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ABSTRACT 

Many cancers share specific genetic risk factors including both rare high-penetrance mutations 

and common single nucleotide polymorphisms (SNPs) identified through genome-wide 

association studies (GWAS). However, little is known about the overall shared heritability across 

cancers. Quantifying the extent to which two distinct cancers share genetic origin will give 

insights to shared biological mechanisms underlying cancer and inform design for future genetic 

association studies. In this study, we estimated the pair-wise genetic correlation between six 

cancer types (breast, colorectal, lung, ovarian, pancreatic and prostate) using cancer-specific 

GWAS summary statistics data based on 66,958 case and 70,665 control subjects of European 

ancestry. We also estimated genetic correlations between cancers and 14 non-cancer diseases and 

traits. After adjusting for 15 pair-wise genetic correlation tests between cancers, we found 

significant (p<0.003) genetic correlations between pancreatic and colorectal cancer (rg=0.55, 

p=0.003), lung and colorectal cancer (rg=0.31, p=0.001). We also found suggestive genetic 

correlations between lung and breast cancer (rg=0.27, p=0.009), and colorectal and breast cancer 

(rg=0.22, p=0.01). In contrast, we found no evidence that prostate cancer shared an appreciable 

proportion of heritability with other cancers. After adjusting for 84 tests studying genetic 

correlations between cancer types and other traits (Bonferroni-corrected p-value: 0.0006), only 

the genetic correlation between lung cancer and smoking remained significant (rg=0.41, 

p=1.03x10
-6

). We also observed nominally significant genetic correlations between body mass 

index (BMI) and all cancers except ovarian cancer. Our results highlight novel genetic 

correlations and lend support to previous observational studies that have observed links between 

cancers and risk factors.  
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INTRODUCTION 

In the US, cancer remains the second leading cause of death with an estimated 1.69 million new 

cancer diagnoses and 600,000 cancer deaths in 2017 (1). Six cancer types—breast, colorectal, 

lung, ovarian, pancreatic and prostate cancer—together constitute more than 50% of annual 

cancer diagnoses (1). The etiologies of these cancers are complex and associated heritability 

estimates (2) from twin studies range between 0.15 (colon) and 0.57 (prostate), indicating genetic 

components. For pancreatic cancer, data have been too sparse to estimate heritability based on 

twin studies. However, Mucci and colleagues (2) did observe significant, albeit lower relative to 

other cancers, familial risks for pancreatic cancer. These results are supported by a meta-analysis 

based on more than 6,500 cases, where having a relative diagnosed with pancreatic cancer was 

associated with a 1.8-fold (95% CI: 1.5-2.1) risk increase of pancreatic cancer (3). 

Various cancers share both environmental and genetic risk factors including rare high-penetrant 

mutations in genes such as BRCA2 which predisposes to breast, ovarian, lung, prostate and 

pancreatic cancers (4). Genome-wide association studies (GWAS) have identified more 350 

distinct (reported SNPs > 500kb apart) genomic regions that are associated with cancer (5) of 

which several are shared between cancer types (6). For example, the 8q24 (7-9) and TERT (10-

13) regions have been associated with multiple cancer types (pleiotropy), although specific 

alleles often differ. In contrast to pleiotropy, which does not take the direction of association into 

account, genetic correlation describes the genome-wide correlation in allele effects and thus, 

considers the allele-specific direction of association between two traits. Thus, the shared genetic 

etiology between two traits can be either due to a shared genetic variant (or variants) with non-

equal non-zero effect sizes (pleiotropy) or via a correlation between effect sizes for causal 

variants (genetic correlation) (14). Identifying genetic regions that are associated with multiple 

cancer types may be useful for determining mechanisms involved in global carcinogenesis. 

However, the benefit of simultaneously studying multiple cancer types relies on their genetic 

correlation.  

