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Abstract 
Motivation: Checking concordance between reported sex and genotype-inferred sex is a crucial 

quality control measure in genome-wide association studies (GWAS). However, limited insights exist 

regarding the true accuracy of software that infer sex from genotype array data. 

Results: We present seXY, a logistic regression model trained on both X chromosome heterozygosi-

ty and Y chromosome missingness, that consistently demonstrated >99.5% sex inference accuracy in 

cross-validation for 889 males and 5,361 females enrolled in prostate cancer and ovarian cancer 

GWAS. Compared to PLINK, one of the most popular tools for sex inference in GWAS that assesses 

only X chromosome heterozygosity, seXY achieved marginally better male classification and 3% 

more accurate female classification. 

Availability: https://github.com/Christopher-Amos-Lab/seXY 

Contact: Christopher.I.Amos@dartmouth.edu  

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

1 Introduction  

Genome-wide association studies (GWAS) are being conducted at an 

unprecedented rate due to the precipitous fall in genotyping cost over 

time (Begum et al., 2012). An essential quality control (QC) step in these 

studies is verifying concordance between self-reported sex and genotype-

inferred sex. Disagreements can prompt researchers to double-check 

their data, and either fix entry errors or discard samples if unreliable 

phenotype ascertainment is suspected. Cytogenetic analyses, such as 

karyotyping, are gold standard methods of inferring sex (Nagy et al., 

2015). They allow not only detection of the X and Y sex chromosomes, 

but also visualization of potential aneuploidy. On the other hand, high-

throughput genomic experiments introduce more uncertainty in sex 

inference when chromosomes are not evaluated in their entirety, but 

rather as oligonucleotide fragments. 

Single-nucleotide polymorphism (SNP) genotype arrays for GWAS 

are one such example. Since males have an unpaired X chromosome, 

hybridization of their X chromosome fragments to SNP array probes is 

ideally expected to produce 0% heterozygous signals. With two X chro-

mosomes, females should display heterozygosity that is much higher 

than 0%. In reality, males do not display precisely 0% X chromosome 

heterozygosity (XH) due to infrequent platform errors. The software 

PLINK infers sex based on the assumption that males should on average 

have lower XH compared to females (Purcell et al., 2007). PLINK con-

tinues to be one of the most popular tools for GWAS QC given its ease 

of use and legacy status among the earliest genome analysis software. 

However, improvements in sex inference from genotype arrays are war-

ranted, since valuable information on the Y chromosome has yet to be 

leveraged. Although other software such as GenomeStudio (Illumina) 

and SNP & Variation Suite (Golden Helix) do facilitate examination of 

hybridization fluorescence intensities on the X and Y chromosomes, raw 

genotype data are required. Allele calls (e.g. PLINK format and Ge-

nomeStudio matrix format) tend to be much more accessible to research-

ers for shared use than the raw data that genotyping sites often harbor 

privately. 
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We propose a new sex inference tool, seXY, that accepts called geno-

type data and jointly considers information on the X and Y chromo-

somes. Beyond XH, seXY also accounts for Y chromosome missingness 

(YM). In spite of pseudoautosomal regions from which X chromosome 

fragments can cross-hybridize with Y chromosome array probes, females 

should exhibit substantially greater YM than males. To our knowledge, 

accuracies of existing array-based sex inference software have never 

been assessed using a reference that is more reliable than self-reported 

sex. In this Application Note, we compare the performances of PLINK 

and seXY when applied to X and Y chromosome SNP array data from 

the prostate and ovarian cancer projects of the OncoArray Consortium 

(Amos et al., 2016). Individual sex was established based on verified 

prostate or ovary presence. 

