
Online Methods 
 
Study subjects 
Supplementary Table 1 summarises the studies from the Breast Cancer Association 
Consortium (BCAC) that contributed data. The majority were case-control studies. 
Sixty-eight BCAC studies participated in the ER-negative breast cancer component 
of the OncoArray, contributing 9,655 cases and 45,494 controls. All studies provided 
core data on disease status and age at diagnosis/observation, and the majority 
provided information on clinico-pathological and lifestyle factors, which have been 
curated and incorporated into the BCAC database (version 6). Estrogen receptor 
status for most (~70%) cases was obtained from clinical records. After removal of 
overlapping participants, genotype data were also available from eight GWASs1-5 
(4,480 ER-negative cases and 12,632 controls) and 40 studies previously genotyped 
using the Illumina iCOGS custom array6 (7,333 ER-negative cases and 42,468 
controls).  
 
A total of 21,468 ER-negative cases were included in the combined analyses.  Of 
those 5,793 had tumours that were also negative for progesterone receptor (PR) and 
human epidermal growth factor receptor 2 (HER2) and were defined as triple-
negative (TN). PR and HER2 status was also obtained predominantly from clinical 
records. A further 4,217 were positive for PR or HER and were considered non-TN. 
The remainder had unknown PR or HER status. All participating studies were 
approved by their appropriate ethics review boards and all subjects provided 
informed consent.  
 
Subjects included from the Consortium of Investigators of Modifiers of BRCA1/2 
(CIMBA) were women of European ancestry aged 18 years or older with a 
pathogenic variant in BRCA1. The majority of the participants were sampled through 
cancer genetics clinics. Multiple members of the same families were included in 
some instances. Fifty-eight studies from 24 countries contributed Oncoarray 
genotype data. After quality control (see below) and removal of overlapping 
participants with the BCAC OncoArray study, data were available on 15,566 BRCA1 
mutation carriers, of whom 7,784 were affected with breast cancer (Supplementary 
Table 2). We also obtained iCOGS genotype data on 3,342 BRCA1 mutation carriers 
(1,630 with breast cancer) from 54 studies through CIMBA. All mutation carriers 
provided written informed consent and participated under ethically approved 
protocols. 
 
OncoArray SNP selection 
Approximately 50% of the SNPs for the OncoArray were selected as a “GWAS 
backbone” (Illumina HumanCore), which aimed to provide high coverage for the 
majority of common variants through imputation. The remaining allocation was 
selected from lists supplied by each of six disease-based consortia, together with a 
seventh lists of SNPs of interest to multiple disease groups. Approximately 72k 
SNPs were selected specifically for their relevance to breast cancer, based on prior 
evidence of association with overall or subtype-specific disease, with breast density 
or with breast tissue specific gene expression. Lists were merged with lists from the 
other consortia as described elsewhere7.  
 
Genotype calling and quality control 



Details of the genotype calling and quality control (QC) for the iCOGS and GWAS 
are described elsewhere6,8-10. 
 
Of the 568,712 variants selected for genotyping on OncoArray, 533,631 were 
successfully manufactured on the array (including 778 duplicate probes). OncoArray 
genotyping of BCAC and CIMBA samples was conducted at six sites. Details of the 
genotyping calling for the OncoArray are described in more detail elsewhere7. 
Briefly, we developed a single calling pipeline that was applied to more than 500,000 
samples. An initial cluster file was generated using from 56,284 samples, selected 
over all the major genotyping centres and ethnicities, using the Gentrain2 algorithm. 
Variants likely to have problematic clusters were selected for manual inspection 
using the following criteria: call rate below 99%, minor allele frequency (MAF) 
<0.001, poor Illumina intensity and clustering metrics, deviation from the MAF 

observed in the 1000 Genomes Project using the criterion: 
(|𝑝1−𝑝0|−0.01)

2

((𝑝1+𝑝0)(2−𝑝1−𝑝0))
> 𝐶, 

where p0 and p1 are the minor frequencies in the 1000 Genome Project and 
Oncoarray datasets, respectively, and C=0.008. (This latter criterion is approximately 
equivalent to excluding SNPs on the basis of a Chi-square statistic of 16 for the 
difference in allele frequencies, assuming 1,000 samples in each group). This 
resulted in manual adjustment of the cluster file for 3,964 variants, and the exclusion 
of 16,526 variants. The final cluster file was then applied to the full dataset. 
 
