclin dependent kinase 2, CDK4/6 – cyclin dependent kinase 4 or 6, RB – retinoblastoma protein, P = phosphate group, ciclib = CDK4/6 inhibitor

Figure 4. Activity of palbociclib in advanced ER positive breast cancer

A. Kaplan-Meier plot showing progression free survival for women with advanced, hormone receptor positive, HER2 negative breast cancer treated with either palbociclib and letrozole or letrozole alone in the PALOMA-1/TRIO-18 phase II study, taken from Finn et al 2015 Lancet Oncology.

B. Kaplan-Meier plot showing progression free survival for women with advanced, hormone receptor positive, HER2 negative breast cancer treated with either palbociclib and fulvestrant or fulvestrant and placebo in the PALOMA-3 study, taken from Turner et al 2015 NEJM.

Figure 5. Combination therapy approached with CDK4/6 inhibitors.

A. The CDKs and cyclins act both in parallel and downstream of cellular signal transduction pathways and oestrogen signalling to promote cell cycle progression. Activation of the MAPK and PI3K pathways by receptor tyrosine kinases promotes cell cycle progression through upregulation of D and E type cyclins. RTK signalling therefore both activates CDK4/6 but may also promote CDK4/6 inhibitor bypass, potentially through promotion of cyclin E or through inhibition of p21/p27. Similarly oestrogen receptor signalling in ER positive breast cancer may promote bypass of CDK4/6 inhibition, with ER signalling in part facilitated by cyclin D1 binding.

B. Promising strategies for combinatorial efficacy with CDK4/6 inhibition based on preclinical models include blockade of oestrogen receptor signalling with tamoxifen, aromatase inhibitors or SERDs, PI3K pathway blockade with PI3-kinase inhibitors and mTOR inhibition with rapalogs and MAPK pathway blockade with BRAF and MEK inhibitors.

kinase 4 or 6, RB – retinoblastoma protein, ER – oestrogen receptor, P = phosphate group, AI – aromatase inhibitor, SERD – selective oestrogen receptor degrader.

List of figures

Figure 1.

Figure 2.
Figure 3.
Figure 4.
Table 1. Current clinical strategies using CDK4/6 inhibition, alone or in combination by cancer type and potential biomarker if available.

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Cancer</th>
<th>Biomarker</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDK4/6i plus aromatase inhibitor or SERD</td>
<td>Hormone receptor positive advanced breast cancer</td>
<td>ER positive</td>
<td>Phase I, II and III, 161, 167 Preclinical 126</td>
</tr>
<tr>
<td>CDK4/6i plus endocrine therapy, plus PIK3CA/mTOR inhibitor</td>
<td>Hormone receptor positive advanced breast cancer</td>
<td>ER positive</td>
<td>Phase I, 126, 131, 179 Preclinical</td>
</tr>
<tr>
<td>CDK4/6i plus HER2-directed therapy</td>
<td>HER2+ve breast cancer</td>
<td>HER2-amplification</td>
<td>Preclinical 126, 124</td>
</tr>
<tr>
<td>CDK4/6i plus bortezomib or dexamethasone</td>
<td>Myeloma</td>
<td>None</td>
<td>Phase I/II, 146, 147 Preclinical</td>
</tr>
<tr>
<td>CDK4/6i alone or in combination with ibrutinib and PI3K inhibition</td>
<td>Mantle cell lymphoma</td>
<td>t(11:14) deregulating CCND1 Mutated Bruton tyrosine kinase</td>
<td>Phase I, Preclinical 142, 185, 186</td>
</tr>
<tr>
<td>CDK4/6i alone</td>
<td>Acute lymphoblastic leukaemia</td>
<td>None</td>
<td>Preclinical 139, 96</td>
</tr>
<tr>
<td>Combined CDK4/6i and FLT3 inhibition</td>
<td>Acute myeloid leukaemia</td>
<td>FLT3</td>
<td>Preclinical 148, 193</td>
</tr>
<tr>
<td>CDK4/6i alone</td>
<td>Liposarcoma</td>
<td>Not clear, CDK4 amplification highly prevalent</td>
<td>Phase II, Preclinical 167</td>
</tr>
<tr>
<td>CDK4/6i alone</td>
<td>Fusion positive rhabdomyosarcoma</td>
<td>Absence of CDK4 amplification</td>
<td>Preclinical 118</td>
</tr>
<tr>
<td>CDK4/6i alone</td>
<td>Teratoma</td>
<td>RB replete</td>
<td>Phase I and II, 162, 164-166</td>
</tr>
<tr>
<td>CDK4/6i alone</td>
<td>Glioma</td>
<td>P16-deficient RB replete</td>
<td>Preclinical 112, 143, 144, 194</td>
</tr>
<tr>
<td>CDK4/6i plus MEK inhibitor or BRAF inhibitor</td>
<td>Melanoma</td>
<td>NRAS mutation</td>
<td>Phase I, 159, 170 Preclinical</td>
</tr>
<tr>
<td>CDK4/6i alone</td>
<td>Oesophageal adenocarcinoma</td>
<td>RB-replete</td>
<td>Preclinical 195</td>
</tr>
<tr>
<td>CDK4/6i alone</td>
<td>Cancer Type</td>
<td>Genomic Alteration</td>
<td>Status</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Neuroblastoma</td>
<td>Amplification of MYCN</td>
<td>Preclinical</td>
<td></td>
</tr>
<tr>
<td>NSCLC</td>
<td>KRAS mutation</td>
<td>Preclinical (^1\text{90, 191})</td>
<td></td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>KRAS mutation</td>
<td>Preclinical (^1\text{44})</td>
<td></td>
</tr>
<tr>
<td>Pancreatic cancer</td>
<td>CDKN2A mutation</td>
<td>Preclinical (^1\text{96, 197})</td>
<td></td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td>RB replete</td>
<td>Preclinical (^1\text{27})</td>
<td></td>
</tr>
<tr>
<td>Renal cell carcinoma</td>
<td>Low expression/loss of p15, p16 and E2F1</td>
<td>Preclinical (^1\text{43})</td>
<td></td>
</tr>
<tr>
<td>Hepatocellular carcinoma</td>
<td>None</td>
<td>Preclinical (^1\text{90d})</td>
<td></td>
</tr>
<tr>
<td>Prostate cancer</td>
<td>RB replete</td>
<td>Preclinical (^1\text{43})</td>
<td></td>
</tr>
</tbody>
</table>