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ABSTRACT 

Purpose: Resistance to platinum-based chemotherapy or PARP inhibition in germline BRCA1 or 

BRCA2 mutation carriers may occur through somatic reversion mutations or intragenic deletions that 

restore BRCA1 or BRCA2 function. We assessed whether BRCA1/2 reversion mutations could be 

identified in circulating cell-free DNA (cfDNA) of ovarian or breast cancer patients previously treated 

with platinum and/or PARP inhibitors. 

Experimental Design: cfDNA from 24 prospectively accrued BRCA1- or BRCA2-germline mutant 

patients, including 19 platinum-resistant/refractory ovarian cancer and five platinum and/or PARP 

inhibitor pre-treated metastatic breast cancer patients, was subjected to massively parallel 

sequencing targeting all exons of 141 genes and all exons and introns of BRCA1 and BRCA2. 

Functional studies were performed to assess the impact of the putative BRCA1/2 reversion 

mutations on BRCA1/2 function. 

Results: Diverse and often polyclonal putative BRCA1 or BRCA2 reversion mutations were 

identified in cfDNA from four ovarian cancer patients (21%) and from two breast cancer patients 

(40%). BRCA2 reversion mutations were detected in cfDNA prior to PARP inhibitor treatment in a 

breast cancer patient who did not respond to treatment, and were enriched in plasma samples after 

PARP inhibitor therapy. Foci formation and immunoprecipitation assays suggest that a subset of the 

putative reversion mutations restored BRCA1/2 function. 

Conclusions: Putative BRCA1/2 reversion mutations can be detected by cfDNA sequencing 

analysis in ovarian and breast cancer patients. Our findings warrant further investigation of cfDNA 

sequencing to identify putative BRCA1/2 reversion mutations and to aid the selection of patients for 

PARP inhibition therapy.   
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TRANSLATIONAL RELEVANCE  

Ovarian and breast cancers in women with germline BRCA1 and BRCA2 mutations are highly 

sensitive to platinum-based chemotherapy and PARP inhibitors. In this exploratory, hypothesis-

generating study, we provide evidence that BRCA1/2 reversion mutations, which based on 

preclinical studies would be anticipated to cause resistance to PARP inhibitors, are detectable in a 

subset of ovarian and breast cancer patients previously treated with platinum-based chemotherapy 

and/or PARP inhibitors. Given that these putative reversion mutations can be polyclonal within a 

patient and present frequently at low variant allele frequencies, very high sensitivity cfDNA assays 

are required to detect these reversion mutations, and may help determine which ovarian and breast 

patients are unlikely to benefit from PARP inhibition. 
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INTRODUCTION  

BRCA1 and BRCA2 play pivotal roles in homologous recombination (HR) DNA repair(1), and 

germline mutations affecting these genes result in an increased risk of early breast and ovarian 

cancer development(1). Complete loss of BRCA1 or BRCA2 function results in lack of HR repair of 

DNA double-strand breaks(1). Cancer cells arising in germline BRCA1 and BRCA2 carriers lose the 

wild-type allele, and, as a consequence, lose competent HR due to bi-allelic inactivation of BRCA1 

or BRCA2. In this context, DNA double-strand breaks are repaired by error prone mechanisms, such 

as non-homologous end-joining(2-4). Tumors harboring defective HR DNA repair have been shown 

to be sensitive to platinum-based chemotherapy and inhibitors of the Poly(ADP) ribose polymerase 

(PARP)(5,6), given that these agents induce double-strand breaks either directly or through the 

stalling and subsequent collapse of replication forks. BRCA1 or BRCA2 breast and ovarian cancers 

are reported to be sensitive to platinum-based chemotherapy and PARP inhibition(7-10), with 

platinum-based chemotherapy serving as the mainstay of treatment of ovarian cancer patients. 

Several PARP inhibitors have recently been approved for the treatment of advanced BRCA1- or 

BRCA2-mutant ovarian cancer(11), and are in phase III clinical trials for patients with BRCA1- or 

BRCA2-mutant breast cancer(12). Importantly, several mechanisms of resistance to these agents 

have been reported in preclinical models and in clinical studies(3,4). One mechanism of resistance 

to platinum-based chemotherapy and PARP inhibitors is in the form of reversion mutations or 

intragenic deletions that restore the open reading frame of the original germline BRCA1 or BRCA2 

mutation, resulting in a functional protein with reacquisition of competent HR DNA repair(13-15). 

 

Circulating tumor DNA (ctDNA) found in the plasma of cancer patients has been shown to constitute 

a source of tumor-derived DNA that can be employed for the analysis of sequencing-based 

biomarkers(16). Although ctDNA frequently comprises only a small fraction of total circulating cell-

free (cf)DNA and varies according to disease burden and between cancer types(17), it is possible to 

detect much of the entire repertoire of somatic genetic alterations found in primary tumors or 
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metastatic disease in cfDNA samples if high-depth sequencing approaches are employed(18-20). In 

addition, multi-clonal BRCA2 reversion mutations associated with resistance to PARP inhibitors 

have been identified in cfDNA from two metastatic prostate cancer patients with germline BRCA2 

mutations(21).  

 

The aims of this exploratory, hypothesis-generating study were to define whether putative BRCA1/2 

reversion mutations can be detected in the cfDNA of BRCA1 or BRCA2 ovarian and breast cancer 

patients resistant or refractory to platinum-based chemotherapy or PARP inhibitors, to determine 

whether the putative BRCA1/2 reversion mutations found in these patients could have an impact on 

BRCA1/2 function, and to develop analysis techniques that could potentially be employed in the 

implementation of biomarkers for future patient selection.  

 

MATERIAL AND METHODS 

Patient cohorts 

Nineteen ovarian cancer and five breast cancer patients were prospectively accrued for this study. 

