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Abstract 

Background & Aims: Cholangiocarcinomas (CCA) are resistant to chemotherapy, so new 

therapeutic agents are needed. We performed a screen to identify small molecule compounds 

that are active against CCAs. Levels of microRNA 21 (MIR21 or miRNA21) are increased in 

CCAs. We investigated whether miRNA21 mediates resistance of CCA cells and organoids 

to HSP90 inhibitors.  

 

Methods: We performed a high-throughput screen of 484 small molecule compounds to 

identify those that reduced viability of 6 human CCA cell lines. We tested the effects of 

HSP90 inhibitors on cells with disruption of the MIR21 gene, cells incubated with MIR21 

inhibitors, and stable cell lines with inducible expression of MIR21. We obtained CCA 

biopsies from patients, cultured them as organoids (patient-derived organoids, PDOs). We 

assessed their architecture, mutation and gene expression patterns, response to compounds in 

culture, and when grown as subcutaneous xenograft tumors in mice.  

 

Results: Cells with IDH1 and PBRM1 mutations had the highest level of sensitivity to 

histone deacetylase inhibitors. HSP90 inhibitors were effective in all cell lines, irrespective of 

mutations. Sensitivity of cells to HSP90 inhibitors correlated inversely with baseline level of 

MIR21. Disruption of MIR21 increased cell sensitivity to HSP90 inhibitors. CCA cells that 

expressed transgenic MIR21 were more resistant to HSP90 inhibitors than cells transfected 

with control vectors; inactivation of MIR21 in these cells restored sensitivity to these agents. 

MIR21 was shown to target the DnaJ heatshockprotein family (Hsp40) member B5 

(DNAJB5). Transgenic expression of DNAJB5 in CCA cells that overexpressed MIR21 re-

sensitized them to HSP90 inhibitors. Sensitivity of PDOs to HSP90 inhibitors, in culture and 

when grown as xenograft tumors in mice, depended on expression of miRNA21. 
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Conclusions: miRNA21 appears to mediate resistance of CCA cells to HSP90 inhibitors by 

reducing levels of DNAJB5. HSP90 inhibitors might be developed for treatment of CCA and 

miRNA21 might be a marker of sensitivity to these agents. 

 

KEY WORDS:  organoid, AUY922, bile duct cancer, DNAJB5  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 
 

Cholangiocarcinomas (CCA) are tumours with dismal prognosis1-4. Surgery is the only 

curative treatment modality in CCA; however, less than 30 % of patients are diagnosed with 

resectable disease5, 6. In advanced CCA the efficacy of systemic treatment is limited by drug-

resistance5. A combination treatment with cisplatin and gemcitabine is recommended as first-

line standard for patients with inoperable CCAs, based on data from the ABC-02 trial7-9. 

However, long term outcome is still poor5, highlighting the need for the identification of 

novel therapeutics along with appropriate strategies for clinical implementation.  

Attempts to test the efficacy of targeted therapies and small molecules against CCAs have 

been made without a proper phase of target selection and validation, leading to repeated 

failures in small and unselected populations of CCA patients10-13. Notably, a phase III trial 

failed to show a benefit from the addition of erlotinib to a gemcitabine-platinum combination 

in metastatic CCAs that were not enriched for the appropriate molecular subtype14.  

Molecularly targeted small molecule drugs are low molecular-weight compounds that 

regulate biological processes and can rapidly diffuse across cell membranes so that they can 

reach intracellular sites of action15. Small molecules have entered clinical practice for the 

treatment of other forms of solid malignancies, where the dependence of the cancer on 

specific pathways is understood. Here, we report data from a high-throughput screen (HTS) 

of a library of small molecule drugs and chemical tools in human CCA cell lines that have 

been genetically characterized for the most frequent mutations observed in human CCA, 

along with validation in ex vivo and in vivo models of promising compounds and relative 

biomarkers of response. Our approach has enabled us to identify molecularly targeted small 

molecules that have activity against CCAs and related biomarkers that may inform future 

clinical trial design.  
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Experimental Procedures 

High-throughput-screening (HTS). A custom compound library including 484 small 

molecules was developed in the Cancer Research UK Cancer Therapeutics Unit at the 

Institute of Cancer Research (Supporting Table S1). Cells were plated into a polypropylene 

384-well assay plate (Greiner Bio-One, Frickenhausen, Germany) for 48 hours before 

compounds were screened at the final concentration of 80nM, 200nM and 800nM in 

0.3% (v/v) DMSO by dispensing 125 nL compound solution from a source plate containing 

the compounds at a concentration of 32µM, 80µM and 320µM in 2% (v/v) DMSO, into the 

central 320 wells of a 384-plate. 0.3% (v/v). DMSO was used as a vehicle control. Cell 

viability was assessed 72 hours later by fluorimetric assay (CellTiter-Blue, Promega 

Madison, WI, USA). The cell viability measurement from each hit was normalized to those 

of cells exposed to vehicle only. Each cell line was tested in triplicate. Statistical significance 

(p<0.05) was determined by two-sided t-test across 3 replicates.  

Statistical analyses. Statistical analyses were performed by GraphPad Prism 6 (La Jolla, CA, 

USA).  Results are expressed as mean ± SD, unless indicated otherwise. Groups that were 

normally distributed were compared with either a 2-tailed Student’s t test (for analysis of 2 

groups) or using 2-way ANOVA to compare multiple groups. Non-parametric data were 

analyzed using a Wilcoxon–Mann-Whitney U test when comparing 2 groups. Significance 

was accepted when p was less than 0.05. 

Patient-derived organoids (PDO). One core biopsy was obtained from a patient with 

advanced iCCA after ethical approval within the CCR3689 protocol at the Royal Marsden 

Hospital. For the colorectal cancer (CRC) PDOs one core biopsy was obtained from a liver 

metastasis of a chemo-refractory colorectal cancer patient (protocol CCR4164). The biopsy 

was minced, conditioned in PBS/EDTA 5 mM for 15 min at room temperature, and digested 

in PBS/EDTA containing 2x TrypLe (Thermo Fisher Scientific, Waltham, MA, USA) for 1 
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hr at 37 oC. Following digestion, mechanical force was applied in order to facilitate cell 

release in solution. Dissociated cells were collected in Advanced DMEM/F12 (Thermo Fisher 

Scientific, Waltham, MA, USA), suspended in growth factor reduced (GFR) matrigel 

(Corning Inc., Corning, NY, USA), and seeded. The matrigel was then solidified and overlaid 

with 500 µl of complete human organoid medium, which was subsequently refreshed every 

two days. PDOs were cultured in Advanced DMEM/F12, supplemented with 1x B27 additive 

and 1x N2 additive (Thermo Fisher Scientific, Waltham, MA, USA), 0.01% bovine serum 

albumine, 2 mM L-glutamine, 100 units/ml penicillin-streptomycin, and containing the 

following additives: EGF, noggin, R-spondin 1, gastrin, FGF-10, FGFF-basic, Wnt-3A, 

prostaglandin E2, Y-27632, nicotinamide, A83-01, A83-01, SB202190, HGF (Pepro-Tech, 

London, UK). Passaging of PDOs was performed using TrypLe. PDOs were biobanked in 

FBS (Thermo Fisher Scientific, Waltham, MA, USA), containing 10% DMSO (Sigma-

Aldrich, St Louis, MI, USA).  

PDO histology. PDOs were harvested out of matrigel by inoculating them with 1 ml of Cell 

Recovery Solution (Corning Inc., Corning, NY, USA) for 60 min at 4 oC. Organoids were 

then collected in cold PBS, pelleted, and fixed in Formalin 10% (Sigma-Aldrich, St Louis, 

MI, USA) for 60 min. Following fixation, organoids were washed and resuspended in 200 µl 

of warm agarose 2%. The agarose pellet was dehydrated using ethanol, and embedded in 

paraffin using a standard histological protocol.  

PDO NanoString analysis. 100 ng of total RNA extracted from PDOs and matching FFPE 

biopsies were run with the nCounter PanCancer Progression panel (Nanostring Technologies, 

Seattle, WA, USA), according to the manufacturer’s instructions.  Raw data were normalised 

using the NanoStringNorm R package version 1.1.21 following recommended parameters and 

median centred by genes. 
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PDO targeting sequencing. DNA and RNA were extracted using the Qiagen AllPrep 

DNA/RNA/miRNA Universal kit (Qiagen, Hilden, Germany). Targeted library preparation 

and DNA-sequencing were outsourced to GATC Biotech. In brief, DNA libraries were 

prepared with the ClearSeq Comprehensive Cancer panel (Agilent Technologies, Santa Clara, 

CA, USA) that targets 151 cancer-related genes, using SureSelectV6 chemistry (Agilent 

Technologies, Santa Clara, CA, USA). Paired-end sequencing (2 x 125 bp) was then 

performed using Illumina technology.  

3D organoid compound assay and screening. Organoids (30 µl of GFR matrigel containing 

6,000 cells) were seeded in 96-well cell culture plates; after matrigel solidified it was overlaid 

with 70 µl of complete human organoid medium. Complete medium was refreshed once after 

24 h. Compound was added 3 days later and compound-containing medium was further 

refreshed every 2 days. After 11 days medium was removed and replaced with 100 µl of 

complete human organoid medium containing 10% CellTiter-Blue Cell Viability Assay 

(Promega, Madison, WI, USA). The organoid compound screen was conducted in 96-well 

cell culture plates using a custom-made library of 55 compounds and 5 DMSO controls; it 

was conducted in triplicate, using a concentration of 1 µM for all compounds.  

PDO-derived xenografts. All in vivo experiments were performed in accordance with the 

local ethical review panel, the UK Home Office Animals (Scientific Procedures) Act 1986, 

the United Kingdom National Cancer Research Institute guidelines for the welfare of animals 

in cancer research13, and the ARRIVE guidelines. Further details about animal experiments 

and additional methods can be found in the supporting information. Animals were housed in 

specific pathogen-free rooms in autoclaved, aseptic microisolator cages with a maximum of 

five animals per cage.  Food and water were provided ad libitum. 100 µl of matrigel 

containing ~20,000 small MIR21 TRIPZ organoids were injected subcutaneously in the flank 

of 6-7 weeks old NOD scid gamma (NSG) animals (Charles River Laboratories, Wilmington, 
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MA, USA) while they were kept on doxycycline diet [LabDiet 5053 w/ 1250 ppm 

doxycycline blue (LabDiet, St Luois, MO, USA)]. About 10 weeks post inoculation tumours 

were passaged and equal fragments of tumours were implanted subcutaneously into a next 

generation of mice to obtain a total of 18 mice. Eight mice were treated with vehicle, while 

10 mice were treated with AUY922 (25mg/kg intraperitoneally) three times a week. After 

two weeks, mice were randomized to stay on doxycycline diet or to move onto a 

doxycycline-free diet for other two weeks while treatment was continued. Tumour volume 

was determined using the following formula: =4.19*(diam1 / 4 + diam2 / 4) ^3. After 4 

weeks of treatment mice were culled and their tumours were excised, fixed in formalin, and 

embedded in paraffin. 

 

 

Results  

 

HTS with a small molecule compound library identified vulnerabilities that can be 

exploited for novel therapeutics in CCA. 

To explore the activity of small molecules in CCA we screened a library of 484 molecularly 

targeted small molecule compounds (Supporting Table S1) for their effect on the viability of 

human CCA cell lines.  Both intrahepatic (iCCA) and extrahepatic (eCCA) CCA cell lines 

were included. Next-generation-sequencing revealed that these cell lines were representative 

of human CCA tissues. We used a 64-gene panel that included the most frequently mutated 

genes in human CCA 16, and found that mutations that are present in >10% in human tissues 

were represented in our cell lines, with the exceptions of ARID1 (Figure 1A & Supporting 

Table S2). EGI-1, TFK-1, SNU-1196, SW1, CCLP, and SNU-1079 were selected for the 

screening in view of their origin, and their growth rate and pattern. 
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Compounds were screened at three different concentrations (80 nM, 200 nM, 800 nM) in 

triplicate for each cell line. A number of compounds (median = 68 per cell line) had a 

significant effect on cell viability at all concentrations tested (Supporting Table S3 & Figure 

1B). Gemcitabine, a well-known active drug in CCA, had significant activity at all 

concentrations tested, in each cell line, confirming the validity of our approach (Figure 1C). 