With the introduction of GWAS, it is now possible to quantify the phenotypic variance explained 

by genotyped single nucleotide polymorphisms (SNPs) in single trait (ℎ𝑔
2) (15-17) and two trait 

(rg) (18) settings by using variance component methods. Lu and colleagues (19) used this 
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approach to estimate ℎ𝑔
2 for 12 cancers and found significant non-zero genetic contribution for 

eight of them. However, their average sample size for each cancer was only 1,793 cases (range: 

564-2,848) and 2,200 controls (range: 574-3,159), leading to imprecise heritability estimates. 

Sampson and colleagues (20) estimated the genetic correlation across 13 different cancers in an 

average sample size across cancers of 3,807 (range: 535-5,942) cases and 2,625 (range: 1,056-

10,857) controls. Although no genetic correlation withstood multiple testing after adjusting for 

91 tests, they observed the strongest genetic correlations (all p<0.01) between kidney and testis 

cancer (rg=0.73, SE=0.28), diffuse large B-cell lymphoma and osteosarcoma (rg=0.53, SE=0.21), 

diffuse large B-cell lymphoma and chronic lymphocytic leukemia (rg=0.51, SE=0.18), and 

bladder and lung (rg=0.35, SE=0.14) cancer. 

The sample sizes of these prior studies make interpretation of their findings difficult. Indeed, a 

drawback with the variance component approach is its requirement for individual-level data, 

which prohibits researchers from leveraging GWAS results based on meta-analyses which are 

often based on much larger sample sizes. The recently developed cross-trait linkage 

disequilibrium (LD) score regression approach overcomes this limitation by estimating the 

proportion of phenotypic variance explained by common SNPs (21) and the genetic correlation 

between two traits (22) using summary statistics only. Here, we set out to quantify the pair-wise 

genetic correlation between across breast, colorectal, lung, ovarian, pancreatic and prostate 

cancer, capitalizing on summary statistics obtained from GWAS data in 66,958 case and 70,665 

control subjects obtained from the GAME-ON, PanScan and GECCO consortia. In addition, we 

estimated the genetic correlation between each of these cancers and 14 non-cancer traits which 

have all been suggested to be linked to cancer and for which we had access to GWAS summary 

statistics. 
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MATERIAL AND METHODS 

The GAME-ON network of consortia for post-GWA research, PanScan and GECCO 

We utilized three large-scale cancer genetic epidemiological consortia: GAME-ON, PanScan III 

and GECCO.  The Genetic Associations and Mechanisms in Oncology (GAME-ON) consortia is 

a network of cancer-specific post-GWAS initiatives. The five GAME-ON sites are breast 

(DRIVE), colorectal (CORECT), lung (TRICL-ILLCO), ovarian (FOCI) and prostate (ELLIPSE) 

(23). One of the main goals with GAME-ON was to test hypotheses across the cancer types that 

might illuminate common mechanisms of susceptibility. PanScan is a part of The Pancreatic 

Cancer Cohort Consortium with the goal of conducting GWAS to identify susceptibility markers 

for pancreatic cancer. For this study, we utilized genome-wide summary statistics from PanScan 

III (24). The Genetic Epidemiology of Colorectal Cancer Consortium (GECCO) is a large 

collaborative consortium evaluating genetic and environmental risk factors for colorectal cancer 

(25). Details of GAME-ON, PanScan, GECCO and the participating studies are available 

at http://epi.grants.cancer.gov/gameon/, http://epi.grants.cancer.gov/PanScan/ and https://www.fr

edhutch.org/en/labs/phs/projects/cancer-prevention/projects/gecco.html. Sample sizes for each 

cancer is listed in Table 1. These studies have been described in detail previously (23). For each 

cancer type, genotyping was performed using Illumina or Affymetrix arrays of varying densities 

described elsewhere (23,26,27). For all studies except GECCO, imputation was performed using 

the 1,000 Genomes Project Phase 1 version 3 reference haplotypes, resulting in up to ~10 million 

SNPs available for the analysis for each cancer type. For GECCO, data was imputed using an in-

house reference panel of 2,159 whole-genome sequenced European-ancestry GECCO 

participants (28). Since imputation quality scores were not readily accessible across all GWAS, 

we only included HapMap 3 SNPs as a proxy for well-imputed SNPs (29). 