Inclusion criteria for the ovarian cancer patients encompassed proven BRCA1 or BRCA2 germline 

mutations, stage III or IV disease resistant or refractory to platinum-based chemotherapy, and 

availability of archived cancer tissue (Table 1). Patients with any other concurrent stage III/IV cancer 

were excluded. This study was approved by the Institutional Review Board (IRB) of Memorial Sloan 

Kettering Cancer Center (MSKCC)(IRB #13-128), and written informed consent was obtained from 

all participants. Radiologic recurrence within six months of last platinum administration was defined 

as resistant disease, whereas unresponsiveness to or progression during platinum therapy was 

defined as refractory disease(22). Peripheral blood samples (EDTA tubes) were collected at the time 

of scheduled chemotherapy following relapse or progression. Of the 19 ovarian cancer patients 

included, 18 had high-grade serous and one endometrioid ovarian cancer (Table 1). Inclusion 

criteria for the breast cancer patients entailed proven BRCA1 or BRCA2 germline mutations, 
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metastatic disease and prior treatment with platinum chemotherapy and/or PARP inhibitors. 

Samples were collected under studies approved by multicenter research ethics committees (ref. nos. 

10/H0805/50 and 11/LO1595) in the United Kingdom. Peripheral blood samples (EDTA tubes) were 

collected upon disease progression, and serially after intervening therapy at subsequent disease 

progression (Table 2). This study is compliant with the Declaration of Helsinki.  

 

Circulating cell-free (cfDNA) extraction from plasma  

To avoid sample issues related to the stability of EDTA cfDNA, blood samples collected in EDTA 

tubes were processed within 2 hours of sample collection, centrifuged, and plasma samples were 

stored at −80°C until DNA extraction as previously described(20). DNA was extracted from plasma 

using the QIAamp Circulating Nucleic Acid Kit (Qiagen) according to the manufacturer’s instructions 

as previously described(16,20). DNA was quantified using the Qubit Fluorometer (Invitrogen, 

Thermo Fisher Scientific).  

 

DNA extraction from peripheral blood leukocytes and tissue 

Representative formalin-fixed paraffin-embedded (FFPE) tissue sections of all ovarian tumors and of 

core biopsies of metastases from the advanced breast cancer patients obtained at diagnosis (patient 

1109 patient) and at recurrence (patient L031) were stained with nuclear fast red and 

microdissected with a sterile needle under a stereomicroscope (Olympus SZ61) to ensure >80% of 

tumor cell content, as previously described(23). In nine ovarian cancer cases, histologically distinct 

regions of the primary tumor or distinct anatomical sites including omental implants were available 

and microdissected (median of 1 (range 1-4) anatomically distinct regions per case). Genomic DNA 

was extracted from tumor samples and peripheral blood leukocytes using the DNeasy Blood and 

Tissue Kit (Qiagen) and quantified using the Qubit Fluorometer, as previously described(23,24). 

 

Targeted capture massively parallel sequencing 
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Tumor DNA from ovarian cancer patients, cfDNA from ovarian and breast cancer patients and their 

respective germline DNA were subjected to targeted massively parallel sequencing in the MSKCC 

Integrated Genomics Operation (IGO) as previously described(24,25) using a custom panel of baits 

encompassing all exons and introns of BRCA1 and BRCA2, and all exons of 141 additional genes 

reported to be involved in DNA repair, drug resistance, resistance to PARP-inhibitors/ platinum-salts, 

and genes recurrently mutated in ovarian cancer, including TP53 (Supplementary Table S1)(26-28). 

In addition, baits tiling common single nucleotide polymorphisms (SNPs) were included to allow for 

copy number analysis(25). Serial plasma samples from breast cancer patients L031 and 1109 were 

subjected also to MSK-IMPACT sequencing targeting 410 key cancer genes, as previously 

described(25,29). Sequence data were analyzed as previously described (Supplementary 

Methods)(24,29), and in addition, variants in the cfDNAs and tumors were assessed using the 

SAMtools mpileup tool(30) and Varscan 2(31). Sequence data are available at the Sequence Read 

Archive (SRP100525). 

 

Identification of putative BRCA1/2 reversion mutations and intragenic deletions  

Putative somatic reversion mutations or intragenic deletions were defined as somatic genetic 

alterations that would result in a restoration of the open reading frame of BRCA1 or BRCA2 in the 

cfDNA from a patient harboring a known germline mutation affecting BRCA1 or BRCA2, 

respectively. To identify putative reversion mutations and intragenic deletions, we extracted all reads 

from BRCA1 or BRCA2 (i.e. the gene affected by the germline mutation in a given case). Among 

these reads, we used SAMtools mpileup tool(30) to search for 1) somatic small insertions and 

deletions (indels) that would restore the reading frame of BRCA1/2 in patients with germline indels, 

2) somatic single nucleotide variants (SNVs) that restore the BRCA1/2 reference allele in patients 

with germline point mutations, and 3) intragenic deletions that delete the BRCA1/2 germline 

mutation and result in restoration of the open reading frame. For SNVs and indels, single reads 
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supporting a mutation were also examined owing to the limited fraction of ctDNA in total plasma 

cfDNA. 

 

To account for potential large intragenic deletions (>40) that may not be aligned as single reads by 

BWA(32), we further included clipped reads aligning to multiple locations and spanning the germline 

mutation as putative intragenic deletions. All putative large intragenic deletions were visually 

inspected using the Integrated Genomics Viewer (IGV)(33). 

 

All putative BRCA1/2 reversion mutations and intragenic deletions were annotated using 

Oncotator(34), in conjunction with the respective BRCA1/2 germline mutation. The cDNA changes 

predicted by Oncotator were applied consecutively to the BRCA1/2 cDNA transcripts and translated 

into amino acids. We further inferred the Levenshtein distance, which denotes the number of 

insertions, deletions and substitutions required to change one protein into the other(35). Each of the 

germline mutant and putative reversion mutant BRCA1/2 proteins were annotated with their 

respective Levenshtein distance to the wild-type BRCA1/2 protein. Any of the putative reversion 

mutations that differed in this metric compared to the germline mutation were flagged for manual 

review. Scripts to aid in the search of reversion mutations and compare their protein sequences are 

available online(36). 

 

Quantification of tumor DNA in total plasma DNA 

To ascertain the fraction of tumor ctDNA in the cfDNA obtained from plasma of ovarian cancer 

patients, we employed i) the TP53 variant allele fractions (VAFs) of the ovarian tumors given that 

TP53 mutations are present, clonal and truncal in >97% of high-grade serous ovarian cancers 

(HGSOCs)(37,38), ii) the tumor ploidy, local TP53 copy number and tumor purity based on 

FACETS(39) and ABSOLUTE(40), and iii) the TP53 VAF from plasma. If TP53 mutations were not 

identified in cfDNA, a distinct clonal mutation was employed for analysis. The fraction of ctDNA in 
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cfDNA could not be defined in cases where only subclonal mutations from the ovarian tumor were 

detected in the respective cfDNA.  

