Closed Research Teams
Permanent URI for this collection
Browse
Recent Submissions
Item High-dimensional functional phenotyping of preclinical human CAR T cells using mass cytometry.Michelozzi, IM; Sufi, J; Adejumo, TA; Amrolia, PJ; Tape, CJ; Giustacchini, A; Tape, ChristopherHere, we present a comprehensive protocol for the generation and functional characterization of chimeric antigen receptor (CAR) T cells and their products by mass cytometry in a reproducible and scalable manner. We describe the production of CAR T cells from human peripheral blood mononuclear cells. We then detail a three-step staining protocol with metal-labeled antibodies and the subsequent mass cytometry analysis. This protocol allows simultaneous characterization of CAR T cell intracellular signaling, activation, proliferation, cytokine production, and phenotype in a single assay.Item Abiraterone acetate plus prednisolone for metastatic patients starting hormone therapy: 5-year follow-up results from the STAMPEDE randomised trial (NCT00268476).(WILEY, 2022-08-01) James, ND; Clarke, NW; Cook, A; Ali, A; Hoyle, AP; Attard, G; Brawley, CD; Chowdhury, S; Cross, WR; Dearnaley, DP; de Bono, JS; Diaz-Montana, C; Gilbert, D; Gillessen, S; Gilson, C; Jones, RJ; Langley, RE; Malik, ZI; Matheson, DJ; Millman, R; Parker, CC; Pugh, C; Rush, H; Russell, JM; Berthold, DR; Buckner, ML; Mason, MD; Ritchie, AWS; Birtle, AJ; Brock, SJ; Das, P; Ford, D; Gale, J; Grant, W; Gray, EK; Hoskin, P; Khan, MM; Manetta, C; McPhail, NJ; O'Sullivan, JM; Parikh, O; Perna, C; Pezaro, CJ; Protheroe, AS; Robinson, AJ; Rudman, SM; Sheehan, DJ; Srihari, NN; Syndikus, I; Tanguay, JS; Thomas, CW; Vengalil, S; Wagstaff, J; Wylie, JP; Parmar, MKB; Sydes, MR; STAMPEDE Trials Collaborative Group,; James, Nicholas; Dearnaley, David; De Bono, JohannAbiraterone acetate plus prednisolone (AAP) previously demonstrated improved survival in STAMPEDE, a multiarm, multistage platform trial in men starting long-term hormone therapy for prostate cancer. This long-term analysis in metastatic patients was planned for 3 years after the first results. Standard-of-care (SOC) was androgen deprivation therapy. The comparison randomised patients 1:1 to SOC-alone with or without daily abiraterone acetate 1000 mg + prednisolone 5 mg (SOC + AAP), continued until disease progression. The primary outcome measure was overall survival. Metastatic disease risk group was classified retrospectively using baseline CT and bone scans by central radiological review and pathology reports. Analyses used Cox proportional hazards and flexible parametric models, accounting for baseline stratification factors. One thousand and three patients were contemporaneously randomised (November 2011 to January 2014): median age 67 years; 94% newly-diagnosed; metastatic disease risk group: 48% high, 44% low, 8% unassessable; median PSA 97 ng/mL. At 6.1 years median follow-up, 329 SOC-alone deaths (118 low-risk, 178 high-risk) and 244 SOC + AAP deaths (75 low-risk, 145 high-risk) were reported. Adjusted HR = 0.60 (95% CI: 0.50-0.71; P = 0.31 × 10-9 ) favoured SOC + AAP, with 5-years survival improved from 41% SOC-alone to 60% SOC + AAP. This was similar in low-risk (HR = 0.55; 95% CI: 0.41-0.76) and high-risk (HR = 0.54; 95% CI: 0.43-0.69) patients. Median and current maximum time on SOC + AAP was 2.4 and 8.1 years. Toxicity at 4 years postrandomisation was similar, with 16% patients in each group reporting grade 3 or higher toxicity. A sustained and substantial improvement in overall survival of all metastatic prostate cancer patients was achieved with SOC + abiraterone acetate + prednisolone, irrespective of metastatic disease risk group.Item Dual blockade of the PI3K/AKT/mTOR (AZD8055) and RAS/MEK/ERK (AZD6244) pathways synergistically inhibits rhabdomyosarcoma cell growth in vitro and in vivo.(AMER ASSOC CANCER RESEARCH, 2013-08-05) Renshaw, J; Taylor, KR; Bishop, R; Valenti, M; De Haven Brandon, A; Gowan, S; Eccles, SA; Ruddle, RR; Johnson, LD; Raynaud, FI; Selfe, JL; Thway, K; Pietsch, T; Pearson, AD; Shipley, J; Taylor, Kathryn; Valenti, Melanie; De Haven Brandon, Alexis; Gowan, Sharon; Eccles, Suzanne; Ruddle, Ruth; Raynaud, Florence; Selfe, Joanna; Pearson, Andrew; Shipley, JanetPURPOSE: To provide rationale for using phosphoinositide 3-kinase (PI3K) and/or mitogen-activated protein kinase (MAPK) pathway inhibitors to treat rhabdomyosarcomas, a major cause of pediatric and adolescent cancer deaths. EXPERIMENTAL DESIGN: The prevalence of PI3K/MAPK pathway activation in rhabdomyosarcoma clinical samples was assessed using immunohistochemistry. Compensatory signaling and cross-talk between PI3K/MAPK pathways was determined in rhabdomyosarcoma cell lines following p110α short hairpin RNA-mediated depletion. Pharmacologic inhibition of reprogrammed