We excluded SNPs with a call rate <95% in any consortium, not in Hardy-Weinberg 
equilibrium (P<10-7 in controls, or P<10-12 in cases) or with concordance <98% 
among 5,280 duplicate pairs. For the imputation, we additionally excluded SNPs with 
a MAF<1% and a call rate <98% in any consortium, SNPs that could not be linked to 
the 1000 Genomes Project reference, those with MAF for Europeans that  differed 
from that for the 1000 Genomes Project and a further 1,128 SNPs where the cluster 
plot was judged to be not ideal. Of the 533,631 SNPs which were manufactured on 
the array, 494,763 passed the initial QC and 469,364 were used in the imputation 
(see below). 
 
For BCAC, we excluded probable duplicate samples and close relatives within each 
study, and probable duplicates between studies. These were identified by identity by 
state (IBS) analysis using a set of approximately 38,000 uncorrelated (r2<0.1) SNPs 
for OncoArray and iCOGS and 16,000 SNPs for GWAS. Based on inspection of the 
distribution of IBS values, we identified first-degree relative pairs using the criterion 
0.82<IBS<0.90 for OncoArray and 0.85<IBS<0.90 for iCOGS; similar criteria were 
used for each GWAS (with limits depending on the IBS distribution in that study).  
 
We applied LD score regression to the summary results from GWAS, iCOGS and 
OncoArray to assess the evidence of overlap in individuals between the three 
datasets. We conducted three pair-wise cross-trait regression analyses (GWAS-
iCOGS, GWAS-OncoArray and iCOGS-OncoArray) and used the intercept from the 
regression analysis to estimate the amount of overlap11. Assuming that the 
phenotypic correlation is 1 (that is, a case is a case in all datasets and a control is a 
control in all datasets), we found that for GWAS-iCOGS, the estimated overlap was 
1.5% of individuals, for GWAS-OncoArray, the estimated overlap was 3.8% of 
individuals, and for iCOGS-OncoArray, the estimated overlap was 0.2% of 



individuals. It is unlikely that this degree of overlap would have influenced the results 
obtained from our analyses.  
 
We also excluded samples with a call rate <95% and samples with extreme 
heterozygosity (>4.9 standard deviations from the mean for the reported ethnicity).  
Ancestry analysis was performed using a standardized approach in which 2,318 
ancestry informative markers with minor allele frequencies of 0.05 on a subset of 
~66,000 samples including 505 Hapmap 2 samples. The contribution of each of the 
three major continental ancestry groups (European, Asian and African) was 
estimated by mapping each individual to regions of a triangle based on the first two 
principal components, as implemented in the software package FastPop 
(http://sourceforge.net/projects/fastpop/)12. Individuals were thus classified into 4 
groups: European (defined as >80% European ancestry), East Asian (>40% Asian 
ancestry), African (>20% African ancestry) and other (not fulfilling any of the above 
criteria)7. Of the 152,492 samples genotyped, the final dataset consisted of 142,072 
samples, of which 9,655 ER-negative cases and 45,494 controls of European origin 
had not been included in a previous GWAS and had not been genotyped using 
iCOGS and were included in this analysis. 
 
For the CIMBA samples we excluded individuals of non-European ancestry using 
multi-dimensional scaling.  For this purpose we selected 30,733 uncorrelated 
autosomal SNPs (pair-wise r2< 0.10) to compute the genomic kinship between all 
pairs of BRCA1 and BRCA2 carriers, along with 267 HapMap samples (CHB, JPT, 
YRI and CEU). These were converted to distances and subjected to 
multidimensional scaling. Using the first two components, we calculated the 
proportion of European ancestry for each individual and excluded samples with 
>27% non-European ancestry to ensure that samples of Ashkenazi Jewish ancestry 
were included in the final sample.  
 