NON-CANCER TRAITS 

We also estimated the genetic correlations between the six cancer types and 14 non-cancer traits 

(29) for which GWAS summary statistics were publicly available (Supplementary Table S1). 

The included traits were schizophrenia, bipolar disorder, coronary artery disease, type 2 diabetes, 

Crohn’s disease, ulcerative colitis, rheumatoid arthritis, ever/never smoked tobacco, height, BMI, 

http://epi.grants.cancer.gov/gameon/
http://epi.grants.cancer.gov/PanScan/
https://www.fredhutch.org/en/labs/phs/projects/cancer-prevention/projects/gecco.html
https://www.fredhutch.org/en/labs/phs/projects/cancer-prevention/projects/gecco.html
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fasting serum glucose, triglycerides, LDL cholesterol and HDL cholesterol. The average sample 

size for the non-cancer traits was 70,488 subjects. 

STATISTICAL METHODS 

Associations between SNPs and cancer risk were estimated by unconditional logistic regression 

adjusted for age, sex (when applicable), and top principal components (ranging from two to six 

across contributing GWAS) to adjust for potential population stratification. We used a newly 

developed method for estimating heritability due to common SNPs and genetic correlations that 

employs only summary statistics together with linkage disequilibrium (LD) information from a 

reference panel (21,22). This method, known as LD score regression, relies on the fact that SNP-

specific association statistics reflect the associations of all SNPs in LD with that SNP. Thus, for a 

polygenic trait, SNPs in high-LD regions will on average have higher χ
2
 statistics than SNPs in 

low-LD regions and similarly, for two polygenic, genetically correlated traits with z-scores z1 and 

z2, the product z1z2 will on average be higher for SNPs with high LD than SNPs with low LD. 

Formally, the relationship between the expected χ
2
 statistic for SNP j and the LD score 𝑙(𝑗) for 

SNP j can be described by 𝐸[𝜒𝑗
2] ≈

𝑁𝑗ℎ𝑔
2

𝑀
𝑙𝑗 + 1, where 𝑁j is the sample size, ℎ𝑔

2 is the heritability 

due to included SNPs, M is the number of SNPs and 𝑙(𝑗) ≔ ∑ 𝑟2(𝑗, 𝑘)𝑘  where 𝑟2(𝑗, 𝑘) is the 

correlation between SNP j and all other SNPs i. Since the observed SNP heritability estimates for 

binary traits are not directly comparable to more traditional estimates of heritability (e.g. from 

twin studies), we transformed the observed heritability to the liability scale which takes both 

ascertainment and disease prevalence into account as previously described (30). To obtain 

estimates of cancer-specific prevalence, we used SEER cumulative risks (31). We can extend the 

calculations of single-trait heritability to include two traits: 𝐸[𝑧1𝑗𝑧2𝑗] =
√𝑁1𝑁2𝑟𝑔

𝑀
𝑙𝑗 +

𝑁𝑠𝜌

𝑁1𝑁2
, where 

𝑟𝑔is the genetic covariance, 𝑁1 and 𝑁2 are sample sizes for trait 1 and 2 respectively, 𝑁𝑠 is the 

number of overlapping samples and 𝜌 is the phenotypic correlation in the overlapping samples. 