 

Given the lack of matched tumor tissue from the metastatic breast cancers subjected to targeted 

massively parallel sequencing, a different approach was employed to infer the fraction of ctDNA in 

total plasma DNA. The cfDNA was quantified on a Bio-Rad QX100 droplet (d)PCR using 

ribonuclease P (RNase P) as a reference, as previously described(20). At least two negative control 

wells without DNA were included in each run. The amount of amplifiable RNase P DNA and the 

number of RNase P copies were calculated using the Poisson distribution in QuantaSoft (Bio-Rad), 

and used together with the highest VAF identified by targeted massively parallel sequencing in the 

cfDNAs of the breast cancer patients to infer the fraction of ctDNA in cfDNA. 

 

Droplet PCR (dPCR) 

The putative c.85delG BRCA1 reversion mutation identified by massively parallel sequencing in 

case OCT15 was validated using the Raindrop dPCR system (RainDance Technologies) as 

previously described(41). dPCR conditions were optimized as previously described(20), and assay 

sensitivity was tested using BRCA1 wild-type DNA library spiked in with a BRCA1 c.85delG mutant 

synthetic oligonucleotide. Massively parallel sequencing libraries from the ovarian tumor samples 

and plasma DNA samples of case OCT15 were loaded onto the RainDrop Source instrument for 

droplet generation for amplification (forward 5’-ACTTTGTGGAGACAGGTT-3’, reverse 5’-

TGAGCCTCATTTATTTTCTTTT-3’ PCR primers), and loaded onto the Raindrop Sense instrument 

for droplet counting and fluorescence intensity readout as previously described(41). Libraries from 

germline DNA spiked in with 10, 100, and 1,000 c.85delG BRCA1 synthetic oligonucleotide 

molecules were included in the run as controls and for gating purposes. Data were analyzed using 

the RainDrop Analyst data analysis software. 
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Targeted amplicon re-sequencing  

The putative BRCA2 reversion mutations and the somatic SPEN and TGFBR1 mutations identified 

by massively parallel sequencing were validated in three plasma samples from case L031 using 

targeted amplicon re-sequencing. In case 1109 three somatic variants affecting FAT3, ERCC4 and 

KDM5C were validated together with the putative BRCA2 reversion mutations identified in the post-

treatment plasma sample and in a tumor metastasis core biopsy affecting the liver obtained prior to 

treatment. At least 10ng of plasma DNA, microdissected tumor DNA and matching peripheral blood 

leukocyte-derived germline DNA were amplified using Taq Hifi polymerase (Ion AmpliSeq Library Kit 

2.0, ThermoFisher Scientific), and libraries prepared using the NEBNext Ultra II DNA Library Prep 

Kit for Illumina (New England BioLabs). As controls, matched normal DNA from cases 1109 and 

L031 and plasma DNA from two unrelated advanced breast cancer patients not treated with PARP 

inhibitors or platinum-based chemotherapy and two tumor DNA samples obtained from unrelated 

breast cancer core biopsies were included. PCR conditions and primers are available on request. 

The quality and quantity of the amplification was tested using the Agilent 2100 Bioanalyzer and the 

KAPA Library Quantification Kit for Illumina (Kapa Biosystems), respectively. Amplicon re-

sequencing of the putative BRCA2 reversion mutations in the cfDNA samples of L031 and 1109 was 

performed twice independently, using an Illumina HiSeq2500 (first run) and an Illumina MiniSeq (Mid 

output kit; second run). Sequence data analyses are described in the Supplementary Methods. Only 

BRCA2 reversion mutations present in plasma DNA with zero counts in the germline control and in 

the unrelated control samples were considered validated. 

 

Cell lines 

293T cells and U2OS cells were obtained from the American Type Culture Collection (ATCC) in 

2008 and 2015, respectively. The identities of the cell lines were confirmed by short tandem repeat 

profiling after receipt as previously described(42), and tested for mycoplasma infection using a PCR-
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based assay (ATCC) following the manufacturer’s instructions (latest test in 2016). The cells were 

passaged no more than 20-25 times after thawing. 

 

BRCA1 foci formation 

The U2OS-double-strand break (DSB) reporter system was employed to define the ability of putative 

BRCA1 somatic reversion mutations to recognize DSBs, as previously described(43-45) 

(Supplementary Methods).  

 

BRCA2 interaction with PALB2 and RAD51 

293T cells were transfected with pCDNA-HA-BRCA2 plasmids (i.e. wild-type HA-BRCA2, germline 

c.407delA HA-BRCA2del407 and putative reversion c.402_413delTCTAAATTCTTG HA-

BRCA2REV) for 72 hrs, and lysed in lysis buffer (0.5% NP40, 25 mM Tris pH 7.5, 450 mM NaCl, 0.5 

mM EDTA and proteinase inhibitors). The cell lysates were then incubated with anti-HA agarose 

beads (Sigma). After three washes with wash buffer (0.5% NP40, 25 mM Tris pH 7.5, 150 mM NaCl, 

0.5 mM EDTA), the beads were boiled in SDS sampling buffer, followed by western blotting with 

antibodies against HA (Santa Cruz), PALB2 (Novus Biologicals) and RAD51 (Santa Cruz). 

  

RESULTS 

BRCA1 reversion mutations in ctDNA from platinum resistant/refractory ovarian cancer 

patients 

We developed a targeted capture sequencing assay comprising the coding regions of 141 genes 

and all intronic and exonic regions of BRCA1 and BRCA2 (Supplementary Table S1). We first 

established the potential of the assay for detecting ctDNA in patients with ovarian cancer, as prior 

studies suggested low rates of mutation detection in ctDNA of ovarian cancer patients(46). 

