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Summary 

The immunosuppressive protein PD-L1 is upregulated in many cancers 

and contributes to evasion of the host immune system. The relative 

importance of the tumour microenvironment and cancer cell-intrinsic signalling 

in the regulation of PD-L1 expression remains unclear. We report that 

oncogenic RAS signalling is sufficient to upregulate tumour cell PD-L1 

expression through a mechanism involving increases in PD-L1 mRNA stability 

via modulation of the AU-rich element-binding protein tristetraprolin (TTP). 

TTP negatively regulates PD-L1 expression through AU-rich elements in the 

3’UTR of PD-L1 mRNA. MEK signalling downstream of RAS leads to MK2 

induced phosphorylation and inhibition of TTP. In human lung and colorectal 

tumours, RAS pathway activation is associated with elevated PD-L1 

expression. In vivo, restoration of TTP expression enhances anti-tumour 

immunity dependent on degradation of PD-L1 mRNA. Our results 

demonstrate that RAS can drive cell-intrinsic PD-L1 expression, and present 

therapeutic opportunities to reverse the innately immunoresistant phenotype 

of RAS mutant cancers. 

  



Highlights 

• Oncogenic RAS signalling increases PD-L1 expression 

• RAS regulates PD-L1 through AU-rich elements (AREs) in the 3’UTR of PD-

L1 mRNA 

• The ARE-binding protein tristetraprolin (TTP) negatively regulates PD-L1 

expression 

• Restoration of tumour-cell TTP activity enhances anti-tumour immunity 

  



eTOC Blurb 

Coelho et al. demonstrate a post-transcriptional mechanism whereby oncogenic 

RAS signalling increases PD-L1 expression. Mechanistically, PD-L1 mRNA is 

targeted by TTP through AU-rich elements in the 3’UTR, making it unstable. 

Oncogenic RAS signalling reduces TTP activity and stabilises the PD-L1 transcript. 

Restoring TTP activity reduces PD-L1 levels and enhances anti-tumour immunity. 
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Introduction 

Therapeutic antibodies blocking PD-1 pathway activation by targeting PD-

L1 (programmed death 1 ligand 1, also known as B7-H1 or CD274), or its 

receptor, PD-1, have caused striking regressions in several malignancies in 

which RAS mutations are frequent driver events, including non-small cell lung 

cancer (NSCLC) (Herbst et al., 2014; Topalian et al., 2012) and mismatch-

repair-deficient colorectal cancer (Le et al., 2015). PD-L1 is critical for limiting 

autoimmune related damage to normal tissues in the context of chronic 

inflammation, but is also aberrantly upregulated on cancer cells in order to 

evade immune destruction (Pardoll, 2012). As anti-PD-1 pathway 

immunotherapies are only effective in a minority of cancer patients (Topalian 

et al., 2012), there is a great need for reliable biomarkers of patient response. 

To what degree tumour PD-L1 expression is prognostic of patient response to 

PD-1 pathway blockade remains contentious. Recent clinical trials of the anti-

PD-1 antibody nivolumab report that tumour cell PD-L1 expression correlates 

with response to nivolumab in non-squamous, but not the squamous subtype 

of NSCLC (Borghaei et al., 2015; Brahmer et al., 2015). Notably, non-

squamous NSCLC patients with KRAS mutations benefited from nivolumab 

therapy in terms of overall survival, whereas KRAS wild-type patients did not 

(Borghaei et al., 2015). Response rate and progression-free survival was 

increased in NSCLC patients treated with pembrolizumab in cases where at 

least 50 % of tumour cells were positive for PD-L1 (Garon et al., 2015). In this 

patient cohort, KRAS mutant tumours were more frequently PD-L1-positive 

than KRAS wild-type tumours. 
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The success of immune-checkpoint blockade is dependent on the 

immunogenicity of the tumour (Gubin et al., 2014; Linnemann et al., 2015; 

Rizvi et al., 2015), therefore one possible confounding factor in the use of 

tumour PD-L1 as a biomarker for response is the uncoupling of tumour PD-L1 

expression from tumour immunogenicity. It is therefore critical to understand 

the signalling pathways that dictate tumour cell PD-L1 expression. The 

inflammatory cytokine IFN-γ is the best-characterized stimulus for PD-L1 

expression, however, several studies suggest cell-intrinsic oncogenic 

signalling can also promote PD-L1 expression in cancer cells through EGFR, 

MYC and AKT (Akbay et al., 2013; Casey et al., 2016; Parsa et al., 2007). 

Studies performed on melanoma (Jiang et al., 2013) and acute myeloid 

leukaemia (Berthon et al., 2010) have indicated that MEK signalling is 

involved in upregulation of PD-L1 in some tumour cell lines, but the molecular 

basis of this regulation remains poorly defined.  

Separately, genetic rearrangements in the 3’UTR of PD-L1 have been 

found in a multitude of different cancers at low frequency, and are associated 

with massively increased levels of tumour PD-L1 expression (Kataoka et al., 

2016). These results imply that control of PD-L1 expression through the 

3’UTR might contribute to immune escape in human cancers, although the 

underlying mechanisms of post-transcriptional regulation responsible for this 

effect are unclear. 

In this report, we reveal that tumour cell PD-L1 expression can be driven 

by oncogenic RAS pathway activation by a mechanism involving post-

transcriptional regulation of the stability of PD-L1 mRNA. This provides a 
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direct mechanism whereby RAS signalling in tumour cells can provide 

protection from attack by the immune system. 
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Results 

 

Cell-intrinsic Upregulation of PD-L1 through Oncogenic RAS Signalling 

We tested the potential role of oncogenic RAS signalling in the regulation 

of PD-L1 expression in human epithelial cells using ER-RASG12V fusion 

constructs, which allow for the induction of oncogenic RAS activity with 4-

hydroxytamoxifen (4-OHT) (Molina-Arcas et al., 2013). As expected, addition 

of 4-OHT led to the rapid activation of oncogenic KRAS signalling through 

MEK and PI3K (Figure 1A) and coincided with induction of c-MYC and 

CCND1 mRNA expression in an immortalised human pneumocyte cell line 

derived from type II cells (Figure 1B) (Kemp et al., 2008). PD-L1 mRNA was 

rapidly increased following stimulation of oncogenic KRAS signalling with 4-

OHT, resulting in a six-fold induction of mRNA expression after three hours 

(Figure 1B). By way of comparison with known regulators, stimulation with 

IFN-γ led to increases in PD-L1 mRNA in excess of 10-fold after three hours 

and both KRAS activation and IFN-γ stimulation dramatically increased PD-L1 

protein expression at the cell surface after 48 h (Figure 1C). Oncogenic HRAS 

signalling was also capable of inducing PD-L1 mRNA and protein expression 

in the immortalised breast epithelial cell line MCF10A, and the KRAS wild-

type colon carcinoma cell line HKE-3 (Figure S1A and S1B), implying that 

induction of PD-L1 expression by RAS is not a tissue-specific or RAS-isoform 

specific phenomenon. The induction of PD-L1 protein was most striking in ER-

HRASG12V MCF10A cells, perhaps reflecting the low basal levels of PD-L1 

expression. Chronic RAS activation for four days led to more profound 
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increases in PD-L1 protein, whereas shorter-term activation resulted in 

modest inductions of PD-L1 expression (Figure S1B). Importantly, 4-OHT did 

not induce PD-L1 expression in parental cell lines lacking ER-RAS constructs 

(Figure S1C). 

Direct inhibition of KRAS signalling with the KRASG12C-specific inhibitor 

ARS853 (Lito et al., 2016; Patricelli et al., 2016) in lung and colorectal cancer 

cell lines harbouring KRASG12C mutations led to reductions in PD-L1 mRNA 

expression, but not in the KRASG12S A549 control lung cancer cell line (Figure 

1D and 1E). Moreover, ARS853 treatment led to significant reductions in PD-

L1 surface protein expression in the KRAS-mutant lung cancer cell line H358 

(Figure 1F). To dissect which downstream effectors of RAS are responsible 

for regulating PD-L1 expression, we used the specific inhibitors of MEK and 

pan type I PI3Ks, GSK1120212 (trametinib) and GDC-0941 (pictilisib), 

respectively (Figure S1D). Notably, MEK and PI3K inhibitors could block RAS-

induced expression of PD-L1 protein in ER-KRASG12V type II pneumocytes, 

either alone, or in combination (Figure 1G). MEK inhibition significantly 

reversed KRAS-mediated PD-L1 mRNA upregulation (Figure 1H), however 

PI3K inhibition only reduced PD-L1 protein expression, concordant with 

evidence for AKT signalling increasing PD-L1 expression predominantly 

through activating translation of the transcript (Parsa et al., 2007). MEK 

inhibition, but not PI3K inhibition, reduced PD-L1 mRNA expression in H358 

(Figure 1I), H23, and H1792 lung cancer cell lines (Figure S1E). Downstream 

of MEK, inhibition of ERK1/2 with SCH772984 potently reduced PD-L1 

expression in H358 and H23 cells (Figure S1F). Furthermore, PMA, a potent 
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chemical activator of MEK-ERK signalling via protein kinase C stimulation, 

dramatically and rapidly increased PD-L1 expression; an effect that was 

largely reversed with the inhibition of MEK (Figure 1J and Figure S1G). More 

extensive analysis of PD-L1 surface expression on multiple KRAS-mutant 

lung cancer cell lines, both human and murine, revealed generally consistent 

PD-L1 downregulation following MEK and PI3K inhibition, suggesting this 

regulatory pathway is of broad significance (Figure S1H). Taken together, 

these results suggest that oncogenic RAS signalling through MEK and PI3K is 

sufficient to drive PD-L1 expression. 

Since RAS signalling has been implicated in reducing the expression of 

genes involved in the presentation of antigens by MHC class I molecules 

(Ebert et al., 2016; El-Jawhari et al., 2014), we analysed the expression of 

antigen processing and antigen presentation machinery following oncogenic 

RAS activation (Figure S1I). As expected, KRAS G12V signalling led to 

significant decreases in expression of TAP1, TAPBP, as well as HLA-A, HLA-

B, HLA-C and B2M, suggesting that compromised antigen processing and 

presentation in concert with increases in PD-L1 expression may contribute to 

an augmented state of immunoresistance in RAS-mutant tumour cells. 

 

RAS Signalling Increases PD-L1 mRNA Stability through AU-rich 

Elements in the 3’UTR 

To investigate how RAS-MEK signalling regulates PD-L1 expression, we 

first asked whether RAS regulates PD-L1 via a transcriptional mechanism. We 

generated a series of luciferase reporter constructs containing promoter 
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fragments cloned from the human PD-L1 locus (Figure S2A). In all cases, the 

physiological stimulus IFN-γ, but not PMA, induced expression of the 

promoter reporter constructs in H358 cells, a cell line in which endogenous 

PD-L1 mRNA expression is robustly induced with PMA (Figure 1J). 

Incorporation of putative enhancer elements (Sumimoto et al., 2016) into the 

PD-L1 promoter reporter constructs also failed to confer sensitivity to MAPK 

activation (Figure S2A), as did including predicted regulatory regions 

spanning the 5’ of exon 1 (data not shown). Furthermore, none of the 

reporters showed evidence of decreased expression when H358 cells were 

treated with MEK inhibitor (data not shown).  