signaling in stable p110α knockdown lines was used to determine the target-inhibition profile inducing maximal growth inhibition. The in vitro and in vivo efficacy of inhibitors of TORC1/2 (AZD8055), MEK (AZD6244), and P13K/mTOR (NVP-BEZ235) was evaluated alone and in pairwise combinations. RESULTS: PI3K pathway activation was seen in 82.5% rhabdomyosarcomas with coactivated MAPK in 36% and 46% of alveolar and embryonal subtypes, respectively. p110α knockdown in cell lines over the short and long term was associated with compensatory expression of other p110 isoforms, activation of the MAPK pathway, and cross-talk to reactivate the PI3K pathway. Combinations of PI3K pathway and MAP-ERK kinase (MEK) inhibitors synergistically inhibited cell growth in vitro. Treatment of RD cells with AZD8055 plus AZD6244 blocked reciprocal pathway activation, as evidenced by reduced AKT/ERK/S6 phosphorylation. In vivo, the synergistic effect on growth and changes in pharmacodynamic biomarkers was recapitulated using the AZD8055/AZD6244 combination but not NVP-BEZ235/AZD6244. Pharmacokinetic analysis provided evidence of drug-drug interaction with both combinations. CONCLUSIONS: Dual PI3K/MAPK pathway activation and compensatory signaling in both rhabdomyosarcoma subtypes predict a lack of clinical efficacy for single agents targeting either pathway, supporting a therapeutic strategy combining a TORC1/2 with a MEK inhibitor.Item Relugolix, an oral gonadotropin-releasing hormone antagonist for the treatment of prostate cancer.(TAYLOR & FRANCIS LTD, 2021-11-01) George, DJ; Dearnaley, DP; Dearnaley, DavidAndrogen deprivation therapy using gonadotropin-releasing hormone (GnRH) analogues is standard treatment for intermediate and advanced prostate cancer. GnRH agonist therapy results in an initial testosterone flare, and increased metabolic and cardiovascular risks. The GnRH antagonist relugolix is able to reduce serum testosterone levels in men with prostate cancer without inducing testosterone flare. In the HERO Phase III trial, relugolix was superior to leuprolide acetate at rapidly reducing testosterone and continuously suppressing testosterone, with faster post-treatment recovery of testosterone levels. Relugolix was associated with a 54% lower incidence of major adverse cardiovascular events than leuprolide acetate. As the first oral GnRH antagonist approved for the treatment of advanced prostate cancer, relugolix offers a new treatment option.Item Abiraterone acetate and prednisolone with or without enzalutamide for high-risk non-metastatic prostate cancer: a meta-analysis of primary results from two randomised controlled phase 3 trials of the STAMPEDE platform protocol.(ELSEVIER SCIENCE INC, 2022-01-29) Attard, G; Murphy, L; Clarke, NW; Cross, W; Jones, RJ; Parker, CC; Gillessen, S; Cook, A; Brawley, C; Amos, CL; Atako, N; Pugh, C; Buckner, M; Chowdhury, S; Malik, Z; Russell, JM; Gilson, C; Rush, H; Bowen, J; Lydon, A; Pedley, I; O'Sullivan, JM; Birtle, A; Gale, J; Srihari, N; Thomas, C; Tanguay, J; Wagstaff, J; Das, P; Gray, E; Alzoueb, M; Parikh, O; Robinson, A; Syndikus, I; Wylie, J; Zarkar, A; Thalmann, G; de Bono, JS; Dearnaley, DP; Mason, MD; Gilbert, D; Langley, RE; Millman, R; Matheson, D; Sydes, MR; Brown, LC; Parmar, MKB; James, ND; Systemic Therapy in Advancing or Metastatic Prostate cancer: Evaluation of Drug Efficacy (STAMPEDE) investigators,; De Bono, Johann; Dearnaley, David; James, NicholasBACKGROUND: Men with high-risk non-metastatic prostate cancer are treated with androgen-deprivation therapy (ADT) for 3 years, often combined with radiotherapy. We analysed new data from two randomised controlled phase 3 trials done in a multiarm, multistage platform protocol to assess the efficacy of adding abiraterone and prednisolone alone or with enzalutamide to ADT in this patient population. METHODS: These open-label, phase 3 trials were done at 113 sites in the UK and Switzerland. Eligible patients (no age restrictions) had high-risk (defined as node positive or, if node negative, having at least two of the following: tumour stage T3 or T4, Gleason sum score of 8-10, and prostate-specific antigen [PSA] concentration ≥40 ng/mL) or relapsing with high-risk features (≤12 months of total ADT with an interval of ≥12 months without treatment and PSA concentration ≥4 ng/mL with a doubling time of <6 months, or a PSA concentration ≥20 ng/mL, or nodal relapse) non-metastatic prostate cancer, and a WHO performance status of 0-2. Local radiotherapy (as per local guidelines, 74 Gy in 37 fractions to the prostate and seminal vesicles or the equivalent using hypofractionated schedules) was mandated for node negative and encouraged for node positive disease. In both trials, patients were randomly assigned (1:1), by use of a computerised algorithm, to