Applications of magnetic resonance spectroscopy in radiotherapy treatment planning.
Abstract
Following advances in conformal radiotherapy, a key problem now facing radiation oncologists is target definition. While MRI and CT provide images of excellent spatial resolution, they do not always provide sufficient contrast to identify tumour extent or to identify regions of high cellular activity that might be targeted with boost doses. Magnetic resonance spectroscopy (MRS) is an alternative approach that holds great promise for aiding target definition for radiotherapy treatment planning, and for evaluation of response and recurrence. MRS is able to detect signals from low molecular weight metabolites such as choline and creatine that are present at concentrations of a few mM in tissue. Spectra may be acquired from single voxels, or from a 2D or 3D array of voxels using spectroscopic imaging. The current state of the art achieves a spatial resolution of 6-10 mm in a scan time of about 10-15 min. Co-registered MR images are acquired in the same examination. The method is currently under evaluation, in particular in brain (where MRS has been shown to differentiate between many tumour types and grades) and in prostate (where cancer may be distinguished from normal tissue and benign prostatic hypertrophy). The contrast achieved with MRS, based on tissue biochemistry, therefore provides a promising alternative for identifying tumour extent and regions of high metabolic activity. It is anticipated that MRS will become an essential tool for treatment planning where other modalities lack the necessary contrast.
Collections
Subject
Humans
Brain Neoplasms
Prostatic Neoplasms
Diagnosis, Differential
Magnetic Resonance Spectroscopy
Patient Care Planning
Male
Research team
Magnetic Resonance
Language
eng
License start date
2006-09
Citation
The British journal of radiology, 2006, 79 Spec No 1 pp. S16 - S26