Therefore, we investigated possible mechanisms of post-transcriptional 

regulation of PD-L1 expression by RAS. We induced oncogenic KRAS 

signalling with 4-OHT in ER-KRASG12V type II pneumocytes and concomitantly 

blocked transcription with actinomycin D. Surprisingly, we found human PD-

L1 mRNA to have a short half-life, which was significantly stabilised by the 

induction of oncogenic KRAS signalling (Figure 2A). Moreover, murine PD-L1 

mRNA also had a comparably short half-life, and the stability of the transcript 

in a Kras-mutant, p53-deleted murine lung tumour cell line (KPB6) could be 

reduced further still when MEK was inhibited (Figure 2B), implicating KRAS-

MEK signalling in the stabilisation of the labile PD-L1 transcript. Consistently, 

direct inhibition of oncogenic KRAS signalling with ARS853 also caused 

reductions in PD-L1 mRNA half-life in H23, H1792 and H358 cells (Figure 

2C). However, inhibition of PI3K alone did not result in altered PD-L1 mRNA 

stability in KPB6 cells (Figure S2B). 
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Common genetic elements conferring mRNA instability include miRNA 

binding sites and AU-rich elements (AREs) in the 3’UTR of the transcript. The 

core motif for AREs is an ATTTA pentamer sequence, however functional 

AREs are often found in an AU-rich context, conforming to the 

WWATTTAWW nonamer consensus (where W denotes an A or T) (Zubiaga 

et al., 1995) constituting the binding site for several AU-rich element binding 

proteins (AUBPs), which can subsequently recruit mRNA decay machinery 

(Lykke-Andersen and Wagner, 2005). For example, a canonical ARE-

regulated transcript is TNF-α, which contains nine pentamer sequences in the 

human transcript, and eight pentamers in the murine transcript. Upon 

inspection of the 3’UTR of PD-L1, we noted a high number of ARE 

pentamers. Specifically, out of 14 ATTTA pentamer sequences in the human 

transcript and 11 in the murine transcript, there were three conserved AREs 

conforming to the nonamer consensus (Figure 2D). 

We tested the influence of MEK inhibition on the half-life of another 

unstable mRNA, Tusc2 (tumour suppressor candidate 2, or Fus1), which does 

not contain AU-rich elements in the 3’UTR, but is targeted by multiple miRNAs 

(Du et al., 2009). Although Tusc2 mRNA had a similar half-life to PD-L1 

mRNA, MEK inhibition did not influence the stability of the Tusc2 transcript 

(Figure S2C), indicating that the observed post-transcriptional regulation of 

PD-L1 by MEK may relate to AU-rich elements in the 3’UTR. Indeed, a 

transcript containing functional AU-rich elements, Ptgs2 mRNA (Cha et al., 

2011) displayed a significant reduction in mRNA half-life in response to MEK 

inhibition (Figure S2C), reminiscent of PD-L1 mRNA. 
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To directly analyse the functional importance of these AREs, we 

constructed a luciferase reporter containing a fragment of the 3’UTR of human 

PD-L1 containing the last six ATTTA pentamers, including the three 

conserved nonamer sequences. Mutation of ATTTA pentamers to ATGTA has 

been shown to increase the expression of ARE-containing mRNAs 

(Rajagopalan et al., 1995; Yang et al., 2004). Consistent with this, mutating 

the six ATTTA pentamer sequences to ATGTA increased expression of the 

PD-L1 3’UTR luciferase reporter in ER-HRASG12V MCF10A and H358 cells, 

suggesting these AREs are functionally relevant for controlling the expression 

of PD-L1 (Figure 2E and 2F). Stimulation with 4-OHT in ER-HRASG12V 

MCF10A cells, or PMA in H358 cells, increased expression of the wild-type 

reporter, whereas the ATGTA mutant reporter was insensitive to these 

treatments (Figure 2E and 2F). In sum, these data suggest that AREs in the 

3’UTR of PD-L1 mRNA can mediate control of PD-L1 expression by RAS-

MEK signalling. 

 

AU-rich element Binding Proteins TTP and KSRP are Negative 

Regulators of PD-L1 Expression 

To assess which AU-rich element binding proteins (AUBPs) could 

mediate regulation of PD-L1 expression downstream of RAS signalling, we 

performed a selected siRNA screen of likely candidate genes: AUF1, KSRP, 

HuR and TTP (also known as tristetraprolin or ZFP36), in three RAS-mutant 

lung cancer cell lines (Figure 3A-C). Knockdown efficiency was verified in 

each case by qPCR (Figure S3A-C). siRNA-mediated knockdown of KSRP 
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and TTP most consistently increased PD-L1 mRNA expression across the cell 

line panel, with the exception A427 where knock-down of TTP did not lead to 

significantly increases in PD-L1 mRNA levels. Overexpression of KSRP or 

TTP was sufficient to significantly decrease PD-L1 expression (Figure 3D) 

and PD-L1 3’UTR luciferase reporter expression in H358 cells (Figure 3E), 

corroborating our results from the siRNA screen and confirming that KSRP 

and TTP impart their negative regulation of PD-L1 expression through the 

3’UTR. Overexpression of TTP and KSRP together did not result in additive 

reductions in PD-L1 expression, suggesting that they may regulate PD-L1 

through the same mechanism (Figure S3D). Notably, siRNA-mediated 

knockdown of TTP family members, BRF-1 and BRF-2, was incapable of 

increasing PD-L1 expression to the extent achieved by silencing TTP 

expression (Figure S3E and S3F). We confirmed that TTP protein expression 

was reduced following knock-down in H23 and H358 cells, but this was less 

clear in A427 cells, which express lower levels of TTP protein (Figure S3G). 

Deconvolution of siRNA pools targeting TTP showed that multiple siRNAs 

increased expression of PD-L1 mRNA in H23 and H358 cells (Figure S3H).  

We further examined the regulation of PD-L1 mRNA by TTP by using TTP 

wild-type (WT) and TTP knock-out (KO) MEFs. In the TTP KO MEFs, TTP 

mRNA is expressed but no functional TTP protein can be made due to the 

introduction of a premature stop codon at the endogenous locus (Lai et al., 

2006; Taylor et al., 1996). Acute activation of TTP expression with serum 

temporally coincided with a dramatic and transient decrease in PD-L1 mRNA 

in TTP WT MEFs, but not in the TTP KO MEFs (Figure 3F), with PD-L1 levels 
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recovering to near baseline at six hours after serum addition. Moreover, the 

total absence of functional TTP protein in the TTP KO MEFs increased the 

half-life of PD-L1 mRNA relative to TTP WT MEFs (Figure 3G).  

Finally, we generated a KPB6 lung cancer cell line with a tetracycline-

inducible TTP transgene (TTP tet-ON). As expected, inducible expression of 

TTP led to reductions in wild-type PD-L1 3’UTR luciferase reporter 

expression, but not of the ATGTA mutant 3’UTR reporter (Figure 3H). When 

combined with MEK inhibition, TTP expression more robustly suppressed 

expression of the wild-type reporter. In sum, these data provide evidence for 

the negative regulation of PD-L1 mRNA expression by the AUBPs KSRP and 

TTP. 

 

RAS Regulates PD-L1 Expression through TTP 

To further investigate whether MEK and TTP regulate PD-L1 via a shared 

pathway, we silenced TTP expression using siRNAs in the context of MEK 

inhibition. Knock-down of TTP was largely able to rescue the decrease in PD-

L1 expression caused by MEK inhibition (Figure 4A). However, the 

knockdown of KSRP could not rescue this phenotype, despite profound 

silencing of expression (Figure S4A). Furthermore, MEK inhibition significantly 

increased TTP mRNA expression (Figure 4A), and chronic activation of 

oncogenic KRAS signalling significantly decreased TTP mRNA expression 

(Figure 4B).  

Next, we tested whether the RAS pathway regulates the activity of TTP 

and/or KSRP protein. Crucially, we found that endogenous levels of TTP and 
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KSRP both co-precipitated with PD-L1 mRNA in RNA immunoprecipitation 

(RNA-IP) reactions from KPB6 mouse lung cancer cells (Figure S4B). TTP 

also significantly bound to PD-L1 mRNA in H358 cells (Figure 4C). In all 

cases, the enrichment for the PD-L1 transcript was far greater than that of a 

control mRNA, GAPDH, which lacks AREs in the 3’UTR (Figure 4C, Fig S4C). 

MEK inhibition did not significantly alter the occupancy of TTP or KSRP on 

PD-L1 mRNA, consistent with RAS regulating the activity of the AUBP, rather 

than the occupancy on the target mRNA.  

ERK has been shown to phosphorylate (Taylor et al., 1995) and 

negatively regulate TTP activity and expression (Bourcier et al., 2011; 

Deleault et al., 2008; Essafi-Benkhadir et al., 2007; Hardle et al., 2015). 

Inhibition of MEK decreased phosphorylation of TTP at PXSP (ERK target-site 

consensus) and RXXS/T (RSK/AKT target-site consensus) motifs (Figure 4D 

and 4E), confirming that TTP is regulated by phosphorylation downstream of 

MEK signalling in cancer cells. Mutation of two of the highest confidence 

predicted ERK-target residues on human TTP (S218 and S228) abrogated 

detection of TTP with the phospho-PXSP motif-specific antibody (Figure 4D), 

however the phosphosite-mutant TTP (S218A 228A) did not show enhanced 

activity in reducing PD-L1 mRNA expression compared to wild-type TTP (data 

not shown), implying the involvement of other residues that are not readily 

detected with this antibody. Furthermore, although AKT signalling has been 

shown to regulate KSRP activity through phosphorylation of S193 (Diaz-

Moreno et al., 2009), the KSRP S193A phosphosite-mutant did not show 
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enhanced activity in reducing PD-L1 mRNA expression compared to wild-type 

KSRP (Figure S4D). 

Equally, the serine/threonine phosphatase PP2A has been implicated in 

positively regulating TTP function by reversing inhibitory phosphorylation 

events (Sun et al., 2007). Therefore, we tested whether inhibition of PP2A 

with okadaic acid (OA) would increase PD-L1 expression. OA rapidly 

increased PD-L1 mRNA expression in TTP WT MEFs, but not TTP KO MEFs 

(Figure 4F), demonstrating that PP2A activity decreases PD-L1 expression 

specifically through modulating TTP activity. 

 

RAS-ROS-p38 Signalling Controls TTP Activity 

To discover which residues are functionally important for regulating TTP 

activity downstream of RAS, we performed mass spectrometry on 

immunoprecipitated Myc-TTP after PMA, MEK inhibitor, or PMA and MEK 

inhibitor treatment. We used the Kras-mutant, mouse colon carcinoma cell 

line CT26, based on its immunogenicity and sensitivity to anti-PD-L1 antibody 

therapy, making it suitable  for downstream in vivo experiments. Most notably, 

mass spectrometry analysis revealed MEK-dependent phosphorylation of S52 

and S178; PMA significantly enhanced phosphorylation of these residues, and 

this effect was reversed with MEK inhibition (Figure 5A, S5A and Table S1). 

Moreover, MEK inhibition alone was sufficient to reduce phosphorylation of 

these residues (Figure 5A). 

S52 and S178 residues are crucial for the regulation of TTP activity 

through binding to 14-3-3 proteins following phosphorylation by MK2 (also 
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known as MAPKAPK2) downstream of p38 (Chrestensen et al., 2004). 