Imputation 
Genotypes for ~21M SNPs were imputed for all samples using the October 2014 
(Phase 3) release of the 1000 Genomes Project data as the reference panel and 
Nhap=800. The iCOGS, OncoArray and six of the GWAS datasets were imputed 
using a two-stage imputation approach, using SHAPEIT13 for phasing and 
IMPUTEv214 for imputation. The imputation was performed in 5Mb non-overlapping 
intervals. All subjects were split into subsets of ~10,000 samples, with subjects from 
the same grouped in the subset. The Breast and Prostate Cancer Cohort Consortium 
(BPC3) and Breast Cancer Family Registry (BCFR) GWAS performed the imputation 
separately using MACH and Minimac15,16. We imputed genotypes for all SNPs that 
were polymorphic (MAF>0.1%) in either European or Asian samples. For the BCAC 
GWAS, data were included in the analysis for all SNPs with MAF>0.01 and 
imputation r2>0.3. For iCOGS and OncoArray we included data for all SNPs with 
imputation r2>0.3 and MAF>0.005.  
 
Statistical analyses of BCAC data 
Per-allele odds ratios and standard errors were generated for the Oncoarray, iCOGS 
and each GWAS, adjusting for principal components using logistic regression. The 
Oncorray and iCOGS analyses were additionally adjusted for country and study, 
respectively. For the OncoArray dataset, principal components analysis was 
performed using data for 33,661 SNPs (which included the 2,318 markers of 
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continental ancestry) with a MAF≥0.05 and maximum correlation of 0.1, using 
purpose-written software to allow standard calculations to be performed sufficiently 
rapidly on a very large dataset (http://ccge.medschl.cam.ac.uk/software/pccalc/). We 
used the first 10 principal components, as additional components did not further 
reduce inflation in the test statistics. We used nine principal components for the 
iCOGS and up to 10 principal components for the other GWAS, where this was 
found to reduce inflation. 
 
OR estimates were derived using MACH for the BCFR GWAS, ProbABEL17 for the 
BPC3 GWAS, SNPTEST 
(https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html) for the 
remaining GWAS and purpose written software for the iCOGS and Oncoarray 
datasets. OR estimates and standard errors were combined by a fixed effects 
inverse variance meta-analysis using METAL18. This was first done across the eight 
GWAS, applying genomic control, as described previously6. It was then applied 
(without genomic control) to combine findings from the three BCAC genotyping 
initiatives (GWAS, iCOGS, OncoArray).  
 
The independence of signals from two variants at 11q22.3 was by fitting the logistic 
regression models described above with both variants as covariates. This was done 
separately for iCOGS and OncoArray data and results for each variant combined by 
meta-analysis. 
 
For selected SNPs we estimated per-allele ORs by ER-status using all available 
BCAC data for 82,263 cases with known ER status and 87,962 controls from the 
iCOGS and OncoArray studies. We also estimated the per-allele ORs by TN status 
(TN versus other ER-negative subtypes) and tumour grade, using available BCAC 
data for ER-negative cases and corresponding controls. Tests for heterogeneity by 
subtype were derived by applying logistic regression to cases only. This was done 
separately for the iCOGS and Oncoarray datasets, adjusted as before, and then 
combined in a fixed-effects meta-analysis. Multinomial regression was applied to 
cases only to test a linear trend for grade, with the model constrained so that the 
difference between grade 1 and 3 was double that for the difference between grade 
2 and 3; this method was also used to test for a linear trend with age with ordinal 
values 1, 2, 3 and 4 representing ages <40, 40-49, 50-59 and ≥60, respectively. 
 
Statistical analyses of CIMBA data 
Associations between genotypes and breast cancer risk for BRCA1 mutation carriers 
were evaluated using a 1df per allele trend-test (P-trend), based on modeling the 
retrospective likelihood of the observed genotypes conditional on breast cancer 
phenotypes19. This was done separately for iCOGS and OncoArray data. To allow 
for the non-independence among related individuals, an adjusted test statistic was 
used which took into account the correlation in genotypes20. All analyses were 
stratified by country of residence and, for countries where strata were sufficiently 
large (USA and Canada), by Ashkenazi Jewish ancestry.  The results from the 
iCOGS and OncoArray datasets were then pooled using fixed effects meta-analysis. 
We repeated these analyses modelling ovarian cancer as a competing risk and 
observed no substantial difference in the results obtained.  
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The independence of signals from two variants at 11q22.3 was assessed using 
OncoArray data only, fitting a Cox regression model with per-allele effects for both 
variants, adjusting for birth cohort, stratified by country of residence and using robust 
standard errors and clustered observations for relatives. This approach provides 
valid significance tests of associations, although the HR estimates can be biased21.  
 
