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Key Points 
 

 The architecture of inherited genetic susceptibility to cancer is defined by a spectrum of 

predisposition alleles which have differing frequency and impact. 

 Genome-wide association studies (GWAS) provide an agnostic approach to identify genetic 

variation influencing cancer risk. GWAS of most cancers have been performed and 

hundreds of risk alleles have been identified, most of which are common and individually 

confer a modest increase in risk. 

 Most cancer risk loci identified through GWAS locate to non-coding regions of the genome 

and influence gene expression through diverse mechanisms. 

 As well as improving our understanding of cancer, information from  GWAS  has  direct 

clinical relevance in identifying non-genetic aetiological risk factors, optimising population 

screening, identifying therapeutic targets, drug repositioning and prognostication. 

 Although challenging, deciphering the biological basis of associations is necessary to fully 

realise the potential of GWAS. 
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ABSTRACT 
 

Genome-wide association studies (GWAS) provide an agnostic approach for investigating the 

genetic basis of complex diseases. In oncology, GWAS of nearly all common malignancies have 

been performed and over 700 genetic variants associated with increased risks identified. As well 

as revealing novel pathways important in carcinogenesis, these studies have shown that 

common genetic variation contributes significantly to the heritable risk of many common 

cancers. The clinical application of GWAS is starting to provide opportunities for drug discovery 

and repositioning, as well as cancer prevention. Deciphering the functional and biological basis 

of associations is, however challenging and is in part a barrier to fully unlock the potential of 

GWAS. 
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[H1] Introduction 

 

 

 

 

Epidemiological studies provide strong support for a hereditary component to the aetiology of 

common cancers1. Many cancers show a higher concordance in monozygotic twins as compared 

with dizygotic twins or siblings2. While this concordance is compatible with inherited genetic 

variation rather than lifestyle or environmental risk factors, it does not exclude non-genetic 

mechanisms as a basis of apparent heritability [G]. For example, the high concordance of acute 

leukaemia in monozygotic twins has an in utero explanation3. The pattern of relative risk (RR) [G] 

for most common cancers is that familial RRs are greatest in relatives of early-onset  cancer 

patients, which is compatible with tumours developing in these genetically susceptible individuals 

at an earlier age4. For most common cancers, risks in first-degree relatives of patients are 

increased two- to three-fold for the same cancer. Notable exceptions are chronic lymphocytic 

leukaemia, and thyroid and testicular cancers, for which risks are increased four- to eight-fold1. 

The genetic architecture underscoring these familial risks is now known to reflect a range of alleles 

with varying frequencies and impact. 

 

More than 40 years ago, Anderson stated that the two- to three-fold excess risks of cancer seen in 

first-degree relatives of cancer patients, “are not indicative of a strong genetic effect. They are 

more suggestive of a polygenic mechanism, i.e. the involvement of many genes with small effects 

acting in concert with environmental or non-genetic factors with larger and more important 

effects”5. This conclusion is incorrect, as the RRs in relatives of patients compared with the 

population will usually be more than one order of magnitude lower than the RRs in susceptible 

compared with non-susceptible individuals. The observed RRs are diluted by three factors. Firstly, 

not  all  cancer  patients  are  susceptible.  Secondly,  even  fewer  of  the  relatives  are  susceptible. 

Thirdly, the general population is composed of both susceptible and non-susceptible individuals. 

However, such modest excess familial risks are entirely compatible with Mendelian predisposition 

[G], provided that the genetic effect is substantial4. Indeed genetic linkage and positional cloning 

studies performed in the 1980s and 1990s led to the  identification  of  many  high  penetrance 

cancer susceptibility genes (CSGs) [G], for example those for breast and ovarian cancers (BRCA1 

and BRCA2)6-8, colorectal cancer (CRC; APC and the mismatch repair (MMR) genes MLH1 and MSH29-

13) and melanoma CDKN2A)14,15 within certain families. 

To date mutations in more than 70 CSGs associated with high-penetrance [G] cancer susceptibility 

syndromes have been identified, which confer RRs of 5-10016  (Fig. 1). However, these syndromes 
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only account for a small fraction of the familial risks of the respective cancers, leaving much of the 

heritability unexplained. For example, high-penetrance mutations are responsible for most breast 

cancer and CRC patients in families with more than three patients (i.e. indicative of Mendelian 

inheritance), but are responsible for only a minority of those with two patients17-19. Mutations in 

known predisposition genes, including BRCA1 and BRCA2, account for less than 25% of the two- 

fold excess risk in the relatives of patients with breast cancer18,20. Similarly, more than 60% of the 

excess familial risk of CRC remains unaccounted for19,21. 

 
Over the past 20 years, extensive efforts to discover additional, high-penetrance CSGs for breast 

cancer and CRC have been made but no gene with a similar profile to BRCA1, BRCA2 or the MMR 

genes has been identified. If additional CSGs exist, as is the case in CRC with POLE22 and NTHL123 

variants, each will account for only a small proportion of the familial risk (i.e. <1%)19. These data, 

coupled with the previously described high estimates of cancer heritability from twin  studies, 

suggest that much of the missing heritability will be polygenic. Here, the co-inheritance of genetic 

variants, each of which has a modest individual effect, can cause a wide range of risk in the 

population. 

 

Paradoxically therefore, while the reasoning behind Anderson's statement was incorrect, it is now 

recognized that much of the genetic architecture of cancer susceptibility is in fact explained by 

polygenic inheritance. Thus, a high proportion of cancers may arise in a genetically susceptible 

minority of individuals in a population - a consequence of the combined effects of common low- 

penetrance alleles and rare disease-causing variants that confer moderate cancer risks. In 

appreciation of this, the past decade has seen a shift in gene discovery efforts from models of 

predisposition based on high-penetrance single-gene mutations (i.e. causative of  cancer 

syndromes) to multi-genic models. This Review focuses on the  major findings  from association 

studies, in particular genome-wide association studies (GWAS), both in terms of understanding the 

allelic architecture of cancer susceptibility and its functional basis as well as ongoing challenges 

and future perspectives. 

 

[H1] The advent of GWAS 

Association studies have detected two main classes of cancer susceptibility variants with different 

levels of risk and prevalence in the population. Firstly, rare moderate-penetrance variants (risk 

allele  frequency  [G]  <2%;  odds  ratios  (ORs)  [G]  >2.0)  have  been  identified  through  the  direct 
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interrogation of candidate genes. For example, other genes encoding proteins involved in the DNA-

damage response pathway, in addition to BRCA1 and BRCA2, such as ATM24,25, CHEK226 and 

PALB227,28, have been associated with an increased breast cancer risk. Based on their risk allele 

frequencies of 0.1% to 0.5% and the modest two-fold increase in risk associated with  each, 

variation in these genes contribute little to the familial risk of breast cancer. Secondly, common 

low-penetrance alleles (risk allele frequency >5%; OR <1.5) have been identified by GWAS. It is 

likely however that the spectrum of penetrance and frequency of risk alleles for many cancers 

occurs on a continuum. This dichotomy probably reflects the subgroups of risk alleles that are 

most readily detected, rather than the underlying biological or evolutionary constraints. 

 

GWAS were made possible by improved insight into common genetic variation coupled with 

technological developments in high-throughput genotyping. Through an agnostic genome-based 

approach, GWAS compares the frequency of common DNA variations in a large series of unrelated 

cancer patients and matched healthy individuals (referred to as ‘controls’ from hereon), to identify 

genetic variants associated with cancer risk (Fig. 2). GWAS of most of the common cancers have 

now been performed and genomic variants associated with their risks identified, providing direct 

evidence of polygenic susceptibility. 

 

[H1] Study design for GWAS 

From 2006 onwards, knowledge of single nucleotide polymorphisms (SNPs, the most  common 

genetic variant) gained from the Human Genome Project29,30 and the International Hap Map 

Project31, together with technical advances in high-throughput genotyping technology made large- 

scale GWAS a viable option. 

 

The underlying basis of GWAS is that adjacent stretches of DNA tend to be non-independently co- 

inherited. This non-random association of alleles (linkage disequilibrium (LD) [G]) allows certain 

SNPs to act as proxies, or tagSNPs, for adjacent SNPs32. Therefore, the number of SNPs that need 

to be genotyped to capture most common variants (i.e. minor allele frequency >5%) is reduced to 

around 300,00033. By determining which SNP alleles occur more or less frequently in patients 

compared with healthy individuals, genomic regions associated with risk can be identified (Fig. 2). 

 

There is a general need for patients and controls to be appropriately matched. This matching is to 

ensure adequate statistical power, and to minimise biases or confounding factors leading to false- 
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positive associations. For example, methods have been developed that can correct for potential 

population differences between patients and controls34. To mitigate the issue of multiple 

comparisons and reduce false-positive associations, stringent statistical thresholds are necessary. 

The Bonferroni correction is commonly applied, whereby a P-value of 5.0x10-8 corresponds to 

genome-wide significance at the 5% threshold (i.e. 0.05/1,000,000 SNPs) [BOX 1]. The strength of 

associations, however, have to be interpreted with caution owing to the “winner's curse”. 

Thereby, an overestimation of effect size [G] is likely to occur if, for example, initial discovery 

studies have low sample size and statistical power35,36. More reliable effect sizes can be estimated 

through validation in independent cohorts. 

 

Historically, to offset the high cost of commercial SNP arrays but retain statistical power GWAS 

were generally designed based on a staged strategy. That is, promising associations from the initial 

genome-wide analysis were followed up by targeted genotyping of independent  case-control 

series. The significantly reduced cost of arrays and the formation of international consortia have 

led to many analyses being solely based on the meta-analysis of genome-wide SNP data. While 

intrinsically attractive, the combination of data from different arrays can raise issues relating to 

varying quality of genotyping between array technologies as well as the density of SNP genotypes. 

Fortunately, the imputation of untyped genotypes using sequenced reference panels of individuals 

available through initiatives such as the 1000 Genomes Project37, UK10K consortium38 and 

haplotype reference consortium39, has facilitated the harmonisation of data generated  by 

different array formats. This has allowed SNP alleles with frequencies as low as 0.1% to be 

accurately imputed39 extending the utility of GWAS to decipher the allelic structure of cancer 

susceptibility. Of note, the role of structural variations, such as copy number variations (CNVs), is 

largely unappreciated, because existing arrays are not ideally formatted to capture them. 

 

[H1] Cancer risk loci identified 

Over the past decade, multiple GWAS have been reported for each of the major cancers in 

European populations, including breast40-42, prostate43-45, lung46-49, colorectal50-56, pancreatic57-60, 

gastric61,62, renal63-65 and bladder cancer66,67. For many of these, East Asian and African-American 

population specific risk loci have also been identified, reflecting differences in LD structure 

between ethnicities68. GWAS have also been reported for malignant melanoma69-71, ovarian 

cancer72-75, basal cell carcinoma76-79, glioma80-82, meningioma83, testicular germ cell tumour 

(TGCT)84-86, thyroid cancer87 and several of the haematological malignancies including the major B- 
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cell tumours -  acute lymphocytic leukaemia  (ALL)88-91, chronic lymphocytic  leukaemia (CLL)92-94, 

multiple myeloma (MM)95-98, Hodgkin lymphoma (HL)99-101 follicular lymphoma102 and diffuse large 

B-cell lymphoma103. Additionally, common risk alleles have been identified through GWAS  for 

several paediatric solid cancers including Wilms tumour104 and neuroblastoma105. Each of these 

studies reported well-validated disease loci. Currently, more than 430 cancer associations at 262 

distinct genomic regions have been identified by GWAS (Supplementary Fig. 1, Supplementary 

Table 1). 