In order to assess which pathway may be more relevant as a potential target of therapy in 

CCA, we grouped compounds with different chemical structure that acted on the same 

molecular target and investigated if there was an enrichment in selected molecular pathways 

amongst the drugs that were significantly active across the cell lines17, 18 (Figure 1D). We 

observed enrichment for microtubule associated compounds and mTOR inhibitors in all cell 

lines. Clinical trials are ongoing for microtubule-targeted compounds such as Nab-Paclitaxel 

and mTOR inhibitors such as Everolimus. Interestingly, there was an enrichment of histone-

deacetylase (HDAC) inhibitors among the hits in the SNU-1079 cell line, which harbors 

mutations in the isocitrate dehydrogenase 1 (IDH1) and polybromo1 (PBRM1) chromatin 

remodeling genes. In line with previous data19, SNU-1079 cells also showed hypersensitivity 

to dasatinib (Supporting Table S3). A number of EGFR inhibitors had a significant effect on 

the viability of SW1, SNU-1196 and TFK cell lines. Interestingly both aurora kinase and heat 

shock protein (HSP)90 inhibitors were effective in all cell lines.  

 

Association between mutational status of CCA cell lines and their sensitivity to selected 

compounds. 

In order to investigate whether selected mutations were associated with sensitivity to specific 

targeted agents, we ran an analysis for BRCA Associated Protein (BAP1) and TP53 mutations 

as these were present in more than one cell line (Supporting Figure S1A&B). Our analysis 

revealed that BAP1-mutant (MUT) CCA cell lines were more sensitive (p<0.05) to a range of 
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small-molecules that include compounds with activity of PI3K pathway:  SANT-2 (SMO 

antagonist), ABT-737 (inhibitor of Bcl-(X)L, Bcl-2 and Bcl-W), LY294002 (PI3Kα/β/δ 

inhibitor), PIK-93 (PI3Kα/γ inhibitor), SB203580 (p38 MAPK inhibitor) and SB590885 

(BRAF inhibitor). TP53-MUT cells did not show any increased sensitivity to the compounds 

we screened in comparison to WT cells. However, we noticed a significant (p<0.05) 

correlation between mutations in TP53 and resistance to PF-573228 (ATP-competitive 

inhibitor of FAK), ABT-263 (Navitoclax, a potent inhibitor of Bcl-(X)L, Bcl-2 and Bcl-W) 

and MM-102 (MLLT1 inhibitor). The limited number of cell lines does not enable to draw 

definitive conclusions, even though these findings suggest potential associations that may 

deserve further investigation. 

 

FGFR-targeting compounds in CCA cell lines. 

Given emerging data on the activation of the fibroblast growth factor receptor (FGFR) 

pathway in CCA 20-23, we looked at the effect on cell viability of the six compounds in our 

screen that act on FGFR. The effect of these compounds on cell viability was most consistent 

at the highest concentration tested, 800 nM (Figure 2A). Whilst brivanib (VEGFR/FGFR 

inhibitor) and the multi-kinase inhibitor pazopanib had no effect, both danusertib (a pan-

aurora kinase inhibitor with an off-target effect on FGFR1) and ponatinib (a Src and Bcr-Abl 

kinase inhibitor with activity on all 4 FGFRs) 24 reduced CCA cell viability. However, we 

acknowledge that our system may not be ideal for the assessment of angiogenesis/stroma-

directed drugs and that our cells are not known to carry FGFR2 alterations. 

 

HSP90 inhibitors are effective in CCA cell lines. 

We have previously observed enrichment in AK and HSP90 inhibitors amongst the 

significant hits of our CCA HTS. While AK inhibitors appear to be quite toxic in solid 
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tumours25, a recent report showed that HSP90 inhibition is effective and tolerable in in vivo 

CCA preclinical models 26. HSP90 inhibition is attractive in CCA as HSP90 interacts with 

and controls a variety of client proteins that play key role in CCA pathogenesis such as 

EGFR, PTEN, PI3K, HER2, HER3, and PRKA. Moreover, recent evidence suggests that 

HSP90 inhibition is remarkably effective in tumours with FGFR fusions and activation of the 

IL6/STAT pathway27, 28. 

Our small molecule compound library included nine HSP90 inhibitors including those from 

different chemical series, and 78% were active across our CCA cell line panel, with the 

highest activity recorded for AUY922, 17-AAG, 17-DMAG, ganetespib and BIIB021 (Figure 

2A). Notably, the Growth Inhibitory GI50 of AUY922, a potent HSP90 inhibitor29, was in the 

nanomolar range in all of the CCA cell lines tested (Figure 2B). We could not find any 

correlation between the most frequent mutations in CCA and the activity of the HSP90 

inhibitors in our CCA cell lines.  

 

MIR21 as driver of resistance to HSP90 inhibitors.Previously, microRNAs (miRNA) have 

been shown to modulate drug sensitivity and to act as biomarkers of drug response1, 4, 30-37. 

MIR21 is an oncogenic miRNA that drives cholangiocarcinoma pathogenesis and 

sensitization to conventional chemotherapy drugs38, 39. Thus, we investigated if MIR21 could 

be used as a biomarker of response to HSP90 inhibition in CCA. Interestingly, we noticed 

that MIR21 expression reflected the sensitivity of CCA cells to AUY922, as cell lines with 

high levels of MIR21 expression had higher GI50 values for AUY922 (Figure 2C). Sensitivity 

to AUY922 was significantly increased in CCA cells transfected with a locked nucleic acid 

(LNA) MIR21 inhibitor compared with those transfected with a negative control LNA 

(Figure 2D). To validate the relationship between MIR21 expression and AUY922 sensitivity 

we ran a high-throughput compound screen in RKO cells which had been engineered to 
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knock out the MIR21 locus (MIR21KO), and parental isogenic wild type (WT) cells 40.  A 

number of HSP90 inhibitors produced a larger reduction in cell viability in MIR21KO cells in 

comparison to WT cells (Supporting Figure S2A), with AUY922, 17-AAG, 17-DMAG, and 

ganetespib showing the highest activity. When treated with HSP90 inhibitors, MIR21KO 

RKO cells were more sensitive than WT RKO cells (Supporting Figure S2B). 

Correspondingly, the GI50 for AUY922 was found to be 35 nM in WT cells and 17 nM in 

MIR21KO cells (Supporting Figure S2C). Interestingly, we could detect no difference in the 

sensitivity to AUY922 in WT and MIR21KO DLD1 cells, which is consistent with the lower 

baseline level of MIR21 in DLD-1 cells and their likely lower dependence on MIR21 

(Supporting Figure S2D). Indeed, DLD-1 WT cells were more sensitive to AUY922 than 

RKO WT, while silencing of MIR21 in RKO cells restored their sensitivity (Supporting 

Figure S2E&F).   

In order to validate the role of MIR21 in driving resistance to HSP90 inhibition, we infected 

MIR21KO DLD-1 cells with an inducible MIR21 or control (CTRL) viral vector (Supporting 

Figure S2F) and monitored their response to AUY922. Enforced expression of MIR21 

significantly increased resistance to AUY922 (p<0.05), when compared to the effect of 

infection with an empty CTRL vector (Supporting Figure S3A and Supporting Video 1). 

Indeed, in co-culture with non-infected MIR21KO DLD-1 cells, MIR21 induced DLD-1 cells 

could proliferate in the presence of AUY922 (Supporting Figure S3B and Supporting Video 

2). To ascertain if these results could be extended to CCA, we generated Tet-on inducible 

clones for the over-expression of MIR21 in the CCLP cell line (Figure 2E). In line with 

previous data, CCLP cells with enforced expression of MIR21 were significantly more 

resistant to AUY922 than cells transfected with the CTRL vector. Accordingly, deactivation 

of the Tet-on system restored sensitivity to AUY922 in CCLP cells (Figure 2F&G, 
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Supporting Table S4). Comparable data were also obtained in the EGI CCA cell line 

(Supporting Figure S4). 

 

DNAJB5 is a mediator of MIR21 dependent resistance to AUY922. 

To gain insight into the relationship between MIR21 and the HSPs, we measured the 

expression levels of a panel of HSPs and co-chaperones in Tet-on MIR21 vector CCLP cells 

treated with AUY922. A multiplex sandwich immunoassay showed a reduction in the level of 

HSP40 (encoded by DnaJ heat shock protein family (Hsp40) member B5, DNAJB5) in 

MIR21 vector cells compared with CTRL cells (Figure 3A). In silico analysis of the DNAJB5 

sequence revealed a binding site for MIR21 within its 3’UTR (Figure 3B). Western blot 

analysis confirmed induction of DNAJB5 upon AUY922 treatment and reduction in DNAJB5 

expression in MIR21 over-expressing cells (Figure 3C), and a luciferase reporter assay 

confirmed a direct interaction between MIR21 and the 3’UTR of DNAJB5 (Figure 3D). 

Interestingly, enforced expression of DNAJB5 in MIR21 over-expressing cells re-sensitized 

CCLP cells to AUY922 (Figure 3E), confirming that DNAJB5 may be a mediator of MIR21-

induced resistance. 

 

Correlation between MIR21 expression and sensitivity to AUY922 in patient-derived 

organoids (PDOs) and PDO-derived xenografts. 

Patient-derived organoids (PDOs) have recently emerged as organotypic cultures that 

recapitulate the complex three-dimensional organization of cancer better than 2D tumour cell 

lines41-43. To assess the clinical relevance of our findings, we tested AUY922 activity in 

PDOs established from the liver biopsy of a chemoresistant iCCA patient (Figure 4 & Figure 

5A). PDOs retained the same morphology of the primary tumour (Figure 5B), as well the 

same positivity for cytokeratin 7 and 19 (Figure 5C and Figure 4B). Gene expression 
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profiling showed that the transcriptome of PDOs recapitulated that of the primary tissue [with 

a Spearman r score of 0.91 for the housekeeping genes, and 0.61 for the whole transcriptome 

(p<0.0001)] (Figure 5D). DNA sequencing confirmed that the genetic background of the 

PDOs matched that of the primary biopsy, with a Spearman r score of 0.96 for SNVs (Figure 

5E). CCA PDOs were tested against a panel of small molecule compounds and confirmed 

resistance to fluorouracil and oxaliplatin that patient had received before the development of 

PDO (Figure 5F). CCA PDOs were sensitive to AUY922 (Figure 5F&G), and this sensitivity 

was significantly enhanced after inducible inhibition of MIR21 (Figure 5H&I). In parallel 

PDOs derived from a colorectal cancer patient with low endogenous expression of MIR21 

were characterised (personal data) and tested against AUY922 before and after MIR21 

expression confirming the relationship between miRNA expression and sensitivity to HSP90 

inhibition (Supporting Figure S5). Next, we generated CCA PDO-derived tumour xenografts 

by inoculating Tet-on MIR21 PDOs in the flank of NSG mice. Mice were treated with 

AUY922 or vehicle while changes in their diet were applied to modulate the expression of 

MIR21. After two weeks of treatment mice were randomized to stay on doxycycline diet 

(DOX-ON) or changed to a doxycycline -free (DOX-OFF) diet. While a non-significant 

change was observed for vehicle-treated mice, AUY922-treated mice on DOX-OFF diet 

achieved a significantly better tumour response than animals which remained on a 

doxycycline diet (Figure 6A&B&C &Supporting Table S5). MIR21 expression was 

confirmed to be inactivated in the tumour after withdrawal of doxycycline diet, while an 

increase in DNAJB5 protein expression was detected (Figure 6D).  
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Discussion 

The best way to treat advanced CCA is still a matter of debate within the clinical and 

scientific community5, 6. The ABC-02 trial has proved the efficacy of platinum-gemcitabine 

combination chemotherapy in the first line setting7. However, a series of clinical trials have 

failed to demonstrate any benefit from targeted therapies in CCA11, 12, 14, 44. Despite advances 

having been made in the genetic and molecular characterization of biliary tract cancers, none 

of the clinical trials were designed with an appropriate strategy of patients’ selection based on 

pre-clinical evidence. In this study, we explored the activity of a plethora of small molecule 

compounds and probes that have shown activity in other cancers. In this way, we hoped to 

identify drug candidates and appropriate biomarkers for use in, and to aid patient selection 

for, future clinical trials. We propose that the decision to use targeted therapies should be 

based on the molecular characterization of a tumour, rather than its site of origin.  Hence, in 

this study we included cell lines originating from all types of cholangiocarcinoma. 

As expected we did observe significant activity for gemcitabine and compounds which impair 

microtubule dynamics and cause cell cycle arrest. We also found that compounds which 

inhibit mTOR signalling had activity in CCA cell lines, consistent with previous evidence 

suggesting that the mTOR pathway is involved in cholangiocarcinoma tumorigenesis and that 

sirolimus may induce partial remissions in CCA patients45, 46. Nonetheless, we did not focus 

on these compounds given that clinical trials are ongoing and may provide additional 

insights. The observation that HDAC inhibitors were enriched amongst the hits in SNU-1079 

cells was in line with previous observations on the effect of IDH mutations on the impairment 

of histone demethylation47.  

