Publications Repository

Publications Repository

View item 
  •   Home
  • ICR Divisions
  • Other ICR Research
  • View item
  • Home
  • ICR Divisions
  • Other ICR Research
  • View item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Schemes for the optimization of chest radiography using a computer model of the patient and x-ray imaging system

Thumbnail
Date
2001-10
ICR Author
Dance, David
McVey, Graham
Author
Sandborg, M
McVey, G
Dance, DR
Carlsson, GA
Type
Journal Article
Metadata
Show full item record
Abstract
A computer program has been developed to model chest radiography. It incorporates a voxel phantom of an adult and includes antiscatter grid, radiographic screen, and film. Image quality is quantified by calculating the contrast (Delta OD) and the ideal observer signal-to-noise ratio (SNRI) for a number of relevant anatomical details at various positions in the anatomy. Detector noise and system unsharpness are modeled and their influence on image quality is considered. A measure of useful dynamic range is computed and defined as the fraction of the image that is reproduced at an optical density such that the film gradient exceeds a preset value. The effective dose is used as a measure of the radiation risk for the patient. A novel approach to patient dose and image quality optimization has been developed and implemented. It is based on a reference system acknowledged to yield acceptable image quality in a clinical trial. Two optimizations schemes have been studied, the first including, the contrast of vessels as measure of image quality and the second scheme using also the signal-to-noise ratio of calcifications. Both schemes make use of our measure of useful dynamic range as a key quantity. A large variety of imaging conditions was simulated by varying the tube voltage, antiscatter device, screen-film system, and maximum optical density in the computed image. It was found that the optical density is crucial in screen-film chest radiography. Significant dose savings (30%-50%) can be accomplished without sacrificing image quality by using low-atomic-number grids with a low grid ratio or an air gap and more sensitive screen-film system. Dose-efficient configurations proposed by the model agree well with the example of good radiographic technique suggested by the European Commission. (C) 2001 American Association of Physicists in Medicine.
URI
https://repository.icr.ac.uk/handle/internal/2215
DOI
https://doi.org/10.1118/1.1405840
Collections
  • Other ICR Research
Language
eng
License start date
2001-10
Citation
MEDICAL PHYSICS, 2001, 28 pp. 2007 - 2019
Publisher
AMER INST PHYSICS

Browse

All of ICR repositoryICR DivisionsBy issue dateAuthorsTitlesPublication TypesThis collectionBy issue dateAuthorsTitlesPublication Types
  • Login
  • Registered office: The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP
    A Charity, Not for Profit. Company Limited by Guarantee.
    Registered in England No. 534147. VAT Registration No. GB 849 0581 02.