Consequently, p38 signalling results in decreased TTP activity, partly through 

reducing the association with deadenylase machinery (Mahtani et al., 2001; 

Stoecklin et al., 2004). In parallel, phosphorylation of S52 and S178 stabilises 

TTP protein (Brook et al., 2006), which is consistent with the observed 

increase in abundance of total TTP peptides detected in the PMA versus the 

MEK inhibitor-treated condition (Figure 5A). 

We reasoned that oncogenic RAS might stimulate p38 signalling through 

promoting the MEK-dependent accumulation of reactive oxygen species 

(ROS) (Nicke et al., 2005), and thus inhibit TTP function. Indeed, oncogenic 

RAS signalling dramatically increased intracellular ROS in MCF10A cells, and 

ROS levels were distinctly correlated with the extent of PD-L1 induction 

(Figure S5B). Furthermore, the addition of the potent anti-oxidant N-acetyl-L-

cysteine (NAC) largely reversed the induction of PD-L1 protein by RAS 

(Figure 5B and Figure S5B), collectively suggesting that ROS induction by 

oncogenic RAS is functionally important in driving PD-L1 expression.  

Specific activation of the p38 pathway using an inducible version of the 

upstream kinase MEKK3 (∆MEKK3-ER) (Figure 5C and Figure S5C) (Garner 

et al., 2002) was sufficient to increase PD-L1 protein expression, albeit to a 

lesser extent than that achieved by RAS itself. Co-treatment with NAC was 

considerably less effective in reversing PD-L1 induction in this context, 

consistent with ROS operating upstream of p38 in this pathway (Figure 5C). 

Moreover, inhibition of MK2 strongly reversed RAS-induced PD-L1 expression 

in MCF10A and HKE-3 cells (Figure 5D) and PD-L1 expression in CT26 cells, 



Coelho et al    7 September 2017 

	 17 

which have endogenous levels of mutant Kras (Figure 5E). We also observed 

reductions in expression of PD-L1 mRNA in several NSCLC cell lines with 

endogenous KRAS mutations following treatment with NAC, reduced 

glutathione or MK2 inhibitor III (Figure S5D), although we noted some 

heterogeneity in response between the four cell lines tested. 

To directly test the functional significance of the MK2 target residues 

downstream of MEK pathway activation, we generated TTP knock-out CT26 

cell lines using CRISPR-Cas (to obviate functional contributions from 

endogenous TTP), and reconstituted these cells with either a wild-type (WT) 

or phosphosite-mutant (S52A S178A), tetracycline-inducible TTP transgene. 

S52 and S178 of mouse TTP are highly conserved, with S52 conforming to 

the RXXS/T phosphosite motif (Figure 5F). Immunoprecipitation of Myc-

tagged TTP following acute MAPK activation with PMA revealed 

phosphorylation of WT TTP, but not of the S52A S178A mutant protein at 

RXXS/T sites (Figure 5G), verifying our findings from mass spectrometry 

analysis. Crucially, the S52A S178A mutant TTP had significantly enhanced 

activity in reducing PD-L1 mRNA expression relative to WT TTP (Figure 5H 

and Figure S5E). In sum, these results suggest that a RAS-ROS-p38 

signalling axis contributes to PD-L1 upregulation through phosphorylation and 

inactivation of TTP. 

 

RAS Pathway Activation is Associated with PD-L1 Upregulation in 

Human Cancers 
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To further evaluate the role of oncogenic RAS signalling in regulating PD-

L1 expression in cancer, we analysed TCGA gene expression data from 

patient-derived lung adenocarcinoma (LUAD) or colon adenocarcinoma 

(COAD) samples. To account for the effects of alternative oncogenes that can 

activate downstream RAS effector pathways such as EGFR, BRAF and ALK, 

we used two published gene expression signatures for RAS activation 

(Loboda et al., 2010; Sweet-Cordero et al., 2005) to segregate patient 

samples into “high” and “low” RAS pathway activity based on gene 

expression. As expected, annotation of KRAS mutation status revealed a 

strong enrichment for KRAS mutant samples in the high RAS activity cohorts 

in both signatures (Figure 6A and S6A). We compared the expression of T 

cell function related genes between high and low RAS activity cohorts and 

found CD274 (PD-L1) expression to be significantly increased in the high RAS 

pathway activity samples in LUAD (1.42 log2-fold change) and COAD 

samples (1.17 log2-fold change), using either signature (Figure 6A, 6B and 

S6A). Stromal PD-L1 and tumour PD-L1 expression appear to have 

independent, suppressive effects on anti-tumour immunity (Lau et al., 2017), 

however we noted that the expression of the pan-leukocyte marker PTPRC 

(coding for CD45) and lymphocyte marker CD3E, were only modestly 

increased in the high RAS pathway activity cohort, indicating that the 

differential in PD-L1 expression is not likely to be solely attributable to a 

higher degree of leukocyte infiltration in the tumour microenvironment (Figure 

6A).  
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Of note, IFNGR1 was also among the most significantly enriched 

transcripts in the high RAS pathway activity groups. To investigate the 

possibility that PD-L1 may be upregulated in RAS active tumours due to 

regulation by IFNGR1, we induced PD-L1 expression with RAS in ER-

KRASG12V type II pneumocytes and concomitantly blocked IFNGR1 signalling 

using a depleting antibody for IFN-γ, or with the JAK1/2 inhibitor ruxolitinib. 

Although both treatments effectively reduced responses to exogenous IFN-γ, 

PD-L1 induction by RAS was unaffected, suggesting independence from IFN-

γ-IFNGR1 signalling (Figure 6SB). 

To further explore the in vivo relevance of TTP regulation in human 

cancer, we compared TTP expression in normal tissue and tumour samples 

by using publically available datasets. TTP expression was strikingly 

downregulated in human lung and colon tumour samples compared to normal 

tissue (Selamat et al., 2012; Skrzypczak et al., 2010) (Figure S6C), confirming 

that aberrant regulation of TTP expression is relevant in the human disease. 

Consistently, in FACS-sorted epithelial cells isolated from normal lung or 

matched tumour tissue from KrasLSL-G12D/+; Trp53F/F (KP) mice, TTP 

expression was reduced in lung tumour tissue (Figure S6D). PD-L1 mRNA 

expression was generally higher in tumour tissue than in normal lung but not 

significantly increased, however, PD-L1 protein expression was significantly 

elevated, perhaps reflecting the contribution from AKT in promoting PD-L1 

protein expression (Figure S6E).  
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Restoration of Tumour Cell TTP Expression Enhances Anti-tumour 

Immunity 

Next, we set out to directly assess the functional importance of the 

regulation of PD-L1 expression by TTP in tumour progression. To this end, we 

generated a series of stable CT26 cell lines expressing Myc-tagged, mouse 

TTP under a tetracycline-inducible promoter (TTP tet-ON), and in addition, 

constitutively expressing either empty vector, or mouse PD-L1 cDNA lacking 

the 3’UTR (PD-L1 ∆3’UTR). TTP expression was induced upon addition of 

doxycycline in a dose-dependent manner (Figure 7A), resulting in decreased 

PD-L1 protein expression at the cell surface (Figure 7B). Overexpression of 

PD-L1 ∆3’UTR rendered total PD-L1 levels effectively insensitive to TTP 

induction (Figure 7B). TTP transgene expression with doxycycline was also 

associated with a decrease in PD-L1 mRNA stability, which was comparable 

to that mediated by MEK inhibition in this system (Figure S7A). 

To independently verify our findings in another cell line, we used MC38 

tumour cells because they are known to exhibit sensitivity to PD-L1 

modulation in vivo, and show Ras pathway activation (Giannou et al., 2017). 

As expected, TTP was induced with doxycycline in MC38 (tet-ON) cells, 

leading to reductions in PD-L1 expression (Figure S7B and S7C).  

Using these engineered cell lines, we performed subcutaneous 

transplantation experiments in mice and monitored tumour progression. 

Notably, the growth rates of the stable cell lines in vitro did not significantly 

differ with the overexpression of PD-L1 ∆3’UTR cDNA or the induction of TTP 

transgene expression with doxycycline (Figure S7D and S7E). However, in 
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vivo, doxycycline treatment significantly reduced CT26 and MC38 tumour 

growth in immune competent, syngeneic mice (Figure 7C and 7D). Strikingly, 

the anti-tumour effects mediated by doxycycline treatment were absent in 

immunocompromised nu/nu mice harbouring CT26 tumours (Figure 7E), and 

in mice treated with depleting antibodies against CD8 and CD4, implying an 

essential contribution from the adaptive immune system to this anti-tumour 

response (Figure 7F). CT26 tumour cells overexpressing PD-L1 ∆3’UTR grew 

faster than the empty vector cells in BALB/c mice, but had no growth 

advantage in nu/nu mice. Moreover, expression of PD-L1 ∆3’UTR was able to 

rescue much of the growth inhibition mediated by doxycycline treatment in 

BALB/c mice, suggesting that suppression of tumour cell PD-L1 expression is 

an essential component of the anti-tumour effects mediated by TTP transgene 

induction (Figure 7C). As expected, CT26 cells expressing a PD-L1 cDNA 

with the full-length, wild-type 3’UTR had considerably lower expression of PD-

L1 protein than the PD-L1 ∆3’UTR cells, but still responded to TTP induction 

in terms of reductions in PD-L1 expression (Figure S7F) and control of tumour 

growth in immune competent mice (Figure S7G).  

Consistent with a heightened anti-tumour immune response, tumours 

derived from mice treated with doxycycline had a greater degree of CD3+ 

lymphocyte infiltration than tumours from mice treated with vehicle, and this 

corresponding infiltration was abrogated in tumours derived from cells 

overexpressing PD-L1 ∆3’UTR (Figure 7G and Figure S7H). Moreover, we 

found higher CD8+/Treg ratios in tumours expressing the TTP transgene, and 

higher levels of IFN-γ production by CD8+ tumour-infiltrating lymphocytes 
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(TILs) derived from TTP-expressing tumours, versus PD-L1 ∆3’UTR tumours 

expressing TTP (Figure 7H), however we did not find significant differences in 

CD4+ TIL populations (data not shown). 

Collectively, these data highlight the functional importance of the 

regulation of PD-L1 expression by TTP in tumour progression, and 

demonstrate that this novel regulatory pathway may be exploited for the 

treatment of Ras-mutant cancers. These findings support a model whereby 

tumour-specific suppression of TTP can foster PD-L1 upregulation, and 

ultimately, tumour immunoresistance (Figure 7I and Figure S7I). 
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Discussion 

In this report, we demonstrate that oncogenic RAS signalling can increase 

tumour cell-intrinsic PD-L1 expression, implying that mutant RAS oncogenes 

can directly contribute to the evasion of immune destruction in cancer. We 

reveal that RAS-MEK signalling controls expression of PD-L1, at least in part, 

by modulating the stability of the transcript. We show that the mouse and 

human PD-L1 mRNAs are labile transcripts containing functional AU-rich 

elements (AREs) in the 3’UTR that permit regulation of PD-L1 expression by 

RAS. Crucially, our data provide a potential explanation for the genomic 

structural variations in the PD-L1 3’UTR observed in human cancer (Kataoka 

et al., 2016). The simultaneous loss of regulation by miRNAs and AREs is 

likely to contribute to the high levels of overexpression observed in tumours 

with complete loss of the 3’UTR. In addition, we provide a molecular basis for 

the tendency of KRAS-mutant NSCLCs to be positive for PD-L1 expression 

(D'Incecco et al., 2015; Dong et al., 2017; Li et al., 2017; Yang et al., 2017), 

implying that PD-1/PD-L1 blockade may prove more successful in RAS-

mutant patients that also harbour a sufficient number of tumour-antigens. 

