Show simple item record

dc.contributor.authorRichter, Sen_US
dc.contributor.authorLindenstrauss, Uen_US
dc.contributor.authorLuecke, Cen_US
dc.contributor.authorBayliss, Ren_US
dc.contributor.authorBrueser, Ten_US
dc.date.accessioned2018-08-30T13:49:05Z
dc.date.issued2007-11-16en_US
dc.identifier46en_US
dc.identifier.citationJOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 pp. 33257 - 33264en_US
dc.identifier.issn0021-9258en_US
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/2462
dc.identifier.eissn1083-351Xen_US
dc.identifier.doi10.1074/jbc.M703303200en_US
dc.description.abstractThe twin-arginine translocation ( Tat) system is a protein translocation system that is adapted to the translocation of folded proteins across biological membranes. An understanding of the folding requirements for Tat substrates is of fundamental importance for the elucidation of the transport mechanism. We now demonstrate for the first time Tat transport for fully unstructured proteins, using signal sequence fusions to naturally unfolded FG repeats from the yeast Nsp1p nuclear pore protein. The transport of unfolded proteins becomes less efficient with increasing size, consistent with only a single interaction between the system and the substrate. Strikingly, the introduction of six residues from the hydrophobic core of a globular protein completely blocked translocation. Physiological data suggest that hydrophobic surface patches abort transport at a late stage, most likely by membrane interactions during transport. This study thus explains the observed restriction of the Tat system to folded globular proteins on a molecular level.en_US
dc.format.extent33257 - 33264en_US
dc.languageEnglishen_US
dc.language.isoEnglishen_US
dc.publisherAMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INCen_US
dc.titleFunctional tat transport of unstructured, small, hydrophilic proteinsen_US
dc.typeJournal Article
rioxxterms.versionofrecord10.1074/jbc.M703303200en_US
rioxxterms.licenseref.startdate2007-11-16en_US
rioxxterms.typeJournal Article/Reviewen_US
dc.relation.isPartOfJOURNAL OF BIOLOGICAL CHEMISTRYen_US
pubs.notesaffiliation: Bruser, T (Reprint Author), Univ Halle Wittenberg, Inst Biol Microbiol, Kurt Mothes Str 3, D-06120 Halle, Germany. Univ Halle Wittenberg, Inst Biol Microbiol, D-06120 Halle, Germany. Max Planck Res Unit Enzmol Protein Folding, D-06120 Halle, Germany. Inst Canc Res, London SW3 6JB, England. keywords-plus: ARGININE TRANSLOCATION PATHWAY; GREEN FLUORESCENT PROTEIN; FXFG NUCLEOPORIN REPEATS; FOLDING QUALITY-CONTROL; ESCHERICHIA-COLI; SIGNAL PEPTIDE; ALPHA-SYNUCLEIN; SYSTEM; EXPORT; MEMBRANE research-areas: Biochemistry & Molecular Biology web-of-science-categories: Biochemistry & Molecular Biology author-email: brueser@mikrobiologie.uni-halle.de orcid-numbers: Bayliss, Richard/0000-0003-0604-2773 number-of-cited-references: 43 times-cited: 48 usage-count-last-180-days: 0 usage-count-since-2013: 9 journal-iso: J. Biol. Chem. doc-delivery-number: 229XP unique-id: ISI:000250840200005 oa: gold_or_bronze da: 2018-08-30en_US
pubs.notesNot knownen_US
pubs.organisational-group/ICR
pubs.volume282en_US
pubs.embargo.termsNot knownen_US
dc.contributor.icrauthorBayliss, Richarden_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record