We and colleagues at The Institute of Cancer Research have an interest in the therapeutic 

applications of HSP90 inhibitors and biomarkers of sensitivity to these agents, and we co-

discovered the highly potent and selective HSP90 inhibitor AUY92248. Shirota et al. have 
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recently shown that HSP90 inhibitors have potent in vitro and in vivo anti-proliferative 

activity in CCA26, prompting us to investigate potential biomarkers of sensitivity to HSP90 

inhibition in our study. HSP90 inhibitors, including AUY922, have shown an acceptable 

toxicity profile in humans in phase I clinical trials49-51, and are currently investigated in phase 

II clinical trials for lung and breast cancers. To date, no reports are available on the role of 

AUY922 in biliary tract cancer patients. More interestingly, growing evidence points to a role 

of HSP90 inhibitors in facilitating the anti-tumour activity of immune cells52, 53. We showed 

that CCAs are characterized by an immuno-deregulation that creates an immunosuppressive 

milieu54; thus HSP90 may be used to reactivate an anti-tumour response in CCA.  HSP90 is a 

key component in a multi-chaperone complex involved in the post-translational folding of a 

number of client proteins, including microRNA-regulated proteins such as argonaute2 

(AGO2)55-57. We reasoned microRNAs may be good biomarker candidates given their 

capacity to act on several HSP90-associated proteins that drive tumorigenesis and drug 

resistance. MIR21 was previously shown to modulate cytotoxic drug response58 and is 

predicted to target genes that act as client proteins for HSP90 2, 3, 20, 21, 38, 59. However, 

microRNAs have never been studied as mediators of the response to HSP90 inhibitors60. We 

observed that MIR21 can drive tumour cell proliferation in the presence of HSP90 inhibitors. 

Our data suggest that it would be useful to carry out further studies of the biomarker potential 

of MIR21 as a guide treatment with HSP90 inhibitors, as well as to pursue the combination of 

HSP90 inhibitors with MIR21 inhibitors in CCA. Moreover, our data suggest a generalized 

mechanism of resistance to HSP90 inhibition and may be applied to second generation 

HSP90 inhibitors that may be clinically more attractive 61, 62. HSP70 is a well-known 

compensatory mechanism of HSP90 inhibition. The stress-inducible HSP70 is central in 

promoting protein folding. As elegantly described by Hartl et al63 HSP70 is responsible for 

the initial folding of substrates and their loading into HSP90. Its affinity for unfolded 
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substrates is tightly regulated by HSP40. Indeed, not only HSP40 delivers unfolded substrates 

to ATP-bound HSP70, but it also accelerates the hydrolysis of ATP inducing a tighter 

binding of the substrate by HSP70. We speculate that MIR21 can interfere with this balance 

and thus, with the HSP90-mediated activation of client proteins, by modulating the 

expression of HSP40. 

We have shown here that MIR21 drives resistance both in CCA and in non-CCA carcinoma 

cells. Thus, it is likely that these findings may be extended to a number of malignancies. 

Despite a general over-expression of MIR21 in cancer tissues, it is known that MIR21 is 

remarkably over-expressed in a proportion of cancer patients and may therefore serve as a 

valuable biomarker39. In addition, there is evidence that levels of circulating MIR21 can 

define the prognosis of cancer patients and may act as surrogate for miRNA expression in the 

tumour 34. Thus, circulating MIR21 may represent an easily accessible tool for the 

identification of patients likely to benefit from treatment with HSP90 inhibitors.  

Finally, we have provided initial evidence of the feasibility of developing human PDOs from 

cholangiocarcinoma patients. To date, successful 3D organoids have been established from a 

variety of cancer types, but no evidence has been reported for biliary tract cancers. In these 

studies we show that PDOs could be derived from one biopsy core indicating that this 

technology may be attractive for clinical implementation. Our studies indicate the possibility 

that PDOs may resemble the original tumour and may potentially be used for in vitro 

application and manipulation within 6-8 weeks from establishment. Thus, it may represent a 

promising novel tool to guide treatment selection within the life expectancy of 

cholangiocarcinoma patients and offer an additional platform that better recapitulates human 

cancers to investigate their biology. 
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Figure Legend 

 

Figure 1. HTS using a library of small molecule compounds in CCA cell lines. (A) The 

origin and mutational status of CCA cell lines. (B) HTS was performed using a custom 

library of 484 compounds. DMSO was used as vehicle control. Cell viability was measured 

by CellTiter-Blue assay and normalized to that of DMSO. HTS was run at three 

concentrations in three independent replicates in 6 CCA cell lines. Compounds that 

significantly inhibited cell proliferation compared with vehicle control (p<0.05) at all three 

concentrations in each cell line were considered for the graph and number of compounds 

active per cell line is reported. (C) Data from the HTS relative to the activity of gemcitabine 

(GEM) in each cell line compared to DMSO. Bars represent mean and SD of three 

independent replicates. p<0.05 for all cell lines. (D) Compounds acting on the same target 

were included in the same class (i.e.HSP90 inhibitors). Compounds that were significantly 

active in comparison to DMSO (p<0.05) at all three concentrations in each cell line were 

represented in the radar plot with the radar value representing the number of compounds per 

class in the selected cell line. Enrichment of selected classes of compounds was identified, 

such as in the case of HDAC inhibitors in SNU-1079 (all 4 compounds included in the 

library). In the callout square data without microtubule-targeted compounds and mTOR 

inhibitors are shown. 

 

Figure 2. MIR21 expression is associated with sensitivity to HSP90 inhibitors. (A) Our 

compound library included 6 and 9 compounds with different degrees of activity on FGFR 

and HSP90. Changes in cell viability (Log scale) induced by the given compound compared 

to DMSO are shown. Gemcitabine is reported as positive control. (B) Cells were plated in 

384-well plates for 48 hours and AUY922 added at scalar concentrations for 72 hrs. DMSO 
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was used as control. Cell viability was measured by CellTiter-Blue and GI50 generated 

through Prism software.   (C)  MIR21 was assessed in CCA cell lines. GI50 was generated by 

treating cells with scalar concentrations of AUY922 for 72 hours. Data represent mean of 

three replicates. (D) Cells were subjected to reverse-transfection and plated in 96 well plates. 

After 48 hours AUY922 50nM was added. Cell viability was assessed by CellTiter-Blue. 

Positive control “Cell Death” was used as transfection control. (E) CCLP cells were infected 

with MIR21 or CTRL TRIPZ viral vector to generate stable clones. miR21 expression was 

assessed by Taqman assays and normalized to that of  RNU48. Bars represent mean and SD 

of three replicates. (F) Doxycyclin-induced cells were plated in 96 well plates and treated 

with DMSO or AUY922 (10nM). After 72 hrs doxycycline was removed to deactivate 

MIR21 expression (indicated by grey area). Cell viability was measured at selected time 

points by a Celigo S cytometer and plotted against Y axis (DMSO treated cells toward left Y 

axis, while AUY922-treated cells toward right Y axis). Bars represent SD of 12 replicates. 

Statistical analysis is reported in Supporting table S4. (G) Representative pictures at different 

time points are shown. 

 

Figure 3. DNAJB5 is a target of MIR21. (A) MIR21 and CTRL TRIPZ viral vector CCLP 

cells were treated with AUY922 for 72 hours and proteins collected for the HSP array. Dots 

in the yellow squares represent DNAJB5 protein expression in duplicate. Full details of the 

antibody plate map are provided below the blots. On the right panel quantification of protein 

expression, normalized on the averaged positive controls. Bars represent LOG10 of mean and 

standard deviation of two replicates. Linear fold change of MIR21 vector relative to CTRL 

vector is 0.89 for HSP60, 0.88 for HSP70, 0.52 for HSP40. (B) Schematic representation of 

the MIR21 binding site within the 3’UTR of DNAJB5 mRNA (RNAHybrid). (C) MIR21 and 

CTRL TRIPZ infected CCLP cells were treated with DMSO and AU922 for 72 hours. HSP70 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

29 
 

was used a marker of target engagement for AUY922 activity. (D) Cells were plated in 6 well 

dishes and transfected with a pMirTarget vector containing DNAJB5-3’UTR. Luciferase 

activity was read after 24 and 48 hours and normalized to renilla activity for each transfected 

well. Bars represent mean and SD of 3 replicates. (E) Cells were transfected with a plasmid 

over-expressing DNAJB5 or an empty plasmid pCMV6 for 24 hours, and then treated with 

AUY922. Cell viability was measured 48 hours later using CellTiter-Blue. Bars represent 

mean and SD of 6 replicates.  

 

Figure 4. PDOs were derived from a metastatic patient with chemo-refractory iCCA. 

(A) Trend in serum Ca19.9 is represented over time. Biochemical and radiological partial 

response was observed to chemotherapy with cisplatin and gemcitabine, while progressive 

disease was recorded after carboplatin-gemcitabine or Folfox chemotherapy. CT (top panel) 

and PET (bottom panel) images are shown for indicated time points. (B) H&E (left) and IHC 

for Cytokeratines 7 and 19 (right) of the FFPE research biopsy. Scale bars in µm. 

 

Figure 5. CCA PDOs sensitivity to HSP90 inhibition with and without MIR21 

modulation. (A) Phase-contrast images of PDOs derived from one biopsy core of an iCCA. 

Bars indicate 100µm. (B) One biopsy core was embedded in paraffin, while another core was 

used to establish PDOs. PDOs were embedded into paraffin and stained for H&E. Bar score 

in µm. (C) IHC staining for CK7 and CK19 in PDOs. Bar score in µm. (D) Total RNA was 

extracted from the FFPE biopsy and the matching PDOs, and subjected to NanoString 

analysis. Correlation of gene expression is shown for housekeeping genes (top) and total gene 

expression (bottom). (E) DNA was extracted from the FFPE biopsy and the matching PDOs 

and subjected to targeting sequencing. Correlation between Variant Reads Frequency is 

shown. (F). CCA PDOs were plated in 96-well plates and treated with a number of 
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compounds (1uM) in triplicate. Cell viability was tested after 11 days with CellTiter-Blue. 

Mean of three replicates are shown relative to DMSO with DMSO set at 1. (G) CCA PDOs 

were treated with scalar concentrations of AUY922 in triplicate. (H) CCA PDOs were 

infected with a MIR21-inhibitor or control TRIPZ viral vector. RFP+ cells indicate infected 

cells. Scale bars indicate 100 µm. (I) TRIPZ infected CCA PDOs were treated with scalar 

concentrations of AUY922.  

 

Figure 6. MIR21 modulation drives sensitivity to AUY922 in CCA PDO-derived animal 

model. (A) Schematic representation of in vivo studies. Vertical arrows indicate 

administration of DMSO or AUY922 25 mg/Kg. (B) Tumour growth curves across different 

groups. Data represent mean and standard error (n: 5 for AUY922 treated, n:4 for DMSO 

treated). P values are shown in supporting table S5. Grey area represents the period with 

different diets. (C) HSP70 staining was performed as evidence of target engagement after 

AUY922 exposure. As expected there was an increase in HSP70 expression after AUY922 

treatment but this was not different between the two randomized groups excluding 

differences in animal dosing. Scale bars: 100 µm. (D) Withdrawal of doxycycline diet from 

mice was associated with a significant inactivation of MIR21 expression and over-expression 

of DNAJB5. Representative picture of ISH for MIR21 and IHC for DNAJB5 are shown. 

Scale bars: 100µm. On the right quantification is represented. Bars indicate median with 

interquartile ranges.  
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Andrea Lampis1, Pietro Carotenuto1, Georgios Vlachogiannis1, Luciano Cascione2,  Somaieh 

Hedayat1, Rosemary Burke1, Paul Clarke1, Else Bosma1, Michele Simbolo3, Aldo Scarpa3, 

Sijia Yu1, Rebecca Cole1, Elizabeth Smyth4, Javier Fernández Mateos1, Ruwaida Begum4,  

Blanka Hezelova4, Zakaria Eltahir4, Andrew Wotherspoon4, Nicos Fotiadis4, Maria 

Antonietta Bali4, Chirag Nepal5, Khurum Khan5, Mark Stubbs1, Jens C Hahne1, Pierluigi 

Gasparini6, Vincenza Guzzardo7, Carlo M Croce6, Suzanne Eccles1, Matteo Fassan3,7, David 

Cunningham4, Jesper B Andersen5, Paul Workman1, Nicola Valeri1,4, Chiara Braconi1,4 

 

 

Supplementary methods 

Cell lines. Intrahepatic (SW1, SNU-1079, CCLP), and extrahepatic (SNU-1196, TFK-1, EGI-

1, SNU-245) CCA cell lines, along with gallbladder (WITT) and Ampulla of Vater (SNU-

478) cancer cell lines, were purchased from the Leibniz Institute DSMZ-German Collection 

of Microorganisms and Cell Culture (Braunschweig, Germany), the Korean Cell Line Bank 

(Seoul, Korea) or were kindly provided by Prof. Stuart Forbes (University of Edinburgh). 