We identify TTP as a principle AU-rich element binding protein 

responsible for negatively regulating PD-L1 expression, consistent with a 

previous report identifying PD-L1 mRNA as one of a number of TTP targets in 

an RNA-immunoprecipitation, microarray-based screen in mouse 

macrophages (Stoecklin et al., 2008). Mechanistically, MEK inhibition reduced 

PD-L1 mRNA stability, coinciding with an increase in TTP expression and 

reduction in phosphorylation of TTP at ERK and RSK/AKT consensus motifs. 
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Conversely, activation of RAS and the associated ROS accumulation led to 

enhanced TTP phosphorylation, notably by MK2 at key inhibitory sites.  

TTP transgene expression restrained tumour growth in CT26 and MC38 

tumour transplantation models. This anti-tumour effect is predominantly non-

cell autonomous, dependent on the adaptive immune system and suppression 

of tumour cell PD-L1 expression. We noted only minor reductions in tumour 

growth rates following TTP transgene induction in cells overexpressing PD-L1 

∆3’UTR. TTP has been reported to have cell-autonomous tumour suppressive 

roles (Rounbehler et al., 2012) and non-cell autonomous anti-tumour effects 

through targeting VEGF and COX-2 mRNAs (Cha et al., 2011; Essafi-

Benkhadir et al., 2007), which may contribute to some of these ostensibly PD-

L1-independent effects, the magnitude of which are likely to be determined by 

the level of TTP overexpression in each system. 

Our data extend the molecular understanding of the regulation of PD-L1 

expression in cancer and highlight druggable targets to enhance anti-tumour 

immunity in tumours that are wild type for PD-L1 3’UTR. We provide evidence 

that pharmacological targeting of RAS, or RAS effector proteins, may elicit 

non-cell autonomous anti-tumour effects in RAS-mutant tumours. Recently, 

MEK inhibitors and PD-1 pathway blockade were shown to combine strongly 

in a mouse model of Ras-mutant colon carcinoma (Ebert et al., 2016; Liu et 

al., 2015). We anticipate that our findings will inform the development of 

effective combination therapies with immune checkpoint blockade in cancer. 
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Figure Legends 

 

Figure 1. Cell-intrinsic Upregulation of PD-L1 through Oncogenic RAS 

Signalling 

(A) Western blotting analysis of ER-KRASG12V type II pneumocytes treated 

with 4-OHT in starvation medium. 

(B) qPCR analysis of ER-KRASG12V type II pneumocytes treated with 4-OHT 

or IFN-γ in starvation medium. Mean ± SEM of biological duplicates. 

(C) Representative flow cytometry histogram of PD-L1 surface protein 

expression in ER-KRASG12V type II pneumocytes treated in starvation medium 

for 48 h. 

(D) Western blotting analysis of RAS signalling following 5 h treatment with 

the KRASG12C inhibitor ARS853. 

(E) qPCR analysis following 5 h treatment with the KRASG12C inhibitor 

ARS853 (10 µM). Mean ± SEM of biological duplicates. 

(F) Flow cytometry analysis of PD-L1 surface protein expression in H358 cells 

treated with ARS853 (10 µM) for 48 h. Mean ± SEM of biological triplicates. 

(G) Flow cytometry analysis of PD-L1 surface protein expression in ER-

KRASG12V type II pneumocytes treated in starvation medium for 24 h. Mean ± 

SEM of two independent experiments. 

(H) qPCR analysis from the experiment described in (G). Mean ± SEM of 

biological triplicates. 

(I) qPCR analysis of H358 cells treated for 24 h. Mean ± SEM of two 

independent experiments. 
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(J) qPCR analysis of H358 cells treated with PMA for 3 h following a 30 min 

pre-treatment with DMSO or MEK inhibitor. Mean ± SD of two independent 

experiments. 

MFI, Mean Fluorescence Intensity. EtOH, ethanol vehicle. 4-OHT, 100 nM. 

IFN-γ, 20 ng/ml. MEK inhibitor GSK1120212, 25 nM. PI3K inhibitor GDC-

0941, 500 nM. PMA, 200 nM. ****P<0.0001, ***P<0.001, **P<0.01, *P<0.05, 

n.s; not significant. Unpaired, two-tailed Student’s t-tests. See also Figure S1. 
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Figure 2. RAS Signalling Increases PD-L1 mRNA Stability through AU-

rich Elements in the 3’UTR 

(A) qPCR analysis of PD-L1 mRNA stability in ER-KRASG12V type II 

pneumocytes after the concomitant addition of actinomycin D (5 µg/ml or 10 

µg/ml) and 4-OHT or vehicle added at time = 0 h in starvation medium. Mean 

± SEM of two independent experiments. ***P<0.0005; Two-way ANOVA. 

(B) qPCR analysis of PD-L1 mRNA stability in KPB6 cells after the addition of 

actinomycin D (5 µg/ml) and DMSO or MEK inhibitor. Cells were pre-treated 

with DMSO or MEK inhibitor for 30 min before actinomycin D addition. Mean ± 

SEM of two independent experiments. ***P<0.0005; Two-way ANOVA.  

(C) qPCR analysis of PD-L1 mRNA stability after the addition of actinomycin 

D (5 µg/ml) and DMSO or ARS853. Cells were pre-treated with DMSO or 

ARS853 for 35 min before actinomycin D addition. Mean ± SEM of two 

independent experiments (n=2). ***P<0.0005; Two-way ANOVA. 

(D) Sequence alignment of conserved AU-rich element ATTTA pentamer 

sequences (highlighted in red) in the mouse and human PD-L1 3’UTR. 

(E) Normalised luciferase signal in ER-HRASG12V MCF10A cells from wild-

type (ATTTA x 6) or mutant (ATGTA x 6) PD-L1-3’UTR reporters, 24 h after 

treatment in starvation medium. Mean ± SEM of three independent 

experiments. 

(F) Normalised luciferase signal in H358 cells from wild-type (ATTTA x 6) or 

mutant (ATGTA x 6) PD-L1-3’UTR reporters, 6 h after treatment. Mean ± SEM 

of three independent experiments. 



Coelho et al    7 September 2017 

	 41 

4-OHT, 100 nM. MEK inhibitor GSK1120212, 25 nM. PMA, 200 nM. 

***P<0.0005, **P<0.005, *P<0.05, n.s; not significant. Unpaired, two-tailed 

Student’s t-tests. See also Figure S2. 
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Figure 3. AU-rich element Binding Proteins TTP and KSRP are Negative 

Regulators of PD-L1 Expression 

(A-C) qPCR analysis 48 h after transfection with siRNAs targeting AU-rich 

element binding proteins (AU-BPs) relative to siScrambled (siSc) control. 

Mean ± SD of biological triplicates. 

(D) qPCR and Western blotting analysis of H358 cells 24 h after transfection. 

qPCR data represent the mean ± SD of biological triplicates and are 

representative of two independent experiments. *, non-specific band. 

(E) Normalised luciferase signal from the wild-type, PD-L1-3’UTR reporter 24 

h after co-transfection with the indicated constructs. Mean ± SEM of two 

independent experiments. 

(F) qPCR analysis of following serum stimulation in serum-starved TTP WT or 

TTP KO MEFs. Mean ± SEM of two independent experiments. 

(G) qPCR analysis of PD-L1 mRNA stability after the addition of actinomycin 

D (5 μg/ml) in TTP WT or TTP KO MEFs. Mean ± SEM of two independent 

experiments. 

(H) Normalised luciferase signal in KPB6 TTP (tet-ON) cells wild-type (ATTTA 

x 6) or mutant (ATGTA x 6) PD-L1-3’UTR reporters, 7 h after treatment. Data 

represent the mean ± SEM of biological triplicates and are representative of 

two independent experiments.  

MEK inhibitor, GSK1120212, 25 nM. Dox., doxycycline 1 µg/ml. ****P<0.0001, 

***P<0.001, **P<0.01. Unpaired, two-tailed Student’s t-tests. See also Figure 

S3. 

  



Coelho et al    7 September 2017 

	 43 

Figure 4. RAS Regulates PD-L1 Expression through TTP 

(A) qPCR analysis of H358 cells following siRNA-mediated knock-down of 

TTP (24 h) followed by MEK inhibition (24 h). Mean ± SEM of two 

independent experiments.  

(B) qPCR analysis of ER-KRASG12V type II pneumocytes treated for 24 h in 

starvation medium. Mean ± SEM of three independent experiments. 

(C) qPCR analysis of RNA-IP immunoprecipitates from H358 cells. Mean ± 

SEM from biological triplicates.  

(D) Western blotting analysis of H358 cells expressing the indicated 

constructs. 6.5 h post-transfection, cells were treated with DMSO or MEK 

inhibitor for an additional 16 h. Arrow indicates Myc-TTP. 

(E) Western blotting analysis of immunoprecipitations from H358 cells 

transfected with Myc-TTP. 6.5 h post-transfection, cells were treated with 

DMSO or MEK inhibitor for an additional 16 h. Arrow indicates Myc-TTP; * 

indicates co-precipitating protein. 

(F) qPCR analysis of TTP WT or TTP KO MEFs treated with okadaic acid or 

DMSO for 2 h. Mean ± SEM of two independent experiments. 

EtOH, ethanol vehicle. 4-OHT, 100 nM. Okadaic acid, OA, 1 µM. MEK 

inhibitor, GSK1120212, 25 nM. ****P<0.0001, ***P<0.001, **P<0.01. 

Unpaired, two-tailed Student’s t-tests. See also Figure S4. 
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Figure 5. RAS-ROS-p38 Signalling Controls TTP Activity 

(A) Histograms represent peak areas from extracted ion chromatograms for 

non-phosphorylated and phosphorylated peptides corresponding to S52 and 

S178 phosphosites of mouse TTP. Myc-TTP was immunoprecipitated from 

CT26 Myc-TTP (tet-ON) cells 1 h after the indicated treatment. Mean ± SD of 

technical triplicates. Representative of two independent biological 

experiments. 

(B) qPCR analysis of ER-KRASG12V type II pneumocytes treated in starvation 

medium for 24 h. Mean ± SEM of four independent experiments. 

(C) Representative flow cytometry histograms of PD-L1 surface protein 

expression in MCF10A ER-∆MEKK3 cells treated in starvation medium for 

one day (1 d) or four days (4 d). 

(D) Flow cytometry analysis of PD-L1 surface protein expression on ER-

HRASG12V MCF10A cells (24 h) and ER-HRASG12V HKE-3 cells (48 h) after 

treatment in starvation medium. 

(E) qPCR analysis of CT26 cells at 2 h or 24 h after MK2 inhibition with PF 

3644022. Mean ± SEM of two independent experiments. 

(F) Sequence alignments of the conserved phosphosites (highlighted red) 

targeted by MK2 in mouse (Mm) and human (Hs) TTP protein. 