We estimate 𝑟𝑔 by the slope of the regression of 𝑧1𝑗𝑧2𝑗  on the LD score and tested for its 

difference from 0, as described previously (22). In total, we conducted 15 pair-wise genetic 

correlation tests between cancers types at a significance threshold of p=0.05/15=0.003. In our 

secondary analyses, estimating genetic correlations between cancer and non-cancer traits, we 
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conducted 84 tests and for these analyses, we considered p-values less than p=0.05/84=0.0006 

significant. For all analysis, we only included SNPs from HapMap3.  
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RESULTS 

Cancer-specific GWAS summary statistics from data of 66,958 case and 70,665 control subjects 

across six cancer types were shared between the cancer sites. We first estimated the heritability 

due to common SNPs (ℎ𝑔
2) on the observed and liability scale (Table 1) using cancer-specific 

cumulative risks (Supplementary Table S2) as reported in SEER (31). Heritability estimates on 

the liability scale ranged between 0.04 (pancreatic cancer) and 0.27 (prostate cancer). Using 

cross-trait LD score regression, we quantified the pair-wise genetic correlations between breast, 

colorectal, lung, ovarian, pancreatic and prostate cancer. A summary of the results is displayed as 

a 6x6 matrix (Table 2) with the estimated pair-wise genetic correlations and associated standard 

errors in the upper right corner of the matrix, and corresponding p-values for each genetic 

correlation can be seen in the lower left corner of the matrix. We found significant positive 

genetic correlations between pancreatic and colorectal cancer (rg=0.55, p=0.003), lung and 

colorectal cancer (rg=0.31, p=0.001), as well as suggestive positive genetic correlations between 

lung and breast cancer (rg=0.27, p=0.009), and colorectal and breast cancer (rg=0.22, p=0.01). 

We also estimated the genetic correlation between each of these six cancer types and 14 other 

diseases and traits implicated to be linked to cancer (schizophrenia, bipolar disorder, coronary 

artery disease, type 2 diabetes, Crohn’s disease, ulcerative colitis, rheumatoid arthritis, 

ever/never smoked tobacco, height, body mass index (BMI), fasting serum glucose, triglycerides, 

LDL cholesterol and HDL cholesterol (Figure 1, Table 3, Supplementary Tables S1 and S3). The 

strongest positive genetic correlation was, as expected, between lung cancer and smoking status 

(never/ever; rg=0.41, p=1.03x10
-6

), which was the only correlation to remain significant after 

adjusting for multiple testing. Other nominally significant genetic correlations with lung cancer 

were with BMI (rg=0.12, p=0.03) and an inverse genetic correlation with HDL levels (rg=-0.15, 

p=0.02). For breast cancer, we observed positive genetic correlations with ulcerative colitis 

(rg=0.24, p=0.002), schizophrenia (rg=0.14, p=0.004) and height (rg=0.14, p=0.01). In contrast, 

triglycerides (rg=-0.13, p=0.03) and BMI (rg=-0.11, p=0.04) both had inverse genetic correlations 

with breast cancer. For colorectal cancer, we observed positive genetic correlations with BMI 

(rg=0.16, p=6.2x10
-4

) and triglycerides (rg=0.13, p=0.03) and an inverse genetic correlation with 

schizophrenia (rg=-0.09, p=0.05). Ovarian cancer showed positive genetic correlations with type 

2 diabetes (rg=0.47, p=0.01) and ulcerative colitis (rg=0.29, p=0.03). For pancreatic cancer, we 
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observed a positive genetic correlation with BMI (rg=0.24, p=0.04) and an inverse genetic 

correlation with HDL levels (rg=-0.41, p=0.02). Finally, prostate cancer showed an inverse 

correlation with BMI (rg=-0.08, p=0.04). 
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DISCUSSION 

It is well known that cancer tends to cluster in families, which has been attributed to shared 

environmental factors and genetics (2). Many lifestyle factors associated with cancer including 

smoking, obesity and alcohol intake have been shown to influence risk of multiple cancer types, 

implying that different cancer types share an underlying biological mechanism. Similarly, 

genetic variation in genes such as BRCA1/2 and TERT has been associated with risks of multiple 

different cancer types, providing empirical support that there are specific regions in the genome 

that harbor genetic variation influencing risk of multiple cancer sites. However, although many 

cancer types might share susceptibility loci (i.e. pleiotropy), their genetic correlation, which 

depends on specific risk alleles and their direction of associations, might not be strong. Here, we 

aimed to assess the latter among six cancers, breast, colorectal, lung, ovary, pancreatic and 

prostate, as well as between cancer types and seven additional disease and seven non-disease 

traits that have all been found to have heritable components. 

