Show simple item record

dc.contributor.authorGear, JIen_US
dc.contributor.authorLong, Cen_US
dc.contributor.authorRushforth, Den_US
dc.contributor.authorChittenden, SJen_US
dc.contributor.authorCummings, Cen_US
dc.contributor.authorFlux, GDen_US
dc.date.accessioned2018-07-23T11:54:32Z
dc.date.issued2014-08en_US
dc.identifier.citationMedical physics, 2014, 41 (8), pp. 082502 - ?en_US
dc.identifier.issn0094-2405en_US
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/2112
dc.identifier.doi10.1118/1.4887854en_US
dc.description.abstractPURPOSE: The aim of the study was to investigate rapid prototyping technology for the production of patient-specific, cost-effective liquid fillable phantoms directly from patient CT data. METHODS: Liver, spleen, and kidney volumes were segmented from patient CT data. Each organ was converted to a shell and filling holes and leg supports were added using computer aided design software and prepared for printing. Additional fixtures were added to the liver to allow lesion inserts to be fixed within the structure. Phantoms were printed from an ultraviolet curable photopolymer using polyjet technology on an Objet EDEN 500V 3D printer. RESULTS: The final print material is a clear solid acrylic plastic which is watertight, rigid, and sufficiently durable to withstand multiple assembly and scanning protocols. Initial scans of the phantoms have been performed with Tc-99m SPECT and F-18 PET/CT. CONCLUSIONS: The organ geometry showed good correspondence with anatomical references. The methodology developed can be generally applied to other anatomical or geometrical phantoms for molecular imaging.en_US
dc.formatPrinten_US
dc.format.extent082502 - ?en_US
dc.languageengen_US
dc.language.isoengen_US
dc.subjectLiveren_US
dc.subjectKidneyen_US
dc.subjectSpleenen_US
dc.subjectHumansen_US
dc.subjectNeoplasmsen_US
dc.subjectTechnetiumen_US
dc.subjectFluorine Radioisotopesen_US
dc.subjectPlasticsen_US
dc.subjectRadiopharmaceuticalsen_US
dc.subjectTomography, X-Ray Computeden_US
dc.subjectOrgan Sizeen_US
dc.subjectPhantoms, Imagingen_US
dc.subjectUltraviolet Raysen_US
dc.subjectSoftwareen_US
dc.subjectMolecular Imagingen_US
dc.subjectIndividualized Medicineen_US
dc.subjectPrinting, Three-Dimensionalen_US
dc.titleDevelopment of patient-specific molecular imaging phantoms using a 3D printer.en_US
dc.typeJournal Article
rioxxterms.versionofrecord10.1118/1.4887854en_US
rioxxterms.licenseref.startdate2014-08en_US
rioxxterms.typeJournal Article/Reviewen_US
dc.relation.isPartOfMedical physicsen_US
pubs.issue8en_US
pubs.notesNot knownen_US
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Radioisotope Physics
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Radiotherapy and Imaging/Radioisotope Physics/Radioisotope Physics (hon.)
pubs.volume41en_US
pubs.embargo.termsNot knownen_US
icr.researchteamRadioisotope Physicsen_US
dc.contributor.icrauthorFlux, Glennen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record