Cells were cultured in Dulbecco’s modified Eagle medium with 10 % foetal bovine serum. 

MIR21KO RKO colon carcinoma cells were purchased from Horizon Discovery (Cambridge, 

UK), while MIR21KO DLD-1 colon carcinoma cells were a kind gift from Jian Yu 

(University of Pittsburgh Cancer Institute) to Carlo Croce (Ohio State University). Cells were 

tested negative for Mycoplasma and authenticated through Short Tandem Repeat (STR) 

analysis. 
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Next generation sequencing of multiplex PCR amplicons. Two multigene panels were used: 

the 50-gene Ion AmpliSeq Cancer Hotspot panel v2 (Life Technologies, Paisley, UK) and an 

AmpliSeq custom panel targeting six genes not included in the commercial panel, as 

previously described1. The first explores selected regions of 50 cancer- genes: ABL1, AKT1, 

ALK, APC, ATM, BRAF, CDH1, CDKN2A, CSF1R, CTNNB1, EGFR, ERBB2, ERBB4, 

EZH2, FBXW7, FGFR1, FGFR2, FGFR3, FLT3, GNA11, GNAS, GNAQ, HNF1A, HRAS, 

IDH1, IDH2, JAK2, JAK3, KDR/VEGFR2, KIT, KRAS, MET, MLH1, MPL, NOTCH1, 

NPM1, NRAS, PDGFRA, PIK3CA, PTEN, PTPN11, RB1, RET, SMAD4, SMARCB1, 

SMO, SRC, STK11, TP53, VHL. The custom panel targets additional 6 genes: ARID1A, 

BAP1, PBRM1, PIK3C2A, PIK3C2G, TGFBR2. Twenty 20 ng of DNA was used for each 

multiplex PCR amplification. Emulsion PCR was performed with the OneTouch2 system 

(Life Technologies, Paisley, UK). The quality of the libraries was evaluated by on-chip 

electrophoresis in an Agilent Technologies’ 2100 Bioanalyzer (Santa Clara, USA). 

Sequencing was run on an Ion Torrent Personal Genome Machine (Life Technologies, 

Paisley, UK) loaded with 316 (50-gene panel) or 318 chips (6-gene panel). Data analysis, 

including alignment to the hg19 human reference genome and variant calling, was done using 

the Torrent Suite Software v.3.6 (Life Technologies, Paisley, UK). Filtered variants were 

annotated using the SnpEff software v.3.12. Alignments were visually verified with the 

Integrative Genomics Viewer v.2.2 3, 4. 

 

Bioinformatics. For all statistical analyses the R language environment was used (v. 3.0.1; 

www.r-project.org). Hierarchical clustering was performed on cell viability data using the 

Pearson correlation as metric and complete linkage as method. We determined significant 

associations (p<0.05) between a selected mutation and drug sensitivity by Chi-square test 

with the Yates correction factor.  
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Real time PCR. RNA was extracted using Trizol (Invitrogen, Carlsbad, USA). Reverse 

transcription was performed with Taqman microRNA reverse transcription kit (Life 

Technologies, Paisley, UK ), and miRNA expression assessed by qPCR with Taqman assay 

and normalized to that of RNU48 (Life Technologies, Paisley, UK) 

 

Transfection. Cells were reversed transfected in 96-well plates using HiPerFect Transfection 

Reagent Qiagen, Hilden, Germany). For transient inhibition of miR-21 a locked nucleic acid 

(LNA™) miR-21 inhibitor or the Negative Control A LNA were used (Exiqon, Vedbaek, 

Denmark). In rescue experiments cells were transfected with DNAJB5-pCMV6 or Empty-

pCMV6 (Origene, Rockville, MD, USA). 

 

Cell viability. Cell viability was measured by CellTiter-Blue® Assay  (Promega, Madison, 

WI, USA) and the GI50 derived using Prism Software (Graphpad, La Jolla, USA). For RFP+ 

cells cell viability was assessed by Incucyte Zoom live cell imaging (Essen Bioscience, 

Hertfordshire, UK) or by Celigo S (Nexcelom, Manchester, UK). 

 

Live cell imaging. Cells were plated in 96-well plates and monitored with IncuCyte Zoom 

(Essen Bioscience, Hertfordshire, UK). Phase-contrast images and RFP+ images were taken 

every 4 hours. 

 

Tetracycline-activated (Tet-on) inducible stable clones. The precursor miR-21 sequence was 

cloned into a TRIPZ lentivector (Dharmacon, Little Chalfont, UK) using PCR amplification 

of target region and digestion with Cla I and Mlu I restriction enzymes (New England 

Biolabs, Ipswich, Massachusetts, USA). Packaging of viral particles and target cell lines 
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infections were performed using HEK293T. Overexpression of miR-21 was confirmed by 

Taqman assay. Plasmid with antimiR-21 sequence was produced by amplification and 

cloning of antimiR-21 sequence, with standard cloning procedures, from miRZipTM-miR-21 

plasmid (System Bioscience, Palo Alto, CA, USA) in order to generate an equivalent 

inducible system for silencing miR-21 expression.  Cell growth optimization for plating 

density has been performed for cells with miR-21 manipulation to take into consideration the 

effect of miR-21 on cell growth. 

 

Human heat shock protein antibody array. Cells were solubilized in 1X lysis buffer 

containing a protease inhibitor cocktail. Membrane antibody arrays (RayBiotech, Norcross, 

USA) were blocked with 1 mL of blocking buffer for 30 min. 500 µg of extracted proteins 

were diluted in 1 mL of blocking buffer and dispersed on top of membrane antibody arrays 

overnight at 4 °C. Detection was performed as per the manufacturer’s instructions and the 

signal measured using Licor system (Licor, Lincoln, NE, USA). 

 

Western blot. Immunoblotting was performed as previously described5. Incubation with 

primary antibodies for DNAJB5 (ab101514, Rabbit; Abcam, 1:1000 dilution), HSP70 

(ab182844, Rabbit, Abcam; 1:5000 dilution), Beta-Actin (Anti-Actin, Clone C4, Mouse, MP 

Biomedicals; 1:10000 dilution) was performed overnight at 4°C. Secondary HRP-conjugated 

polyclonal Goat Anti-Rabbit or Goat Anti-Mouse antibodies (Cell Signaling, Danvers, MA, 

USA;1:10000) were used. Prime ECL (Amersham, GE healthcare) was used to develop 

signal as manufacturer’s instructions with Licor imaging system. 

 

Luciferase assays.  Cells were transfected with 1 µg DNAJB5-pMirTarget or pMiRTarget 

CTRL (Origene, Rockville, USA) with HiPerFect Transfection Reagent (Qiagen, Hilden, 
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Germany) and the luciferase activity measured after 48 h using the Dual Glo Assay system 

(Promega, Madison, WI, USA) according to the manufacturer's protocol in a multiwell plate 

luminometer (Perkin-Elmer, Seer Green, Beaconsfield, UK). Luciferase activity was 

normalized to that of renilla activity for each transfected well. 

 

Immunohistochemistry: Immunohistochemical stains were automatically performed in 3-4 

µm sections using the Bond Polymer Refine Detection kit (Leica Biosystems, Newcastle 

upon Tyne, UK) in the BOND-MAX system (Leica Biosystems), according to the 

manufacturer’s specifications. Appropriate positive and negative controls were run 

concurrently. The following antibodies were used: DAKO mouse monoclonal CK7 (Agilent, 

Santa Clara, CA, USA), DAKO mouse monoclonal CK19 (Agilent, Santa Clara, CA, USA), 

rabbit polyclonal DNAJB5 (Sigma-Aldrich, Haverhill, UK) and rabbit polyclonal HSP70 

(Abcam, Cambridge, UK). DNAJ5B was classified according to a 4-tiered scoring system 

based on the intensity of protein expression as follows: 0: indicates no stain or stain in less 

than 10% of tumour cells; 1+: faint/weak cytoplasm/nuclear stain in 10% or more of cells; 

2+: moderate cytoplasm/nuclear stain in 10% or more of tumour cells; and 3+: strong 

cytoplasm/nuclear stain in 10% or more of tumour cells. 

 

In Situ RNA hybridization. A locked nucleic acid (LNA) probe with complementarity to a 

21-bp section of miR-21 was labelled with 5′-digoxigenin and synthesized by Exiqon. Tissue 

sections were digested with ISH protease 1 (Ventana Medical Systems) and in situ 

hybridization performed as described 6. Negative controls included omission of the probe and 

the use of a scrambled LNA probe. Each sample was classified according to a 4-tiered 

scoring system based on the intensity of miR-21 expression as follows: 0: indicates no stain 

or stain in less than 10% of tumour cells; 1+: faint/weak cytoplasm/nuclear stain in 10% or 
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more of cells; 2+: moderate cytoplasm/nuclear stain in 10% or more of tumour cells; and 3+: 

strong cytoplasm/nuclear stain in 10% or more of tumour cells. In all the considered tissue 

samples, fibroblasts featured miR-21 expression and were assumed as positive internal 

control (not considered in ISH score). 

 

Supporting Table legend 

 

Supporting Table 1. List of drugs included in the library used for the HTS. 

 

Supporting Table 2. Comparison between mutations found in human CCA tissues and human 

CCA cell lines using the same NGS gene-panel. Mutations that were found to be present in 

>10% of human tissue are shown in the left column 1; mutations that are represented in our 

cell lines are depicted with an “x”. 

 

Supporting Table 3. List of drugs that were statistically significantly (p<0.05) active at all 

the 3 concentration in each cell line. Compounds that are commonly represented across all 

the iCCA or the eCCA cell lines are depicted in yellow and light blue respectively. 

 

Supporting Table S4. Statistical analysis of experiments in Fig 2E. P value indicates 

unpaired two-tailed ttest. Fold changes (FC) in cell viability are reported for day 3 that 

represents the timepoint at which the assessment of response was performed following miR-

21 over-expression. 

 

Supporting Table 5. Statistical analysis of animal experiments. P value indicates unpaired 

two-tailed ttest. 
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Supporting video legends 

Video 1. miR-21KO DLD1 cells were stably infected with an inducible viral vector over-

expressing miR-21 or CTRL. Cells were exposed to doxycycline (1µg/ml) to activate miR-

21/CTRL and RFP expression that were under the same promoter. RFP+ (red) cells 

represented activated infected cells. Activated cells were plated in 96-well plates and AUY-

922 added 22 hrs later. Cell viability and RFP confluency were monitored and measured at 

interval periods through the Incucyte Zoom. Data represent mean and STDEV of 12 

replicates.  

 

Video 2. miR-21KO DLD1 cells were co-cultured with Tet-on miR-21KO miR-21 vector 

DLD-1 cells. Cells were activated, plated in 96-well plate, exposed to doxycycline, and 

treated with AUY-922. RFP+ cells represented cells that over-expressed miR-21, while RFP- 

(bright-field) cells represented miR-21KO cells.  
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Supporting figure legends 

 

Supporting Figure 1. (A&B) Hierarchical clustering based on the sensitivity (green) or 

resistance (red) of cells to small molecule inhibitors. Cells were considered sensitive if a 

compound reduced cell viability >20%, compared to DMSO, across 3 replicates. A Chi2 test 

was used to identify significant correlations between mutations and drug sensitivity. Mutated 

cells clustered together, independently of tumour origin [eCCA (light blue) vs iCCA (black)]. 

Of note, a concentration-response effect was observed [80nM (yellow), 200nM (orange), 

800nM (red)]. 

 

Supporting Figure 2. (A&B) Data from the 200 nM compound screening in RKO cells are 

shown as a colour map or a bar graph. Bars represent mean and standard deviation of three 

replicates. (C&D) Cells were plated in 96-well plates for 24 hours and AUY922 added at 

scalar concentrations for 72 hrs. DMSO was used as control. Cell viability was measured by 

CellTiter-Blue and GI50 generated through Prism software. Bars represent mean and SD of 6 

replicates. (E) Cell were treated with the same concentration of AUY922 (10nM) for 72 

hours and cell viability assessed by CellTiter-Blue. Bars represent mean and SD of 6 

replicates.  (F) miR21 expression was assessed by Taqman assays and normalized to that of 

RNU48. Bars represent mean and SD of three replicates. Baseline miR-21 expression is 

higher in RKO compared to DLD-1 WT cells. 