 
Breast and prostate cancer GWAS have so far yielded the greatest number of risk loci41,45. This high 

output is likely because of greater statistical power owing to the large sample size of the 

respective GWAS, each of which involved the genotyping of over 120,000 individuals41,45. For other 

cancers, differences in their heritability are likely to have influenced the performance of GWAS in 

identifying risk loci. For example, in CLL, which is strongly heritable and has an eight-fold familial 

RR106, GWAS have led to the identification of 43 risk loci, despite it being based on the analysis of 

only 6,200 patients and 17,598 controls92. In contrast, a GWAS analysis of 29,266 patients and 

56,450 controls has led to the discovery of only 18 risk loci for all lung cancer subtypes49, reflecting 

the importance of non-genetic risk factors in the aetiology of this cancer. 
 

 
[H1] Pleiotropy at cancer risk loci 

 

 
Most SNP associations identified to date have been cancer-specific, which is consistent with the 

epidemiological observations of most familial cancer risks1. However, approximately one third of 

SNPs map to genomic loci associated with multiple cancers. Classically pleiotropic loci would be 

those where the exact same association signal (and therefore presumed molecular mechanism) 

encompasses multiple cancers. A broader and perhaps more pragmatic definition encompasses 

cancer-specific “hotspots” with a presumed shared (but less direct) molecular mechanism, 

allowing  e.g.  for  cancer-  or  tissue-specific  enhancer  effects.  This  definition  of  pleiotropy  [G] 

enables the grouping of cancers or loci that can be instructive in our understanding of cancer by 

highlighting shared mechanisms or hallmarks, for example, telomere-related loci107 at  3q26.2 

(TERC), 5p15.33 (TERT), 10q24.33 (OBFC1) and 20q13.33 (RTEL1) are associated with risks  of 

multiple cancers107. In particular, the SNP rs2736100 at 5p15.33 (TERT) is associated with risk of 

many cancer types, including glioma81 as well as bladder108  and lung109  cancer. Similarly, the locus 

at 9p21.3 (CDKN2A-CDKN2B) has been found to influence glioma81, melanoma69, ALL110  and lung 
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cancer111 risk, as well as naevi density112. For some loci the immediate cancer-specific mechanism 

of predisposition may not be shared, though ultimately they might converge on the same 

oncogenic mechanism. The SNP rs6983267 at chromosome 8q24.21 was found through scans of 

both prostate cancer113  and CRC114. However, this locus has also been shown to harbour risk SNPs 

for other cancers. These SNPs localise within distinct LD blocks and likely reflect tissue-specific 

effects on cancer risk64,66,75,81,93,99, through regulation of MYC (Fig. 3). 

 
Additional insights can be gained from the cancer types themselves implicated at “pleiotropic” 

loci. For example, 16q24.3 harbours multiple associations for skin cancers, including melanoma69, 

non-melanoma skin cancer115 and cutaneous squamous cell carcinoma116, which is likely indicative 

of a common, perhaps tissue-specific mechanism of action. Furthermore, additional  multiple- 

cancer regions are consistent with known familial co-clusters e.g. 19p13.11 and breast117 and 

ovarian74  cancer. For other regions containing multiple cancer associations, the shared genomic 

location is likely due to chance and the molecular basis of associations completely independent. In 

these cases there is no additional insight to be gained from collectively considering the multiple 

cancer and risk associations. Exploring  the nature of  pleiotropic loci will likely be  the focus of 

future work and lead to increased insight into cancer susceptibility and aetiology. 

 

[H1] Insights into cancer biology 
 

 
One of the anticipated deliverables from GWAS was that the identification of variants of genes in 

specific pathways would provide new insights into cancer biology. Few of the genes implicated by 

GWAS had previously been evaluated in targeted association studies, emphasizing that the 

candidate gene approach was hampered by a limited knowledge of tumour biology. Moreover, 

insights into new pathways of tumorigenesis for different cancer types have emerged; for 

example, the role of B-cell developmental and immune response genes (e.g. IKZF1, CEBPE, IRF4, 

IRF8,  GATA3  and  ARID5B)  as  key  determinants  of  the  risk  of  B-cell  tumours88-92,95,97-99,118-120. 

Similarly, GWAS implicated genes  involved  in  developmental  transcriptional  regulation, 

microtubule and chromosomal assembly, and components of the KIT-MAPK signalling pathway in 

TGCT oncogenesis121-124. 

 

Given the considerable difficulties in unambiguously identifying causative exposures for many 

cancers,  genetic  associations  have  the  potential  to  endorse  current  aetiological  hypotheses,  or 
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suggest new ones that merit testing through gene- or environment-specific hypotheses. Examples 

of loci that demonstrate an effect on cancer risk mediated by lifestyle or environmental exposure 

include a SNP at 15q25 (CHRNA3-CHRNA5) locus that is indirectly associated with lung cancer risk 

through nicotine addiction46,125. The genotype at this locus influences the ability to quit smoking126 

and smokers carrying two copies of the CHRNA3-CHRNA5 risk allele smoke on average two more 

cigarettes per day (CPD) than those homozygous for non-risk alleles48. 

Other examples of genotype indirectly influencing cancer risk are provided by a SNP at 8p22 

(NAT2)modifying the effect of smoking on bladder cancer127 and the skin pigmentation loci that 

are associated with skin cancer69,76. Such data implies that heritable factors  may  well  have  a 

greater impact on cancer incidence than previously thought. 

 

Recently, researchers have suggested that “replicative” errors contribute substantially to cancer 

aetiology alongside environmental and heritable factors, inferred  from  observations  of  a 

correlation between total stem cell divisions and cancer incidence in various cancer types132, 133. 

However, such assertions warrant further scrutiny, as the relative contributions of factors 

havebeen calculated based on the assumption of independent effects, and have solely been based 

on high-penetrance inherited mutations, which contribute little to the population attributable risk 

[G] of a given cancer. All in all, it is likely that all of the posited components interact, with common 

GWAS susceptibility alleles also playing a role. 

 

[H1] Genetic risk in non-Europeans 
 

 
GWAS have been conducted in a number of non-European populations, either for cancers 

common in all populations (such as prostate, breast and colorectal cancer) or for those common in 

specific populations (e.g. hepatocellular carcinoma in East Asians). Approximately 56% of GWAS 

risk loci show association with only European populations, and 29% of GWAS risk loci show 

association with multiple populations, predominantly European, East Asian and African-American 

(Supplementary Table 1). Undoubtedly, cancer GWAS have been dominated by studies of 

European populations, so the proportion of GWAS risk loci associated with non-European 

populations is likely to increase as more studies in different populations are undertaken. 

Intriguingly, within certain risk loci exhibiting association with multiple populations, there may be 

population-specific association signals. For example for prostate cancer there appear to be several 

susceptibility  regions  at  8q24.21  with  differing  specificities  for  African  American,  Japanese 
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American, Native Hawaiian, Latino and European American populations128. This might reflect 

population-specific disease mechanisms. 

 

Additionally, founder mutations arising in small populations can inform on cancer genetic risk. 

Examples outside of GWAS include bi-allelic NTHL1 mutations as a cause of recessive CRC 

discovered through sequencing Dutch families23, as well as APC p.Ile1307Lys (rs1801155) as a basis 

of low-penetrance susceptibility to CRC in individuals of Ashkenazi Jewish ancestry129. 

 
[H1] Common variation and heritable risk 

 

 
The loci identified through GWAS tend to exhibit dosage effects, with homozygous carriers of the 

risk allele having an excess risk approximately twice that of heterozygous carriers of the risk allele. 

This might partly reflect the fact that a log-additive model [G] has been used for the primary 

discovery, as even large GWAS will be underpowered to demonstrate significant deviation from 

this model130. 

 
Nearly all the cancer susceptibility loci identified to date are associated with modest increases in 

risk, with ORs generally less than 1.5. Exceptions to this are the SNPs at 9p21 (JAK2) for 

myeloproliferative neoplasms131, 12q21.32 (KITLG) for TGCT121,122  and 8q24.21 (CCDC26) for IDH- 

mutated glioma132, each of which are associated with a three-fold increased  risk of the respective 

cancer. These cancers are notable in having large familial  risks but  showing little evidence for 

Mendelian predisposition133-135. 

 
These GWAS data provide general  insights into  the  allelic  architecture  of  cancer  susceptibility. 

Even though the cancer risks associated with these SNPs are modest, the variants are common 

and therefore, each of them contributes to the risk of the respective cancer type in a large 

proportion of the population. The number of common variants each of which could explain more 

than 1% of inherited risk is very low. However, as the SNPs identified by GWAS have to pass a very 

stringent significance threshold, there are likely multiple SNPs with weak effect sizes that do not 

meet these  criteria but still  contribute  to  the  heritable risk of a given cancer. Quantifying the 

heritability explained by both known and potential susceptibility SNPs is therefore important to 

verify the aetiological basis of cancer and understand its genetic architecture. Calculating the 

proportion  of  phenotypic  variance  explained  by  a  large  number  of  SNPs  for  complex  human 
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diseases is a significant challenge. Methods such as Genome-wide Complex Trait  Analysis136 

(GCTA) [G] , which estimate the polygenic variance (i.e. heritability) ascribable to all GWAS SNPs 

simultaneously, have shown that common variation is likely to explain a high proportion of 

heritable risk of many cancers, with estimates of 10% for oestrogen receptor negative breast 

cancer137, 38% for prostate cancer137 and 17% for CRC138. More recent methods have attempted to 

improve GCTA by accounting for minor allele frequency, LD and genotype uncertainty. Such 

methods appear to produce higher estimates of heritability ascribed  to  common  genetic 

variation139, hence the contribution of polygenic inheritance to the heritable risk of cancer may 

currently be underestimated. 

 

Given the sample size of the GWAS that have been conducted, it is unlikely that there are many (or 

any) common  disease loci with minor allele frequencies (MAFs) >20% in European populations 

that have stronger effects than those already identified for the major cancer types. Many of the 

loci identified have ORs of 1.1 or less (Supplementary Table 1), and the statistical power of most 

studies will be too low to detect effects of this magnitude for uncommon alleles (i.e. MAF < 10%). 

As a consequence of the low statistical power as well as submaximal tagging the identification of 

risk variants conferring ORs of 1.05-1.1 will be problematic for all except the largest of studies140. 