(G) Western blotting of immunoprecipitations from CT26 TTP KO cells 

harbouring tet-ON, WT or phospho-mutant, Myc-TTP constructs. Cells were 

treated with dox. for 24 h before the addition of PMA or DMSO for 1 h. Arrow 

indicates Myc-TTP.  
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(H) qPCR analysis of CT26 TTP KO cells harbouring tet-ON, WT or phospho-

mutant, Myc-TTP constructs, treated with dox or vehicle for 48 h. Data 

represent the mean ± SEM of two independent experiments. 

**P < 0.005, *P < 0.05. Unpaired, two-tailed Student’s t-test. 4-OHT, 100 nM. 

NAC, N-acetyl-L-cysteine, 10 mM. PMA, 200 nM. MEK inhibitor, 

GSK1120212, 25 nM. MK2 inhibitor PF 3644022, 1 µM. MK2 inhibitor III ,1 

µM. Dox., doxycycline, 1 µg/ml. See also Figure S5. 

  



Coelho et al    7 September 2017 

	 46 

Figure 6. RAS Pathway Activation is Associated with PD-L1 

Upregulation in Human Cancers 

(A) Heat-maps showing fold change in expression of T cell function related 

genes between high and low RAS pathway activity cohorts of lung 

adenocarcinoma (LUAD) and colon adenocarcinoma (COAD) TCGA samples. 

KRAS mutation status (codons 12, 13 and 61) is indicated for each sample. 

Genes are ranked in order of significance. Wald test, DESeq2. 

(B) Box-and-whisker plots comparing PD-L1 expression in RAS high versus 

low pathway activity cohorts in LUAD and COAD using two independent RAS 

gene expression signatures. Wald test, DESeq2.  

See also Figure S6. 
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Figure 7. Restoration of Tumour Cell TTP Expression Enhances Anti-

tumour Immunity 

(A) Western blotting analysis of CT26 Myc-TTP tet-ON cells expressing either 

empty vector or mouse PD-L1 cDNA lacking the 3’UTR (PD-L1 ∆3’UTR), 24 h 

after treatment (Dox., 0.1 μg/ml or 1 μg/ml). Arrow indicates Myc-TTP. 

(B) Representative flow cytometry histograms of PD-L1 surface protein 

expression in CT26 stable cells lines in (A), 72 h after treatment (Dox., 1 

μg/ml). Data are representative of three independent experiments. 

(C) Tumour growth curves for CT26-derived cell lines subcutaneously 

transplanted into BALB/c mice (n = 8 per group). 

(D) Tumour growth curves for MC38-derived cell lines subcutaneously 

transplanted into C57BL/6 mice (n = 6 per group). X denotes the loss of a 

doxycycline-treated mouse.  

(E) Tumour growth curves for CT26-derived cell lines subcutaneously 

transplanted into nu/nu mice (n = 6 per group). 

(F) Tumour growth curves for CT26-derived cell lines subcutaneously 

transplanted into BALB/c mice (n = 4-5 per group).  

For 7C-F, data represent the mean ± SEM. **P<0.01, ****P<0.0001, n.s., not 

significant; two-way ANOVA. 

(G) Histological analysis of subcutaneous tumours at the end-point from the 

experiment described in (C), with quantification of CD3+ cells in 5 fields of 

view per mouse with 5-6 mice per group. Mean ± SEM. **P<0.01; unpaired, 

two-tailed Student’s t-test. 
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(H) Quantification of CD8+/Treg ratios and CD8+ IFN-γ+ cells from flow 

cytometry analysis of tumours after 18-20 days of growth. Each data point 

represents data from an individual mouse; mean ± SEM. *P<0.05; unpaired, 

two-tailed Student’s t-test. 

(I) Proposed molecular model. Signalling nodes that influence anti-tumour 

immunity and are amenable to inhibition with drugs used in this study are 

highlighted. S52 and S178 represent MK2 target sites and numbering 

corresponds to mouse TTP. OA, Okadaic acid. 

See also Figure S7. 
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STAR Methods 

 

CONTACT FOR REAGENT AND RESOURCE SHARING 

 

Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Julian Downward 

(Julian.Downward@crick.ac.uk). 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

 

Cell Lines 

Specific culture conditions and origin of all the cell lines used in this 

study are listed in the Key Resources Table and Table S2. Cell lines were 

authenticated by STR profiling by Cell Services at the Francis Crick Institute. 

Cells and antibodies used for in vivo studies were independently tested for 

common rodent pathogens and were certified pathogen-free. 

In vivo studies 

All studies were performed under a UK Home Office approved project 

license and in accordance with institutional welfare guidelines. For tumour 

studies, we used 8-10 week old BALB/c or nu/nu (Foxn1nu) mice (for CT26 

cells) or 16-17 week old C57BL/6 (for MC38 cells). Sex-matched mice were 

randomly assigned into experimental groups before tumour cell injection. 

Group sizes are indicated in the figure legends.  
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For autochthonous tumour formation, KrasLSL-G12D/+; Trp53F/F mice were 

sourced from the Mouse Models of Human Cancer Consortium (B6.129-

Krastm4Tyj/Nci and FVB.129P2-Trp53tm1Brn/Nci) and were backcrossed to 

C57BL/6 for 6 generations. Lung tumours were initiated using intratracheal 

intubation of 1x106 pfu adenovirus expressing Cre-recombinase (Gene 

Transfer Vector Core) in mice between 6-12 weeks of age. Lung tumour or 

normal lung tissue was analysed 12 weeks after infection. 

 

METHOD DETAILS 

 

In vivo studies 

Mice received 1x105 cells in PBS by subcutaneous injection into the left 

flank. Mice were treated with water or doxycycline by oral gavage (50 mg/kg) 

on day three after cell injection and then daily, with a two-day break every five 

days of treatment. For CD4+ and CD8+ cell depletion experiments, mice 

received 300 μg of GK1.5 and 300 μg of 2.43 monoclonal antibodies or rat 

IgG2b isotype control by i.p. administration three days before tumour cell 

engraftment and then twice weekly for the duration of the experiment. 

Depletion of CD8+ and CD4+ T cells was verified by flow cytometry using 

detection antibodies recognising distinct epitopes from the depletion 

antibodies. Tumours were measured using callipers and volume was 

estimated using the formula: width2 x length x 0.5, where length is the longest 

dimension and width is the corresponding perpendicular dimension. 
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Transfections 

For RNA interference, cells were reverse-transfected with a final 

concentration of 50 nM siGENOME siRNA pools or ON-TARGETplus Non-

targeting pool (“SiScrambled” control) or 25 nM for single deconvoluted 

siRNAs, and DharmaFECT 1 transfection reagent (Dharmacon; GE 

Healthcare) in 96 well plates. For transfection with TTP or KSRP constructs, 

cells were seeded in a 12 well plate and the following day transfected using 

Lipofectamine 2000 (Life Technologies).  

 

Cloning, plasmids and stable cell lines 

peGFPC1-6XHis-FL-KSRP was a gift from Douglas Black (Addgene 

plasmid # 23001)(Hall et al., 2004) and the S193A mutant was generated by 

site-directed mutagenesis (QuikChange II; Agilent Technologies). Full length 

human TTP was cloned from H358 genomic DNA into pcDNA3-MycX2 

generating two N-terminal Myc tags. The S218 S228A TTP human and S52A 

S178A mouse double mutant constructs were generated by site-directed 

mutagenesis (QuikChange II; Agilent Technologies).  

For the human PD-L1 (CD274 gene) we refer to 

GRCh38:CM000671.2. For human PD-L1 mRNA we refer to NM_014143. For 

mouse PD-L1 (Cd274 gene) we refer to GRCm38:CM001012.2. For mouse 

PD-L1 mRNA we refer to NM_021893. For the 3’UTR luciferase reporter 

constructs, the full length human PD-L1 3’UTR was cloned from H358 

genomic DNA into the TOPO-TA vector (Life Technologies). The six most 3’ 

ATTTA pentamers (including the three most highly conserved, as shown in 
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Figure 2D) were mutated to ATGTA (QuikChange Multi-site; Agilent). Wild 

type and mutant fragments were subcloned into the Xba1, BamH1 site of 

pGL3-Control (Promega) to generate the reporter constructs. 

CT26 cells were transfected with linearised pUNO empty and pUNO-

mouse PD-L1∆3’UTR plasmids (InvivoGen) before selection with blasticidin, 

and for PD-L1∆3’UTR cells, subsequent FACS sorting of PD-L1 high, 

blasticidin-resistant cells. PD-L1 + wild type 3’UTR was subcloned from 

pCDNA3.1 mouse ORF clone NM_021893.3 (Creative Biogene) into the 

pUNO vector, linearised and transfected into CT26 cells to generate a stable 

cell line following selection with blasticidin and sorting for PD-L1 high cells.  

For the lentiviral pTRIPZ constructs, full-length mouse TTP was cloned from 

KPB6 genomic DNA into pcDNA3-MycX2 generating two N-terminal Myc tags. 

MycX2-TTP was subsequently subcloned into the Age1-Mlu1 site of pTRIPZ-

empty (GE Healthcare), resulting in the final TTP (tet-ON) construct, without 

the TurboRFP or shRNAmir-related elements of the parental pTRIPZ plasmid. 

Lentiviral particles were produced by co-transfection of 293FT cells with 

pTRIPZ-TTP, psPAX2 and pMD2.G plasmids and the infected CT26 or MC38 

target cells were selected with puromycin to establish stable cell lines. 

For CD274 promoter reporter constructs, pGL3-Basic (Promega) served as a 

negative control and pGL3-Control (Promega) served as a positive control for 

firefly luciferase expression. The indicated fragments of the human CD274 

promoter region were cloned from H358 genomic DNA into the MluI – XhoI 

site of pGL3-Basic. In addition, the putative enhancer site in intron 1 of the 

human CD274 gene was cloned into the BamH1 – SalI site (downstream of 
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the firefly luciferase ORF) of the 1 kb CD274 promoter pGL3-Basic reporter 

construct, as shown in Figure S2A. Sequencing of these constructs and 

comparison to the GRCh38 assembly revealed two documented SNPs in the 

putative enhancer region fragment: rs4742097 and rs2282055. 

 

Flow cytometry 

Lung tissue was harvested in ice-cold PBS before mincing and then 

enzymatic digestion in Liberase TM and Liberase TH (both 75 µg/ml final; 

Roche) or collagenase I (1 mg/ml) with DNaseI (25 µg/ml final; Sigma) in 

HBSS (Gibco) for 45 min at 37 ºC. After washing in DMEM + 10 % FCS, cells 

were filtered through 70 µm filters (BD Bioscience) and then washed in FACS 

buffer (PBS supplemented with 2 mM EDTA and 0.5 % BSA v/v final). 

Samples were then treated with Red Blood Cell Lysis Buffer (Qiagen), 

washed in FACS buffer, filtered again and resuspended with FcR blocking 

reagent (BD Bioscience) before antibody staining of cell surface antigens in 

FACS buffer. For unfixed cells, samples were washed twice in FACS buffer 

and resuspended in DAPI (1 µg/ml final; eBioscience) immediately before 

analysis on LSRII or LSRFortessa (BD Biosciences) cell analysers. 