We used SEER estimates (31) to obtain cancer-specific cumulative risks, recognizing that not all 

study subjects came from US populations. For comparison, we also calculated the heritability on 

the liability scale using cumulative risks obtained from Mucci et al (2). No qualitative difference 

was observed for the liability estimates using the two different sources of cumulative risks. In 

concordance with previous studies, the cancer-specific heritability estimates observed here were 

lower than what has been observed in twin studies. This is not unexpected given that here, we are 

only estimating the additive genetic component based on common SNPs captured by GWAS, 

and thus, any contribution to the heritability based on factors such as gene-gene interactions, 

gene-environment interactions, structural variants or rare variants, will not be captured by our 

analysis. Among the studied cancers, we observed the largest heritability for prostate cancer 

(ℎ𝑔
2=0.27) in agreement with previous twin studies (2). We also compared our cancer-specific 

heritability results to previous studies estimating heritability based on GWAS data. In general, 

our results were comparable with previous studies. Lu and colleagues (19) estimated ℎ𝑔
2 for 

breast cancer to be 0.13 (95% CI: 0-0.56) compared to our estimate of 0.14 (95% CI: 0.09-0.18). 

For lung cancer, previous estimates have varied with Lu et al(19) estimating ℎ𝑔
2 to 0.10 (95% CI: 

0-0.24) in European populations while Sampson et al (20) estimated ℎ𝑔
2 to be 0.21 (95% CI: 

0.14-0.27), compared to our estimate of 0.13 (95% CI: 0.08-0.19). For ovarian cancer, we 
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observed a small heritability (ℎ𝑔
2=0.07, 95% CI: 0.02-0.12) compared to Lu and colleagues (19) 

(ℎ𝑔
2=0.30, 95% CI: 0.18-0.42). It is not clear why we observe this discrepancy in results. We also 

observed lower ℎ𝑔
2 

of pancreatic cancer (0.05, 95% CI: 0-0.10) than previously observed (0.18, 

95% CI: 0.06-0.30 for Lu and colleagues (19) and 0.10, 95% CI: 0.04-0.16 for Sampson et al 

(20)) but we note that the confidence intervals are wide and overlap. For prostate cancer, we 

observed a heritability of 0.27 (95% CI: 0.21-0.37) compared to Lu (19) (0.81, 95% CI: 0.32-1), 

and Sampson (20)(0.29, 95% CI: 0.15-0.42). We note that heritability estimates reported here are 

all on the liability scale and were calculated using SEER rates for all three studies including ours.  

We found that colorectal cancer showed significant genetic correlations with pancreatic and lung 

cancers, with the largest genetic correlation observed for the two gastrointestinal tract cancers: 

the rg for colorectal and pancreatic cancer was 0.55 (p=0.003). Amundadottir and colleagues 

studied cancer risk for first up to fifth degree relatives in an Icelandic population and observed an 

increased risk for pancreatic cancer among colon cancer patients (and vice versa) for first degree 

relatives but not beyond (32). Colorectal cancer patients have been observed to have a higher 

incidence of pancreatic cancer than the general population (33). Further, Lynch syndrome, the 

most common hereditary colorectal cancer syndrome, has also been shown to increase risk for 

pancreatic cancer (34). Obesity is a well-established risk factor for both colorectal and pancreatic 

cancer (35,36) and we observed nominally significant (p<0.05) genetic correlations between 

BMI and both colorectal and pancreatic cancer. 