ADT alone (control group), which could include surgery and luteinising-hormone-releasing hormone agonists and antagonists, or with oral abiraterone acetate (1000 mg daily) and oral prednisolone (5 mg daily; combination-therapy group). In the second trial with no overlapping controls, the combination-therapy group also received enzalutamide (160 mg daily orally). ADT was given for 3 years and combination therapy for 2 years, except if local radiotherapy was omitted when treatment could be delivered until progression. In this primary analysis, we used meta-analysis methods to pool events from both trials. The primary endpoint of this meta-analysis was metastasis-free survival. Secondary endpoints were overall survival, prostate cancer-specific survival, biochemical failure-free survival, progression-free survival, and toxicity and adverse events. For 90% power and a one-sided type 1 error rate set to 1·25% to detect a target hazard ratio for improvement in metastasis-free survival of 0·75, approximately 315 metastasis-free survival events in the control groups was required. Efficacy was assessed in the intention-to-treat population and safety according to the treatment started within randomised allocation. STAMPEDE is registered with ClinicalTrials.gov, NCT00268476, and with the ISRCTN registry, ISRCTN78818544. FINDINGS: Between Nov 15, 2011, and March 31, 2016, 1974 patients were randomly assigned to treatment. The first trial allocated 455 to the control group and 459 to combination therapy, and the second trial, which included enzalutamide, allocated 533 to the control group and 527 to combination therapy. Median age across all groups was 68 years (IQR 63-73) and median PSA 34 ng/ml (14·7-47); 774 (39%) of 1974 patients were node positive, and 1684 (85%) were planned to receive radiotherapy. With median follow-up of 72 months (60-84), there were 180 metastasis-free survival events in the combination-therapy groups and 306 in the control groups. Metastasis-free survival was significantly longer in the combination-therapy groups (median not reached, IQR not evaluable [NE]-NE) than in the control groups (not reached, 97-NE; hazard ratio [HR] 0·53, 95% CI 0·44-0·64, p<0·0001). 6-year metastasis-free survival was 82% (95% CI 79-85) in the combination-therapy group and 69% (66-72) in the control group. There was no evidence of a difference in metatasis-free survival when enzalutamide and abiraterone acetate were administered concurrently compared with abiraterone acetate alone (interaction HR 1·02, 0·70-1·50, p=0·91) and no evidence of between-trial heterogeneity (I2 p=0·90). Overall survival (median not reached [IQR NE-NE] in the combination-therapy groups vs not reached [103-NE] in the control groups; HR 0·60, 95% CI 0·48-0·73, p<0·0001), prostate cancer-specific survival (not reached [NE-NE] vs not reached [NE-NE]; 0·49, 0·37-0·65, p<0·0001), biochemical failure-free-survival (not reached [NE-NE] vs 86 months [83-NE]; 0·39, 0·33-0·47, p<0·0001), and progression-free-survival (not reached [NE-NE] vs not reached [103-NE]; 0·44, 0·36-0·54, p<0·0001) were also significantly longer in the combination-therapy groups than in the control groups. Adverse events grade 3 or higher during the first 24 months were, respectively, reported in 169 (37%) of 451 patients and 130 (29%) of 455 patients in the combination-therapy and control groups of the abiraterone trial, respectively, and 298 (58%) of 513 patients and 172 (32%) of 533 patients of the combination-therapy and control groups of the abiraterone and enzalutamide trial, respectively. The two most common events more frequent in the combination-therapy groups were hypertension (abiraterone trial: 23 (5%) in the combination-therapy group and six (1%) in control group; abiraterone and enzalutamide trial: 73 (14%) and eight (2%), respectively) and alanine transaminitis (abiraterone trial: 25 (6%) in the combination-therapy group and one (<1%) in control group; abiraterone and enzalutamide trial: 69 (13%) and four (1%), respectively). Seven grade 5 adverse events were reported: none in the control groups, three in the abiraterone acetate and prednisolone group (one event each of rectal adenocarcinoma, pulmonary haemorrhage, and a respiratory disorder), and four in the abiraterone acetate and prednisolone with enzalutamide group (two events each of septic shock and sudden death). INTERPRETATION: Among men with high-risk non-metastatic prostate cancer, combination therapy is associated with significantly higher rates of metastasis-free survival compared with ADT alone. Abiraterone acetate with prednisolone should be considered a new standard treatment for this population. FUNDING: Cancer Research UK, UK Medical Research Council, Swiss Group for Clinical Cancer Research, Janssen, and Astellas.