 
[H1] Deciphering risk loci 

 

 
The underlying premise of GWAS is that an association reveals the effect of a highly correlated 

functional variant that is in LD with the tag SNP. Therefore, the genotyped SNP is not generally a 

strong candidate for causality, and elucidation of the causal variant poses a considerable 

challenge. Specifically, it is difficult to establish which of a set of closely linked variants that are in 

LD with each other  is  the  most functionally  relevant. While a  minority of  GWAS tag  SNPs  are 

directly functional, for example the 8q24.21 SNP rs6983267 for CRC141, most are likely in LD with 

the causal SNP. A key step in deciphering risk loci therefore is fine-mapping [G], which is aided by 

imputation of untyped genotypes142,143. Moreover, fine-mapping can also resolve association 

signals, for example the 8q24.21 association for glioma where the imputed SNP rs55705857 has 

been shown to be sufficient to explain two tag SNP signals previously thought  to  be 

independent132. 
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Many functional classes of genetic variation have been implicated as the basis of GWAS risk loci 

(Fig. 4). To date relatively few risk loci have been comprehensively studied. However, insights into 

the genetic and biological basis of cancer susceptibility mediated through common variation are 

emerging. 

 

A small number of the identified cancer GWAS loci directly impact on the amino acid sequence of 

the expressed protein. The mechanistic interpretation of such variants is presumed to be relatively 

simple, due to the implied direct relationship between genotype and function. Examples include 

BRCA2 p.Lys3326Ter (rs11571833) and CHEK2 p.Ile157Thr (rs17879961) for lung47 and breast 

cancer42. Similarly a direct relationship can be inferred for those affecting RNA processing such as 

the SNP in the 3’UTR (poly-A tail) of  TP53  (rs78378222)  associated  with  prostate  cancer  and 

glioma risk144,145, and those affecting splice sites such as the inhibitory splice isoform rs10069690 

variant at 5p15.33 (TERT), resulting in decreased telomerase activity146. However, it is possible that 

coding variants could have more subtle effects that do not necessarily involve disrupting protein 

function147, but instead involve tagging functional non-coding variants. 

 
Most risk  loci map to non-coding regions of the genome (e.g. gene introns or promoters and 

intergenic regions), which  is  perhaps  unsurprising  given  that  these  regions  comprise 

approximately 99% of the genome and the common, low–penetrance nature of these risk 

polymorphisms is  more compatible  with subtle,  regulatory effects. Indeed GWAS risk loci  have 

been demonstrated to map to genomic regions of cell-type specific active chromatin and show an 

over-representation of expression quantitative trait loci148, methylation quantitative trait  loci149 

and transcription factor (TF) binding150. Chromatin conformation  studies  have  helped  link 

regulatory regions, which SNPs identified by GWAS localise to, with their respective target 

genes151-153. Specifically, they have demonstrated that cis-regulatory  effects  mediated  by 

chromatin looping interactions between enhancers and promoter regions within topologically 

associated domains (TADs)154 are likely to be the functional basis of many GWAS signals. 

 
There have been significant efforts to understand the regulatory mechanisms perturbed at cancer 

risk loci. Such studies have been aided by statistical methodologies such as Summary-data-based 

Mendelian Randomization149 and initiatives such as the ENCODE155, Roadmap Epigenomics156 and 

BLUEPRINT epigenome157 consortiums which have generated publicly available maps of regulatory 

regions.   Furthermore,   network-based   approaches   have   yielded   insights   into   higher-order 
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structures governing disease susceptibility. For example, binding of specific TFs can be enriched at 

risk loci. Such TFs are frequently mutated in tumours and have relevant biological activity158. 

 
The 8q24.21 region is one of the most intriguing and important loci to emerge from GWAS and is a 

good example of such regulatory mechanisms. The genomic interval at 128-130 megabases 

harbours multiple independent loci with distinct tumour specificities for CRC, glioma, CLL, MM, HL, 

and prostate, breast, and bladder cancers within the same TAD (Fig. 4). However, the region to 

which these cancer associations map is devoid of protein-coding transcripts. The 8q24.21 SNP 

rs6983267, which is associated with CRC and prostate cancer, resides in an evolutionarily 

conserved region. The two allelic variants of rs6983267 show  differential  binding  of  the 

transcription  factor  TCF7L2  to  an  enhancer  element  that  physically  interacts  with  the  MYC 

promoter, which is 300 kilobases telomeric to rs6983267141,159. The MYC oncogene is commonly 

amplified or overexpressed in many cancers. Recent Hi-C analysis [G] of this region has 

demonstrated a more complicated regulatory mechanism, implicating various lincRNAs that 

mediate effects at risk loci for example CCAT1, PCAT1 and CCDC26 for CRC, prostate cancer and 

glioma respectively152,153. While studies to fully elucidate the regulatory mechanisms underpinning 

the 8q24.21 locus and risks of various cancers are in their relative infancy, such endeavours will 

likely involve exploration of tissue-specific effects in appropriate model systems and CRISPR/Cas9- 

mediated disruption of candidate regulatory elements160. 

 
[H1] Subtype-specific associations 

 

 
Many cancers have distinct molecular profiles due to different aetiological pathways. The 

relationship between SNP genotype and tumour phenotype is becoming apparent for many cancer 

subtypes. In lung cancer, the 5p15.33 (TERT-CLPTM1L) and 3q28 (TP63) SNPs significantly 

influence lung cancer histology, and are principally associated with adenocarcinoma, while 13q12 

(BRCA2) and human leucocyte antigen (HLA) associations are specific for squamous lung cancer111. 

Similarly, many glioma risk loci are subtype-specific, such as associations at 5p15.33, 20q13.33 and 

7p11.2 for glioblastoma (GBM) and at 11q23.3 and 8q24.21 for non-GBM glioma82. Two of the 

most striking genotype-phenotype relationships identified to date are the 10q21.2 (ARID5B) ALL 

association, which seems to be highly selective for the subset of B-cell precursor ALL with 

hyperdiploidy (HD)88  and the CCND1 c.870G>A SNP which is specific for myeloma that has the 

(11;14)(q13;q32) translocation97. Presumably, such subtype-specific associations reflect particular 
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mutational signalling contexts; thereby potentially providing insight into tumour development. 

Susceptibility alleles increasing cancer risk might confer a selective advantage and therefore be 

preferentially enriched in the given cancer relative to the non-risk allele. Evidence for such a 

phenomenon has been demonstrated recently for the SNP rs7090445 at 10q21.2. Here, the risk 

allele is preferentially retained in HD-ALL blasts, consistent with inherited genetic variation 

contributing  to  arrest  of  normal  lymphocyte  development,  and  this  facilitates  leukaemic  clonal 

expansion118. Similarly, the risk allele of the missense variant CDKN2A p.Ala148Thr (rs3731249), 

which increases ALL risk, has been shown to be preferentially selected during clonal evolution161. 

 
 

The recently proposed omnigenic model of complex disease susceptibility proposes that any gene 

with regulatory variants in disease relevant tissues will have an  effect  on  disease  risk.  In  this 

model, genes are defined as “core” if they have a specific role in disease aetiology and 

“peripheral” if their role is indirect. Given that there are more peripheral genes than core genes, 

and the range of effect sizes observed, a large fraction of the total genetic contribution to disease 

is thought to arise from peripheral genes that do not play direct roles in disease. Therefore, under 

this model, peripheral genes affect the regulation and function of core genes through networks, in 

a relatively subtle manner. This model is  based on our admittedly limited understanding of cancer 

and network biology and remains to be proven experimentally162. 

 
 

[H1] Clinical relevance 
 

 
As well as offering the prospect of risk stratification, cancer genetics provides for a better 

understanding of the developmental basis of cancer at a fundamental level. Such information can 

have direct clinical application in a number of contexts (Fig. 5). 

 

[H1] Drug discovery and repositioning 
 

 
Cancer genome sequencing studies provide evidence that regulatory regions and target genes 

implicated by GWAS are frequently the subject of somatic mutation, reflecting “driver activity”163-
 

166.  Such  studies  can  aid  in  deciphering  risk  loci  and  offer  the  prospect  of  maximising  drug 

discovery efforts. Indeed, there are many successfully approved drugs for which GWAS has 

provided direct supporting genetic evidence167. This evidence has highlighted targets for drug 

development  and  identified  targets  for  potential  drug  repositioning168,169.  Although  not  in  the 
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context of cancer, proof-of principle for this has been provided by the use of Ustekinumab, a 

monoclonal antibody that neutralizes the shared p40 subunit of IL-12 and IL-23170. GWAS 

identified the IL-23 signalling pathway as a risk factor for the development of psoriasis171 and the 

IL23R p.Arg381Gln (rs11209026) polymorphism was shown to afford protection from multiple 

inflammatory diseases172. Approved and promising therapies in cancer for which  GWAS 

associations exist include BCL2 inhibition in CLL92,173 and FGFR inhibition in breast cancer40,174. 

However, further work is required to identify target genes and aberrant biological pathways from 

GWAS associations and to define the germline-somatic continuum to maximise the potential of 

GWAS in drug discovery175. 

 
 

[H1] Stratified screening 
 

 
The possibility of identifying those at increased risk on the basis of their genotype is of  more 

immediate clinical relevance, since it will help to tailor prevention or screening strategies. The low 

level of risk associated with most cancer GWAS risk variants has been considered a barrier to the 

clinical application of these markers in cancer prevention. However, small effect sizes associated 

with individual SNPs do not necessarily preclude clinical utility. As demonstrated for CRC as well as 

breast and prostate cancer, the combined effect of multiple risk SNPs has the potential to achieve 

a degree of risk discrimination that is useful for population-based prevention and screening 

programmes. For example, a polygenic risk score (PRS) based on the 37 known risk variants for 

CRC indicates that individuals with the top 10% highest scores will have a 1.8-fold increased risk of 

CRC and those within the top 1% will have a 2.9-fold increased risk of CRC when compared with 

the  population  median  (Fig.  6)138,176.  Making  use  of  a  PRS  has  the  potential  to  optimise  the 

efficiency of population-based screening programmes for the early detection of  CRC,  prostate 

cancer and breast cancer138,177. Furthermore, the observed level of risk discrimination from PRS 

may be informative in formulating and delivering chemoprevention strategies. Use of PRS has also 

recently been shown to provide informative cancer risk stratification in the context of Mendelian 

cancer susceptibility, notably for BRCA1 and BRCA2 mutation carriers178,179. 

 
[H1] Informing prevention 

 

 
Mendelian Randomisation (MR) analysis enables identification of non-genetic risk factors and 

possible chemoprevention agents by use of GWAS data [BOX 2]. For example, by using genetic 
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markers as proxies (i.e. genetic instruments) for hyperlipidaemia, a causal relationship between 

hypercholesterolemia and CRC has been demonstrated180. Furthermore, a genetic risk score 

comprising SNPs which lower 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) expression, and 

therefore mimicking the effects of statin therapy to reduce cholesterol levels, was associated with 

reduced CRC risk180. Such data provides support for additional clinical benefit from statins aside 

from their primary use in the context of coronary heart disease. A significant challenge when 

conducting MR analysis is to ensure validity of genetic instruments by excluding pleiotropy [BOX 

2]. Whilst methods have been developed to quantify pleiotropy in such studies, these  have 

received scrutiny in the proposed omnigenic model that proposes the concept of “network 

pleiotropy”, i.e. a single variant may affect multiple traits because those traits  are  mediated 

through the same regulatory networks in the same cell types rather than because the traits are 

causally related162. Such “network pleiotropy” may not be readily detected in traditional MR-based 

analyses. 