Colorectal cancer also showed suggestive genetic correlation with breast cancer in agreement 

with the study from Amundadottir and colleagues (32). A recent study found that women 

diagnosed with breast cancer have a 1.59-fold (95% Confidence Interval (CI): 1.53-1.65) 

increased risk of developing colorectal cancer compared to the general population (37).  

Breast and lung cancer showed a suggestive positive genetic correlation (rg=0.27, 

p=0.009), supported by observational studies finding familial co-segregation of the two cancers 

(38,39) as well as overlap in multiple susceptibility genes such as BRCA2, CHEK2 

(40) and LSP1 (7). In contrast, Amundadottir and colleagues did not observe a significant co-

occurrence among relatives (32). A recent cross-cancer GWAS based on the GAME-ON data 

(23) identified a pleiotropic locus at 1q22 that was associated with both breast and lung cancer.  
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We expect these results to generate testable hypotheses about mechanisms. There are data to 

support inflammation response, DNA repair and stress responses, to list just a few. For example. 

the genetic correlations between breast, colorectal and lung cancer might be driven in part by 

genetic variants in the inflammation pathway. Indeed, a recent analysis of genetic variation in the 

inflammation pathway from the GAME-ON consortium identified SH2B3, a key negative 

regulator of cytokine signaling to be associated with all three cancers (41). Further, the authors 

found no evidence that genetic variation in inflammation-related genes was associated with 

prostate cancer risk. This observation corroborates our findings that prostate cancer does not 

share an appreciable genetic component with other cancers and supports inflammation to be a 

pathway in which genetic variation affects the risk of breast, colorectal and lung cancer. 

Removing all SNPs with a chi-square test statistic >25 in the individual cancer GWAS, did not 

change our results: Colorectal-breast cancer (rg=0.22 for all SNPs and rg=0.23 excluding 

significant SNPs); Colorectal-lung cancer (rg=0.31 for all SNPs and rg=0.34 excluding significant 

SNPs); Colorectal-pancreatic cancer (rg=0.55 for all SNPs and rg=0.58 excluding significant 

SNPs); Breast-lung cancer (rg=0.27 for all SNPs and rg=0.33 excluding significant SNPs). Thus, 

it is likely that the genetic correlations that we observe are due to yet unidentified SNPs, and 

future studies should focus on simultaneously study genetically correlated cancers with the goal 

of identifying SNPs that are associated with multiple cancer types.  

We did not observe evidence that either ovarian or prostate cancer shared an appreciable amount 

of heritability with other cancers, although our sample size for ovarian cancer was relatively 

small, leading to wide confidence intervals. We had higher statistical power to detect genetic 

correlations involving prostate cancer, but no estimate was >0.1, suggesting that prostate cancer 

has a genetic contribution that is distinct from that of other cancer types studied here. Witte and 

Hoffmann used polygenic risk scores to investigate a potential shared heritability between breast 

and prostate cancer, and although they observed a potential common polygenic model between 

non-aggressive prostate cancer and breast cancer, they observed no evidence of a common model 

between overall prostate cancer and breast cancer, consistent with our results here (42). It is 

important to note that our analysis does not capture rare higher penetrance mutations, and thus, 

the observed increased risk of multiple cancers among relatives to prostate cancer cases (32) is 

likely to at least in part be attributable to rare variants such as BRCA2. 
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In addition, we examined the genetic correlation between these cancer types and 14 non-cancer 

diseases and traits. The only genetic correlation between cancer and non-cancer traits that 

withstood correction for multiple testing was smoking status and lung cancer. The strongest lung 

cancer susceptibility locus is in the 15q25 region which contains genes encoding the nicotinic 

acetylcholine receptor subunits CHRNA5, CHRNA3 and CHRNB4 and has also been associated 

with smoking behavior with associations in the same direction (43-45). We found that BMI 

showed nominally significant genetic correlations with all cancers except ovarian cancer. While 

BMI showed positive genetic correlation with colorectal, lung and pancreatic cancer, it showed 

negative genetic correlations with breast and prostate cancer. These results mirror recent 