 

Supporting Figure 3. (A) miR-21KO DLD-1 cells were stably infected with a Tet-on TRIPZ 

vector enabling over-expression of miR-21 and RFP, or a control (CTRL) empty vector 

expressing RFP. Cells were exposed to doxycycline to induce miR-21/CTRL and RFP 

expression that were under the same promoter. RFP+ (red) cells represented induced infected 
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cells. Induced cells were plated in 96-well plates and AUY922 added 22 hrs later. Cell 

viability and RFP confluency were monitored and measured at intervals by the Incucyte 

Zoom. Data represent mean and STDEV of 12 replicates. Difference between the two curves 

was statistically significant (p<0.05). Representative images are shown for selected time 

points. (B)  miR-21KO DLD1 cells were co-cultured with Tet-on miR-21KO miR-21 vector 

DLD-1 cells. Cells were induced, plated in 96-well plate, exposed to doxycycline, and treated 

with AUY922 (10nM). RFP+ cells represented cells that over-expressed miR-21, while RFP- 

(bright-field) cells represented miR-21KO cells. Phase contrast and RFP confluency were 

monitored and measured at intervals by the Incucyte Zoom. Cell proliferation was reduced in 

RFP- cells, while RFP+ cells were able to expand and proliferate. Images are shown for 

selected time points.  

  

Supporting Figure 4. EGI-1 cells were infected with miR-21 or CTRL TRIPZ viral vector to 

generate inducible stable clones. (A) miR21 expression was assessed by Taqman assays and 

normalized to that of RNU48. Bars represent mean and SD of three replicates. (B) 

doxycyclin-activated cells were plated in 96 well plates and treated with sub-lethal 

concentrations of AUY-922 (5nM). After 72 hrs doxycycline was removed to deactivate 

miR-21 expression. Cell viability was measured at selected time points by Celigo S. Bars 

represent mean and SD of 12 replicates. 

 

Supporting Figure 5. CRC PDOs were plated in 96-well plates and treated with AUY922 in 

triplicates at 20nM (A) or at scalar concentrations (B). (C) CRC PDOs were infected with a 

miR-21-over-expressing or control TRIPZ viral vector.  (D) TRIPZ infected CRC PDOs were 

treated with scalar concentrations of AUY922. miR-21 expressing cells were more resistant 

to AUY922.  
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ABT-263 (Navitoclax) PIK-90 Fingolimod (FTY720) HCl Desmethyl Erlotinib (CP-473420

ABT-737 Anastrozole GDC-0152 Torin 1

Linifanib (ABT-869) Aprepitant Birinapant PF-562271

Veliparib (ABT-888) Bicalutamide Stattic S-Ruxolitinib (INCB018424)

Axitinib Fulvestrant EPZ5676 BAY 11-7082

Saracatinib (AZD0530) Raltitrexed IWR-1-endo CHIR-99021 (CT99021) HCl

Selumetinib (AZD6244) Thalidomide UNC1215 Pazopanib

BEZ235 (NVP-BEZ235 CUDC-101 SCH772984 Daunorubicin HCl

Nintedanib (BIBF 1120) Exemestane NLG919 BMS-833923

Afatinib (BIBW2992) Irinotecan LDN-57444 TCID

Bortezomib (PS-341) Cladribine Azacitidine LGK-974

Bosutinib (SKI-606) Decitabine Teniposide AVL-292

Cediranib (AZD2171) Dimesna Simvastatin SKI II

Dovitinib (TKI-258 PIK-75 Ranolazine AGI-5198

PD184352 (CI-1040) Tivozanib (AV-951) Lomustine RepSox

Dasatinib Doxorubicin (Adriamycin) D-glutamine Ferrostatin-1 (Fer-1)

Ridaforolimus (Deforolimus Fluorouracil (5-Fluoracil Hydroxyurea KPT-330

Erlotinib HCl (OSI-744) Methotrexate Flutamide SGC-CBP30

Gefitinib (ZD1839) Imiquimod Fluvastatin Sodium MM-102

Imatinib Mesylate (STI571) Bendamustine HCl Tamoxifen Citrate 4?8C

Lapatinib (GW-572016) Ditosylate Nelarabine Procarbazine hydrochloride (Matulane) IWP-L6

Lenalidomide (CC-5013) Bleomycin Sulfate Sodium butyrate GSK2606414

Panobinostat (LBH589) Carboplatin Maraviroc WZ4003

Motesanib Diphosphate (AMG-706) Cyclophosphamide PF-573228 AZ191

Nilotinib (AMN-107) Clofarabine Cyclophosphamide Monohydrate UNC2250

PD0325901 YM201636 Bexarotene SMI-4a

PI-103 OSI-930 Vinpocetine (Cavinton) GW0742

Rapamycin (Sirolimus) Dacarbazine Lapatinib Empagliflozin (BI 10773)

Sorafenib Tosylate Epirubicin HCl Neratinib (HKI-272) GSK3787

STF-62247 Oxaliplatin LDE225 (NVP-LDE225 Plerixafor (AMD3100)

Sunitinib Malate Etoposide AG-14361 BMS-345541

Tandutinib (MLN518) KU-0063794 MLN2238 Macitentan

Temsirolimus (CCI-779 Raloxifene HCl MLN9708 1,4-PB-ITU dihydrobromide

Trichostatin A (TSA) Idarubicin HCl SB743921 4-Phenylbutyrate

Vandetanib (ZD6474) Fludarabine Phosphate GSK461364 Anagrelide

Vorinostat (SAHA Topotecan HCl SGI-1776 free base Apicidin

VX-680 (Tozasertib 2-Methoxyestradiol (2-MeOE2) BMS-794833 AR-A 014418

Y-27632 2HCl Letrozole OSI-420 AZ 23

Elesclomol (STA-4783) Leucovorin Calcium R788 (Fostamatinib) Disodium Banoxantrone dihydrochloride

Entinostat (MS-275) Temozolomide Formestane Bay 11-7085

Enzastaurin (LY317615) Vincristine DAPT (GSI-IX) BAY 61-3606

AC480 (BMS-599626) Amuvatinib (MP-470) Irinotecan HCl Trihydrate BD 1047

Obatoclax Mesylate (GX15-070) Vinblastine CYT387 BI 78D3

Olaparib (AZD2281 JNJ-7706621 SB590885 BIX 01294

Nutlin-3 Enzalutamide (MDV3100) TAME BML-266

Masitinib (AB1010) Celecoxib CAL-101 (Idelalisib BML-277

GDC-0941 PD173074 LY2157299 C 646

SB431542 WYE-354 Telatinib CAY10581

Crizotinib (PF-02341066) Vemurafenib (PLX4032 Volasertib (BI 6727) CAY10626

AUY922 (NVP-AUY922) IC-87114 Palomid 529 (P529) CCT 018159

PHA-665752 BX-795 Degrasyn (WP1130) CD 437

ZSTK474 Altretamine AR-42 CDIBA

SB216763 Carmofur CP-466722 CGP 3466B

SB203580 Epothilone A BKM120 (NVP-BKM120 CGS 9343B

MK-2206 2HCl Floxuridine CX-4945 (Silmitasertib) Combretastatin A4

PD153035 HCl FT-207 (NSC 148958) (-)-Epigallocatechin Gallate cPEPCK inhibitor

SU11274 Ifosfamide Cyclosporin A DAG Kinase Inhibitor

Vismodegib (GDC-0449) Megestrol Acetate Gossypol DFMO

Brivanib (BMS-540215) Mercaptopurine (6-MP) Phloretin EBPC

Belinostat (PXD101) Pamidronate Disodium Salinomycin Elacridar

Iniparib (BSI-201) Streptozotocin (STZ) Quercetin Farnesyl Thiosalicylic Acid

PCI-24781 (Abexinostat) Dexamethasone (DHAP) Coenzyme Q10(CoQ10) Fenretinide

OSI-906 (Linsitinib) Rigosertib (ON-01910) Chrysophanic Acid FR 180204

KU-55933 (ATM Kinase Inhibitor) Epothilone B (EPO906 Imatinib (STI571) GANT 61

GSK1904529A Bafetinib (INNO-406) Itraconazole GSK 264220A

PF-04217903 Dorzolamide HCL Mitoxantrone HCl GSK 269962

Quisinostat (JNJ-26481585) Ruxolitinib (INCB018424) Mycophenolic acid GSK 3787

BTZ043 Racemate Isotretinoin Rosiglitazone GSK 650394

Rucaparib (AG-014699 Pelitinib (EKB-569) Medroxyprogesterone acetate GSK837149A

Vatalanib (PTK787) 2HCl AS-605240 Pioglitazone GW 9508

GDC-0879 Zileuton Mifepristone HLI 373

LY294002 Ispinesib (SB-715992) Lonidamine Hypoxia Inducible Factor-1a Inhibitor

Danusertib (PHA-739358) Tipifarnib TAK-733 ICI 182

TAE684 (NVP-TAE684) Zibotentan (ZD4054) LDN193189 ITX 3

BI 2536 AZD6482 LY2603618 Ivachtin

SGX-523 Doxercalciferol GW3965 HCl JAK3 Inhibitor VI

GSK690693 SB525334 DCC-2036 (Rebastinib) JK 184

JNJ-38877605 AEE788 (NVP-AEE788) NU7441 (KU-57788) JNK Inhibitor V

Palbociclib (PD-0332991) HCl PHA-793887 GSK2126458 (GSK458) JZL 184

Triciribine PIK-93 MK-0752 Lck Inhibitor

XL147 Ponatinib (AP24534) PF-3845 LG 100268

Everolimus (RAD001) Fludarabine Trametinib (GSK1120212) L-NNA

TW-37 LY2228820 Flavopiridol HCl Lomeguatrib

Mocetinostat (MGCD0103) Mycophenolate Mofetil Ibrutinib (PCI-32765) LY 320135

Abiraterone (CB-7598) Pracinostat (SB939) NVP-BSK805 2HCl LY 333531

SRT1720 Tosedostat (CHR2797) XL335 Marimastat

YM155 (Sepantronium Bromide) SAR245409 (XL765) GDC-0980 (RG7422) MG 149

Alisertib (MLN8237) AT7519 A-769662 ML 141

AT9283 MK-1775 CH5132799 MRT-10

Pemetrexed Quizartinib (AC220) KX2-391 Necrostatin-1

Andarine Vinorelbine LY2109761 NF?B Activation Inhibitor III

17-AAG (Tanespimycin) AZD7762 YO-01027 NSC 23766

17-DMAG (Alvespimycin) HCl R406 (free base) Geldanamycin NSC 663284

SNS-032 (BMS-387032) DMXAA (Vadimezan) AMG-900 NU6027

Cyclopamine EX 527 (Selisistat) PF-03814735 Oxamflatin
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ACCEPTED MANUSCRIPTBarasertib (AZD1152-HQPA) Febuxostat PH-797804 PB 28 dihydrochloride

Docetaxel Dapagliflozin Dacomitinib (PF299804 PD 166285

Gemcitabine HCl (Gemzar) AZD8055 Crenolanib (CP-868596) Pentostatin

Paclitaxel BMS-777607 AZ 3146 PF 477736

Roscovitine (Seliciclib Pomalidomide TG101348 (SAR302503) PF-4708671

SNS-314 Mesylate KU-60019 PAC-1 PIM-1 Inhibitor 2

Capecitabine BIRB 796 (Doramapimod) AZ 628 Pyroxamide

Ganetespib (STA-9090) Tie2 kinase inhibitor AT-406 QNZ

Lenvatinib (E7080) Ubenimex (Bestatin) Canagliflozin S-(+)-Niguldipine hydrochloride

ABT-751 (E7010) Prednisone 3-Methyladenine SA4503

Cisplatin Triamcinolone Acetonide Dalcetrapib (JTT-705 SANT-1

Sodium valproate Cytarabine Nocodazole SANT-2

TGX-221 Tretinoin GW4064 SB 265610

CYC116 Ezetimibe Tofacitinib (CP-690550 SCH 79797

JNJ-26854165 (Serdemetan) Estrone Sotrastaurin SecinH3

WZ4002 Aminoglutethimide APO866 (FK866) SID 7969543

MK-2866 (GTx-024) Disulfiram Sirtinol SJ 172550

BIIB021 Meprednisone CEP-33779 SK1-I

Plinabulin (NPI-2358) Busulfan INK 128 (MLN0128) SKF 91488

Regorafenib (BAY 73-4506) Hydrocortisone BYL719 SKI II

XAV-939 Estradiol Torin 2 SMER 3

ENMD-2076 Gemcitabine RG108 SR 33805

BIBR 1532 Azathioprine TPCA-1 Src I1

Anagrelide HCl Mesna U 73122 STAT5 Inhibitor

Triptolide (PG490) Toremifene Citrate UNC 0224 TCS PIM-1 4a

QNZ (EVP4593) Dexamethasone acetate VER 155008 TTP 22
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Supporting Table S2. Comparison between mutations found in >10% of human CCA tissues (as per Simbolo et al) and our human CCA cell lines using the same NGS gene-panel.