 

[H1] Informing treatment 
 

 
As a potential prognostic factor, the concept of germline variation imparting inter-individual 

variability in tumour development and progression is receiving increasing attention with examples 

in many cancer types181-185. Genetic variation has been linked to treatment response in CLL, and 

lung and breast cancer, whereby chemotherapies that are CYP3A substrates such as 

cyclophosphamide, taxanes and mitoxantrone, may be suboptimal for CYP3A7*1C carriers186. 

Furthermore,  GWAS  has  been  successful  in  identifying  individuals  at  risk  of  treatment  related 

toxicity such as anthracycline-induced cardiotoxicity187 and radiotherapy  induced  tissue 

damage188. Hence GWAS offers an opportunity to realize the vision of personalized medicine by 

identifying common genetic variation affecting drug efficacy and drug-induced toxicity. This can 

improve therapeutic decision making, enabling the possibility of patient-tailored drug selection. 

 

[H1] Conclusions and future challenges 
 

 
GWAS have demonstrated that much of the heritable risk for most common cancers is polygenic. 

Hence the architecture of inherited genetic susceptibility to cancer is defined by a montage of 

predisposition alleles with different levels of risk and prevalence in the  population.  With  the 

notable exception of breast and prostate cancer, the currently identified loci explain only a small 
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proportion of the familial risk of many cancers. Many GWAS have long tails of low OR associations, 

suggesting that larger studies should identify many more new susceptibility loci. Although rare 

recurrent disease-causing variants may not make a substantial contribution to the heritable risk of 

cancer, this class of risk variants have probably been under-discovered. Hence subjecting GWAS 

datasets to imputation using recently developed reference panels to recover sub-polymorphic risk 

alleles (i.e. risk allele frequency <1%) is likely to be a profitable avenue of research. 

 

The loci identified through GWAS have greatly expanded the existing repertoire of genes that 

influence cancer risk. Determining the functional consequences of GWAS data is however likely to 

continue to be challenging, but is required to fully exploit GWAS in order to gain a greater 

understanding of cancer biology and suggest potential targets for therapeutic and preventive 

strategies. Advances in model systems and strategies such as saturating mutagenesis of risk loci 

using CRISPR/Cas9 is likely to facilitate such analyses189,190. 
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BOXES 
 

Box 1: Genome-wide significance threshold 
 

While historically other thresholds have been proposed40,191, the commonly accepted threshold 

for genome-wide significance is P<5x10-8, i.e. a Bonferroni correction at the 5% significance level 

for 1,000,000 independent tests. The first published mention of this  was  through  simulation 

studies by Risch and Merikangas in 1996192, assuming 100,000 genes with five bi-allelic SNPs per 

gene, testing for each allele independently. This has proven remarkably close to empirical 

estimates such as 150 per 500 Kb from the International HapMap Consortium in 2005, which leads 

to a two-sided significance threshold of 5.5x10-8 when extending to the whole genome33. 

More recently this threshold has remained in place for sequencing studies or those making use of 

whole-genome imputation of >10 million common variants, under the assumption that LD 

between SNPs approximates to ~1 million independent tests. 

Box 2: The principles of Mendelian randomization 
 

In observational studies, establishing a causal relationship between two associated variables may 

not always be possible. Furthermore, unmeasured factors (confounders) may influence both 

variables and thus explain the observed association. Mendelian randomization (MR) is a technique 

aimed at unbiased assessment of causal effects and estimation of their magnitude. 

MR uses genetic markers known to be associated with a potential risk factor in the assessment of 

its effect on another trait or disease193. These markers, termed instrumental variables (IVs), rely on 

a number of assumptions, namely that the IVs are solely associated with the trait or disease (i.e. 

absence of pleiotropy), and that the IVs are independent of confounders. This methodology can 

allow for causality to be assessed without the influence of confounding factors. 

With the development of large genomic datasets and establishment of robust IVs in the form of 

genetic risk variants, MR offers the ability to identify non-genetic risk  factors194, 

chemopreventative agents180  and perform safety analysis of therapies195. 
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FIGURE LEGENDS 
 

 
Figure 1: Genetic architecture of cancer risk. This graph depicts the low relative risks (RRs) 

associated with common, low-penetrance genetic variants, such as single-nucleotide 

polymorphisms identified in genome-wide association studies; moderate RRs associated with 

uncommon, moderate-penetrance genetic variants such as ATM and CHEK2; and a higher RR 

associated with rare, high-penetrance genetic variants, such as pathogenic  mutations in  BRCA1 

and BRCA2 associated with hereditary breast and ovarian cancer. 
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Figure 2: GWAS design. DNA from patients and controls are genotyped using commercially 

available genome platforms that assess for common genetic variations in the form of single 

nucleotide polymorphisms (SNPs) across the entire human genome. Data are reviewed to ensure 

appropriate genotyping quality. Genome  imputation allows  for recovery  of  untyped SNPs. 

Association test statistics are generated to identify genetic risk loci. Where more than one dataset 

is available, a meta-analysis is conducted to increase study power. Replication in appropriate study 

populations may also be performed to validate associations. 
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Figure 3: Regulatory interactions at the pleiotropic 8q24.21 risk locus. Plotted region is 

chr8:127,000,000-130,700,000 (build 37). (a) Looping interactions overlapping cancer association 

signals; (b) Relative location of cancer GWAS signals (Supplementary Table 1); (c) Epigenetic marks 

– peaks represent histone modifications and indicate DNA with the potential for influencing gene 

expression of neighbouring genes and through looping interactions, distant genes; (d) Refseq gene 

annotation (build 37). Abbreviations: PrC, prostate cancer; MM, multiple myeloma; CLL, chronic 

lymphocytic leukaemia; BrC, breast cancer; CRC, colorectal cancer; BlC, bladder cancer; FL, 

follicular lymphoma; HL, Hodgkin lymphoma; DLBCL, diffuse large B-cell lymphoma;  EC, 

endometrial carcinoma; OC, ovarian cancer; PaC, pancreatic cancer. 
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Figure 4: Potential molecular mechanisms of GWAS risk SNPs. (a) The A>G polymorphism is 

affecting gene transcription through altering transcription factor (TF) binding through looping 

promoter-enhancer-complex interaction; (b) Affecting mRNA processing (e.g. splicing, poly- 

adenylation). The A>G polymorphism depicted occurs at an intron splice site and results in intron 

retention; (c) The A>G polymorphism leads to generation of a novel microRNA binding site on a 

lincRNA; (d) The A>G polymorphism affects the protein sequence by causing amino acid 

substitution of tyrosine to cytosine) 
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Figure 5: The clinical application of GWAS. Overview of different applications of cancer GWAS, as 

described in the review. As well as enhancing our knowledge of cancer biology, GWAS can inform 

on aetiological risk factors for cancer. Through risk modelling, data from GWAS can assist in 

identifying individuals at increased risk of developing cancer and therefore help prevent cancer 

and improve early detection  through screening. Genes and pathways identified through  GWAS 

may inform drug discovery and repositioning as well as guide clinicians and patients on cancer 

prognosis and treatment related complications. 
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Figure 6: Population distribution of polygenic risk score for CRC ordered by RR. Based on the 

known 37 risk SNPs. Vertical red lines (left to right) correspond to 1%, 10%, 50%, 90%, and 99% 

centile, respectively. Individuals within the top 10% of genetic risk have a 1.8-fold increased risk of 

CRC and those within the top 1% (i.e. 27–54 risk alleles) have a 2.9-fold increased risk of CRC when 

compared with the population median. 
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GLOSSARY 
 

Relative Risk (RR) – ratio of disease occurrence in one group versus another (e.g. cancer risk in 

patient relatives compared with the general population). The RR estimate associated with 

common risk alleles identified through GWAS is usually a per-allele RR (co-dominant log-additive 

genetic model). 

Mendelian predisposition – This occurs when germline mutation in a single gene (e.g. cancer 

susceptibility gene) is sufficient to cause cancer in a majority of patients (e.g. female carriers of 

BRCA1 mutations have ~80% lifetime risk of developing breast cancer). These mutations can be 

dominant or recessive, caused by mono-allelic and bi-allelic mutations respectively. 

Cancer Susceptibility Gene (CSG) – genes in which inherited  mutations  (commonly  high- 

penetrance) predispose to cancer. 

Penetrance – proportion of individuals carrying a particular allele (e.g. in a cancer susceptibility 

gene) that go on to develop cancer. High-penetrance mutations confer a  high  risk  of  causing 

cancer, whereas low-penetrance polymorphisms confer a small risk. 

Linkage Disequilibrium (LD) – non-random association of alleles at different sites in a given 

population. Alleles in high LD are those where their shared frequency combinations are greater 

than would be expected if they were inherited independently. LD can be affected by factors such 

as natural selection and genetic drift, as well as rates of mutation and recombination. 

Heritability – estimate of the proportion of variation in a trait in a given population that is due to 

genetic variation. In particular, narrow-sense heritability (h2) is the proportion of variance in a trait 

due to additive genetic factors, whereas broad-sense heritability (H2) is the proportion of variance 

in a trait due to all genetic factors (e.g. including dominance, gene-gene interactions). 
 

Genome-wide complex trait analysis (GCTA) - computational method by which the narrow-sense 

heritability of a trait can be estimated through case-control GWAS genotypes and estimates of 

trait incidence. 

Fine-mapping – process of refining GWAS association signals and prioritising likely causative 

variants e.g. through in silico annotations of putative functional effect. 

Hi-C analysis – a form of chromosome conformation capture, in which cross-linked DNA fragments 

are sequenced in order to infer the three-dimensional structure of the genome and identify 

potential regulatory interactions. 

Effect size – quantitative measurement statistic of the strength of an association between two 

variables e.g. SNP genotype and cancer risk. 

Risk allele frequency – frequency of risk allele (B) in a given population at a bi-allelic site with non- 

risk allele (A), derived from genotype counts through formula (2xBB+AB)/(2x(AA+AB+BB)) 
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Odds ratio – odds that an outcome will occur given a particular exposure  compared  to  the 

absence of that exposure e.g. comparing variant site allele frequency in cancer patients and 

controls. 

Population attributable risk – number of cases of disease among exposed individuals that can be 

attributed to that exposure (e.g. carriers of a particular risk SNP). 

Pleiotropy – occurs when a risk locus is associated with multiple phenotypic traits. In some cases 

the same variant is presumed to influence multiple traits, while in other cases different traits map 

to distinct locations within the risk locus. 



29 

Sud et al 
 

 

SELECTED REFERENCES 
 

[2] Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer--analyses of cohorts 

of twins from Sweden, Denmark, and Finland. N Engl J Med 343, 78-85 (2000). Landmark paper 

estimating heritability of common cancers from an analysis of 44,788 twins. 

 
[31] International HapMap Consortium. The International HapMap Project. Nature 426, 789-96 (2003). 

Insights from the HapMap genotyping project, demonstrating that patterns of LD between common 

variants can allow design of arrays of 200,000 – 1,000,000 “tag SNPs” to capture a large proportion of 

common SNPs (~10 million). 
 