Meta-analysis of BCAC and CIMBA 
A fixed effects meta-analysis of results from BCAC and CIMBA was conducted using 
an inverse variance approach assuming fixed effects, as implemented in METAL18. 
The effect estimates used were the logarithm of the per-allele hazard ratio (HR) 
estimate for the association with breast cancer risk in BRCA1 mutation carriers from 
CIMBA and the logarithm of the per-allele OR estimate for the association with risk of 
ER-negative breast cancer based on BCAC data, both of which were assumed to 
approximate the same relative risk. We assessed genomic inflation using common 
(MAF>1%) GWAS backbone variants. As lambda is influenced by sample size, we 
calculated lambda1000 to be comparable with other studies. 
 
 
All statistical tests conducted were two-sided. 
 
Definition of known hits 
We identified all associations previously reported from genome-wide or candidate 
analysis at a significance level P<5x10-8 for overall breast cancer, ER-negative or 
ER-positive breast cancer, in BRCA1 or BRCA2 carriers, or in meta-analyses of 
these categories. We included only one SNP in any 500kb interval, unless joint 
analysis provided genome-wide significant evidence (conditional P<5x10-8) of more 
than one independent signal. Where multiple studies reported associations in the 
same region, we considered the first reported association unless a later study 
identified a different variant in the same region that was more strongly associated 
with breast cancer risk. One hundred and seven previously reported hits were 
identified, 11 of these through GWAS of ER-negative disease or of breast cancer in 
BRCA1 mutation carriers, or reported as more strongly associated with ER-negative 
breast cancer. These are listed in Table 2. The other 96 previously reported hits are 
listed in Supplementary Table 10. 
 
Definition of new hits 
To search for novel loci, we assessed all SNPs excluding those within 500kb of a 
known hit. This identified 206 SNPs in nine regions that were associated with 
disease risk at P<5x10-8 in the meta-analysis of BCAC ER-negative breast cancer 
and CIMBA BRCA1 mutation carriers. The SNP with lowest p-value from this 
analysis was considered the lead SNP. No additional loci were detected from the 
analysis of BCAC data only. Imputation quality, as assessed by the IMPUTE2 
imputation r2 in the Oncoarray dataset, was ≥0.89 for the 10 lead SNPs reported 
(Supplementary Table 3).  
 
Candidate causal SNPs 
To define the set of potentially causal variants at each of the novel susceptibility loci, 
we selected all variants with p-values within two orders of magnitude of the most 
significant SNP at each of the 10 novel loci. This is approximately equivalent to 
selecting variants whose posterior probability of causality is within two orders of 



magnitude of the most significant SNP22,23. This approach was applied to identify 
potentially causal variants for the signal given by the more frequent lead SNP at 
11q22.3 (rs11374964). A similar approach was applied for the rarer lead SNP at this 
locus (rs74911261), but based on p-values from analyses adjusted for rs11374964. 
 
Proportion of familial risk explained 
The relative risk of ER-negative breast cancer for the first degree female relative of a 
woman with ER-negative disease has not been estimated. We therefore assumed 
that the 2-fold risk observed for overall disease also applied to ER-negative disease. 
In order to estimate the proportion of this explained by the 125 variants associated 
with ER-negative disease, we used minor allele frequency and OR estimates from 
the OncoArray-based genotype data and applied the formula: 
∑ 𝑝𝑖(1 − 𝑝𝑖𝑖 )(𝛽𝑖

2 − 𝜏𝑖
2) ln⁡(𝜆)⁄ ), where  𝑝𝑖 is the minor allele frequency for variant i, βi is 

the log(OR) estimate for variant i, τi is the standard error of βi  and λ=2 is the 
assumed overall familial relative risk. 
 
The corresponding estimate for the FRR due to all variants is the frailty scale 

heritability, defined as ℎ𝑓
2 = ∑ 2𝑝𝑖(1 − 𝑝𝑖𝑖 )𝛾𝑖

2⁡, where the sum over all variants and γi  

is the true relative risk conferred by variant i, assuming a log-additive model. We first 
obtained the estimated heritability based on the full set of summary estimates using 
LD Score Regression24, which derives a heritability estimate on the observed scale. 