MUTATED 
GENE

% in iCCA % in eCCA
PRESENT IN 
CELL LINES

ARID1 11.4 12.3
BAP1 14.3 X
IDH1 15.7 X
KRAS 15.7 47.4 X

PBRM1 14.3 X
SMAD4 10.5 X
TP53 17.5 X
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Supporting Table S3. List of drugs that were significanlty (p<0.05) activ e across the 3 concentration for each cell line. In yellow and blue the compunds which were active across all the iCCA and eCCA cell l ines respectively
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GSK690693 AKT 0.82 0.77 0.70 KU-60019 AURORA KINASE 0.60 0.50 0.30 Exemestane AROMATASE 0.527 0.681 0.536 SNS-314 Mesylate AURORA KINASE 0.71 0.73 0.69 SNS-314 Mesylate AURORA KINASE 0.27 0.38 0.36 MK-2206 2HCl Akt 0.41 0.36 0.21
MK-2206 2HCl AKT 0.63 0.65 0.55 AT9283 AURORA KINASE 0.71 0.85 0.61 VX-680 (Tozasertib) AURORA KINASE 0.337 0.391 0.384 Barasertib (AZD1152-HQPA) AURORA KINASE 0.73 0.72 0.64 Barasertib (AZD1152-HQPA) AURORA KINASE 0.45 0.48 0.43 Triciribine AKT 0.65 0.65 0.67

TAE684 (NVP-TAE684) ALK 0.84 0.62 0.17 VX-680 (Tozasertib) BCL-2, autophagy 0.53 0.21 0.18 SNS-314 Mesylate AURORA KINASE 0.407 0.491 0.508 PF-03814735 AURORA KINASE, FAK 0.84 0.71 0.54 VX-680 (Tozasertib) AURORA KINASE 0.46 0.36 0.31 Enzalutamide (MDV3100) ANDROGEN RECEPTOR 0.61 0.55 0.42
ENMD-2076 AURORA KINASE, FLT3,VEGFR 0.79 0.64 0.08 Obatoclax Mesylate (GX15-070) CDK 0.74 0.30 0.18 Barasertib (AZD1152-HQPA) AURORA KINASE 0.591 0.497 0.430 ENMD-2076 AURORA KINASE,FLT3,VEGFR 0.80 0.83 0.51 Dasatinib Bcr-Abl,c-Kit,Src 0.25 0.20 0.14 Formestane AROMATASE 0.77 0.66 0.54

Barasertib (AZD1152-HQPA) AURORA KINASE 0.22 0.24 0.23 Flavopiridol HCl ChK 0.84 0.79 0.39 AMG-900 AURORA KINASE 0.595 0.550 0.365 Dasatinib Bcr-Abl,c-Kit,Src 0.53 0.37 0.24 SNS-032 (BMS-387032) CDK 0.48 0.22 0.14 Alisertib (MLN8237) AURORA KINASE 0.80 0.51 0.61
SNS-314 Mesylate AURORA KINASE 0.25 0.27 0.26 AZD7762 Danusertib (PHA-739358) AURORA KINASE, B109c-RET,FGFR,Bcr-Abl 0.477 0.472 0.416 Ibrutinib (PCI-32765) BTK 0.64 0.57 0.53 AZD7762 CHK 0.30 0.53 0.22 AMG-900 AURORA KINASE 0.57 0.60 0.57

VX-680 (Tozasertib) AURORA KINASE 0.19 0.27 0.23 Gemcitabine DNA/RNA synthesys 0.17 0.10 0.16 PF-03814735 AURORA KINASE, FAK 0.471 0.509 0.318 SNS-032 (BMS-387032) CDK 0.66 0.30 0.27 Methotrexate DHFR 0.22 0.25 0.22 Barasertib (AZD1152-HQPA) AURORA KINASE 0.63 0.55 0.68
Danusertib (PHA-739358) AURORA KINASE, c-RET,FGFR,Bcr-Abl 0.28 0.13 0.03 Gemcitabine HCl (Gemzar) DNA/RNA synthesys 0.24 0.22 0.23 ENMD-2076 AURORA KINASE,FLT3,VEGFR 0.684 0.610 0.235 AZD7762 CHK 0.74 0.50 0.20 Gemcitabine DNA/RNA Synthesis 0.12 0.25 0.12 SNS-314 Mesylate AURORA KINASE 0.56 0.55 0.62

PF-03814735 AURORA KINASE, FAK 0.23 0.20 0.09 Pelitinib (EKB-569) EGFR 0.57 0.39 0.26 BMS-777607 Axl,c-Met 0.425 0.447 0.346 Methotrexate DHFR 0.58 0.49 0.33 Raltitrexed DNA/RNA Synthesis 0.34 0.35 0.39 Danusertib (PHA-739358) AURORA KINASE, c-RET, FGFR, Bcr-Abl 0.41 0.38 0.24
ABT-263 (Navitoclax) Bcl-2 0.65 0.70 0.73 Afatinib (BIBW2992) EGFR, HER2 0.53 0.48 0.32 Obatoclax Mesylate (GX15-070) Bcl-2,Autophagy 0.372 0.101 0.015 Gemcitabine DNA/RNA synthesis 0.35 0.39 0.34 Dacomitinib (PF299804 EGFR 0.53 0.52 0.45 ENMD-2076 AURORA KINASE, FLT3, VEGFR 0.82 0.76 0.58
Bafetinib (INNO-406) Bcr-Abl 0.85 0.89 0.82 AR-42 HDAC 0.81 0.58 0.36 Dasatinib Bcr-Abl,c-Kit,Src 0.508 0.400 0.253 Gemcitabine HCl (Gemzar) DNA/RNA synthesis 0.35 0.32 0.37 Afatinib (BIBW2992) EGFR,HER2 0.39 0.65 0.60 AT9283 AURORA KINASE, JAK, Bcr-Abl 0.67 0.78 0.71

PHA-793887 CDK 0.37 0.30 0.24 Mocetinostat (MGCD0103) HDAC 0.68 0.53 0.40 Maraviroc CCR5 0.741 0.882 0.666 Floxuridine DNA/RNA Synthesis 0.59 0.47 0.42 SCH772984 ERK 0.57 0.52 0.24 CYC116 AURORA KINASE, VEGFR 0.60 0.49 0.34
Regorafenib (BAY 73-4506) c-RET,VEGFR 0.83 0.72 0.37 Panobinostat (LBH589) HDAC 0.14 0.09 0.09 KPT-330 CRM1 0.463 0.315 0.089 Raltitrexed DNA/RNA Synthesis 0.64 0.57 0.55 Mitoxantrone HCl FOLIC ACID ANTAGONIST 0.38 0.24 0.21 ABT-263 (Navitoclax) Bcl2 0.28 0.22 0.16

Methotrexate DHFR 0.24 0.20 0.20 Quisinostat (JNJ-26481585) HDAC 0.12 0.08 0.09 Methotrexate DHFR 0.331 0.325 0.354 Mercaptopurine (6-MP) DNA/RNA Synthesis 0.79 0.84 0.64 Panobinostat (LBH589) HDAC 0.28 0.07 0.04 Obatoclax Mesylate (GX15-070) Bcl2, autophagy 0.73 0.45 0.26
Floxuridine DNA/RNA Synthesis 0.43 0.31 0.27 JK 184 HEDGEHOG 0.27 0.26 0.24 Pemetrexed DHFR 0.888 0.753 0.719 Pelitinib (EKB-569) EGFR 0.44 0.29 0.25 Quisinostat (JNJ-26481585) HDAC 0.29 0.09 0.05 Elacridar BCRP inhibitor 0.97 0.86 0.87

Gemcitabine DNA/RNA Synthesis 0.21 0.16 0.19 AUY922 (NVP-AUY922) HSP 0.36 0.33 0.35 Gemcitabine DNA/RNA Synthesis 0.067 0.082 0.036 Desmethyl Erlotinib (CP-473420 EGFR 0.59 0.51 0.51 JK 184 HEDGEHOG SIGNALING 0.20 0.17 0.23 Maraviroc CCR 0.68 0.70 0.63
Gemcitabine HCl (Gemzar) DNA/RNA Synthesis 0.24 0.16 0.17 Ganetespib (STA-9090) HSP 0.54 0.34 0.40 Gemcitabine HCl (Gemzar) DNA/RNA Synthesis 0.125 0.146 0.171 Dacomitinib (PF299804 EGFR 0.63 0.53 0.55 Ganetespib (STA-9090) HSP 0.17 0.15 0.15 AT7519 CDK 0.73 0.43 0.12

Gefitinib (ZD1839) EGFR 0.75 0.83 0.81 BX-795 IkB/IKK,PDK-1 1.27 1.32 0.95 Raltitrexed DNA/RNA Synthesis 0.486 0.555 0.562 WZ4002 EGFR 0.86 0.79 0.59 AUY922 (NVP-AUY922) HSP 0.21 0.13 0.20 Flavopiridol HCl CDK 0.82 0.36 0.14
SCH772984 ERK 0.59 0.40 0.60 Triptolide (PG490) IMMUNOSUPPRESSIVE AGENT 0.12 0.16 0.13 Floxuridine DNA/RNA Synthesis 0.537 0.525 0.538 Lapatinib (GW-572016) Ditosylate EGFR, HER2 0.69 0.60 0.58 17-DMAG (Alvespimycin) HCl HSP 0.32 0.21 0.18 Palbociclib (PD-0332991) HCl CDK 0.64 0.58 0.54
PF-562271 FAK 0.82 0.92 0.78 Ispinesib (SB-715992) KINESIN 0.42 0.40 0.49 Fluorouracil (5-Fluoracil) DNA/RNA Synthesis 0.651 0.777 0.737 AEE788 (NVP-AEE788) EGFR, HER2,VEGFR 0.54 0.52 0.42 Triptolide (PG490) IMMUNOSUPPRESSIVE AGENT 0.10 0.09 0.12 PHA-793887 CDK 0.87 0.63 0.47
PF-573228 FAK 0.74 0.77 0.63 SB743921 KINESIN 0.48 0.51 0.38 Bleomycin Sulfate DNA/RNA Synthesis 0.669 0.704 0.453 Afatinib (BIBW2992) EGFR,HER2 0.55 0.60 0.46 Ispinesib (SB-715992) KINESIN 0.22 0.30 0.32 SNS-032 (BMS-387032) CDK 0.67 0.14 0.15
Tipifarnib farnesyltransferase (FTase) inhibitor 0.31 0.31 0.28 Docetaxel MICROTUBULE ASSOCIATED 0.32 0.27 0.28 TCID DUB 0.703 0.710 0.911 SCH772984 ERK 0.86 0.78 0.90 SB743921 KINESIN 0.41 0.35 0.27 AZD7762 CHK 0.56 0.22 0.17

Mitoxantrone HCl folic acid antagonist 0.20 0.07 0.00 Epothilone A MICROTUBULE ASSOCIATED 0.26 0.23 0.23 Gefitinib (ZD1839) EGFR 0.434 0.478 0.485 BIX 01294 EHMT2 (G9a) Inhibitor 0.43 0.43 0.45 Paclitaxel MICROTUBULE ASSOCIATED 0.14 0.14 0.15 BMS-777607 cMet 0.50 0.37 0.43
Panobinostat (LBH589) HDAC 0.02 0.00 0.00 Epothilone B (EPO906) MICROTUBULE ASSOCIATED 0.23 0.21 0.25 Pelitinib (EKB-569) EGFR 0.495 0.525 0.391 Mitoxantrone HCl FOLIC ACID 0.36 0.20 0.25 Epothilone B (EPO906) MICROTUBULE ASSOCIATED 0.14 0.15 0.19 KPT-330 CRM1 0.71 0.45 0.29