Massively parallel sequencing analysis of germline DNA from peripheral blood leukocytes, 

microdissected tumor and plasma DNA of 19 cases (BRCA1, n=12; BRCA2, n=7), using previously 
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validated methods(18,20), yielded median depths of coverage of 1,569x (range 852x-2,272x), 823x 

(range 272x-2,328x) and 1,978x (range 1,287x-4,157x), respectively (Supplementary Table S2). 

Given that somatic TP53 mutations are present in >97% of all high-grade serous ovarian cancers 

(HGSOCs) and that the vast majority of these mutations are clonal (i.e. bioinformatically inferred to 

be present in virtually all cancer cells within a sample) and truncal (i.e. present as clonal mutations 

in all samples analyzed)(37,38), we reasoned that the TP53 mutant allele fractions in cfDNA from 

patients with HGSOC could be employed to ascertain indirectly the fraction of tumor DNA in the total 

plasma DNA. In all 19 ovarian cancers sequenced, clonal TP53 mutations were detected 

(Supplementary Table S2, Supplementary Fig. S1). In nine cases, multiple anatomically distinct 

areas of the ovarian cancer were microdissected and/or peritoneal implants and/or metastatic sites 

were available and sequenced separately; the TP53 mutations in these nine cases with multi-region 

sequencing were found to be clonal and truncal (Supplementary Table S2, Supplementary Fig. S1). 

Other somatic mutations detected in the 19 ovarian cancers studied here included NF1, ERCC4, 

RB1 and CHEK2 (Supplementary Table S2, Supplementary Fig. S1).  

 

Analysis of the cfDNA from these patients revealed the presence of the same somatic TP53 

mutation identified in the tumors from the respective ovarian cancer patients in 15 out of 19 cases 

(79%). TP53 VAFs in the plasma DNA ranged from 0.06% to 32.7% (Supplementary Fig. S1, 

Supplementary Table S2), and only in 4 samples these TP53 mutations were identified using our 

standard bioinformatics pipeline. In three cases (OCT1, OCT5, OCT12), none of the clonal TP53 

mutations present in the tumors were detected in the plasma, but other somatic mutations were 

identified, including RB1, NF1 and FAT3 mutations (Supplementary Fig. S1). In one case (OCT3) 

neither the clonal TP53 nor the subclonal NF1 somatic mutations present in the primary ovarian 

cancer were detected in the cfDNA (Supplementary Table S2, Supplementary Fig. S1). Overall, our 

assay identified ctDNA in plasma of 95% (18/19) patients with advanced ovarian cancer, and the 

median percentage of ctDNA in cfDNA was found to be 0.31% (range 0%-32.74%)(Table 1). 
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Having demonstrated the high sensitivity to detect ctDNA with our assay, we investigated whether 

putative BRCA1/2 reversion mutations could be detected in cfDNA. Using a conservative 

bioinformatics strategy (see Methods), six putative somatic BRCA1 reversion mutations in four 

patients OCT1, OCT5, OCT10 and OCT15 were identified with VAFs ranging from 0.0314% to 

0.0850% (Fig. 1, Supplementary Fig. S2, Supplementary Table S3). Four of the six putative 

reversion mutations were flanked by microhomology sequences (Supplementary Table S3). Using 

dPCR(20) and spiked-in synthetic c.85delG oligonucleotides as controls, we detected the putative 

somatic c.85delC BRCA1 reversion mutation in the cfDNA of patient OCT15 (Fig. 2A), which 

harbored a germline BRCA1 c.68-69delAG mutation. By contrast, however, analysis of the pre-

treatment primary tumors from the ovary and fallopian tube as well as a peritoneal implant of patient 

OCT15 showed no reliably detectable BRCA1 reversion mutations (Fig. 2A). Validation of the 

reversion mutations in the other cases was not possible given that no or insufficient amounts of 

residual plasma DNA were available. 

 

To ascertain whether these putative somatic BRCA1 reversion mutations would restore the ability to 

recognize double-strand breaks, we employed the U2OS-DSB reporter system(43-45). Following 8 

Gy of ionizing irradiation, we observed that three putative BRCA1 somatic reversion mutations, all of 

which were flanked by microhomology sequences, namely c.108delC (OCT5), c.113delA and 

c.85delC (both OCT15), resulted in an induction of BRCA1 foci to levels higher than those observed 

in U2OS cells expressing the respective germline BRCA1 mutation (Fig. 2B). We therefore 

demonstrated that ctDNA sequencing can detect putative BRCA1 reversion mutations, and that 

these mutations may restore BRCA1 function in in vitro assays. 

 

BRCA2 reversion mutations in ctDNA from breast cancer patients previously treated with 

platinum-salts and/or PARP inhibitors 
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We next defined whether somatic reversion mutations would be detected in ctDNA of PARP 

inhibitor- and/or platinum-resistant advanced breast cancer patients harboring BRCA1 (n=1) or 

BRCA2 (n=4) germline mutations. Germline DNA extracted from peripheral blood leukocytes and a 

single (n=2) or two sequential (n=3) plasma DNA samples per patient were sequenced with the 

same custom targeted capture sequencing assay described above to a median depth of coverage of 

537x (range 457x-630x) and 1,646x (range 1,163x-3,153x, respectively (Supplementary Table S2). 

In all cfDNA samples analyzed somatic mutations were identified (VAFs, 2.38%-54.54%), including 

somatic TP53 mutations in two cases (Supplementary Table S2, Supplementary Fig. S3). Whilst the 

amount of cfDNA obtained per ml of plasma was similar between the breast and ovarian cancers 

studied here (breast median 7.8ng cfDNA/ml plasma (range 5.0ng-87ng) vs ovarian median 12.0ng 

cfDNA/ml plasma (range 4.8ng-32.4ng), p=0.2905, Mann-Whitney U test), the percentage of ctDNA 

was significantly higher in breast compared to ovarian cancer patients (breast median 12.7% (range 

5.2-54.5%) vs ovarian 0.31% (range 0%-32.74%, p<0.0005, Mann-Whitney U test, Tables 1 and 2). 