[37] The 1000 Genomes Project Consortium. A map of human genome variation from population-scale 

sequencing. Nature 467, 1061-73 (2010). Initial findings from the 1000 genomes project, which 

characterised genetic variation in different populations after sequencing 1,092 individuals. 
 

[39] McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nature genetics 

48, 1279-1283, doi:10.1038/ng.3643 (2016). Demonstrating use of population reference haplotypes in 

imputation of GWAS arrays can allow genotype estimation at allele frequencies as low as 0.1%. 
 

[125] Thorgeirsson, T.E. et al. A variant associated with nicotine dependence, lung cancer and peripheral 

arterial disease. Nature 452, 638-42 (2008). GWAS of smoking quantity, describing gene-lifestyle 

interaction between variation at 15q24 and nicotine dependence, leading to indirect association with 

lung cancer risk. 
 

[40] Easton, D.F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. 

Nature 447, 1087-93 (2007). First breast cancer GWAS, describing the discovery of five risk loci. 
 

[153] Jager, R. et al. Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci. Nat 

Commun 6, 6178 (2015). Use of targeted capture approach to greatly enrich for Hi-C contacts within CRC 

risk regions, aiding functional interrogation of DNA regulatory interactions at the known risk loci. 
 

[141] Pomerantz, M.M. et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with 

MYC in colorectal cancer. Nat Genet 41, 882-4 (2009). One of first attempts to functionally 

characterise a cancer risk locus, demonstrating allele-specific differential binding of TCF7L2 to 

rs6983267, which encompasses an enhancer element that interacts with MYC. 

 
[160] Sur, I. K. et al. Mice lacking a Myc enhancer that includes human SNP rs6983267 are resistant to 

intestinal tumors. Science 338, 1360-1363, doi:10.1126/science.1228606 (2012). Genetic engineering in the 

mouse demonstrated an in vivo effect of a risk SNP in a regulatory element on tumour development. 
 

[109] Wang, Y. et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nature genetics 40, 

1407-1409, doi:10.1038/ng.273 (2008). First lung  cancer GWAS  to identify common genetic factors 

influencing lung cancer risk in smokers. 
 

[114] Tomlinson, I. et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for 

colorectal cancer at 8q24.21. Nature genetics 39, 984-988, doi:10.1038/ng2085 (2007). Paper 

reporting on the first GWAS of colorectal cancer, with discovery of rs6983267 at 8q24.21. 



30 

Sud et al 
 

 

REFERENCES 
 

 
1 Houlston, R. & Peto, J. Genetics and the common cancers. In: Genetic predisposition to cancer. eds 

Eeles, RA, Easton DF, Ponder BAJ, Eng, C. 2nd Edition 235-248 (2004). 

2 Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer--analyses of 

cohorts of twins from Sweden, Denmark, and Finland. The New England journal of medicine 343, 

78-85,  doi:10.1056/NEJM200007133430201  (2000). 

3 Wiemels, J. L. et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 354, 1499- 

1503 (1999). 

4 Peto, J. & Houlston, R. S. Genetics and the common cancers. European journal of cancer 37 Suppl 8, 

S88-96 (2001). 

5 Anderson, D. E. Genetic study of breast cancer: identification of a high risk group. Cancer 34, 1090- 

1097 (1974). 

6 Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. 

Science 266, 66-71, doi:10.1126/science.7545954 (1994). 

7 Wooster, R. et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12- 

13. Science 265, 2088-2090 (1994). 

8 Hall, J. M. et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250, 

1684-1689 (1990). 

9 Peltomaki, P. et al. Genetic mapping of a locus predisposing to human colorectal cancer. Science 

260, 810-812 (1993). 

10 Lindblom, A., Tannergard, P., Werelius, B. & Nordenskjold, M. Genetic mapping of a second locus 

predisposing to  hereditary non-polyposis colon  cancer. Nature  genetics 5, 279-282, 

doi:10.1038/ng1193-279  (1993). 

11 Kinzler, K. W. et al. Identification of FAP locus genes from chromosome 5q21. Science 253, 661-665 

(1991). 

12 Fishel, R. et al. The human mutator gene homolog MSH2 and its association with hereditary 

nonpolyposis colon cancer. Cell 75, 1027-1038 (1993). 

13 Leach, F. S. et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 

75,  1215-1225,  doi:http://dx.doi.org/10.1016/0092-8674(93)90330-S  (1993). 

14 Cannon-Albright, L. A. et al. Assignment of a locus for familial melanoma, MLM, to chromosome 

9p13-p22. Science 258, 1148-1152 (1992). 

15 Hussussian, C. J. et al. Germline p16 mutations in familial melanoma. Nature genetics 8, 15-21, 

doi:10.1038/ng0994-15  (1994). 

16 Ballinger, M. L. et al. Monogenic and polygenic determinants of sarcoma risk: an international 

genetic study. The Lancet. Oncology 17, 1261-1271, doi:10.1016/S1470-2045(16)30147-4 (2016). 

17 Aaltonen, L., Johns, L., Jarvinen, H., Mecklin, J. P. & Houlston, R. Explaining the familial colorectal 

cancer risk associated with mismatch repair (MMR)-deficient and MMR-stable tumors. Clinical 

cancer research : an official journal of the American Association for Cancer Research 13, 356-361, 

doi:10.1158/1078-0432.CCR-06-1256   (2007). 

18 Peto, J. et al. Prevalence of BRCA1 and BRCA2 gene mutations in patients with early-onset breast 

cancer. Journal of the National Cancer Institute 91, 943-949 (1999). 

19 Chubb, D. et al. Rare disruptive mutations and their contribution to the heritable risk of colorectal 

cancer. Nat Commun 7, 11883, doi:10.1038/ncomms11883 (2016). 

20 Anglian Breast Cancer Study Group. Prevalence and penetrance of BRCA1 and BRCA2 mutations in a 

population-based series of breast cancer cases. Br J Cancer 83, 1301-1308, 

doi:10.1054/bjoc.2000.1407  (2000). 

21 Lubbe, S. J., Webb, E. L., Chandler, I. P. & Houlston, R. S. Implications of familial colorectal cancer 

risk profiles and microsatellite instability status. Journal of clinical oncology : official journal of the 

American Society of Clinical Oncology 27, 2238-2244, doi:10.1200/JCO.2008.20.3364 (2009). 

http://dx.doi.org/10.1016/0092-8674(93)90330-S


31 

 

 

Sud et al 

22 Palles, C. et  al. Germline mutations affecting the proofreading domains of POLE and POLD1 

predispose to colorectal adenomas and carcinomas. Nature genetics 45, 136-144, 

doi:10.1038/ng.2503  (2013). 

23 Weren, R. D. et al. A germline homozygous mutation in the base-excision repair gene NTHL1 causes 

adenomatous polyposis and colorectal cancer. Nature genetics 47, 668-671, doi:10.1038/ng.3287 

(2015). 

24 Swift, M., Reitnauer, P. J., Morrell, D. & Chase, C. L. Breast and other cancers in families with ataxia- 

telangiectasia. The New England journal of medicine 316, 1289-1294, 

doi:10.1056/NEJM198705213162101   (1987). 

25 Renwick, A. et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility 

alleles. Nature genetics 38, 873-875, doi:10.1038/ng1837 (2006). 

26 Meijers-Heijboer, H. et al. Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC 

in noncarriers of BRCA1 or BRCA2 mutations. Nature genetics 31, 55-59, doi:10.1038/ng879 (2002). 

27 Rahman, N. et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer 

susceptibility gene. Nature genetics 39, 165-167, doi:10.1038/ng1959 (2007). 

28 Erkko, H. et al. A recurrent mutation in PALB2 in Finnish cancer families. Nature 446, 316-319, 

doi:10.1038/nature05609  (2007). 

29 Venter, J. C. et al. The sequence of the human genome. Science 291, 1304-1351, 

doi:10.1126/science.1058040  (2001). 

30 Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860-921, 

doi:10.1038/35057062  (2001). 

31 International HapMap Consortium. The International HapMap Project. Nature 426, 789-796, 

doi:10.1038/nature02168  (2003). 

32 Daly, M. J., Rioux, J. D., Schaffner, S. F., Hudson, T. J. & Lander, E. S. High-resolution haplotype 

structure in the human genome. Nature genetics 29, 229-232, doi:10.1038/ng1001-229 (2001). 

33 International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299- 

1320,  doi:10.1038/nature04226  (2005). 

34 Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide 

association studies. Nature genetics 38, 904-909, doi:10.1038/ng1847 (2006). 

35 Ioannidis, J. P., Ntzani, E. E., Trikalinos, T. A. & Contopoulos-Ioannidis, D. G. Replication validity of 

genetic association studies. Nature genetics 29, 306-309, doi:10.1038/ng749 (2001). 

36 Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S. & Hirschhorn, J. N. Meta-analysis of genetic 

association studies supports a contribution  of common variants  to susceptibility to common 

disease. Nature genetics 33, 177-182, doi:10.1038/ng1071 (2003). 

37 The 1000 Genomes Project Consortium. A map of human genome variation from population-scale 

sequencing. Nature 467, 1061-1073, doi:10.1038/nature09534 (2010). 

38 Huang, J. et al. Improved imputation of low-frequency and rare variants using the UK10K haplotype 

reference panel. Nat Commun 6, 8111, doi:10.1038/ncomms9111 (2015). 

39 McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nature 

genetics 48, 1279-1283, doi:10.1038/ng.3643 (2016). 

40 Easton, D. F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. 

Nature 447, 1087-1093, doi:10.1038/nature05887 (2007). 

41 Michailidou, K. et al. Genome-wide association analysis of more than 120,000 individuals identifies 

15 new susceptibility loci for breast cancer. Nat Genet 47, 373-380, doi:10.1038/ng.3242 (2015). 

42 Michailidou, K. et al. Large-scale genotyping identifies 41 new loci associated with breast cancer 

risk. Nature genetics 45, 353-361, 361e351-352, doi:10.1038/ng.2563 (2013). 

43 Amundadottir, L. T. et al. A common variant associated with prostate cancer in European and 

African populations. Nature genetics 38, 652-658, doi:10.1038/ng1808 (2006). 

44 Eeles, R. A. et al. Multiple newly identified loci associated with prostate cancer susceptibility. 

Nature genetics 40, 316-321, doi:10.1038/ng.90 (2008). 

45 Al Olama, A. A. et al. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for 

prostate cancer. Nat Genet 46, 1103-1109, doi:10.1038/ng.3094 (2014). 



27 

 

 

Sud et al 

46 Amos, C. I. et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung 

cancer at 15q25.1. Nature genetics 40, 616-622, doi:10.1038/ng.109 (2008). 

47 Wang, Y. et al. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nature 

genetics 46, 736-741, doi:10.1038/ng.3002 (2014). 

48 Wang, Y., Broderick, P., Matakidou, A., Eisen, T. & Houlston, R. S. Chromosome 15q25 (CHRNA3- 

CHRNA5) variation impacts indirectly on lung cancer risk. PLoS One 6, e19085, 

doi:10.1371/journal.pone.0019085   (2011). 