Quisinostat (JNJ-26481585) HDAC 0.02 0.01 0.00 Nocodazole MICROTUBULE ASSOCIATED 0.55 0.31 0.32 Dacomitinib (PF299804 EGFR 0.528 0.391 0.358 Panobinostat (LBH589) HDAC 0.22 0.10 0.07 Epothilone A MICROTUBULE ASSOCIATED 0.15 0.13 0.11 SB 265610 CXCR2 Antagonist 0.64 0.61 0.58
17-AAG (Tanespimycin) HSP 0.90 0.93 0.74 Paclitaxel MICROTUBULE ASSOCIATED 0.30 0.29 0.30 Desmethyl Erlotinib (CP-473420 EGFR 0.772 0.612 0.667 Quisinostat (JNJ-26481585) HDAC 0.36 0.10 0.09 Docetaxel MICROTUBULE ASSOCIATED 0.18 0.13 0.17 Methotrexate DHFR 0.64 0.45 0.46
AUY922 (NVP-AUY922) HSP 0.02 0.02 0.01 Vincristine MICROTUBULE ASSOCIATED 0.55 0.22 0.27 Erlotinib HCl (OSI-744) EGFR 0.798 0.754 0.679 JK 184 HEDGEHOG SIGNALING 0.42 0.44 0.42 Vinorelbine MICROTUBULE ASSOCIATED 0.18 0.20 0.17 Pemetrexed DHFR 0.37 0.36 0.31
Ganetespib (STA-9090) HSP 0.06 0.02 0.02 Vinorelbine MICROTUBULE ASSOCIATED 0.30 0.29 0.34 PD153035 HCl EGFR 0.817 0.723 0.699 BMS-833923 HEDGEHOG,Smoothened 0.88 0.90 0.87 Vincristine MICROTUBULE ASSOCIATED 0.31 0.19 0.20 Azacitidine DNA methyltransferase 0.78 0.71 0.67
Ispinesib (SB-715992) KINESIN 0.02 0.01 0.02 AZD8055 mTOR 0.36 0.36 0.25 Afatinib (BIBW2992) EGFR,HER2 0.615 0.721 0.579 Ganetespib (STA-9090) HSP 0.63 0.46 0.44 Nocodazole MICROTUBULE ASSOCIATED 0.44 0.27 0.24 Procarbazine hydrochloride (Matulane) DNA/RNA 0.66 0.85 0.77

SB743921 KINESIN 0.02 0.02 0.02 Everolimus (RAD001) mTOR 0.58 0.59 0.55 Lapatinib EGFR,HER2 0.937 0.902 0.647 17-DMAG (Alvespimycin) HCl HSP 0.73 0.52 0.36 INK 128 (MLN0128) mTOR 0.30 0.22 0.16 Carmofur DNA/RNA synthesis 0.78 0.59 0.44
TAK-733 MEK 0.49 0.48 0.42 INK 128 (MLN0128) mTOR 0.38 0.54 0.24 UNC1215 Epigenetic Reader Domain (MBT) 0.650 0.655 0.923 Triptolide (PG490) immunosuppresive agent 0.29 0.25 0.32 Everolimus (RAD001) mTOR 0.30 0.49 0.54 Cyclophosphamide Monohydrate DNA/RNA synthesis 0.22 0.23 0.15
UNC2250 Mer 0.87 0.87 0.72 Rapamycin (Sirolimus) mTOR 0.54 0.63 0.58 SCH772984 ERK 0.687 0.555 0.439 JAK3 Inhibitor VI JAK3 Inhibitor 0.89 0.85 0.69 AZD8055 mTOR 0.35 0.25 0.19 Floxuridine DNA/RNA synthesis 0.43 0.34 0.39
Docetaxel MICROTUBULE ASSOCIATED 0.07 0.07 0.11 Ridaforolimus (Deforolimus mTOR 0.53 0.54 0.52 ICI 182 ESTROGEN RECEPTOR 0.526 0.498 0.398 JNK Inhibitor V JNK Inhibitor 0.87 0.82 0.75 Temsirolimus (CCI-779 mTOR 0.38 0.60 0.65 Fludarabine DNA/RNA synthesis 0.79 0.74 0.69

Epothilone A MICROTUBULE ASSOCIATED 0.02 0.02 0.03 Temsirolimus (CCI-779) mTOR 0.52 0.68 0.55 Tipifarnib farnesyltransferase 0.702 0.736 0.612 Ispinesib (SB-715992) KINESIN 0.73 0.76 0.75 Rapamycin (Sirolimus) mTOR 0.41 0.47 0.77 Gemcitabine DNA/RNA synthesis 0.29 0.16 0.15
Epothilone B (EPO906) MICROTUBULE ASSOCIATED 0.04 0.06 0.15 Torin 2 mTOR 0.48 0.36 0.28 Mitoxantrone HCl folic acid antagonist 0.420 0.280 0.005 Lck Inhibitor LCK Inhibitor 0.83 0.73 0.71 Torin 2 mTOR, ATM/ATR 0.18 0.16 0.13 Gemcitabine HCl (Gemzar) DNA/RNA synthesis 0.53 0.36 0.28

Paclitaxel MICROTUBULE ASSOCIATED 0.03 0.02 0.03 Torin 1 mTOR, autophagy 0.52 0.42 0.30 Quisinostat (JNJ-26481585) HDAC 0.201 0.041 0.010 TAK-733 MEK 0.64 0.55 0.55 Torin 1 mTOR, Autophagy 0.32 0.18 0.16 Lomustine DNA/RNA synthesis 0.73 0.78 0.79
Vincristine MICROTUBULE ASSOCIATED 0.04 0.04 0.04 GSK2126458 (GSK458) mTOR, PIK3 0.39 0.33 0.31 Panobinostat (LBH589) HDAC 0.204 0.025 0.002 Trametinib (GSK1120212) MEK 0.66 0.49 0.59 GSK2126458 (GSK458) mTOR, PI3K 0.26 0.12 0.08 Raltitrexed DNA/RNA Synthesis 0.49 0.38 0.43

Vinorelbine MICROTUBULE ASSOCIATED 0.04 0.04 0.04 BEZ235 (NVP-BEZ235 mTOR, PIK3, ATM/ATR 0.68 0.50 0.35 JK 184 HEDGEHOG SIGNALING 0.081 0.296 0.073 PD0325901 MEK 0.90 0.71 0.65 CAY10626 mTOR, PI3Ka 0.33 0.20 0.12 TCID DUB 0.78 0.88 0.92
AZD8055 mTOR 0.24 0.19 0.13 APO866 (FK866) NMPRTase 0.33 0.49 0.27 BMS-833923 Hedgehog/Smoothened 0.736 0.663 0.804 Epothilone B (EPO906 MICROTUBULE ASSOCIATED 0.26 0.32 0.33 APO866 (FK866) NMPRTase inhibitor 0.39 0.25 0.28 AT-406 E3 Ligase 0.84 0.71 0.71

KU-0063794 mTOR 0.82 0.61 0.29 SCH 79797 PAR1 Receptor 0.59 0.38 0.16 AUY922 (NVP-AUY922) HSP 0.064 0.057 0.058 Epothilone A MICROTUBULE ASSOCIATED 0.33 0.30 0.26 SCH 79797 PAR1 Receptor Antagonist 0.28 0.15 0.07 Dacomitinib (PF299804 EGFR 0.22 0.32 0.34
Rapamycin (Sirolimus) mTOR 0.29 0.34 0.33 PIK-75 PIK3, DNA-PK 0.15 0.11 0.10 Ganetespib (STA-9090) HSP 0.106 0.032 0.032 Paclitaxel MICROTUBULE ASSOCIATED 0.43 0.38 0.33 PIK-75 PI3K,DNA-PK 0.11 0.07 0.05 Erlotinib HCl (OSI-744) EGFR 0.17 0.22 0.14

Ridaforolimus (Deforolimus mTOR 0.32 0.28 0.30 GSK461364 PLK 0.44 0.50 0.44 17-DMAG (Alvespimycin) HCl HSP 0.258 0.173 0.082 Vinorelbine MICROTUBULE ASSOCIATED 0.51 0.55 0.42 BI 2536 PLK 0.34 0.38 0.30 Gefitinib (ZD1839) EGFR 0.35 0.30 0.17
Temsirolimus (CCI-779) mTOR 0.35 0.32 0.34 Rigosertib (ON-01910) PLK 0.55 0.34 0.28 Geldanamycin HSP 0.428 0.288 0.034 Nocodazole MICROTUBULE ASSOCIATED 0.69 0.47 0.49 GSK461364 PLK 0.47 0.39 0.41 OSI-420 EGFR 0.80 0.65 0.38

Torin 1 mTOR, autphagy 0.32 0.14 0.14 Volasertib (BI 6727) PLK 0.48 0.54 0.49 17-AAG (Tanespimycin) HSP 0.551 0.331 0.099 Torin 1 mTOR 0.59 0.41 0.37 Volasertib (BI 6727) PLK 0.50 0.37 0.35 PD153035 HCl EGFR 0.71 0.55 0.36
NF?B Activation Inhibitor III NF-kappa B 0.76 0.94 0.71 Bortezomib (PS-341) PROTEASOME 0.28 0.14 0.13 BIIB021 HSP 0.665 0.347 0.243 Everolimus (RAD001) mTOR 0.78 0.77 0.67 Rigosertib (ON-01910) PLK 0.59 0.30 0.16 Pelitinib (EKB-569) EGFR 0.55 0.48 0.52

Ponatinib (AP24534) PDGFR,FGFR,VEGFR,Bcr-Abl 0.31 0.18 0.01 Dasatinib SRC 0.26 0.13 0.14 Elesclomol (STA-4783) HSP 0.745 0.508 0.456 KU-0063794 mTOR 0.84 0.68 0.55 Bortezomib (PS-341) PROTEASOME 0.04 0.03 0.05 Lapatinib EGFR, HER2 0.56 0.75 0.30
GDC-0941 PI3K 0.60 0.51 0.29 KX2-391 SRC 0.38 0.32 0.26 NLG919 IDO 0.675 0.698 0.882 Torin 2 mTOR, ATM/ATR 0.43 0.35 0.29 YM155 (Sepantronium Bromide) SURVIVIN 0.05 0.04 0.06 Afatinib (BIBW2992) EGFR,HER2 0.52 0.58 0.45
ZSTK474 PI3K 0.81 0.55 0.26 PD 166285 SRC 0.35 0.29 0.20 Azathioprine IMMUNOSUPPRESSIVE 0.505 0.533 0.402 GSK2126458 (GSK458) mTOR, PI3K 0.41 0.30 0.35 Daunorubicin HCl TELOMERASE 0.33 0.28 0.08 ICI 182 Estrogen receptor 0.45 0.64 0.51

PI-103 PI3K,Autophagy,DNA-PK,mTOR 0.64 0.37 0.15 YM155 (Sepantronium Bromide) SURVIVIN 0.20 0.08 0.10 Triptolide (PG490) IMMUNOSUPPRESSIVE AGENT 0.018 0.029 0.009 CAY10626 mTOR, PI3K α 0.49 0.47 0.26 Idarubicin HCl TOPOISOMERASE 0.28 0.15 0.05 Toremifene Citrate Estrogen/progestogen Receptor 0.71 0.76 0.70
PIK-75 PI3K,DNA-PK 0.12 0.00 0.00 Daunorubicin HCl TELOMERASE 0.51 0.21 0.17 CYT387 JAK 0.621 0.558 0.506 PIK-90 PI3K 0.22 0.19 0.19 Epirubicin HCl TOPOISOMERASE 0.35 0.27 0.11 Tamoxifen Citrate Estrogen/progestogen Receptor,Autophagy 0.72 0.86 0.83

DCC-2036 (Rebastinib) PIK3, DNA-PK 0.43 0.19 0.13 Doxorubicin (Adriamycin) TOPOISOMERASE 0.54 0.45 0.11 Ispinesib (SB-715992) KINESIN 0.100 0.094 0.105 PIK-75 PI3K,DNA-PK 0.80 0.75 0.64 Doxorubicin (Adriamycin) TOPOISOMERASE 0.44 0.30 0.11 PF-573228 FAK 0.54 0.56 0.53
CAY10626 PI3Kα/mTOR 0.20 0.29 0.13 Epirubicin HCl TOPOISOMERASE 0.64 0.33 0.11 SB743921 KINESIN 0.148 0.168 0.130 LY2228820 p38 MAPK 0.84 0.93 0.79 Combretastatin A4 Tubulin Polymerization Inhibitor 0.19 0.16 0.17 Quizartinib (AC220) FLT3 0.72 0.76 0.73
Quercetin PKC,Src,PI3K,Sirtuin 0.76 0.82 0.75 Idarubicin HCl TOPOISOMERASE 0.25 0.14 0.09 TAK-733 MEK 0.623 0.526 0.255 APO866 (FK866) NMPRTase 0.26 0.26 0.20 Plinabulin (NPI-2358) VDA 0.18 0.17 0.16 Mitoxantrone HCl folic acic antagonist 0.67 0.31 0.13

GSK461364 PLK 0.03 0.03 0.06 Plinabulin (NPI-2358) VDA 0.31 0.35 0.35 PD0325901 MEK 0.657 0.553 0.428 SMI-4a PIM 0.84 0.80 0.92 DAPT (GSI-IX) gamma-secretase 0.60 0.60 0.45
Rigosertib (ON-01910) PLK 0.57 0.21 0.08 Trametinib (GSK1120212) MEK 0.713 0.562 0.308 BI 2536 PLK 0.32 0.38 0.33 SecinH3 GDP/GTP Exchange Factor Inhibitor 0.65 0.88 0.73
Volasertib (BI 6727) PLK 0.03 0.04 0.11 Selumetinib (AZD6244) MEK 0.855 0.851 0.681 GSK461364 PLK 0.42 0.31 0.33 Panobinostat (LBH589) HDAC 0.36 0.21 0.11
Bortezomib (PS-341) PROTEASOME 0.01 0.00 0.00 Epothilone A MICROTUBULE ASSOCIATED 0.074 0.086 0.063 Volasertib (BI 6727) PLK 0.54 0.42 0.39 Quisinostat (JNJ-26481585) HDAC 0.18 0.09 0.06