We then converted this to an estimate on the fraility scale using the formula ℎ𝑓
2 =

ℎ𝑜𝑏𝑠
2

𝑃(1 − 𝑃)
⁄ , where P is the proportion of samples in the population that are cases.  

 
Proportion of polygenic risk-modifying variance explained for BRCA1 carriers.  
The proportion of the variance in the polygenic frailty modifying risk in BRCA1 

carriers explained by the set of associated SNPs was estimated by ∑ ln 𝑐𝑖𝑖 /σ2, where 
ci is the squared estimated coefficient of variation in incidences associated with 
SNPi

25 and σ2 is the total polygenic variance, estimated from segregation data26.  
 
In Silico Annotation of Candidate Causal variants  
We combined multiple sources of in silico functional annotation from public 
databases to help identify potential functional SNPs and target genes, based on 
previous observations that breast cancer susceptibility alleles are enriched in cis-
regulatory elements and alter transcriptional activity27-30.  The influence of 
candidate causal variants on transcription factor binding sites was determined 
using the ENCODE-Motifs resource31. To investigate functional elements enriched 
across the region encompassing the strongest candidate causal SNPs, we 
analysed chromatin biofeatures data from the Encyclopedia of DNA Elements 
(ENCODE) Project32, Roadmap Epigenomics Projects33 and other data obtained 
through the National Center for Biotechnology Information (NCBI) Gene Expression 
Omnibus (GEO) namely: Chromatin State Segmentation by Hidden Markov Models 
(chromHMM), DNase I hypersensitive and histone modifications of epigenetic 
markers H3K4, H3K9, and H3K27 in Human Mammary Epithelial (HMEC) and 
myoepithelial (MYO) cells, T47D and MCF7 breast cancer cells and transcription 
factor ChIP-seq in a range of breast cell lines (Supplementary Table 6). To identify 
the SNPs most likely to be functional we used RegulomeDB34, and to identify 
putative target genes, we examined potential functional chromatin interactions 



between distal and proximal regulatory transcription-factor binding sites and the 
promoters at the risk regions, using Hi-C data generated in HMECs35 and 
Chromatin Interaction Analysis by Paired End Tag (ChiA-PET) in MCF7 cells. This 
detects genome-wide interactions brought about by, or associated with, CCCTC-
binding factor (CTCF), DNA polymerase II (POL2), and Estrogen Receptor (ER), all 
involved in transcriptional regulation35. Annotation of putative cis-regulatory regions 
and predicted target genes used the Integrated Method for Predicting Enhancer 
Targets (IM-PET)36, the “Predicting Specific Tissue Interactions of Genes and 
Enhancers” (PreSTIGE) algorithm37, Hnisz38 and FANTOM39. Intersections 
between candidate causal variants and regulatory elements were identified using 
Galaxy, BedTools v2.24 and HaploReg v4.1, and visualised in the UCSC Genome 
Browser. Publically available eQTL databases including Gene-Tissue Expression 
(GTEx;40 version 6, multiple tissues) and Westra41  (blood), were queried for 
candidate causal variants. 
 
eQTL analyses 
Expression quantitative trait loci (eQTL) analyses were performed using data from 
The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer 
International Consortium (METABRIC) projects42,43. 
 
The TCGA eQTL analysis was based on 79 ER-negative breast tumors that had 
matched gene expression, copy number, and methylation profiles together with the 
corresponding germline genotypes available.  All 79 individuals were of European 
ancestry as ascertained using the genotype data and the Local Ancestry in adMixed 
Populations (LAMP) software package (LAMP estimate cut-off >95% European)44.  
Germline genotypes were imputed into the 1000 Genomes reference panel (October 
2014 release) using IMPUTE215,45.  Gene expression had been measured on the 
Illumina HiSeq 2000 RNA-Seq platform (gene-level RSEM normalized counts46), 
copy number estimates were derived from the Affymetrix SNP 6.0 (somatic copy 
number alteration minus germline copy number variation called using the GISTIC2 
algorithm47), and methylation beta values measured on the Illumina Infinium 
HumanMethylation450, as previously described42. Primary TCGA eQTL analysis 
focused on all potentially causal variants in the 10 new regions associated with 
breast cancer risk in the meta-analysis of ER-negative cases and controls from 
BCAC and BRCA1 mutation carriers from CIMBA.  We considered all genes located 
up to 1 Mb on either side of each of these variants.  The effects of tumor copy 
number and methylation on gene expression were first removed using a method 
described previously48, and eQTL analysis was performed by linear regression as 
implemented in the R package Matrix eQTL49. 
 