It should be noted, however, that the methods for the quantification of ctDNA percentage in cfDNA 

applied to the breast and ovarian cancer samples differed, and these methodological differences 

may at least in part explain the distinct levels of ctDNA in cfDNA between the two groups. Despite 

this important caveat and consistent with the notion that the percentage of ctDNA in cfDNA was 

higher in the breast cancer patients than in the ovarian cancer patients studied here, SNVs and 

indels in the cfDNA of the metastatic breast cancer patients were identified using our standard 

bioinformatics approach, whereas these were detectable using the standard bioinformatics approach 

in the cfDNA of only 4/19 ovarian cancer patients.  

 

Analysis of the sequencing data further revealed the presence of multiple putative somatic reversion 

mutations in two of the BRCA2 germline mutation carriers (L031 and 1109) at VAFs ranging from 

0.0549% to 0.2273% (Fig. 3, Supplementary Table S3). To validate the multiple polyclonal BRCA2 

mutations we developed an orthogonal amplicon sequencing strategy (see methods), which was 
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employed twice independently and confirmed the presence of all detected reversion mutations, and 

identified six additional putative BRCA2 reversion mutations in the cfDNA of cases L031 and 1109 

(Fig. 3, Supplementary Table S3), with no detected mutations in controls (method). In the plasma 

sample taken after carboplatin and PARP inhibitor treatment from patient 1109, harboring a 

c.750_753GACAdel germline mutation, up to nine distinct putative BRCA2 reversion mutations were 

identified suggesting poly-clonality at resistance (Fig. 3A, Supplementary Table S3). Validated 

putative somatic reversion mutations were confirmed to restore the reading frame of BRCA2 and 

were flanked by (micro) homology sequences (Supplementary Table S3). All of the reversion 

mutations preserved the BRC repeats, which have been shown to be essential for HR DNA repair of 

double-strand breaks(1,13).  

 

We next sought to define whether the putative BRCA2 reversion mutation identified in the cfDNA 

would be present in the matched tumor tissue. We obtained a tumor biopsy sample at initial 

diagnosis prior to carboplatin/PARP inhibitor treatment from case 1109 and a tumor sample at 

recurrence (i.e. synchronously with plasma sample 3) from case L031. The quality of DNA obtained 

from the L031 tumor biopsy was suboptimal and the targeted amplicon sequencing approach failed 

in this sample. Targeted amplicon sequencing of the initial diagnosis tumor sample from case 1109 

confirmed the presence of the somatic FAT3, ERCC4 and KDM5C mutations identified in the cfDNA, 

with VAFs ranging from 16%-55.6% (Supplementary Table S3); however, none of the putative 

BRCA2 reversion mutations identified in cfDNA could be detected in the tumor tissue biopsy. This 

suggested that reversion mutations were selected by therapy, and were not detectable in the 

biopsied tumor prior to therapy. 

 

Analysis of serial plasma DNA samples from one patient (L031) confirmed the presence of the 

putative BRCA2 reversion mutations after carboplatin treatment and prior to treatment with the 

PARP inhibitor Talazoparib (Supplementary Table S3). The patient did not respond to Talazoparib, 
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with a differential response with some lesions unequivocally progressing.  A decrease in the VAFs of 

the somatic putative BRCA2 reversion mutation c.402_413delTCTAAATTCTTG immediately after 

treatment reflected lower levels of ctDNA in the cfDNA at that time point (with a decrease in tumor 

specific SPEN and TGFBR1 mutations; Fig. 4A; Supplementary Fig. S4). After subsequent 

treatment, a novel c.389_406delTTTCCTGTCCACTTCTAA putative BRCA2 reversion mutation, 

inferred to restore the open reading frame of the BRCA2 protein and initially detected at minimal 

levels, increased, suggesting a greater diversity in BRCA2 reversion mutations post-PARP inhibitor 

therapy (Fig. 4A; Supplementary Fig. 4). These results mirrored the progression of the disease and 

evidence of PARP inhibitor resistance in the patient.  

 

To ascertain whether the putative somatic BRCA2 reversion mutation identified in case L031 would 

show interaction with PALB2 and RAD51, we expressed full length BRCA2, the c.407delA patient-

specific germline BRCA2 mutation, and the c.402_413delTCTAAATTCTTG putative BRCA2 

reversion mutation in 293T cells. We observed that the BRCA2 reversion mutation but not the 

BRCA2 c.407delA germline mutation displayed an intact interaction with PALB2 and RAD51, which 

was at similar levels as those detected with the wild-type BRCA2 protein (Fig. 4B).  

 

DISCUSSION 

BRCA1 and BRCA2 reversion mutations have been documented as potential mechanisms of 

resistance to platinum-based chemotherapy and PARP inhibitors in cell line models and patient 

samples(4,13,14,21,46). Here we report on the detection of putative BRCA1 and BRCA2 reversion 

somatic mutations in the cfDNA of platinum-based chemotherapy and/or PARP inhibitor resistant/ 

refractory ovarian and breast cancer patients harboring germline BRCA1 or BRCA2 germline 

mutations. We have observed these putative mutations in the cfDNA of 21% (4/19) of platinum 

resistant/refractory ovarian cancer patients, and 40% (2/5) of platinum and/or PARP inhibitors pre-

treated breast cancer patients, suggesting that reversion mutations may not be uncommon in 
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patients following platinum-based chemotherapy and/or PARP inhibition. The putative reversion 

mutations in the form of small indels restored the reading frame before the aberrant stop codon 

produced by the germline mutation, and may have resulted in reacquisition of the DNA repair 

functions of BRCA1 or BRCA2 (Figs. 1 and 3). Consistent with this notion, in vitro studies revealed 

that three of the putative somatic BRCA1 reversion mutations identified by targeted capture 

sequencing of cfDNA restored, at least in part, the ability of cells to elicit BRCA1 foci following 

ionizing ration treatment. In addition, one of the putative BRCA2 mutations tested in vitro was found 

to restore the interaction with its partners PALB2 and RAD51. These putative reversion mutations 

could not be detected in the tumor tissue samples obtained at primary diagnosis, suggesting 

selection by therapy. No adequate tumor tissue was available contemporaneously with the cfDNA 

sample to define the frequency of these putative alterations in the resistant/refractory tumors. 