Mendelian randomization (MR) studies of BMI and colorectal (46), breast and lung cancer 

(47,48), providing further evidence that obesity is involved in cancer development. An MR study 

of prostate cancer found a non-significant lower risk associated with a BMI genetic score (Odds 

ratio (OR)=0.98; 95% CI: 0.96-1.00; p = 0.07) (49). Although the positive genetic correlation 

between BMI and lung cancer seems to contradict results from observational studies, the 

observational association between BMI and lung cancer might be due to residual confounding by 

smoking (35). BMI and smoking behavior have been shown to share a genetic basis (rg=0.20, 

p=8.3x10
-7

) (22) and further, cell-type enrichment heritability analysis have shown that both 

smoking behavior and BMI are enriched for central nervous system (CNS)-related cell types. 

Therefore, it is possible that smoking and BMI to some extent affect lung cancer risk through the 

same biological mechanism.  

We observed very few genetic correlations with prostate cancer compared with the other cancers 

of comparable sample size and no genetic correlation with non-cancer traits were >0.1. We also 

note the lack of genetic correlation between prostate cancer and type 2 diabetes (rg=0.03, 95% 

confidence interval: -0.10-0.15, p=0.67). The epidemiological inverse association between 

prostate cancer and type 2 diabetes is well-documented (50-53) and a previous study showed that 

10 out of 36 type 2 diabetes SNPs were associated (2 with increased risk and 8 with decreased 

risk) with advanced prostate cancer (54). The different directions of significant prostate cancer 

associations across type 2 diabetes SNPs are consistent with the lack of genetic correlation 

(which is sensitive to direction of effects) observed in this study. 
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Sampson and colleagues previously used individual-level GWAS data to estimate genetic 

correlations between 13 cancers in 49,492 cancer cases and 34,131 controls, including estrogen 

receptor negative (ER-) breast cancer, lung cancer, pancreatic and prostate cancer (20). 

Although, they did not observe the statistically significant genetic correlations between the 

cancers studied here, their standard errors were in general large, making it difficult to compare 

the results. We note that the ER- breast cancer and pancreatic datasets they used are a subset of 

the data analyzed here. While we had access to GWAS summary statistics based on cancer 

subtypes including ER- breast cancer, squamous cell lung cancer, lung adenocarcinoma, serous, 

clear cell and endometrioid ovarian cancer and aggressive prostate cancer, sample sizes for these 

subsets were too small for meaningful analysis. Based on our experience, LD score regression 

requires at least 10,000 cases for adequately stable estimates at these heritabilities. We note a 

few limitations with only having access to summary statistics data compared to individual-level 

data. Most importantly, the standard errors associated with the estimated genetic correlations 

based on LD score regression are larger than what is obtained by similar methods using 

individual-level data. In addition, we are not able to conduct any subtype analysis on the original 

traits that might be of interest, for example, it might have been of interest to study the genetic 

correlation between BMI and breast cancer stratified by menopausal status. LD score regression 

leverages summary statistics rather than individual-level data and thereby overcome many of the 

issues associated with relying on individual-level data. Moreover, appropriate QC steps were 

conducted as part of the cancer-specific GWAS meta-analysis. Further, we limited our analysis 

to HapMap 3 SNPs to ensure well-imputed data. 

In summary, our results indicate that some cancers show modest genetic correlations; in 

particular, breast, colorectal and lung cancer share some degree of genetic basis. In contrast, 

prostate cancer appears to have a unique genetic architecture that is not shared with breast, lung, 

ovarian and pancreatic cancer. Further, a number of cancer types show genetic correlations with 

obesity, highlighting the involvement of adiposity-related processes in cancer. As GWAS sample 

sizes continue to increase and GWAS summary statistics from other traits become available, we 

will be able to additionally characterize the shared heritability between cancer types including 

histologic subtypes as well as with non-cancer traits. 
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Table 1: Overview of cancers analyzed. Number of subjects, observed heritability (standard 

error) and heritability (95% CI) on the liability scale explained by studied SNPs for each cancer. 