49 McKay, J. D. et al. Large-scale association analysis identifies new lung cancer susceptibility loci and 

heterogeneity in genetic susceptibility across histological subtypes. Nature genetics 49, 1126-1132, 

doi:10.1038/ng.3892  (2017). 

50 Dunlop, M. G. et al. Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal 

cancer risk. Nature genetics 44, 770-776, doi:10.1038/ng.2293 (2012). 

51 Houlston, R. S. et al. Meta-analysis of three genome-wide association studies identifies 

susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nature genetics 

42, 973-977, doi:10.1038/ng.670 (2010). 

52 Jaeger, E. et al. Common genetic variants at the CRAC1 (HMPS) locus on chromosome 15q13.3 

influence colorectal cancer risk. Nature genetics 40, 26-28, doi:10.1038/ng.2007.41 (2008). 

53 Study, C. et al. Meta-analysis of genome-wide association data identifies four new susceptibility loci 

for colorectal cancer. Nature genetics 40, 1426-1435, doi:10.1038/ng.262 (2008). 

54 Tomlinson, I. P. et al. A genome-wide association study identifies colorectal cancer susceptibility 

loci on chromosomes 10p14 and 8q23.3. Nature genetics 40, 623-630, doi:10.1038/ng.111 (2008). 

55 Schumacher, F. R. et al. Genome-wide association study of colorectal cancer identifies six new 

susceptibility loci. Nature communications 6, 7138, doi:10.1038/ncomms8138 (2015). 

56 Orlando, G. et al. Variation at 2q35 (PNKD and TMBIM1) influences colorectal cancer risk and 

identifies a pleiotropic effect with inflammatory bowel disease. Human molecular genetics 25, 

2349-2359,  doi:10.1093/hmg/ddw087  (2016). 

57 Amundadottir, L. et al. Genome-wide association study identifies variants in the ABO locus 

associated with susceptibility to pancreatic cancer. Nature genetics 41, 986-990, 

doi:10.1038/ng.429  (2009). 

58 Petersen, G. M. et al. A genome-wide association study identifies pancreatic cancer susceptibility 

loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nature genetics 42, 224-228, 

doi:10.1038/ng.522  (2010). 

59 Childs, E. J. et al. Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with 

susceptibility to pancreatic cancer. Nature genetics 47, 911-916, doi:10.1038/ng.3341 (2015). 

60 Wolpin, B. M. et  al. Genome-wide association study identifies multiple susceptibility loci for 

pancreatic cancer. Nature genetics 46, 994-1000, doi:10.1038/ng.3052 (2014). 

61 Abnet, C. C. et al. A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and 

esophageal squamous cell carcinoma. Nature genetics 42, 764-767, doi:10.1038/ng.649 (2010). 

62 Helgason, H. et al. Loss-of-function variants in ATM confer risk of gastric cancer. Nature genetics 47, 

906-910, doi:10.1038/ng.3342 (2015). 

63 Purdue, M. P. et al. Genome-wide association study of renal cell carcinoma identifies two 

susceptibility loci on 2p21 and 11q13.3. Nature genetics 43, 60-65, doi:10.1038/ng.723 (2011). 

64 Gudmundsson, J. et al. A common variant at 8q24.21 is associated with renal cell cancer. Nature 

communications 4, 2776, doi:10.1038/ncomms3776 (2013). 

65 Scelo, G. et al. Genome-wide association study identifies multiple risk loci for renal cell carcinoma. 

Nature communications 8, 15724, doi:10.1038/ncomms15724 (2017). 

66 Kiemeney, L. A. et al. Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. 

Nature genetics 40, 1307-1312, doi:10.1038/ng.229 (2008). 

67 Rothman, N. et al. A multi-stage genome-wide association study of bladder cancer identifies 

multiple susceptibility loci. Nature genetics 42, 978-984, doi:10.1038/ng.687 (2010). 

68 Reich, D. E. et al. Linkage disequilibrium in the human genome. Nature 411, 199-204, 

doi:10.1038/35075590  (2001). 



28 

 

 

Sud et al 

69 Bishop, D. T. et al. Genome-wide association study identifies three loci associated with melanoma 

risk. Nature genetics 41, 920-925, doi:10.1038/ng.411 (2009). 

70 Law, M. H. et al. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous 

malignant melanoma. Nature genetics 47, 987-995, doi:10.1038/ng.3373 (2015). 

71 Barrett, J. H. et al. Genome-wide association study identifies three new melanoma susceptibility 

loci. Nature genetics 43, 1108-1113, doi:10.1038/ng.959 (2011). 

72 Song, H. et al. A genome-wide association study identifies a new ovarian cancer susceptibility locus 

on 9p22.2. Nature genetics 41, 996-1000, doi:10.1038/ng.424 (2009). 

73 Kuchenbaecker, K. B. et al. Identification of six new susceptibility loci for invasive epithelial ovarian 

cancer. Nature genetics 47, 164-171, doi:10.1038/ng.3185 (2015). 

74 Pharoah, P. D. et al. GWAS meta-analysis and replication identifies three new susceptibility loci for 

ovarian cancer. Nature genetics 45, 362-370, 370e361-362, doi:10.1038/ng.2564 (2013). 

75 Goode, E. L. et al. A genome-wide association study identifies susceptibility loci for ovarian cancer 

at 2q31 and 8q24. Nature genetics 42, 874-879, doi:10.1038/ng.668 (2010). 

76 Gudbjartsson, D. F. et al. ASIP and TYR pigmentation variants associate with cutaneous melanoma 

and basal cell carcinoma. Nature genetics 40, 886-891, doi:10.1038/ng.161 (2008). 

77 Chahal, H. S. et al. Genome-wide association study identifies 14 novel risk alleles associated with 

basal cell carcinoma. Nature communications 7, 12510, doi:10.1038/ncomms12510 (2016). 

78 Stacey, S. N. et al. New common variants affecting susceptibility to basal cell carcinoma. Nature 

genetics 41, 909-914, doi:http://www.nature.com/ng/journal/v41/n8/suppinfo/ng.412_S1.html 

(2009). 

79 Stacey, S. N. et al. New basal cell carcinoma susceptibility loci. Nature communications 6, 6825, 

doi:10.1038/ncomms7825  (2015). 

80 Kinnersley, B. et al. Genome-wide association study identifies multiple susceptibility loci for glioma. 

Nat Commun 6, 8559, doi:10.1038/ncomms9559 (2015). 

81 Shete, S. et al. Genome-wide association study identifies five susceptibility loci for glioma. Nature 

genetics 41, 899-904, doi:10.1038/ng.407 (2009). 

82 Melin, B. S. et al. Genome-wide association study of glioma subtypes identifies specific differences 

in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nature genetics, 

doi:10.1038/ng.3823  (2017). 

83 Dobbins, S. E. et al. Common variation at 10p12.31 near MLLT10 influences meningioma risk. 

Nature genetics 43, 825-827, doi:10.1038/ng.879 (2011). 

84 Litchfield, K. et al. Identification of 19 new risk loci and potential regulatory mechanisms influencing 

susceptibility to testicular germ cell tumor. Nature genetics 49, 1133-1140, doi:10.1038/ng.3896 
 

http://www.nature.com/ng/journal/v49/n7/abs/ng.3896.html#supplementary-information      (2017). 

85 Litchfield, K. et al. Identification of four new susceptibility loci for testicular germ cell tumour. 

Nature communications 6, 8690, doi:10.1038/ncomms9690 (2015). 

86 Wang, Z. et al. Meta-analysis of five genome-wide association studies identifies multiple new loci 

associated with testicular germ cell tumor. Nature genetics 49, 1141-1147, doi:10.1038/ng.3879 

(2017). 

87 Gudmundsson, J. et al. A genome-wide association study yields five novel thyroid cancer risk loci. 

Nature communications 8, 14517, doi:10.1038/ncomms14517 (2017). 

88 Papaemmanuil, E. et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood 

acute lymphoblastic leukemia. Nature genetics 41, 1006-1010, doi:10.1038/ng.430 (2009). 

89 Vijayakrishnan, J. et al. A genome-wide association study identifies risk loci for childhood acute 

lymphoblastic leukemia at 10q26.13 and 12q23.1. Leukemia 31, 573-579, doi:10.1038/leu.2016.271 

(2017). 

90 Vijayakrishnan, J. et al. The 9p21.3 risk of childhood acute lymphoblastic leukaemia is explained by 

a rare high-impact variant in CDKN2A. Sci Rep 5, 15065, doi:10.1038/srep15065 (2015). 

91 Migliorini, G. et al. Variation at 10p12.2 and 10p14 influences risk of childhood B-cell acute 

lymphoblastic leukemia and phenotype. Blood 122, 3298-3307, doi:10.1182/blood-2013-03-491316 

(2013). 

http://www.nature.com/ng/journal/v41/n8/suppinfo/ng.412_S1.html
http://www.nature.com/ng/journal/v49/n7/abs/ng.3896.html#supplementary-information


29 

 

 

Sud et al 

92 Law, P. J. et al. Genome-wide association analysis implicates dysregulation of immunity genes in 

chronic lymphocytic leukaemia. Nature communications 8, 14175, doi:10.1038/ncomms14175 

(2017). 

93 Crowther-Swanepoel, D. et al. Common variants at 2q37.3, 8q24.21, 15q21.3 and 16q24.1 influence 

chronic lymphocytic leukemia risk. Nat Genet 42, 132-136, doi:10.1038/ng.510 (2010). 

94 Di Bernardo, M. C. et al. A genome-wide association study identifies six susceptibility loci for 

chronic lymphocytic leukemia. Nature genetics 40, 1204-1210, doi:10.1038/ng.219 (2008). 

95 Broderick, P. et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. 

Nature genetics 44, 58-61, doi:10.1038/ng.993 (2011). 

96 Chubb, D. et al. Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple 

myeloma risk. Nature genetics 45, 1221-1225, doi:10.1038/ng.2733 (2013). 

97 Weinhold, N. et al. The CCND1 c.870G>A polymorphism is a risk factor for t(11;14)(q13;q32) 

multiple myeloma. Nature genetics 45, 522-525, doi:10.1038/ng.2583 (2013). 

98 Mitchell, J. S. et al. Genome-wide association study identifies multiple susceptibility loci for 

multiple myeloma. Nature communications 7, 12050, doi:10.1038/ncomms12050 (2016). 

99 Enciso-Mora, V. et al. A genome-wide association study of Hodgkin's lymphoma identifies new 

susceptibility loci at 2p16.1 (REL), 8q24.21 and 10p14 (GATA3). Nature genetics 42, 1126-1130, 

doi:10.1038/ng.696  (2010). 

100 Frampton, M. et al. Variation at 3p24.1 and 6q23.3 influences the risk of Hodgkin's lymphoma. 
Nature communications 4, 2549, doi:10.1038/ncomms3549 (2013). 

101 Cozen, W. et al. A meta-analysis of Hodgkin lymphoma reveals 19p13.3 TCF3 as a novel 

susceptibility locus. Nature communications 5, 3856, doi:10.1038/ncomms4856 (2014). 