Intracellular staining for Foxp3 and IFN-γ was performed on fixed cells using 

the Foxp3 Staining Set (eBiosicence) according to manufacturer’s 

instructions. CD4+ Tregs were defined by Foxp3 positivity. For IFN-γ staining, 

cells were stimulated for 4 h ex-vivo with PMA (20 ng/ml) and ionomycin (1 

μg/ml) in the presence of GolgiPlug (BD Biosciences). Dead cells were 

excluded using the fixable viability dye eFluor 780 (eBioscience).  
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For FACS analysis of cells lines, cells were harvested with trypsin, washed in 

media and filtered before antibody staining in FACS buffer. Samples were 

washed twice in FACS buffer and resuspended in DAPI (1 µg/ml final; 

eBioscience) immediately before analysis. For the detection of intracellular 

ROS, adherent cells were washed in PBS before staining in 5 µM H2DCFDA 

for 20 min in PBS at 37 °C. Cells were then harvested by trypsinisation and 

prepared for flow cytometry as described above. 

 

Immunoprecipitation 

For each immunoprecipitation reaction, 25 µl slurry of Dynabeads (Life 

Technologies) were coupled with 3 µg of anti-Myc antibody (9E10; in-house) 

or normal mouse IgG. For Figure 5H, cross-linking was performed using DSS 

following manufacturer’s instructions (ThermoFisher). Beads were washed in 

Lysis Buffer (20 mM Tris-HCl, pH 7.4, 137.5 mM NaCl, 10 % glycerol, 1 % 

Triton X-100) and incubated overnight with rotation at 4 ºC with cleared cell 

lysates prepared in Lysis Buffer supplemented with protease and 

phosphatase inhibitor cocktails (Calbiochem). Beads were washed three 

times with IP Wash Buffer (modified Lysis Buffer: 0.1 % Triton X-100, final), 

before elution with LDS Sample Buffer (Life Technologies). 

 

Immunohistochemistry 

Tissue was prepared for histology by incubation in 10 % NBF for 24 h 

followed by 70 % ethanol for a further 24 h before embedding in paraffin. For 

CD3 staining, sections were boiled in sodium citrate buffer (pH6) for 15 min 
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and incubated for 1 h in anti-CD3 antibody (ab134096; Abcam), followed by 

biotinylated secondary antibody and HRP/DAB detection. Tumours from nu/nu 

mice served as a negative control for CD3 staining. Hematoxylin and eosin 

staining was performed using standard methods. 

 

CRISPR/Cas 

The CRISPR/Cas genome editing was performed on CT26 cells using 

a U6gRNA-Cas9-2A-GFP construct targeting mouse Zfp36 with a gRNA 

sequence GTCATGGCTCATCGACTGGAGG (Sigma, MM0000323992). 

Following plasmid transfection, single GFP-positive cells were selected by 

FACS for expansion in culture. Transfection with Cas9-2A-GFP only served 

as a negative control. KO of functional TTP was confirmed by Western 

blotting and complete Zfp36 allele disruption was confirmed by TOPO-TA 

cloning followed by sequencing. 

 

Bioinformatics 

Using two published RAS activation gene expression signatures 

(Loboda et al., 2010; Sweet-Cordero et al., 2005), we identified high and low 

RAS pathway activity LUAD TCGA RNASeq samples. We determined high 

and low RAS pathway activity using GSEA (GeneSetTest, Bioconductor) 

against genes ranked by their log2 normalized counts scaled across all 

tumour samples. Only the upregulated genes from the signatures were used 

in the GSEA. Samples with a significant GSEA association (FDR < 0.05) of a 

RAS signature to the upper portion of the rank were assigned as having high 
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RAS activity. Those with a significant association to the lower portion of the 

rank were assigned as having low RAS activity. Once assigned, we identified 

RAS-dependent gene expression changes between the high and low RAS 

activity groups by standard RNASeq analysis methods (DESeq2, FDR < 

0.05). A short-list of “T cell Function” related genes was generated from gene 

ontology annotation based on the nanoString Technologies nCounter Human 

PanCancer Immune Profiling Panel. 

 

Mass Spectrometry 

Gel bands were excised and subjected to digestion with trypsin. Tryptic 

peptides were analysed by LC-MS using Ultimate 3000 uHPLC system 

connected to a Q-Exactive mass spectrometer (Thermo Fisher Scientific) and 

acquired in data-dependent mode (DDA) for identification and in targeted 

SIM/PRM mode for quantification. A SIM isolation list was setup for the 

following peptides: STSLVEGR (m/z 424.7272, 2+, non phos), STSLVEGR 

(m/z 464.7104, 2+, phos S52), QSISFSGLPSGR (m/z 618.3276, 2+, non 

phos) and QSISFSGLPSGR (m/z 658.3057, 2+, phos S178). For SIM/PRM 

scans, MS1 peaks were acquired at resolution of 70,000 (at m/z 200) and 

scan time (1x256 ms); MS2 fragment ion resolution was 17,500 (at m/z 200) 

scan time (64x4 ms); and SIM/PRM cycle time was (1280 ms). For 

identification and generation of spectral libraries, the resulting DDA data was 

searched against a mouse Uniprot database containing common 

contaminants 

(UniProt_KB2012_08_taxonomy_mouse_10090_canonical_with_contaminant
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s.fasta) as well as a custom database containing the Myc-tagged mouse 

Zfp36 sequence using the Andromeda search engine and MaxQuant (version 

1.3.0.5). For MaxQuant, a false discovery rate of 0.1 % was used to generate 

protein, peptide and site identification tables. The targeted mass spectrometry 

raw data was uploaded into Skyline (version 3.5.0.9319) for identification, 

quantification and further statistical analyses. 

 

Western blotting 

Western blotting was performed using standard methods. Primary 

antibodies used are listed in the Key Resources Table. Secondary antibodies 

were conjugated to horseradish peroxidase (GE Healthcare). 

 

Luciferase assays 

H358, ER-HRASG12V MCF10A and KP (tetON) cells were plated in 96 well 

plates and the following day co-transfected with pRL-TK control and pGL3-

3’UTR PD-L1 luciferase constructs using Lipofectamine 2000 (Life 

Technologies). 24 h after transfection, PMA (200 nM; Sigma), doxycycline (1 

µg/ml; Sigma) or MEK inhibitor GSK1120212 (25 nM; Selleckchem) was 

added, and 6-7 h later the Dual-Luciferase Reporter Assay (Promega) was 

performed. For ER-HRASG12V MCF10A, 24 h after transfection cells were 

serum-starved overnight, and then treated with 4-OHT (100 nM) for 24 h 

before the Dual-Luciferase Reporter Assay (Promega) was performed. 

 

Quantitative real-time PCR (qPCR) 
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RNA was extracted using RNeasy Mini Kit (QIAGEN), cDNA was 

generated using SuperScript VILO or SuperScript II Reverse Transcriptase 

(Life Technologies) and qPCR reactions were carried out using QuantiTect 

Primer Assays (QIAGEN) and SYBR Green reagents (Life Technologies). 

Gene expression changes relative to the stated housekeeping gene were 

calculated using the ∆∆CT method. 

 

RNA-immunoprecipitation 

RNA-immunoprecipitation (RNA-IP) reactions were carried out using 

Magna-RIP RNA-IP Kit (Millipore) with IgG control, anti-TTP or anti-KSRP 

antibodies according to the manufacturer’s instructions, except for the 

exclusion of EDTA from lysis and wash buffers, as TTP is a zinc-finger 

protein. Total RNA was isolated and qPCR was carried out using methods 

specified in the above section, except using the % input method to calculate 

RNA enrichment. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Statistical tests, p-values, replicates and the definition of centre and 

dispersion are indicated in the figures and figure legends. Unless otherwise 

stated in the figure legend, we used an unpaired, two-tailed Student’s t-test, 

where statistical significance was defined by P<0.05. Statistical analyses were 

carried out in GraphPad Prism 7. 
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Supplemental Figure Legends 
 
 
Figure S1, related to Figure 1. Cell-intrinsic Upregulation of PD-L1 
through Oncogenic RAS Signalling 
(A) qPCR analysis of PD-L1 mRNA expression at 6 h and 24 h after addition 

of 4-OHT or EtOH vehicle in ER-HRASG12V MCF10A cells. Mean ± SEM of 

two independent experiments. ****P<0.0001; unpaired, two-tailed Student’s t-

tests. 

(B) Flow cytometry analysis of PD-L1 surface protein expression at 24 h and 

four days after addition of 4-OHT or EtOH vehicle in ER-HRASG12V MCF10A 

cells and four days in ER-HRASG12V HKE-3 cells. 

(C) Flow cytometry analysis of PD-L1 surface protein four days after addition 

of 4-OHT or EtOH vehicle to parental MCF10A and HKE-3 cells. 

(D) Western blotting analysis of ER-KRASG12V type II pneumocytes treated 

with 4-OHT, MEK inhibitor or PI3K inhibitor in starvation medium for 24 h. 

(E) qPCR analysis of PD-L1 expression in H23 and H1792 cells 24 h after 

addition of MEK inhibitor or PI3K inhibitor or the combination. Mean ± SEM of 

three (H23) or two (H1792) independent experiments. **P<0.005, *P<0.05; 

unpaired, two-tailed Student’s t-tests. 

(F) qPCR analysis of PD-L1 expression in H358 and H23 cells 24 h after 

addition of the ERK1/2 inhibitor SCH772984 (500 nM). Mean ± SD of 

biological duplicates. **P<0.01; unpaired, two-tailed Student’s t-tests. 

(G) qPCR analysis of PD-L1 expression in H1792 cells treated with PMA for 3 

h following a 30 min pre-treatment with DMSO or MEK inhibitor. Data 

represent the mean ± SEM of two independent experiments. ****P<0.0001; 

unpaired, two-tailed Student’s t-test. 

(H) Surface expression of PD-L1 was measured by flow cytometry. MFI 

values are adjusted for the isotype control in each condition. Mean ± SEM of 

biological duplicates. 

(I) qPCR analysis of transcripts encoding antigen processing and presentation 

machinery in ER-KRASG12V type II pneumocytes simulated with 4-OHT for 24 
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h in starvation medium. Data represent the mean ± SEM of four independent 

experiments. **P<0.01; paired, two-tailed Student’s t-test. 

MFI, Mean Fluorescence Intensity. 4-OHT, 100 nM. IFN-γ, 20 ng/ml. MEK 

inhibitor GSK1120212, 25 nM. PI3K inhibitor GDC-0941, 500 nM. PMA, 200 

nM. 

 
Figure S2, relating to Figure 2. RAS Signalling Increases PD-L1 mRNA 
Stability through AU-rich Elements in the 3’UTR 
(A) Normalised luciferase signal from the indicated human CD274 promoter 

region reporter constructs in H358 cells treated for 6.5 h with medium only, 

PMA (200 nM) or IFN-γ (20 ng/ml). Numbering corresponds to the GRCh38 

assembly. Data are representative of two independent experiments. 

**P<0.005, two-way ANOVA.  

(B) Stability of murine PD-L1 mRNA measured by qPCR after the addition of 

actinomycin D (5 μg/ml) and DMSO or PI3K inhibitor GDC-0941 (500 nM). 

KPB6 cells were pre-treated with DMSO or PI3K inhibitor for 30 min before 

actinomycin D addition. Data represent the mean ± SEM and are normalised 

to the 0 h time point when actinomycin D was added, and are representative 

of two independent experiments.  