Cumulative risks used for calculating ℎ𝑔
2 

on the liability scale were obtained from SEER.  

Cancer Type Cases Controls 
𝒉𝒈

𝟐  
(se) – observed 

scale 

𝒉𝒈
𝟐  (95% CI)– liability 

scale 

Breast 15,748 18,084 0.12 (0.02) 0.14 (0.09-0.18) 

Colorectal 15,716 18,154 0.13 (0.02) 0.11 (0.07-0.14) 

Lung 12,160 16,838 0.14 (0.03) 0.13 (0.08-0.19) 

Ovarian 4,369 9,123 0.10 (0.04) 0.07 (0.02-0.12) 

Pancreatic 5,107 8,845 0.07 (0.04) 0.05 (0-0.10) 

Prostate 14,160 12,724 0.25 (0.03) 0.27 (0.21-0.33) 
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Table 2: Genetic correlations between cancers. Genetic correlations with standard errors are in 

the upper right part of the table, corresponding p-values are in the lower left part of the table. 

 
Breast Colorectal Lung Ovarian Pancreatic Prostate 

Breast 1 0.22 (0.091) 0.27 (0.11) 0.26 (0.20) 0.17 (0.19) 0.06 (0.09) 

Colorectal 0.014 1 0.31 (0.097) -0.08 (0.13) 0.55 (0.19) 0.09 (0.07) 

Lung 0.009 0.001 1 -0.17 (0.17) 0.32 (0.19) 0.095 (0.08) 

Ovarian 0.18 0.57 0.32 1 -0.40 (0.29) 0.02 (0.14) 

Pancreatic 0.37 0.003 0.08 0.17 1 -0.06 (0.14) 

Prostate 0.52 0.2 0.25 0.89 0.68 1 
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Table 3: Nominally significant genetic correlations between cancers and non-cancer traits. 

For each cancer-trait genetic correlation observed, current evidence from observational studies 

and corresponding reference are also listed. P values are not corrected for multiple testing. 

Cancer 
Non-cancer 

trait 
rg se p 

Epidemiological 

observations 
Reference 

Breast Cancer 
Ulcerative 

Colitis 
0.243 0.08 0.002 + (55) 

Breast cancer Schizophrenia 0.142 0.049 0.004 + (56) 

Breast cancer Height 0.143 0.055 0.01 + (57) 

Breast cancer Triglycerides -0.13 0.061 0.033 - (58) 

Breast cancer BMI -0.112 0.053 0.035 
- (premenopausal) 

+ (postmenopausal) 
(35) 

Colorectal 

cancer 
BMI 0.157 0.046 6.22E-04 + (35) 

Colorectal 

cancer 
Triglycerides 0.126 0.058 0.029 + (59) 

Colorectal 

cancer 
Schizophrenia -0.091 0.046 0.048 No association (56) 

Lung cancer 
Ever/Never 

Smoked 
0.412 0.084 1.03E-06 + (60) 

Lung cancer HDL -0.151 0.063 0.017 - (59) 

Lung cancer BMI 0.116 0.054 0.032 

- (smokers) 

 No association (non-

smokers) 

(35) 

Ovarian cancer 
Type-2 

Diabetes 
0.469 0.191 0.014 + (61) 

Ovarian cancer 
Ulcerative 

Colitis 
0.291 0.137 0.034 No association (55) 

Pancreatic 

cancer 
HDL -0.405 0.167 0.015 Unknown N/A 

Pancreatic 

cancer 
BMI 0.243 0.117 0.038 + (35) 

Prostate cancer BMI -0.083 0.04 0.039 - (35) 
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Figure 1: “Genetic correlations between cancers and non-cancer traits. Nominally significant 

genetic correlations (p<0.05) are highlighted with *.” 

 

 

 

 

 

 