102 Skibola, C. F. et al. Genome-wide association study identifies five susceptibility loci for follicular 

lymphoma outside the HLA region. Am J Hum Genet 95, 462-471, doi:10.1016/j.ajhg.2014.09.004 

(2014). 

103 Cerhan, J. R. et al. Genome-wide association study identifies multiple susceptibility loci for diffuse 

large B cell lymphoma. Nature genetics 46, 1233-1238, doi:10.1038/ng.3105 (2014). 

104 Turnbull, C. et al. A genome-wide association study identifies susceptibility loci for Wilms tumor. 

Nature genetics 44, 681-684, doi:10.1038/ng.2251 (2012). 

105 Diskin, S. J. et al. Copy number variation at 1q21.1 associated with neuroblastoma. Nature 459, 

987-991,  doi:10.1038/nature08035  (2009). 

106 Goldin, L. R., Pfeiffer, R. M., Li, X. & Hemminki, K. Familial risk of lymphoproliferative tumors in 

families of patients with chronic lymphocytic leukemia: results from the Swedish Family-Cancer 

Database. Blood 104, 1850-1854, doi:10.1182/blood-2004-01-0341 (2004). 

107 Codd, V. et al. Identification of seven loci affecting mean telomere length and their association with 

disease. Nature genetics 45, 422-427, doi:10.1038/ng.2528 (2013). 

108 Rafnar, T. et al. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. 

Nature genetics 41, 221-227, doi:10.1038/ng.296 (2009). 

109 Wang, Y. et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nature genetics 

40, 1407-1409, doi:10.1038/ng.273 (2008). 

110 Sherborne, A. L. et al. Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic 

leukemia risk. Nature genetics 42, 492-494, doi:10.1038/ng.585 (2010). 

111 Timofeeva, M. N. et al. Influence of common genetic variation on lung cancer risk: meta-analysis of 

14 900 cases and 29 485 controls. Human molecular genetics 21, 4980-4995, 

doi:10.1093/hmg/dds334  (2012). 

112 Falchi, M., Spector, T. D., Perks, U., Kato, B. S. & Bataille, V. Genome-wide search for nevus density 

shows linkage to two melanoma loci on chromosome 9 and identifies a new QTL on 5q31 in an 

adult twin cohort. Human molecular genetics 15, 2975-2979, doi:10.1093/hmg/ddl227 (2006). 

113 Yeager, M. et al. Genome-wide association study of prostate cancer identifies a second risk locus at 

8q24. Nature genetics 39, 645-649, 

doi:http://www.nature.com/ng/journal/v39/n5/suppinfo/ng2022_S1.html     (2007). 

114 Tomlinson, I. et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for 

colorectal cancer at 8q24.21. Nature genetics 39, 984-988, doi:10.1038/ng2085 (2007). 

http://www.nature.com/ng/journal/v39/n5/suppinfo/ng2022_S1.html


30 

 

 

Sud et al 

115 Nan, H. et al. Genome-wide  association study identifies novel  alleles associated with risk of 

cutaneous basal cell carcinoma and squamous cell carcinoma. Human molecular genetics 20, 3718- 

3724,  doi:10.1093/hmg/ddr287  (2011). 

116 Chahal, H. S. et al. Genome-wide association study identifies novel susceptibility loci for cutaneous 

squamous cell carcinoma. Nat Commun 7, 12048, doi:10.1038/ncomms12048 (2016). 

117 Antoniou, A. C. et al. A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers 

and is associated with hormone receptor-negative breast cancer in the general population. Nature 

genetics 42, 885-892, doi:10.1038/ng.669 (2010). 

118 Studd, J. B. et al. Genetic and regulatory mechanism of susceptibility to high-hyperdiploid acute 

lymphoblastic leukaemia at 10p21.2. Nature communications 8, 14616, doi:10.1038/ncomms14616 

(2017). 

119 Law, P. J. et al. Genome-wide association analysis of chronic lymphocytic leukaemia, Hodgkin 

lymphoma and multiple myeloma identifies pleiotropic risk loci. Sci Rep 7, 41071, 

doi:10.1038/srep41071  (2017). 

120 Speedy, H. E. et al. A genome-wide association study identifies multiple susceptibility loci for 

chronic lymphocytic leukemia. Nature genetics 46, 56-60, doi:10.1038/ng.2843 (2014). 

121 Rapley, E. A. et al. A genome-wide association study of testicular germ cell tumor. Nature genetics 

41, 807-810, doi:10.1038/ng.394 (2009). 

122 Kanetsky, P. A. et al. Common variation in KITLG and at 5q31.3 predisposes to testicular germ cell 

cancer. Nature genetics 41, 811-815, doi:10.1038/ng.393 (2009). 

123 Turnbull, C. et al. Variants near DMRT1, TERT and ATF7IP are associated with testicular germ cell 

cancer. Nature genetics 42, 604-607, doi:10.1038/ng.607 (2010). 

124 Ruark, E. et al. Identification of nine new susceptibility loci for testicular cancer, including variants 

near DAZL and PRDM14. Nature genetics 45, 686-689, doi:10.1038/ng.2635 (2013). 

125 Thorgeirsson, T. E. et al. A variant associated with nicotine dependence, lung cancer and peripheral 

arterial disease. Nature 452, 638-642, doi:10.1038/nature06846 (2008). 

126 Freathy, R. M. et al. A common genetic variant in the 15q24 nicotinic acetylcholine receptor gene 

cluster (CHRNA5-CHRNA3-CHRNB4) is associated with a reduced ability of women to quit smoking 

in pregnancy. Human molecular genetics 18, 2922-2927, doi:10.1093/hmg/ddp216 (2009). 

127 Garcia-Closas, M. et al. Common genetic polymorphisms modify the effect of smoking on absolute 

risk of bladder cancer. Cancer research 73, 2211-2220, doi:10.1158/0008-5472.CAN-12-2388 

(2013). 

128 Haiman, C. A. et al. Multiple regions within 8q24 independently affect risk for prostate cancer. 
Nature genetics 39, 638-644, doi:10.1038/ng2015 (2007). 

129 Woodage, T. et al. The APC I1307K allele and cancer risk in a community-based study of Ashkenazi 

Jews. Nature genetics 20, 62-65 (1998). 

130 Bush, W. S. & Moore, J. H. Chapter 11: Genome-wide association studies. PLoS Comput Biol 8, 

e1002822,  doi:10.1371/journal.pcbi.1002822  (2012). 

131 Kilpivaara, O. et al. A germline JAK2 SNP is associated with predisposition to the development of 

JAK2(V617F)-positive myeloproliferative neoplasms. Nature genetics 41, 455-459, 

doi:10.1038/ng.342  (2009). 

132 Enciso-Mora, V. et al. Deciphering the 8q24.21 association for glioma. Human molecular genetics 

22, 2293-2302, doi:10.1093/hmg/ddt063 (2013). 

133 Malmer, B. et al. GLIOGENE an International Consortium to Understand Familial Glioma. Cancer 

epidemiology, biomarkers & prevention : a publication of the American Association for Cancer 

Research, cosponsored by the American Society of Preventive Oncology 16, 1730-1734, 

doi:10.1158/1055-9965.EPI-07-0081   (2007). 

134 Hemminki, K., Sundquist, J. & Bermejo, J. L. Associated cancers in parents and offspring of 

polycythaemia vera and myelofibrosis patients. British journal of haematology 147, 526-530, 

doi:10.1111/j.1365-2141.2009.07874.x   (2009). 

135 Litchfield, K. et al. Rare disruptive mutations in ciliary function genes contribute to testicular cancer 

susceptibility. Nat Commun 7, 13840, doi:10.1038/ncomms13840 (2016). 



31 

 

 

Sud et al 

136 Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nature 

genetics 42, 565-569, doi:10.1038/ng.608 (2010). 

137 Sampson, J. N. et al. Analysis of Heritability and Shared Heritability Based on Genome-Wide 

Association Studies for 13 Cancer Types. JNCI: Journal of the National Cancer Institute 107, djv279- 

djv279,  doi:10.1093/jnci/djv279  (2015). 

138 Frampton, M. J. et al. Implications of polygenic risk for personalised colorectal cancer screening. 

Annals of oncology : official journal of the European Society for Medical Oncology 27, 429-434, 

doi:10.1093/annonc/mdv540   (2016). 

139 Speed, D. et al. Reevaluation of SNP heritability in complex human traits. Nature genetics 49, 986- 

992, doi:10.1038/ng.3865 (2017). 

140 Sham, P. C. & Purcell, S. M. Statistical power and significance testing in large-scale genetic studies. 
Nat Rev Genet 15, 335-346, doi:10.1038/nrg3706 (2014). 

141 Pomerantz, M. M. et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with 

MYC in colorectal cancer. Nature genetics 41, 882-884, doi:10.1038/ng.403 (2009). 

142 Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for 

the next generation of genome-wide association studies. PLoS genetics 5, e1000529, 

doi:10.1371/journal.pgen.1000529   (2009). 

143 Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. G3 1, 

457-470,  doi:10.1534/g3.111.001198  (2011). 

144 Stacey, S. N. et al. A germline variant in the TP53 polyadenylation signal confers cancer 

susceptibility. Nature genetics 43, 1098-1103, doi:10.1038/ng.926 (2011). 

145 Enciso-Mora, V. et al. Low penetrance susceptibility to glioma is caused by the TP53 variant 

rs78378222. Br J Cancer 108, 2178-2185, doi:10.1038/bjc.2013.155 (2013). 

146 Killedar, A. et al. A Common Cancer Risk-Associated Allele in the hTERT Locus Encodes a Dominant 

Negative Inhibitor of Telomerase. PLoS genetics 11, e1005286, doi:10.1371/journal.pgen.1005286 

(2015). 

147 Mercer, T. R. et al. DNase I-hypersensitive exons colocalize with promoters and distal regulatory 

elements. Nature genetics 45, 852-859, doi:10.1038/ng.2677 (2013). 

148 Grundberg, E. et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. 

Nature genetics 44, 1084-1089, 

doi:http://www.nature.com/ng/journal/v44/n10/abs/ng.2394.html#supplementary-information 

(2012). 

149 Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene 

targets. Nature genetics 48, 481-487, doi:10.1038/ng.3538 (2016). 

150 Encode Project Consortium. An integrated encyclopedia of DNA elements in the human genome. 

Nature 489, 57-74, doi:10.1038/nature11247 (2012). 

151 Mifsud, B. et al. Mapping long-range promoter contacts in human cells with high-resolution capture 

Hi-C. Nature genetics 47, 598-606, doi:10.1038/ng.3286 (2015). 

152 Dryden, N. H. et al. Unbiased analysis of potential targets of breast cancer susceptibility loci by 

Capture Hi-C. Genome research 24, 1854-1868, doi:10.1101/gr.175034.114 (2014). 

153 Jager, R. et al. Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci. 

Nature communications 6, 6178, doi:10.1038/ncomms7178 (2015). 

154 Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin 

interactions. Nature 485, 376-380, doi:10.1038/nature11082 (2012). 

155 de Souza, N. The ENCODE project. Nat Methods 9, 1046 (2012). 