LDN193189 TGF-beta/Smad 0.85 0.81 0.89 Docetaxel MICROTUBULE ASSOCIATED 0.087 0.063 0.054 Bortezomib (PS-341) PROTEASOME 0.55 0.41 0.39 GANT 61 Hedgehog signaling inhibitor 0.78 0.87 0.88
Doxorubicin (Adriamycin) TOPOISOMERASE 0.25 0.14 0.01 Epothilone B (EPO906) MICROTUBULE ASSOCIATED 0.106 0.110 0.087 Fenretinide RAR (pan) Agonist 0.90 0.86 0.87 JK 184 Hedgehog signaling inhibitor 0.15 0.16 0.14

Epirubicin HCl TOPOISOMERASE 0.21 0.07 0.00 Vinorelbine MICROTUBULE ASSOCIATED 0.141 0.074 0.059 KX2-391 SRC 0.76 0.45 0.55 Fluvastatin Sodium HMG-CoA reductase 0.82 0.74 0.76
Idarubicin HCl TOPOISOMERASE 0.16 0.05 0.01 Paclitaxel MICROTUBULE ASSOCIATED 0.152 0.101 0.082 YM155 (Sepantronium Bromide) SURVIVIN 0.30 0.14 0.03 Simvastatin HMG-CoA reductase 0.65 0.64 0.73
Topotecan HCl TOPOISOMERASE 0.87 0.46 0.32 AZD8055 mTOR 0.310 0.262 0.162 Daunorubicin HCl TELOMERASE 0.48 0.45 0.26 17-AAG (Tanespimycin) HSP 0.50 0.36 0.24

Dimesna uroprotective agent 0.83 0.88 0.88 Torin 1 mTOR 0.356 0.205 0.144 Idarubicin HCl TOPOISOMERASE 0.39 0.26 0.20 17-DMAG (Alvespimycin) HCl HSP 0.37 0.40 0.28
Plinabulin (NPI-2358) VDA 0.05 0.04 0.10 Ridaforolimus (Deforolimus mTOR 0.547 0.596 0.529 Epirubicin HCl TOPOISOMERASE 0.59 0.47 0.29 AUY922 (NVP-AUY922) HSP 0.41 0.52 0.41

PD173074 VEGFR,FGFR 0.17 0.09 0.09 Temsirolimus (CCI-779 mTOR 0.560 0.609 0.548 Doxorubicin (Adriamycin) TOPOISOMERASE 0.63 0.35 0.36 Ganetespib (STA-9090) HSP 0.34 0.31 0.32
Teniposide 0.45 0.31 0.22 Rapamycin (Sirolimus) mTOR 0.579 0.607 0.537 Topotecan HCl TOPOISOMERASE 0.76 0.44 0.27 Birinapant IAP 0.22 0.38 0.27

KU-0063794 mTOR 0.674 0.693 0.392 Combretastatin A4 Tubulin Polymerization Inhibitor 0.45 0.42 0.39 GDC-0152 IAP 0.48 0.44 0.46
WYE-354 mTOR 0.806 0.774 0.515 Plinabulin (NPI-2358) VDA 0.45 0.48 0.39 OSI-906 (Linsitinib) IGF1R 0.85 0.75 0.73
Torin 2 mTOR, ATM/ATR, 0.194 0.354 0.096 Azathioprine IMMUNOSUPPRESSIVE 0.54 0.52 0.52

GSK2126458 (GSK458) mTOR, PI3K 0.348 0.179 0.158 Triptolide (PG490) IMMUNOSUPPRESSIVE 0.13 0.13 0.13
CAY10626 mTOR, PI3K 0.443 0.315 0.121 Ispinesib (SB-715992) KINESIN 0.17 0.17 0.17

GDC-0980 (RG7422) mTOR,PI3K 0.803 0.509 0.164 SB743921 KINESIN 0.24 0.24 0.12
QNZ NF-kB 0.328 0.300 0.230 Selumetinib (AZD6244) MEK 0.74 0.71 0.54

QNZ (EVP4593) NF-kB 0.460 0.383 0.186 Trametinib (GSK1120212) MEK 0.66 0.64 0.58
APO866 (FK866) NMPRTase 0.056 0.161 0.053 Docetaxel MICROTUBULE ASSOCIATED 0.14 0.14 0.14

SCH 79797 PAR1 Receptor 0.435 0.365 0.104 Epothilone A MICROTUBULE ASSOCIATED 0.13 0.12 0.13
Ponatinib (AP24534) PDGFR,FGFR,VEGFR,Bcr-Abl 0.488 0.522 0.257 Epothilone B (EPO906) MICROTUBULE ASSOCIATED 0.14 0.13 0.12

PIK-90 PI3K 0.674 0.662 0.720 Nocodazole MICROTUBULE ASSOCIATED 0.59 0.20 0.15
ZSTK474 PI3K 0.863 0.611 0.411 Paclitaxel MICROTUBULE ASSOCIATED 0.14 0.14 0.13

BEZ235 (NVP-BEZ235 PI3K,ATM/ATR,mTOR 0.753 0.418 0.233 Vinorelbine MICROTUBULE ASSOCIATED 0.17 0.11 0.14
PIK-75 PI3K,DNA-PK 0.166 0.046 0.016 AZD8055 mTOR 0.23 0.18 0.14

Volasertib (BI 6727) PLK 0.113 0.188 0.135 Everolimus (RAD001) mTOR 0.44 0.42 0.44
GSK461364 PLK 0.137 0.151 0.149 INK 128 (MLN0128) mTOR 0.19 0.17 0.18

Rigosertib (ON-01910) PLK 0.453 0.423 0.064 Rapamycin (Sirolimus) mTOR 0.57 0.63 0.52
Bortezomib (PS-341) PROTEASOME 0.007 0.014 0.001 Ridaforolimus (Deforolimus mTOR 0.30 0.31 0.27

PD 166285 SRC 0.328 0.269 0.042 Temsirolimus (CCI-779 mTOR 0.56 0.56 0.52
KX2-391 SRC 0.435 0.076 0.066 Torin 1 mTOR 0.37 0.29 0.22

Saracatinib (AZD0530) Src,Bcr-Abl 0.792 0.611 0.377 Torin 2 mTOR 0.20 0.17 0.14
Dexamethasone (DHAP) STEROID 0.484 0.519 0.434 CAY10626 mTOR, PI3K 0.51 0.30 0.24
Dexamethasone acetate STEROID 0.424 0.376 0.376 GDC-0980 (RG7422) mTOR, PI3K 0.70 0.45 0.23

Hydrocortisone STEROID 0.721 0.671 0.549 GSK2126458 (GSK458) mTOR, PI3K 0.14 0.15 0.13
Triamcinolone Acetonide STEROID? 0.523 0.575 0.517 BEZ235 (NVP-BEZ235 mTOR, PI3K, ATM/ATR 0.68 0.50 0.24

Aprepitant Substance P 0.674 0.769 0.850 NF?B Activation Inhibitor III NFkB 0.37 0.53 0.45
Daunorubicin HCl TELOMERASE 0.354 0.205 0.001 APO866 (FK866) NMPRTase 0.24 0.19 0.18

RepSox TGF-beta/Smad 0.793 0.629 0.558 Mesna Others 0.70 0.68 0.65
LDN193189 TGF-beta/Smad 0.803 0.746 0.510 Sodium butyrate Others 0.76 0.78 0.72

Idarubicin HCl TOPOISOMERASE 0.229 0.053 0.013 Teniposide Others 0.56 0.49 0.38
Doxorubicin (Adriamycin) TOPOISOMERASE 0.445 0.321 0.071 LY2228820 p38 MAPK 0.81 0.74 0.70

Epirubicin HCl TOPOISOMERASE 0.461 0.465 0.085 PH-797804 p38 MAPK 0.50 0.50 0.59
Topotecan HCl TOPOISOMERASE 0.535 0.503 0.309 SCH 79797 PAR1 Receptor 0.26 0.19 0.11

Combretastatin A4 Tubulin Polymerization Inhibitor 0.215 0.172 0.035 Anagrelide HCl PDE 0.60 0.48 0.56
Plinabulin (NPI-2358) VDA 0.057 0.040 0.051 Ponatinib (AP24534) PDGFR,FGFR,VEGFR,Bcr-Abl 0.58 0.45 0.24

XAV-939 Wnt/beta-catenin 0.680 0.780 0.656 BYL719 PI3K 0.36 0.48 0.37
LGK-974 Wnt/beta-catenin 0.685 0.577 0.837 LY294002 PI3K 0.51 0.56 0.40

Teniposide others 0.481 0.518 0.316 PIK-75 PI3K 0.38 0.15 0.11
PIK-90 PI3K 0.83 0.83 0.93

BI 2536 PLK 0.26 0.30 0.24
GSK461364 PLK 0.29 0.37 0.36

Rigosertib (ON-01910) PLK 0.50 0.21 0.08
Volasertib (BI 6727) PLK 0.31 0.39 0.31
Bortezomib (PS-341) PROTEASOME 0.10 0.07 0.04

NSC 23766 RAC1 inhibitor 0.70 0.79 0.68
Necrostatin-1 RIP kinase ihibitor 0.72 0.62 0.58

Dasatinib Bcr-Abl,c-Kit,Src 0.59 0.44 0.35
KX2-391 SRC 0.37 0.14 0.15

PD 166285 SRC 0.79 0.67 0.12
D-glutamine stereoisomer 0.69 0.66 0.79

Dexamethasone (DHAP) steroids 0.52 0.50 0.46
Dexamethasone acetate steroids 0.67 0.69 0.77

Hydrocortisone steroids 0.82 0.81 0.60
Triamcinolone Acetonide steroids 0.61 0.60 0.67

YM155 (Sepantronium Bromide) SURVIVIN 0.12 0.05 0.03
R406 (free base) Syk 0.70 0.78 0.87

BIBR 1532 TELOMERASE 0.81 0.74 0.89
Daunorubicin HCl TELOMERASE 0.45 0.45 0.12

Pomalidomide TNF-alpha 0.83 0.79 0.75
Doxorubicin (Adriamycin) TOPOISOMERASE 0.58 0.46 0.14

Epirubicin HCl TOPOISOMERASE 0.69 0.46 0.13
Idarubicin HCl TOPOISOMERASE 0.68 0.17 0.08

Irinotecan HCl Trihydrate TOPOISOMERASE 0.20 0.18 0.25
Combretastatin A4 Tubulin Polymerase Inhbitor 0.29 0.32 0.19

Plinabulin (NPI-2358) VDA 0.14 0.15 0.16
MK-1775 Wee1 0.72 0.62 0.13

TFKCCLP SNU-1079 SW1 SNU-1196 EGI



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

baseline (24 hours) DAY 3 (72 hours) DAY 6 (144 hours)

CTRL, AUY922 vs miR-21, AUY922 (p value) 0.31 3.30E-10 0.001

FC (LOG) miR21/CTRL: 0.40

CTRL, DMSO vs miR-21, DMSO  (p value) 0.32 1.70E-05 0.01

FC (LOG) miR21/CTRL: 0.06

CTRL, DMSO vs CTRL, AUY922  (p value) 0.3 2.80E-32 3.00E-23

FC (LOG)AUY922/DMSO: -1.06

miR-21, DMSO vs miR-21, AUY922  (p value) 0.3 3.90E-25 9.40E-23

FC (LOG) AUY922/DMSO: -0.72

Supporting Table S4. Statistical analysis of experiments in Fig 2 E. P value indicates unpaired two-tailed ttest. Fold 

changes (FC) in cell viability are reported for day 3 that represents the timepoint at which the assessment of response 

was performed following miR-21 over-expression.
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baseline DAY 5 DAY 7 DAY 14 DAY 17 DAY 21 DAY 28

AUY922 DOX-OFF vs AUY922 DOX ON 0.29 0.50 0.67 0.29 0.10 0.02 0.03

vehicle DOX-OFF vs vehicle DOX ON 0.21 0.80 0.55 0.43 0.40 0.42 0.23

vehicle (averaged) vs AUY922 DOX-ON 0.14 0.37 0.40 0.28 0.48 0.89 0.39

vehicle (averaged) vs AUY922 DOX-OFF 0.10 0.15 0.31 0.07 0.12 0.09 0.02

Supporting Table S5. Statistical analysis of animal experiments. P value indicates unpaired two-tailed ttest. 

Vehicle (averaged) indicates the average of DOX-ON and DOX-OFF mice.
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