dc.contributor.author | Donaldson, PM | |
dc.contributor.author | Guo, R | |
dc.contributor.author | Fournier, F | |
dc.contributor.author | Gardner, EM | |
dc.contributor.author | Barter, LMC | |
dc.contributor.author | Barnett, CJ | |
dc.contributor.author | Gould, IR | |
dc.contributor.author | Klug, DR | |
dc.contributor.author | Palmer, DJ | |
dc.contributor.author | Willison, KR | |
dc.date.accessioned | 2018-08-30T15:03:22Z | |
dc.date.issued | 2007-09-21 | |
dc.identifier | 11 | |
dc.identifier.citation | JOURNAL OF CHEMICAL PHYSICS, 2007, 127 | |
dc.identifier.issn | 0021-9606 | |
dc.identifier.uri | https://repository.icr.ac.uk/handle/internal/2473 | |
dc.identifier.doi | 10.1063/1.2771176 | |
dc.description.abstract | We show that it is possible to both directly measure and directly calculate Fermi resonance couplings in benzene. The measurement method used was a particular form of two-dimensional infrared spectroscopy (2D-IR) known as doubly vibrationally enhanced four wave mixing. By using different pulse orderings, vibrational cross peaks could be measured either purely at the frequencies of the base vibrational states or split by the coupling energy. This capability is a feature currently unique to this particular form of 2D-IR and can be helpful in the decongestion of complex spectra. Five cross peaks of the ring breathing mode nu(13) with a range of combination bands were observed spanning a region of 1500-4550 cm(-1). The coupling energy was measured for two dominant states of the nu(13)+nu(16) Fermi resonance tetrad. Dephasing rates were measured in the time domain for nu(13) and the two (nu(13)+nu(16)) Fermi resonance states. The electronic and mechanical vibrational anharmonic coefficients were calculated to second and third orders, respectively, giving information on relative intensities of the cross peaks and enabling the Fermi resonance states of the combination band nu(13)+nu(16) at 3050-3100 cm(-1) to be calculated. The excellent agreement between calculated and measured spectral intensities and line shapes suggests that assignment of spectral features from ab initio calculations is both viable and practicable for this form of spectroscopy. (c) 2007 American Institute of Physics. | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | AMER INST PHYSICS | |
dc.title | Direct identification and decongestion of Fermi resonances by control of pulse time ordering in two-dimensional IR spectroscopy | |
dc.type | Journal Article | |
rioxxterms.versionofrecord | 10.1063/1.2771176 | |
rioxxterms.licenseref.startdate | 2007-09-21 | |
rioxxterms.type | Journal Article/Review | |
dc.relation.isPartOf | JOURNAL OF CHEMICAL PHYSICS | |
pubs.notes | affiliation: Klug, DR (Reprint Author), Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England. Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England. Univ Florence, European Lab Nonlinear Spect, I-50019 Sesto Fiorentino, Firenze, Italy. Inst Canc Res, London SW3 6JB, England. article-number: 114513 keywords-plus: VIBRATIONAL ECHO SPECTROSCOPY; INFRARED-SPECTROSCOPY; HYDROGEN-BOND; 2D IR; 4-WAVE-MIXING SPECTROSCOPY; DYNAMICS; EXCHANGE; BENZENE; SIGNATURES; SPECTRA research-areas: Chemistry; Physics web-of-science-categories: Chemistry, Physical; Physics, Atomic, Molecular & Chemical author-email: [email protected] researcherid-numbers: Klug, David/F-3357-2011 Guo, Rui/F-2384-2012 Donaldson, Paul/G-6462-2011 orcid-numbers: gould, ian/0000-0003-3559-0234 funding-acknowledgement: Engineering and Physical Sciences Research Council [EP/C530187/1] number-of-cited-references: 49 times-cited: 22 usage-count-last-180-days: 3 usage-count-since-2013: 28 journal-iso: J. Chem. Phys. doc-delivery-number: 213KZ unique-id: ISI:000249667400048 da: 2018-08-30 | |
pubs.notes | Not known | |
pubs.organisational-group | /ICR | |
pubs.organisational-group | /ICR/Primary Group | |
pubs.organisational-group | /ICR/Primary Group/ICR Divisions | |
pubs.organisational-group | /ICR/Primary Group/ICR Divisions/Closed research teams | |
pubs.organisational-group | /ICR/Primary Group/ICR Divisions/Closed research teams/Chromatin Regulation | |
pubs.organisational-group | /ICR | |
pubs.organisational-group | /ICR/Primary Group | |
pubs.organisational-group | /ICR/Primary Group/ICR Divisions | |
pubs.organisational-group | /ICR/Primary Group/ICR Divisions/Closed research teams | |
pubs.organisational-group | /ICR/Primary Group/ICR Divisions/Closed research teams/Chromatin Regulation | |
pubs.volume | 127 | |
pubs.embargo.terms | Not known | |
icr.researchteam | Chromatin Regulation | en_US |
dc.contributor.icrauthor | Willison, Keith | en |