The METABRIC eQTL analysis was based on 135 normal breast tissue samples 
resected from breast cancer patients of European ancestry.  Germline genotyping for 
the METABRIC study was also done on the Affymetrix SNP 6.0, and ancestry 
estimation and imputation for this data set was conducted as described for TCGA.  
Gene expression in the METABRIC study had been measured using the Illumina 
HT12 microarray platform and we used probe-level estimates.  As for TCGA, we 
considered all genes in 10 regions using Matrix eQTL. 
 



We also performed additional eQTL analyses using the METABRIC data set for all 
variants within 1 Mb of L3MBTL3 and CDH2 and the expression of these specific 
genes. 
 
Global Genomic Enrichment Analyses 
We performed stratified LD score regression analyses24 for ER- breast cancer using 
the summary statistics based on the meta-analyses of OncoArray, GWAS, iCOGS 
and CIMBA. We used all SNPs in the 1000 Genomes Project phase 1 v3 release 
that had a minor allele frequency > 1% and an imputation quality score R2>0.3 in the 
OncoArray data. LD scores were calculated using the 1000 Genomes Project Phase 
1 v3 EUR panel.  
 
We created a “full baseline model” as previously described24 that included 52 
“baseline” genomic features (24 non-cell-type specific publicly available annotations, 
a 500-bp window around each of the 24 annotations and a 100-bp window around 
each of four ChIP-seq peaks) and one category containing all SNPs. We estimated 
the enrichment for these 53 functional categories in a single multivariable LD score 
regression analysis.  
 
We subsequently performed analyses using cell-type specific annotations for the four 
histone marks H3K4me1, H3K4me3, H3K9ac and H3K27ac across 27-81 cell types, 
depending on histone mark, giving a total of 220 cell-type specific marks24. We 
estimated the enrichment for each of these marks after adjusting for the baseline 
annotations by running 220 LD score regressions, each adding a different histone 
mark to the baseline model. We observed no associations after adjusting for 220 
tests 
 
We tested the differences in functional enrichment between ER-positive and ER-
negative subsets for individual features through a Wald test, using the regression 
coefficients and standard errors for the two subsets based on the models described 
above. Finally, we assessed the heritability due to genotyped and imputed SNPs50 
and estimated the genetic correlation between ER-positive and ER-negative breast 
cancer11. The genetic correlation analysis was restricted to the ~1M SNPs included 
in HapMap 3.  
 
 
Pathway Enrichment Analyses 
Pathway enrichment analysis was performed to identify pathways associated with 
ER-negative breast cancer risk, pointing to biological hypotheses that can be further 
tested experimentally. 
 
The pathway gene set database 
Human_GOBP_AllPathways_no_GO_iea_January_19_2016_symbol.gmt 
(http://baderlab.org/GeneSets)51, was used for all analyses. This database contains 
pathway gene sets from Reactome52, NCI Pathway Interaction Database53, GO 
(Gene Ontology) biological process54, HumanCyc55, MSigdb56, NetPath57 and 
Panther58.  GO pathways inferred from electronic annotation terms were excluded. 
Some manual annotation was performed on the pathway gene set database where 
annotation errors from public data were discovered. In particular, in several 
pathways, the PDPK1 gene was mistakenly entered as PDK1 gene and was 
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manually corrected. The same pathway (e.g. apoptosis) may be defined in two or 
more databases with potentially different sets of genes, and all versions of these 
duplicate/overlapping pathways were included. Pathway size was determined by the 
total number of genes in the pathway to which SNPs in the imputed GWAS dataset 
could be mapped. To provide more biologically meaningful results, and reduce false 
positives, only pathways that contained between 10 and 200 genes were 
considered.   
 
