Show simple item record

dc.contributor.authorRichter, S
dc.contributor.authorLindenstrauss, U
dc.contributor.authorLuecke, C
dc.contributor.authorBayliss, R
dc.contributor.authorBrueser, T
dc.date.accessioned2018-08-30T13:49:05Z
dc.date.issued2007-11-16
dc.identifier46
dc.identifier.citationJOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 pp. 33257 - 33264
dc.identifier.issn0021-9258
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/2462
dc.identifier.eissn1083-351X
dc.identifier.doi10.1074/jbc.M703303200
dc.description.abstractThe twin-arginine translocation ( Tat) system is a protein translocation system that is adapted to the translocation of folded proteins across biological membranes. An understanding of the folding requirements for Tat substrates is of fundamental importance for the elucidation of the transport mechanism. We now demonstrate for the first time Tat transport for fully unstructured proteins, using signal sequence fusions to naturally unfolded FG repeats from the yeast Nsp1p nuclear pore protein. The transport of unfolded proteins becomes less efficient with increasing size, consistent with only a single interaction between the system and the substrate. Strikingly, the introduction of six residues from the hydrophobic core of a globular protein completely blocked translocation. Physiological data suggest that hydrophobic surface patches abort transport at a late stage, most likely by membrane interactions during transport. This study thus explains the observed restriction of the Tat system to folded globular proteins on a molecular level.
dc.format.extent33257 - 33264
dc.languageeng
dc.language.isoeng
dc.publisherAMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
dc.titleFunctional tat transport of unstructured, small, hydrophilic proteins
dc.typeJournal Article
rioxxterms.versionofrecord10.1074/jbc.M703303200
rioxxterms.licenseref.startdate2007-11-16
rioxxterms.typeJournal Article/Review
dc.relation.isPartOfJOURNAL OF BIOLOGICAL CHEMISTRY
pubs.notesaffiliation: Bruser, T (Reprint Author), Univ Halle Wittenberg, Inst Biol Microbiol, Kurt Mothes Str 3, D-06120 Halle, Germany. Univ Halle Wittenberg, Inst Biol Microbiol, D-06120 Halle, Germany. Max Planck Res Unit Enzmol Protein Folding, D-06120 Halle, Germany. Inst Canc Res, London SW3 6JB, England. keywords-plus: ARGININE TRANSLOCATION PATHWAY; GREEN FLUORESCENT PROTEIN; FXFG NUCLEOPORIN REPEATS; FOLDING QUALITY-CONTROL; ESCHERICHIA-COLI; SIGNAL PEPTIDE; ALPHA-SYNUCLEIN; SYSTEM; EXPORT; MEMBRANE research-areas: Biochemistry & Molecular Biology web-of-science-categories: Biochemistry & Molecular Biology author-email: [email protected] orcid-numbers: Bayliss, Richard/0000-0003-0604-2773 number-of-cited-references: 43 times-cited: 48 usage-count-last-180-days: 0 usage-count-since-2013: 9 journal-iso: J. Biol. Chem. doc-delivery-number: 229XP unique-id: ISI:000250840200005 oa: gold_or_bronze da: 2018-08-30
pubs.notesNot known
pubs.organisational-group/ICR
pubs.organisational-group/ICR
pubs.volume282
pubs.embargo.termsNot known
dc.contributor.icrauthorBayliss, Richard


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following collection(s)

Show simple item record