 

Consistent with a recent report describing polyclonal reversion mutations in the cfDNA of two 

BRCA2 prostate cancer patients treated with PARP inhibitors(21), our findings suggest that 

polyclonal reversion mutations may also be found in cfDNA of BRCA1/2 ovarian and breast cancer 

patients treated with platinum-based therapy and/or PARP inhibitors, in particular in BRCA2 

cancers. Importantly, however, all mutations were detected at very low allele frequencies in plasma, 

with more than one mutation present in 67% (4/6) of patients with reversion mutations. In two 

BRCA2 breast cancer patients with disease progression after platinum-based chemotherapy and 

PARP inhibitor therapy, multiple concurrent somatic reversion mutations were detected by targeted 

capture sequencing and validated using orthogonal sequencing methods. Moreover, in one patient, 

the mutant allele fractions in plasma DNA increased after PARP inhibitor treatment and resistance 

development. These observations are consistent with the notion that resistance to targeted therapies 

may be polyclonal in a given cancer patient (e.g. polyclonal ESR1 mutations as a mechanism of 

resistance to aromatase inhibition(47)), even in therapeutic strategies based on synthetically lethal 

approaches. It should be noted that the VAFs of the putative reversion mutations identified in the 
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cfDNA of subjects included here was low. Importantly, however, these VAFs were frequently similar 

to the allele fractions of TP53 and/or other mutations (Supplementary Table S3) and consistent with 

the estimated ctDNA content (Table 1), suggesting that at least in a subset of patients these putative 

reversion mutations were clonally dominant at the time of sample collection. Moreover, it is most 

likely that similar to other targeted therapy resistance (e.g. EGFR inhibitors in EGFR-mutant non-

small cell lung cancer), resistance to platinum-based therapy and PARP inhibition may be 

multifactorial in a single patient (e.g. polyclonal reversion mutations and/or other mechanisms of 

resistance to platinum-based chemotherapy or PARP inhibitors being present in distinct subclones 

within a tumor), or that these putative reversion mutations may cause resistance not only in a cell 

autonomous manner, but also through a bystander effect.  

 

The presence of multiple reversion mutations within a given BRCA1 or BRCA2 patient may result 

from the strong selective pressures imposed by platinum-based or PARP inhibitor therapy and the 

type of DNA repair defects cancer cells with defective BRCA1 and BRCA2 display. Consistent with 

this hypothesis and the more frequent reporting of polyclonal reversion mutations in BRCA2 cancer 

(e.g. PARP-inhibitor resistant BRCA2-deficient pancreatic cancer cell line and in tumor tissue of 

BRCA2 ovarian cancer patients(13,48)), loss of BRCA2 function results in defective DNA repair of 

double strand breaks, as induced by platinum or PARP inhibition, and are repaired preferentially 

through single strand annealing and non-homologous end-joining(1,2). Given the selective pressure 

these agents provide in the context of BRCA2 deficient cells, multiple intra-genic deletions could 

eliminate the site of the germline BRCA2 mutation and restore the open reading frame without the 

loss of domains essential for BRCA2 function. By contrast, non-homologous end-joining is the 

preferential mechanism of repair of DNA double strand breaks in BRCA1 breast cancers(1,2), which 

may be associated with a lower likelihood of multiple reversion events given the constraints of how a 

given germline mutation could be reversed and the maintenance of BRCA1 domains essential for its 
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function in HR DNA repair. Further studies on the polyclonality of BRCA2 reversion mutations are 

required to clarify the mechanist basis of these observations. 

 

Our exploratory, hypothesis-generating study has several limitations. Although we focused on 

BRCA1 and BRCA2 patients with advanced ovarian and breast cancer and performed high-depth 

sequencing of cfDNA, we did not detect somatic mutations in the cfDNA samples from one patient, 

and detected them in others at very low levels, which suggest that in a subset of platinum-based 

chemotherapy resistant/ refractory ovarian cancer patients, the levels of tumor DNA in plasma may 

be limited. In fact, recent studies have found that somatic mutations, including BRCA1/2 reversion 

mutations, can be detected at higher allele frequencies in ascites of patients with ovarian 

cancer(46,49). Second, the bioinformatics approaches employed for the identification of somatic 

reversion mutations were able to nominate putative somatic reversion mutations, which were 

successfully validated using orthogonal methods. Owing to the nature of the sequencing performed 

(Illumina, 100bp reads), however, we would be unable to detect with a similar sensitivity large 

deletions that would result in reversion of the germline mutations. Therefore, our study may 

underestimate the frequency of somatic reversion mutations in the patient population analyzed. 

Third, we were unable to accrue tumor tissue synchronously collected with the cfDNA samples; 

therefore, we were unable to validate the presence of the putative reversion mutations in tumors. 

Fourth, the putative BRCA1 and BRCA2 reversion mutations identified in cfDNA were not tested by 

direct sequencing, given that the VAFs would be beyond the detection limits of Sanger sequencing. 

We did, however, validate these putative reversion mutations with orthogonal sequencing 

approaches and using distinct sequencing libraries, minimizing the likelihood of the putative 

reversion mutations described here constituting sequencing artifacts. Finally, owing to its small 

sample size, further studies are required to define the prevalence of BRCA1/2 reversion mutations 

detected in cfDNA and to test whether they are causative of and predict the lack of therapeutic 

efficacy to platinum-based chemotherapy or PARP inhibitors, ideally in the context of a prospective 
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clinical trial or through the reanalysis of materials of a sufficiently powered prospective clinical trial, 

are required. 

 

Despite these limitations, our study, in conjunction with recent studies(21,46), broadens the potential 

applications of cfDNA sequencing for the identification of somatic BRCA1 and BRCA2 reversion 

mutations. Further studies are warranted to define the prevalence of these reversion mutations in 

larger populations of BRCA1 and BRCA2 ovarian and breast cancer patients treated with PARP 

inhibitors and/or platinum-based chemotherapy, to define the chronology of the emergence of these 

mutations and the biological impact of their potential polyclonal nature, and to ascertain their role as 

predictive biomarkers for these therapeutic agents.  
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TABLES 

Table 1. Clinicopathologic characteristics of ovarian cancer patients included in this study. 