2 Methods 

SNP array data were downloaded for 910 males (Prostate Cancer Batch 

1, Project Code 762, contact Ros.Eeles@icr.ac.uk) and 5,403 females 

(Ovarian Cancer Batch 3, Project Code 901, contact Cathe-

rine.Phelan@moffitt.org) in Illumina *.idat format. Twenty-one male 

and 42 female samples were removed for originating from the HapMap 

project and/or for not having consent forms. Genotype calls at the 15,258 

X chromosomes markers and 397 Y chromosome markers of both da-

tasets were converted to matrix format using GenomeStudio v2011.1 

with the default QC setting GenCall score greater than 0.15. For every 

individual, seXY computed XH as the fraction of all markers on the X 

chromosome that have two different allele calls, excluding markers with 

missing calls. YM was computed as the fraction of all markers on the Y 

chromosome that have missing calls. Two-fold cross-validation (CV) 

was then performed using the following logistic regression model: 
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Individual i’s sex was inferred to be female if P(Sexi = female) > 0.5; 

otherwise, sex was inferred to be male. Due to the asymmetry of availa-

ble genotype data, training set females greatly outnumber training set 

males in 50/50 two-fold CV. It has been shown that highly unbalanced 

training sets have the potential to impair classification accuracy in test 

sets, regardless of class proportions in the test sets (Wei and Dunbrack, 

2013). In order to achieve more balanced training sets, a modified ver-

sion of 80/20 CV was also performed. Implemented over 5 rotating 

rounds as usual, 80% of the males (711 individuals) and 20% of the 

females (1072 individuals) formed training sets to fit Equation 1 for 

evaluation on remaining individuals.  

3 Results 

As expected, XH and YM plot as distinct clusters for the majority of 

males and females (Supplementary Figure S1). X chromosome markers 

with high minor allele frequencies demonstrated the largest difference in 

heterozygous prevalence between males and females (Supplementary 

Figure S2). Both PLINK and seXY inferred male sex with nearly 100% 

accuracy (Table 1). PLINK misclassified the two highest-XH males, 

while seXY did not. By taking into account YM, seXY consistently 

outperformed PLINK in accurately classifying females. The few females 

misclassified by seXY have XH and YM values that closely mirror those 

of males.  

The extent of unbalanced sex proportions in training sets did not in-

fluence prediction performance. Results were similar across all rounds of 

CV. We have therefore made seXY available for public use as Equation 

1 trained on all 889 males and 5,361 females in this study. Accuracy was 

ensured to not be dependent on markers that are inherently specific to the 

OncoArray platform, as seXY was robust to 10%, 25%, and 50% random 

omission of markers (Supplementary Table S1).  

 

Table 1. Comparison of sex inference accuracy using PLINK versus 

seXY. 

 

  PLINK 
 

seXY 

  Male Female 
 

Male Female 

50/50 CV round 1 99.8 96.8 
 

100.0 99.8 

50/50 CV round 2 99.8 96.4 
 

100.0 99.9 

80/20 CV round 1 99.4 96.6 
 

100.0 99.8 

80/20 CV round 2 100.0 96.4 
 

100.0 99.7 

80/20 CV round 3 100.0 96.7 
 

100.0 99.9 

80/20 CV round 4 99.4 96.8 
 

100.0 99.9 

80/20 CV round 5 100.0 96.7 
 

100.0 99.6 

 

Accuracies are displayed as percent of test set individuals whose sexes were cor-

rectly predicted. CV, cross-validation. 

4 Conclusion 

While XH alone appeared sufficient for sensitively identifying males, 

female classification was improved through simultaneous consideration 

of YM by seXY. The 3% gain in accuracy among females can be at-

tributed to those who have distinguishing YM despite low XH. For large 

GWAS consortia such as the OncoArray where hundreds of thousands of 

samples are interrogated, seXY may salvage up to several thousand 

samples from removal due to incorrect prior sex inference. Misclassifica-

tion of the remaining <0.5% females with both low XH and low YM is 

likely caused by a combination of 46XX/46XY mosaicism, 45XO/46XY 

mosaicism, large-scale duplications or deletions, loss of DNA, and other 

errors in laboratory handling (Qu et al., 2011). 
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