156 Roadmap Epigenomics, C. et al. Integrative analysis of 111 reference human epigenomes. Nature 

518, 317-330, 

doi:10.1038/nature14248http://www.nature.com/nature/journal/v518/n7539/abs/nature14248.ht  

ml#supplementary-information   (2015). 

157 Stunnenberg, H. G., International Human Epigenome, C. & Hirst, M. The International Human 

Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell 167, 1145-1149, 

doi:10.1016/j.cell.2016.11.007   (2016). 

http://www.nature.com/ng/journal/v44/n10/abs/ng.2394.html#supplementary-information
http://www.nature.com/nature/journal/v518/n7539/abs/nature14248.ht


32 

 

 

Sud et al 

158 Castro, M. A. et al. Regulators of genetic risk of breast cancer identified by integrative network 

analysis. Nature genetics 48, 12-21, doi:10.1038/ng.3458 (2016). 

159 Tuupanen, S. et al. The common colorectal cancer predisposition SNP rs6983267 at chromosome 

8q24 confers potential to enhanced Wnt signaling. Nature genetics 41, 885-890, 

doi:10.1038/ng.406  (2009). 

160 Sur, I. K. et al. Mice lacking a Myc enhancer that includes human SNP rs6983267 are resistant to 

intestinal tumors. Science 338, 1360-1363, doi:10.1126/science.1228606 (2012). 

161 Walsh, K. M. et al. A Heritable Missense Polymorphism in CDKN2A Confers Strong Risk of Childhood 

Acute Lymphoblastic Leukemia and Is Preferentially Selected during Clonal Evolution. Cancer 

research 75, 4884-4894, doi:10.1158/0008-5472.CAN-15-1105 (2015). 

162 Boyle, E. A., Li, Y. I. & Pritchard, J. K. An Expanded View of Complex Traits: From Polygenic to 

Omnigenic. Cell 169, 1177-1186, doi:10.1016/j.cell.2017.05.038 (2017). 

163 Lawrenson, K. et al. Cis-eQTL analysis and functional validation of candidate susceptibility genes for 

high-grade serous ovarian cancer. Nat Commun 6, 8234, doi:10.1038/ncomms9234 (2015). 

164 Glodzik, D. et al. A somatic-mutational process recurrently duplicates germline susceptibility loci 

and tissue-specific super-enhancers  in breast cancers. Nature genetics 49, 341-348, 

doi:10.1038/ng.3771  (2017). 

165 Ongen, H. et al. Putative cis-regulatory drivers in colorectal cancer. Nature 512, 87-90, 

doi:10.1038/nature13602  (2014). 

166 Li, Q. et al. Integrative eQTL-Based Analyses Reveal the Biology of Breast Cancer Risk Loci. Cell 152, 

633-641 (2013). 

167 Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nature 

genetics 47, 856-860, doi:10.1038/ng.3314 (2015). 

168 Zhang, J. et al. Use of Genome-Wide Association Studies for Cancer Research and Drug 

Repositioning. PLoS ONE 10, e0116477, doi:10.1371/journal.pone.0116477 (2015). 

169 Sanseau, P. et al. Use of genome-wide association studies for drug repositioning. Nat Biotech 30, 

317-320,  doi:10.1038/nbt.2151 
 

http://www.nature.com/nbt/journal/v30/n4/abs/nbt.2151.html#supplementary-information      (2012). 

170 Griffiths , C. E. M. et al. Comparison of Ustekinumab and Etanercept for Moderate-to-Severe 

Psoriasis. New England Journal of Medicine 362, 118-128, doi:10.1056/NEJMoa0810652 (2010). 

171 Nair, R. P. et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB 

pathways. Nature genetics 41, 199-204, doi:10.1038/ng.311 (2009). 

172 Di Meglio, P. et al. The IL23R R381Q Gene Variant Protects against Immune-Mediated Diseases by 

Impairing IL-23-Induced  Th17 Effector Response in Humans. PLOS ONE 6, e17160, 

doi:10.1371/journal.pone.0017160   (2011). 

173 Roberts, A. W. et al. Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia. 
New England Journal of Medicine 374, 311-322, doi:10.1056/NEJMoa1513257 (2016). 

174 Babina, I. S. & Turner, N. C. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev 

Cancer,  doi:10.1038/nrc.2017.8  (2017). 

175 Pujana, M. A. Integrating germline and somatic data towards a personalized cancer medicine. 

Trends in Molecular Medicine 20, 413-415, doi:10.1016/j.molmed.2014.05.004 (2014). 

176 Pashayan, N. et al. Polygenic susceptibility to prostate and breast cancer: implications for 

personalised screening. Br J Cancer 104, 1656-1663, doi:10.1038/bjc.2011.118 (2011). 

177 Seibert, T. M. et al. A genetic risk score to guide age-specific, personalized prostate cancer 

screening. bioRxiv, doi:10.1101/089383 (2016). 

178 Lecarpentier, J. et al. Prediction of Breast and Prostate Cancer Risks in Male BRCA1 and BRCA2 

Mutation Carriers Using Polygenic Risk Scores. Journal of Clinical Oncology 0, JCO.2016.2069.4935, 

doi:10.1200/jco.2016.69.4935   (2017). 

179 Kuchenbaecker, K. B. et al. Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk 

Prediction in BRCA1 and BRCA2 Mutation Carriers. Journal of the National Cancer Institute 109, 

doi:10.1093/jnci/djw302  (2017). 

180 Rodriguez-Broadbent, H. et al. Mendelian randomisation implicates hyperlipidaemia as a risk factor 

for colorectal cancer. Int J Cancer, doi:10.1002/ijc.30709 (2017). 

http://www.nature.com/nbt/journal/v30/n4/abs/nbt.2151.html#supplementary-information


33 

 

 

Sud et al 

181 Hedditch, E. L. et al. ABCA Transporter Gene Expression and Poor Outcome in Epithelial Ovarian 

Cancer. JNCI: Journal of the National Cancer Institute 106, dju149-dju149, doi:10.1093/jnci/dju149 

(2014). 

182 Perez-Andreu, V. et al. Inherited GATA3 variants are associated with Ph-like childhood acute 

lymphoblastic leukemia and risk of relapse. Nature genetics 45, 1494-1498, doi:10.1038/ng.2803 

(2013). 

183 Wu, C. et al. Genome-wide association study identifies common variants in SLC39A6 associated 

with length of survival in esophageal squamous-cell carcinoma. Nature genetics 45, 632-638, 

doi:10.1038/ng.2638 
 

http://www.nature.com/ng/journal/v45/n6/abs/ng.2638.html#supplementary-information      (2013). 

184 Johnson, D. C. et al. Genome-wide association study identifies variation at 6q25.1 associated with 

survival in multiple myeloma. Nature communications 7, 10290, doi:10.1038/ncomms10290 
 

https://www.nature.com/articles/ncomms10290#supplementary-information     (2016). 

185 Berndt, S. I. et al. Two susceptibility loci identified for prostate cancer aggressiveness. Nature 

communications 6, 6889, doi:10.1038/ncomms7889 (2015). 

186 Johnson, N. et al. Cytochrome P450 allele CYP3A7*1C associates with adverse outcomes in chronic 

lymphocytic leukemia, breast and lung cancer. Cancer research 76, 1485-1493, doi:10.1158/0008- 

5472.CAN-15-1410  (2016). 

187 Aminkeng, F. et al. A coding variant in RARG confers susceptibility to anthracycline-induced 

cardiotoxicity in childhood cancer. Nature genetics 47, 1079-1084, doi:10.1038/ng.3374 (2015). 

188 Fachal, L. et al. A three-stage genome-wide association study identifies a susceptibility locus for late 

radiotherapy toxicity at 2q24.1. Nature genetics 46, 891-894, doi:10.1038/ng.3020 
 

http://www.nature.com/ng/journal/v46/n8/abs/ng.3020.html#supplementary-information      (2014). 

189 Canver, M. C. et al. Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies 

regulatory elements at trait-associated loci. Nature genetics, doi:10.1038/ng.3793 (2017). 

190 Canver, M. C. et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. 

Nature 527, 192-197, doi:10.1038/nature15521 (2015). 

191 Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven 

common diseases and 3,000  shared controls. Nature 447, 661-678, doi:10.1038/nature05911 

(2007). 

192 Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 

1516-1517 (1996). 

193 Davey Smith, G. & Ebrahim, S. ‘Mendelian randomization’: can genetic epidemiology contribute to 

understanding environmental determinants of disease?*. International Journal of Epidemiology 32, 

1-22, doi:10.1093/ije/dyg070 (2003). 

194 Jarvis, D. et al. Mendelian randomisation analysis strongly implicates adiposity with risk of 

developing colorectal cancer. British journal of cancer 115, 266-272, doi:10.1038/bjc.2016.188 

(2016). 

195 Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium et al. The 

interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian 

randomisation analysis. Lancet 379, 1214-1224, doi:10.1016/S0140-6736(12)60110-X (2012). 

http://www.nature.com/ng/journal/v45/n6/abs/ng.2638.html#supplementary-information
http://www.nature.com/articles/ncomms10290#supplementary-information
http://www.nature.com/ng/journal/v46/n8/abs/ng.3020.html#supplementary-information


34 

Sud et al 
 

 

Author Biographies 
 

 
Amit Sud 

Amit Sud is a clinical research fellow in the Molecular and Population Genetics team led by Dr. 

Richard Houlston at the Institute of Cancer Research, London, United Kingdom. He is interested in 

the epidemiology, genetic susceptibility and biology of Hodgkin lymphoma and other B-cell 

malignancies. 

 

Ben Kinnersley 

Ben Kinnersley is a postdoctoral researcher working in the  Molecular  and  Population  Genetics 

team led by Dr. Richard Houlston at the Institute of Cancer Research, London, United Kingdom. His 

primary research interest is genetic susceptibility to glioma, specifically utilising findings from 

genome-wide association studies to better understand the biology of glioma tumors. 

 

Richard Houlston 

Richard Houlston is a professor and Group Leader at The Institute of Cancer Research whose work 

is focused on understanding inherited susceptibility to cancer. He has discovered the high-risk 

susceptibility gene for hereditary leiomyomatosis and renal cell cancer. His recent work  has 

centred on the use of genome-wide association studies to identify common  risk  variants  for 

cancer. He has successfully used this strategy to identify susceptibility genes for colorectal, lung 

and renal cancer, acute lymphoblastic leukaemia, chronic lymphocytic leukaemia,  Hodgkin 

lymphoma, meningioma and glioma. 

 

Table of contents summary 
 

Genome-wide association studies (GWAS) uncover the impact of genetic variation on the risk of 

many common cancers. This review discusses current insights and how understanding the 

biological basis of these associations is required to maximise the clinical benefit of GWAS. 

 

Subject categories 
 
Biological sciences / Genetics / Cancer genomics 

[URI /631/208/69] 

 
Biological sciences / Genetics / Cancer genetics 

[URI /631/208/68] 



35 

Sud et al 
 

 

Biological sciences / Cancer / Cancer epidemiology 

[URI /631/67/2324] 

 
Biological sciences / Cancer / Cancer prevention 

[URI /631/67/2195] 

 
Health sciences / Risk factors 

[URI /692/499] 