ID 
Tumor 
type 

BRCA 
status 

Date 
primary 

diagnosis 

Stage 
primary 
disease 

Neoadju
vant 

chemoth
erapy 

Cycles 
platinum-

based 
chemothe
rapy (n) 

Date disease 
progression/ 

distant 
relapse 

Primary 
refractor

y/ 
resistant 
disease 

Secondary 
refractory/ 
resistant 
disease 

Date blood 
draw 

Disease 
location 
at blood 

draw 

Time 
follow-

up 
(years) 

Follo
w-up 

cfDNA 
(ng) per 

ml 
plasma 

Fraction 
ctDNA in 

cfDNA 
(%) 

OCT1 HGSOC BRCA1 
February 

2008 
Stage III No 6 May 2010 

 
Resistant 

August 
2013 

Intra 8 DOD 27.9 NA 

OCT2 HGSOC BRCA2 
February 

2011 
Stage III No 6 May 2012 

 
Refractory 

August 
2013 

Intra and 
extra 

3 DOD 20.4 32.74 

OCT3 HGSOC BRCA2 July 2010 Stage IV No 6 July 2012 
 

Resistant 
August 
2013 

NED 6 AWD 16.3 0 

OCT5 HGSOC BRCA1 July 2012 Stage III No 6 May 2013 Resistant Refractory 
September 

2013 
NED 4 AWD 12.0 NA 

OCT6 HGSOC BRCA1 May 2010 Stage IV No 6 July 2011 
 

Refractory 
September 

2013 
Intra 4 DOD 7.6 2.49 

OCT7 HGSOC BRCA2 May 2008 Stage III No 6 June 2009 
 

Refractory 
September 

2013 
Intra 8 DOD 6.2 0.32 

OCT8 HGSOC BRCA2 July 2006 Stage IV No 6 July 2007 
 

Refractory 
September 

2013 
Intra and 

extra 
8 DOD 5.9 1.60 

OCT9 HGSOC BRCA1 April 2011 Stage IV No 6 August 2012 
 

Refractory 
October 

2013 
Intra and 

extra 
3 DOD 12.0 0.08 

OCT10 HGSOC BRCA1 
January 

2012 
Stage IV 

Yes (4 
cycles) 

3 January 2013 Resistant No 
October 

2013 
Intra 4 NED 4.8 0.26 

OCT11 HGSOC BRCA2 June 2006 Stage IV No 7 October 2008 
 

Resistant 
December 

2013 
Intra and 

extra 
9 DOD 11.6 10.30 

OCT12 HGSOC BRCA2 June 2007 Stage III No 6 July 2010 
 

Refractory June 2014 Intra 8 DOD 10.8 0.05 

OCT13 HGSOC BRCA1 
December 

2007 
Stage II No 6 January 2011 

 
Refractory June 2014 Intra 7 DOD 5.5 0.14 

OCT14 HGSOC BRCA1 
January 

2012 
Stage III No 6 June 2013 

 
Resistant June 2014 Intra 4 DOD 24.3 0.08 

OCT15 HGSOC BRCA1 
August 
2012 

Stage IV 
Yes (3 
cycles) 

3 October 2013 
 

Resistant 
August 
2014 

Intra 3 DOD 32.4 0.31 

OCT17 HGSOC BRCA1 
August 
2008 

Stage IV No 6 January 2010 
 

Refractory 
September 

2014 
Intra and 

extra 
8 DOD 17.4 4.48 

OCT18 HGSOC BRCA2 May 1996 Stage II No 6 
December 

2004  
Resistant 

October 
2014 

Intra 19 DOD 11.4 5.32 

OCT19 HGSOC BRCA1 
Septembe

r 2010 
Stage III No 6 

December 
2011  

Refractory 
December 

2014 
Intra 4 DOD 30 0.61 

OCT20 HGSOC BRCA1 June 2008 Stage III No 6 
February 

2010  
Refractory 

December 
2014 

Intra 7 DOD 32.4 0.12 

OCT21 

Endomet
rioid 

(serous 
compone

nts) 

BRCA1 June 2008 Stage III No 14 
December 

2010  
Refractory March 2015 

Intra and 
extra 

7 DOD 15 0.24 

AWD, alive with disease; DOD, dead of disease; HGSOC, high grade serous ovarian cancer; intra, Intra-abdominal; Intra and extra, intra- and extra-

abdominal; MAF, mutant allele fraction; NA, not assessable due to the lack of a somatic mutation bioinformatically inferred as clonal in the tumor 

sample; hence, the fraction of ctDNA in cfDNA could not be calculated; NED, no evidence of disease; ND, not detectable. 
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Table 2. Clinicopathologic characteristics of breast cancer patients included in this study. 
 

ID 
Tumor 
type 

BRCA 
status 

Date 
primary 

diagnosis 

Stage 
primary 
disease 

Neoa
djuva

nt 
chem
other
apy 

Cycles 
platinu

m-
based 

chemot
herapy 

(n) 

Dates 
platinum-

based 
chemothe

rapy 

Dates 
PARP 

inhibitor 
therapy 

Date 
disease 

progressi
on/ 

distant 
relapse 

Primary 
refractory/ 
resistant/ 

progressive 
disease 

Date(s) 
blood 
draw 

Disease 
location 
at blood 

draw 

Time 
follow-

up 
(years) 

Foll
ow-
up 

cfDNA 
(ng) 

per ml 
plasma 

Fractio
n 

ctDNA 
in 

cfDNA 
(%) 

L031 IDC BRCA2 April 2003 Stage IIB No 8 
May-

November 
2014 

April-June 
2015 

April 2013 
PD post 
platinum 

April 
2015, 
June 
2015, 

August 
2015 

LN, lung, 
bones 

12 DOD 

8.6 
(P1), 
8.1 

(P2), 
7.8 (P3) 

9.8 
(P1), 
12.6 
(P2) 

1109 IDC BRCA2 
September 

2005 
NA No 5 

August - 
November 

2010 

March-
October 

2012 
June 2010 

PD>12 
months post 
platinum (on 
maintenance 
endocrine) 

October 
2012, 
May 
2013 

liver, 
bone 

8 DOD 

28.1 
(P1), 
87.0 
(P2) 

15.0 
(P1), 
35.2 
(P2) 

1159 ILC BRCA2 
November 

2010 
Stage IIB No 4 

June-
August 
2014 

March-
April 2014 

February 
2011 

PD on 
platinum 

May 
2014, 

October 
2014 

soft 
tissue, 

skin, LN, 
retroperit

oneal 

5 DOD 
5.0 

(P1), 
7.0 (P2) 