Gene information (hg19) was downloaded from the ANNOVAR59 website 
(http://www.openbioinformatics.org/annovar/). SNPs were mapped to the nearest 
gene within 500kb; those that were further than 500 kb away from any gene were 
excluded. Gene significance was calculated by assigning the lowest p-value 
observed across all SNPs assigned to a gene60,61, based on the meta-analysis of 
BCAC and CIMBA data described above. Some pathways include genes that are 
also grouped closely together in the genome and are thus are likely to share the 
significance of a single SNP, which would artificially increase the pathway 
significance in our analysis. This was the case for pathways including histone genes. 
Thus, we selected representative SNP-gene associations to control for this effect 
(chr6:26055031 for HIST1, chr1:120904839, 149864043 for HIST2, chr1: 228615251 
for HIST3 and chr12: 14919727 for HIST4). 
 
The gene set enrichment analysis (GSEA)51 algorithm, as implemented in the 
GenGen package (http://gengen.openbioinformatics.org/en/latest/)61,62 was used to 
perform pathway analysis. Although there are several methods for pathway 
enrichment analysis, we chose the GSEA approach as it is one of the most 
established methods that is threshold free; many other methods such as SRT, 
ALIGATOR and Plink set-based test require an arbitrary p-value threshold to be 
defined for SNPs and applied before pathway analysis. Briefly, the algorithm 
calculates an enrichment score (ES) for each pathway based on a weighted 
Kolmogorov-Smirnov statistic62. Pathways that have most of their genes at the top of 
the ranked list of genes obtain higher ES values. 
 
To focus on pathway enrichment analysis results about which we were most 
confident, we implemented a number of filters. First, only pathways with positive ES 
and containing at least one gene linked to a significant SNP (P<5x10-8) were 
retained for subsequent analysis. Second, we defined an ES threshold (ES≥0.4086) 
based on a comparison with a gold standard pathway enrichment analysis we 
previously performed on the iCOGS data alone and where we were able to 
analytically compute FDR values by shuffling case/control labels (this was not 
computationally feasible with the more complex meta-analysis scheme used in this 
paper). This ES threshold was chosen to yield a true-positive rate (TPR) > 0.20 and 
a false-positive rate (FPR) < 0.15, with true-positive pathways defined as those 
observed with false discovery rate (FDR)<0.05 in a prior analysis carried out using 
the analytic approach defined above applied to iCOGS data for ER-negative disease.  

We chose the true positive rate (TPR) threshold by varying the TPR in steps of 0.1 
and observing how the FPR changed.  A TPR of 0.1 resulted in a very low FPR 
(0.02), but we considered this to be unduly conservative as it resulted in a small 
number of pathways (40, clustered into 9 themes) and excluded many pathways 
known to be involved in breast cancer.  A TPR of 0.2 (FPR = 0.15) gave a 



reasonable balance between the true and false positive rates, while including 
pathways known to be involved in breast cancer. Thus this threshold was chosen for 
this study.  A TPR of 0.3 gave an FPR of 0.28, which we considered high; further, 
the resulting additional pathways included (in addition to those included at TPR=0.2) 
were weaker (i.e. they had worse enrichment scores [ES<0.4086] and had relatively 
very few genes included) than pathways appearing at lower FPRs (and TPRs).  We 
rejected TPR thresholds >0.3 because each gave an FPR that was larger than the 
TPR. 

Finally, we performed an in depth literature search on all resulting pathways to 
confirm their relevance to breast cancer biology, applying the following criteria:  
1) reported in at least one of five published breast cancer pathway analyses63-67; or 
2) reported elsewhere in the literature to be involved in breast cancer. We also 
removed pathways that were significant due to incorrect gene function annotation. 
 
To visualize the pathway enrichment analysis results, an enrichment map was 
created using the Enrichment Map (EM) v 2.1.0 app51 in Cytoscape  v3.3068, 
applying an edge-weighted force directed layout. To measure the contribution of 
each gene to enriched pathways and annotate the map, we reran the pathway 
enrichment analysis multiple times, each time excluding one gene. A gene was 
considered to drive the enrichment if the ES dropped to zero or less (pathway 
enrichment driver) after it was excluded. Pathways were grouped in the map if they 
shared >70% of their genes or their enrichment was driven by a shared gene. 
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