(C) Stability of murine Tusc2 mRNA (left panel) and Ptgs2 mRNA (right panel) 

measured by qPCR after the addition of actinomycin D (5 μg/ml) and DMSO 

or MEK inhibitor GSK1120212 (25 nM). KPB6 cells were pre-treated with 

DMSO or MEK inhibitor for 30 min before actinomycin D addition. Data 

represent the mean ± SEM and are normalised to the 0 h time point when 

actinomycin D was added. 
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Figure S3, relating to Figure 3. AU-rich element Binding Proteins TTP 
and KSRP are Negative Regulators of PD-L1 Expression 
(A-C) qPCR analysis of knockdown efficiency 48 h after siRNA transfections, 

relative to siScrambled control. Data represent the mean ± SD of triplicates. 

(D) qPCR analysis of PD-L1 expression 24 h after transfection with the 

indicated constructs. Data represent the mean ± SEM of two independent 

experiments. ****P<0.0001; **P<0.01; unpaired, two-tailed Student’s t-test. 

(E) qPCR analysis of PD-L1 expression in H23 cells 48 h after transfection 

with siRNAs targeting AU-rich binding proteins (AU-BPs), relative to 

siScrambled (siSc) control. Data represent the mean ± SEM of two 

independent experiments. 

(F) qPCR analysis of knock-down efficiency in H23 cells 48 h after siRNA 

transfections, relative to siScrambled control. Data represent the mean ± SEM 

of two independent experiments. 

(G) Western blotting analysis of TTP expression in H23, A427 and H358 cells 

48 h after siRNA transfection with siRNA pools against TTP relative to 

siScrambled. Overexpression of Myc-TTP serves as a positive control for 

immunodetection.  

(H) qPCR analysis of PD-L1 and TTP expression in H23 and H358 cells 48 h 

after siRNA transfection with siRNA pools or single siRNAs against TTP 

relative to siScrambled. Data represent the mean ± SEM of biological 

duplicates. 
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Figure S4, relating to Figure 4. RAS Regulates PD-L1 Expression 
through TTP 
(A) qPCR analysis of PD-L1 and KSRP expression in H358 cells following 

siRNA mediated knock-down of KSRP (24 h) followed by MEK inhibition (24 

h) with GSK1120212 (25 nM). Data represent the mean ± SEM of two 

independent experiments. ****P<0.0001; ***P<0.001; **P<0.005; *P<0.05; n.s; 

not significant. 

(B) qPCR analysis of PD-L1 mRNA from RNA immunoprecipitates using IgG 

control or anti-TTP antibody, or anti-KSRP antibody, with lysate from KPB6 

cells pre-treated with DMSO or MEK inhibitor GSK1120212 for 5.5 h (25 nM). 

Data represent the mean ± SD of biological triplicate IPs. 

(C) qPCR analysis of Gapdh mRNA (control, lacking AU-rich elements) from 

RNA immunoprecipitates using IgG control or anti-TTP antibody, or anti-

KSRP antibody, with lysate from KPB6 cells pre-treated with DMSO or MEK 

inhibitor GSK1120212 for 5.5 h (25 nM). Data represent the mean ± SD of 

biological triplicate IPs. 

(D) qPCR analysis of PD-L1 expression in H358 cells 24 after transfection 

with empty, wild-type KSRP or phospho-mutant KSRPS193A constructs. Data 

represent the mean ± SEM of two independent experiments. ****P<0.0001; 

***P<0.001; NS, not significant. 

Unless otherwise stated, data were compared using unpaired, two-tailed 

Student’s t-tests. 
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Figure S5, relating to Figure 5. RAS-ROS-p38 Signalling Controls TTP 
Activity 
(A) MS/MS spectra for phosphopeptides STphSLVEGR (S52) and 

QSIphSFSGLPSGR (S178). -98 indicates the loss of H3PO4.  

(B) Flow cytometry analysis of PD-L1 surface protein, and intracellular ROS 

measured by staining with H2DCFDA, in MCF10A ER-HRASG12V cells 

treated with 4-OHT or vehicle ± NAC (10 mM) for 24 h. The same dataset is 

represented as a dot-plot and a histogram and data are representative of two 

independent experiments. 

(C) Western blotting analysis of MCF10A cells harbouring an inducible version 

of the kinase domain of MEKK3 (ER-∆MEKK3), 24 h after the addition of 4-

OHT (100 nM) or vehicle. 

(D) qPCR analysis of PD-L1 mRNA expression 24 h after treatment with NAC 

(10 mM), reduced glutathione (1 mM) or MK2 inhibitor III (1 μM). Data 

represent the mean ± SEM of two independent experiments. **P< 0.01, 

***P<0.005, ****P<0.001; two-tailed Student’s t-tests comparing to DMSO 

control condition. 

(E) Western blotting analysis of CT26 TTP KO cells harbouring doxycycline-

inducible WT or phospho-mutant Myc-TTP constructs, treated with 

doxycycline or vehicle for 24 h. Arrow indicates Myc-TTP. 
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Figure S6, relating to Figure 6. RAS Pathway Activation is Associated 
with PD-L1 Upregulation in Human Lung Cancer 
(A) Heat maps showing LUAD and COAD samples from the TCGA dataset 

clustered into RAS high or low pathway activity groups using RNA sequencing 

expression data and published RAS activity gene expression signatures 

(Loboda et al., 2010; Sweet-Cordero et al., 2005). KRAS mutation status 

(codons 12, 13 and 61) is shown for each sample. 

(B) qPCR analysis of PD-L1 and IFNGR1 expression in ER-KRASG12V type II 

pneumocytes 24 h after treatment with vehicle, 4-OHT (100 nM), or 4-OHT 

with IFN-γ blocking antibody (10 μg/ml) or with ruxolitinib (500 nM). Mean ± 

SEM of two independent experiments. The panel on the right shows a qPCR 

analysis of PD-L1 expression in ER-KRASG12V type II pneumocytes following 

a 30 h treatment with IFN-γ (20 ng/ml) and IFN-γ with IFN-γ blocking antibody 

(10 μg/ml) or with ruxolitinib (500 nM) to verify blocking of IFN-γ – IFGR1 

signalling. 

(C) TTP mRNA expression in human patient lung and colon normal tissue 

versus adenocarcinoma, from publically available datasets (Selamat et al., 

2012; Skrzypczak et al., 2010). Wilcoxon signed-rank test. 

(D) qPCR analysis of PD-L1 and TTP expression in FACS purified CD45-

CD31-DAPI-EpCAM+ cells derived from lung tumours or matched normal 

adjacent lung tissue from KrasLSL-G12D/+; Trp53F/F mice. Each point represents 

data from an individual mouse and is normalized to the matched normal lung 

tissue. ***P<0.0005; unpaired, two-tailed Student’s t-tests. 

(E) Flow cytometry analysis of PD-L1 expression on CD45-CD31-DAPI- cells 

derived from macroscopically dissected lung tumours or normal adjacent lung 

tissue from KrasLSL-G12D/+; Trp53F/F mice. Each point represents data from an 

individual mouse and is normalized to the matched normal lung tissue. Data 

are pooled from two independent experiments. MFI; Mean Fluorescence 

Intensity. *P<0.05; unpaired, two-tailed Student’s t-test. 
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Figure S7, relating to Figure 7. Restoration of Tumour Cell TTP 
Expression Enhances Anti-tumour Immunity 
(A) Stability of murine PD-L1 mRNA measured by qPCR analysis. CT26 TTP 

(tetON) cells were pretreated with doxycycline (Dox.; 1 μg/ml) or vehicle for 

16 h and then MEK inhibitor (GSK1120212, trametinib; 25 nM) for an 

additional 30 min before actinomycin D (ActD; 10 μg/ml) was added. Data are 

normalized to time 0 h when ActD was added and represent the mean ± SEM 

of two independent experiments.  

(B) Western blotting analysis of stable MC38 cell lines expressing Myc-

tagged, mouse TTP under a tetracycline-inducible promoter (TTP tet-ON). 

Cells were treated with doxycycline (Dox., 0.1 μg/ml or 1 μg/ml) or vehicle in 

starvation medium for 24 h before analysis. Arrow indicates Myc-TTP.  

(C) qPCR analysis of PD-L1 expression from stable MC38 (TTP tet-ON) cell 

lines treated with doxycycline (Dox., 1 μg/ml) or vehicle in starvation medium 

for 40 h before analysis. Data represent the mean ± SEM of biological 

duplicates. 

(D) Confluency was measured using IncuCyte for CT26 stable derivative cell 

lines treated with the indicated concentrations of doxycycline or vehicle at t = 

0 h. Data represent the mean ± SD of biological triplicates and are 

representative of two independent experiments. 

(E) Confluency was measured using IncuCyte for MC38 stable derivative cell 

lines treated with the indicated concentrations of doxycycline or vehicle at t = 

0 h. Data represent the mean ± SD of biological triplicates. 

(F) Representative histograms from flow cytometry analysis of PD-L1 surface 

expression in TTP (tetON) CT26 stable cells lines expressing endogenous 

PD-L1, PD-L1 + wild-type 3’UTR cDNA, or PD-L1 ∆3’UTR cDNA, after 

treatment with doxycycline (Dox., 1 μg/ml) or vehicle for 72 h. Data are 

representative of two independent experiments and also form part of Figure 

7B. 

(G) Tumour growth curves for the indicated CT26-derived cell lines shown in 

Figure S7C, subcutaneously transplanted into BALB/c mice (n = 5 WT 3’UTR 

+ Dox and ∆3’UTR + H2O; n = 4 WT 3’UTR + H2O and ∆3’UTR + Dox; n = 3 
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empty + H2O and empty + Dox). Vehicle or doxycycline (Dox., 50 mg/kg) was 

administered by oral gavage and commenced from day three after tumour cell 

injection. Mean ± SEM. ****P<0.0001, ***P<0.001, *P<0.05; two-way ANOVA. 

(H) Representative histological analysis of CD3+ cells in subcutaneous 

tumours at the end-point from the experiment described in Figure 7C, and 

quantified in Figure 7G. Scale bar is 500 µm. 

(I) Proposed molecular model. Oncogenic RAS activity leads to 

hyperphosphorylation, whereas PP2A activity promotes hypophosphorylation 

of TTP (Bourcier et al., 2011; Deleault et al., 2008; Essafi-Benkhadir et al., 

2007; Hardle et al., 2015; Rahman et al., 2015; Sun et al., 2007), constituting 

a rapid switch controlling TTP activity. Low TTP expression and activity in 

tumour cells represents a permissive context for PD-L1 expression and 

immune evasion. 
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Table S1, relating to Figure 5 and Figure S5. TTP phosphopeptides. 
Identified mouse TTP phosphopeptides from MS analyses pooled from two 

independent biological experiments. Identifications are 1 % FDR controlled. 

PEP indicates the probability that the identification is incorrect. Phosphosite 

assignment probabilities are indicated in parenthesis. 
	