11.5 
(P1), 
12.8 
(P2) 

L046 IDC BRCA1 May 2013 Stage IIB Yes 5 June 2014 
 

June 2015 
PD on 

platinum 
July 
2015 

chest 
wall 

2 
AW
D 

7.5 54.5 

1211 IDC BRCA2 May 2012 
Stage 
IIIB 

Yes - - 
July - 

Septembe
r 2015 

May 2014 
PD on 

platinum 
June 
2015 

liver, 
lung, 
bone 

4 DOD 7.6 5.2 

AWD, alive with disease; DOD, dead of disease; IDC, invasive ductal carcinoma of no special type; ILC, invasive lobular carcinoma; LN, lymph node; 

NA, primary disease staging information not available at the time of data freeze; P1, plasma sample 1; P2, plasma sample 2; P3, plasma sample 3; 

PD, progressive disease. 
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FIGURE LEGENDS  

 

Figure 1: BRCA1 open reading frame-restoring somatic mutations identified in cell-free DNA 

derived from ovarian cancer patients with BRCA1 germline mutations resistant/ refractory to 

platinum-based chemotherapy. 

Representation of the BRCA1 protein (top). Nucleotide and amino acid sequences for the affected 

genomic location shown are based on ENSEMBL transcript no. ENST00000357654.3. 

Representation of the predicted nucleotide and protein sequences for BRCA1 wild-type (WT), 

germline mutation and putative reversion mutations from ovarian cancer patient OCT5 (top) and 

OCT15 (bottom). These three putative BRCA1 reversion mutations were found to restore the 

BRCA1 open reading frame. Additional putative BRCA1 reversion mutations are shown in 

Supplementary Fig. S2. Predicted protein lengths are shown in bold. The base triplets affected by a 

mutation are marked in light blue, and the aberrant amino acids produced by a given mutation are 

marked in red. Green arrows indicate the restored open reading frames. AA, amino acid; ORF, open 

reading frame; WT, wild type. 
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Figure 2: Validation of putative BRCA1 reversion mutation using dPCR and IR-induced 

BRCA1 foci formation. 
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A, Validation of the putative BRCA1 c.85delG reversion mutation in cfDNA and tissue samples from 

patient OCT15 harboring a BRCA1 c.68-69delAG germline mutation using dPCR. Massively parallel 

sequencing libraries of germline DNA spiked in with 10, 100, and 1,000 BRCA1 c.85delG synthetic 

oligonucleotide molecules were used as controls and for BRCA1 c.85delG mutant gating (top). 

Massively parallel sequencing libraries from the plasma DNA (top right) and from three anatomically 

distinct ovarian tumor samples (i.e. ovary, peritoneum and fallopian tube; bottom) of case OCT15 

were tested. The somatic BRCA1 c.85delG mutation was confirmed in the cfDNA but was not 

detected in the pretreatment ovarian cancer tissues. B, U2OS cells were transfected with pcDNA-

BRCA1(Δ510-1283) and BRCA1 mutant plasmids (BRCA1 germline and/or respective putative 

BRCA1 reversion mutations of cases OCT1, OCT5, OCT10 and OCT15) or wild-type (WT) BRCA1 

as control for 48 hrs (see Methods). Following 8Gy irradiation (IR), BRCA1 foci formation was 

assessed using immunofluorescence. Arrows indicate the BRCA1 reversion mutations partially 

restoring BRCA1 foci formation. 

 

  

Figure 3: BRCA2 open reading frame-restoring somatic mutations identified in cell-free DNA 

derived from breast cancer patients with BRCA2 germline mutations after platinum-based 

chemotherapy. 
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Representation of the BRCA2 protein (top). Nucleotide and amino acid sequences for the affected 

genomic location shown are based on ENSEMBL transcript no. ENST00000380152.7. 

Representation of the predicted nucleotide and protein sequences for the BRCA2 wild-type (WT), 

germline alteration and putative reversion mutations from patients A, 1109 and B, L031 are shown. 

The putative BRCA2 reversion mutations presented in this figure were validated independently using 

targeted amplicon re-sequencing. Predicted protein lengths are shown in bold. The base triplets 

affected by a mutation are marked in light blue, and the aberrant amino acids produced by a given 

mutation are marked in red. Gaps represent the germline and somatic BRCA2 reversion mutations 

identified. Four putative BRCA2 reversion mutations were found to co-localize with the germline 

alteration, which is underlined in red in the reversion mutation sequences on the left. Insertions are 

highlighted by green squares. Green arrows indicate the restored open reading frames. AA, amino 

acid; ORF, open reading frame; WT, wild type. 
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Figure 4. Serial analysis of putative BRCA2 reversion mutations in cell-free DNA samples 

from breast cancer patient L031, and the interaction between reversion-mutant BRCA2, 

PALB2 and RAD51. 
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A, CT images during the course of therapy of breast cancer patient L031 demonstrating the initial 

response and subsequent progression of the lesions. Plasma samples were obtained before and 

after treatment with the PARP inhibitor Talazoparib and after Capecitabine therapy (top). Mutant 

allele frequencies of two somatic BRCA2 reversion mutations identified by targeted massively 

parallel sequencing were assessed in two independent analyses in the plasma samples pre- and 

post PARP inhibitor treatment using targeted amplicon sequencing. B, 293T cells transfected with 

HA-BRCA2 wild-type (WT), HA-BRCA2 c.407delA germline mutant (GM) and HA-BRCA2 

c.402_413delTCTAAATTCTTG somatic reversion-mutant plasmids Rev). Western blot performed 

using an anti-HA antibody revealed that the HA-BRCA2Rev was translated into mutant protein 

(predicted 3414AA) with a molecular weight similar to that of the wild-type protein (3418AA). The 

HA-BRCA2GM protein length is predicted to be 150AA. Immunoprecipitation of HA-BRCA2Rev and 

wild-type HA-BRCA2 revealed that HA-BRCA2Rev protein displays proficient interactions with 

PALB2 and RAD51 similar to that of the wild-type BRCA2 protein. AA, amino acid. 

 

 

 

 


