Show simple item record

dc.contributor.authorHeyworth, Cen_US
dc.contributor.authorPearson, Sen_US
dc.contributor.authorMay, Gen_US
dc.contributor.authorEnver, Ten_US
dc.identifier.citationEMBO JOURNAL, 2002, 21 pp. 3770 - 3781en_US
dc.description.abstractThe developmental plasticity of transplanted adult stem cells challenges the notion that tissue-restricted stem cells have stringently limited lineage potential and prompts a re-evaluation of the stability of lineage commitment. Transformed cell systems are inappropriate for such studies, since transformation potentially dysregulates the processes governing lineage commitment. We have therefore assessed the stability of normal lineage commitment in primary adult haematopoietic cells. For these studies we have used prospectively isolated primary bipotent progenitors, which normally display only neutrophil and monocyte differentiation in vitro. In response to ectopic transcription factor expression, these neutrophil/monocyte progenitors were reprogrammed to take on erythroid, eosinophil and basophil-like cell fates, with the resultant colonies resembling the mixed lineage colonies normally generated by multipotential progenitors. Clone-marking and daughter cell experiments identified lineage switching rather than differential cell selection as the mechanism of altered lineage output. These results demonstrate that the cell type-specific programming of apparently committed primary progenitors is not irrevocably fixed, but may be radically re-specified in response to a single transcriptional regulator.en_US
dc.format.extent3770 - 3781en_US
dc.titleTranscription factor-mediated lineage switching reveals plasticity in primary committed progenitor cellsen_US
dc.typeJournal Article
rioxxterms.typeJournal Article/Reviewen_US
dc.relation.isPartOfEMBO JOURNALen_US
pubs.notesunique-id: ISI:000176784700021en_US
pubs.notesNot knownen_US
pubs.embargo.termsNot knownen_US
dc.contributor.icrauthorEnver, Tariqen_US

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record