PEP Score Position Modified	sequence Phospho	(STY)	Probabilities Number	of	Phospho	(STY)
0.01167 100 52 _STS(ph)LVEGR_ STS(1)LVEGR 1

1.41E-10 70 80 _PGPELS(ph)PSPT(ph)SPTATPTTSSR_
PGPELS(0.998)PS(0.006)PT(0.477)S(0.43)PT(0.068)AT(0.011)P
T(0.002)T(0.002)S(0.002)S(0.003)R 2

1.41E-10 69 82 _PGPELSPS(ph)PTSPTATPTTSSR_
PGPELS(0.036)PS(0.911)PT(0.04)S(0.009)PT(0.002)AT(0.001)P
TTSSR 1

1.07E-52 186 85 _PGPELSPSPTS(ph)PTATPTTSSR_ PGPELSPSPT(0.128)S(0.857)PT(0.013)ATPTTSSR 1
0.0404 74 105 _TYS(ph)ESGRCR_ TYS(1)ESGRCR 1

6.90E-08 130 178 _QSIS(ph)FSGLPSGR_ QSIS(1)FSGLPSGR 1

1.50E-22 96 189
_RSS(ph)PPPPGFS(ph)GPSLSSCSFSPSSSPPPP
GDLPLSPSAFSAAPGTPVTR_

RS(0.17)S(0.767)PPPPGFS(0.195)GPS(0.146)LS(0.131)S(0.124)
CS(0.111)FS(0.1)PS(0.09)S(0.085)S(0.081)PPPPGDLPLSPSAFSA
APGTPVTR

2

1.50E-22 96 196
_RSSPPPPGFS(ph)GPS(ph)LSSCSFSPSSSPPPP
GDLPLSPSAFSAAPGTPVTR_

RS(0.051)S(0.25)PPPPGFS(0.367)GPS(0.173)LS(0.169)S(0.167)
CS(0.166)FS(0.165)PS(0.165)S(0.164)S(0.164)PPPPGDLPLSPSA
FSAAPGTPVTR

2

1.50E-22 96 199
_RSS(ph)PPPPGFS(ph)GPS(ph)LSSCSFSPSSSP
PPPGDLPLSPSAFSAAPGTPVTR_

RS(0.072)S(0.368)PPPPGFS(0.279)GPS(0.303)LS(0.3)S(0.297)C
S(0.29)FS(0.282)PS(0.274)S(0.27)S(0.265)PPPPGDLPLSPSAFSA
APGTPVTR

2

9.68E-15 69 201
_RSSPPPPGFS(ph)GPS(ph)LSSCSFSPSSSPPPP
GDLPLSPSAFSAAPGTPVTR_

RS(0.013)S(0.177)PPPPGFS(0.202)GPS(0.201)LS(0.201)S(0.201
)CS(0.201)FS(0.201)PS(0.201)S(0.201)S(0.201)PPPPGDLPLSPSA
FSAAPGTPVTR

2

9.68E-15 69 202
_RSSPPPPGFS(ph)GPS(ph)LSSCSFSPSSSPPPP
GDLPLSPSAFSAAPGTPVTR_

RS(0.013)S(0.177)PPPPGFS(0.202)GPS(0.201)LS(0.201)S(0.201
)CS(0.201)FS(0.201)PS(0.201)S(0.201)S(0.201)PPPPGDLPLSPSA
FSAAPGTPVTR

2

9.68E-15 69 204
_RSSPPPPGFS(ph)GPS(ph)LSSCSFSPSSSPPPP
GDLPLSPSAFSAAPGTPVTR_

RS(0.013)S(0.177)PPPPGFS(0.202)GPS(0.201)LS(0.201)S(0.201
)CS(0.201)FS(0.201)PS(0.201)S(0.201)S(0.201)PPPPGDLPLSPSA
FSAAPGTPVTR

2

9.68E-15 69 206
_RSSPPPPGFS(ph)GPS(ph)LSSCSFSPSSSPPPP
GDLPLSPSAFSAAPGTPVTR_

RS(0.013)S(0.177)PPPPGFS(0.202)GPS(0.201)LS(0.201)S(0.201
)CS(0.201)FS(0.201)PS(0.201)S(0.201)S(0.201)PPPPGDLPLSPSA
FSAAPGTPVTR

2

9.68E-15 69 208
_RSSPPPPGFS(ph)GPS(ph)LSSCSFSPSSSPPPP
GDLPLSPSAFSAAPGTPVTR_

RS(0.013)S(0.177)PPPPGFS(0.202)GPS(0.201)LS(0.201)S(0.201
)CS(0.201)FS(0.201)PS(0.201)S(0.201)S(0.201)PPPPGDLPLSPSA
FSAAPGTPVTR

2

9.68E-15 69 209
_RSSPPPPGFS(ph)GPS(ph)LSSCSFSPSSSPPPP
GDLPLSPSAFSAAPGTPVTR_

RS(0.013)S(0.177)PPPPGFS(0.202)GPS(0.201)LS(0.201)S(0.201
)CS(0.201)FS(0.201)PS(0.201)S(0.201)S(0.201)PPPPGDLPLSPSA
FSAAPGTPVTR

2

9.68E-15 69 210
_RSSPPPPGFS(ph)GPS(ph)LSSCSFSPSSSPPPP
GDLPLSPSAFSAAPGTPVTR_

RS(0.013)S(0.177)PPPPGFS(0.202)GPS(0.201)LS(0.201)S(0.201
)CS(0.201)FS(0.201)PS(0.201)S(0.201)S(0.201)PPPPGDLPLSPSA
FSAAPGTPVTR

2

0.00722 63 248 _S(ph)TTPSTIWGPLGGLAR_ S(0.333)T(0.333)T(0.333)PSTIWGPLGGLAR 1
0.00722 63 249 _S(ph)TTPSTIWGPLGGLAR_ S(0.333)T(0.333)T(0.333)PSTIWGPLGGLAR 1
1.93E-20 158 250 _STT(ph)PSTIWGPLGGLAR_ ST(0.003)T(0.997)PSTIWGPLGGLAR 1

6.07E-19 89 264
_S(ph)PSAHSLGSDPDDYASSGSSLGGSDSPVFE
AGVFGPPQTPAPPR_

S(0.446)PS(0.412)AHS(0.087)LGS(0.022)DPDDY(0.004)AS(0.00
5)S(0.005)GS(0.005)S(0.005)LGGS(0.005)DS(0.005)PVFEAGVF
GPPQTPAPPR

1

6.07E-19 89 266
_S(ph)PSAHSLGSDPDDYASSGSSLGGSDSPVFE
AGVFGPPQTPAPPR_

S(0.41)PS(0.41)AHS(0.165)LGS(0.006)DPDDY(0.001)AS(0.001)
S(0.001)GS(0.001)S(0.001)LGGS(0.001)DS(0.001)PVFEAGVFGP
PQTPAPPR

1

5.37E-14 83 269
_SPSAHS(ph)LGSDPDDYASSGSSLGGSDSPVFE
AGVFGPPQTPAPPR_

S(0.272)PS(0.272)AHS(0.447)LGS(0.004)DPDDY(0.001)AS(0.00
1)S(0.001)GS(0.001)S(0.001)LGGS(0.001)DS(0.001)PVFEAGVF
GPPQTPAPPR

1

1.50E-07 59 272
_SPSAHSLGS(ph)DPDDYASSGSSLGGSDSPVFE
AGVFGPPQTPAPPR_

S(0.019)PS(0.019)AHS(0.078)LGS(0.343)DPDDY(0.073)AS(0.07
8)S(0.078)GS(0.078)S(0.078)LGGS(0.078)DS(0.078)PVFEAGVF
GPPQTPAPPR

1

0.0015 41 279
_SPSAHSLGS(ph)DPDDYASSGSSLGGSDSPVFE
AGVFGPPQTPAPPR_

S(0.044)PS(0.044)AHS(0.044)LGS(0.109)DPDDY(0.103)AS(0.10
9)S(0.109)GS(0.109)S(0.109)LGGS(0.109)DS(0.109)PVFEAGVF
GPPQTPAPPR

1

0.0015 41 280
_SPSAHSLGS(ph)DPDDYASSGSSLGGSDSPVFE
AGVFGPPQTPAPPR_

S(0.044)PS(0.044)AHS(0.044)LGS(0.109)DPDDY(0.103)AS(0.10
9)S(0.109)GS(0.109)S(0.109)LGGS(0.109)DS(0.109)PVFEAGVF
GPPQTPAPPR

1

0.0015 41 282
_SPSAHSLGS(ph)DPDDYASSGSSLGGSDSPVFE
AGVFGPPQTPAPPR_

S(0.044)PS(0.044)AHS(0.044)LGS(0.109)DPDDY(0.103)AS(0.10
9)S(0.109)GS(0.109)S(0.109)LGGS(0.109)DS(0.109)PVFEAGVF
GPPQTPAPPR

1

0.0015 41 283
_SPSAHSLGS(ph)DPDDYASSGSSLGGSDSPVFE
AGVFGPPQTPAPPR_

S(0.044)PS(0.044)AHS(0.044)LGS(0.109)DPDDY(0.103)AS(0.10
9)S(0.109)GS(0.109)S(0.109)LGGS(0.109)DS(0.109)PVFEAGVF
GPPQTPAPPR

1

0.0015 41 287
_SPSAHSLGS(ph)DPDDYASSGSSLGGSDSPVFE
AGVFGPPQTPAPPR_

S(0.044)PS(0.044)AHS(0.044)LGS(0.109)DPDDY(0.103)AS(0.10
9)S(0.109)GS(0.109)S(0.109)LGGS(0.109)DS(0.109)PVFEAGVF
GPPQTPAPPR

1

0.0015 41 289
_SPSAHSLGS(ph)DPDDYASSGSSLGGSDSPVFE
AGVFGPPQTPAPPR_

S(0.044)PS(0.044)AHS(0.044)LGS(0.109)DPDDY(0.103)AS(0.10
9)S(0.109)GS(0.109)S(0.109)LGGS(0.109)DS(0.109)PVFEAGVF
GPPQTPAPPR

1
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Table S2, relating to STAR Methods, Method Details. Cell lines and 
growth conditions. 
	
 
Cell line Source Normal medium Starvation medium 
H358 ATCC RPMI + 10 % FCS N/A 
A427 CRUK Cell Services RPMI + 10 % FCS N/A 
H1792 ATCC RPMI + 10 % FCS N/A 
KPB6 Sergio Quezada 

Laboratory 
DMEM + 10 % FCS N/A 

Type II pneumocytes Olivier Pardo, 
Michael Seckl 
(Imperial College, 
London) and 
(Molina-Arcas et al., 
2013a) 

DCCM-1 + 10 % 
FCS 

+ 0.5 % FCS for 
qPCR and FACS 
+ 0 % FCS for 
mRNA half-life 
analysis 

SW837 CRUK Cell Services DMEM + 10 % FCS N/A 
H23 CRUK Cell Services RPMI + 10 % FCS N/A 
293FT CRUK Cell Services DMEM + 10 % FCS N/A 
TTP KO and TTP 
WT MEFs 

Perry Blackshear 
Laboratory 

DMEM + 10 % FCS + 0.5 % FCS 

MCF10A (Molina-Arcas et al., 
2013a) 

F12:DMEM mix (1:1) 
and 5 % horse 
serum, 20 ng/ml 
EGF, 10 µg/ml 
insulin, 100 ng/ml 
cholera toxin, 0.5 
µg/ml 
hydrocortisone 

+ 5 % horse serum  

CT26 CRUK Cell Services RPMI + 10 % FCS N/A 
A549 CRUK Cell Services DMEM + 10 % FCS N/A 
MC38 George Kassiotis 

Laboratory 
RPMI + 10 % FCS + 0.5 % FCS 

 

N/A, not applicable. 
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