Show simple item record

dc.contributor.authorAcar, A
dc.contributor.authorNichol, D
dc.contributor.authorFernandez-Mateos, J
dc.contributor.authorCresswell, GD
dc.contributor.authorBarozzi, I
dc.contributor.authorHong, SP
dc.contributor.authorTrahearn, N
dc.contributor.authorSpiteri, I
dc.contributor.authorStubbs, M
dc.contributor.authorBurke, R
dc.contributor.authorStewart, A
dc.contributor.authorCaravagna, G
dc.contributor.authorWerner, B
dc.contributor.authorVlachogiannis, G
dc.contributor.authorMaley, CC
dc.contributor.authorMagnani, L
dc.contributor.authorValeri, N
dc.contributor.authorBanerji, U
dc.contributor.authorSottoriva, A
dc.date.accessioned2020-05-26T11:32:12Z
dc.date.issued2020-04-21
dc.identifier.citationNature communications, 2020, 11 (1), pp. 1923 - ?
dc.identifier.issn2041-1723
dc.identifier.urihttps://repository.icr.ac.uk/handle/internal/3636
dc.identifier.eissn2041-1723
dc.identifier.doi10.1038/s41467-020-15596-z
dc.description.abstractDrug resistance mediated by clonal evolution is arguably the biggest problem in cancer therapy today. However, evolving resistance to one drug may come at a cost of decreased fecundity or increased sensitivity to another drug. These evolutionary trade-offs can be exploited using 'evolutionary steering' to control the tumour population and delay resistance. However, recapitulating cancer evolutionary dynamics experimentally remains challenging. Here, we present an approach for evolutionary steering based on a combination of single-cell barcoding, large populations of 108-109 cells grown without re-plating, longitudinal non-destructive monitoring of cancer clones, and mathematical modelling of tumour evolution. We demonstrate evolutionary steering in a lung cancer model, showing that it shifts the clonal composition of the tumour in our favour, leading to collateral sensitivity and proliferative costs. Genomic profiling revealed some of the mechanisms that drive evolved sensitivity. This approach allows modelling evolutionary steering strategies that can potentially control treatment resistance.
dc.formatElectronic
dc.format.extent1923 - ?
dc.languageeng
dc.language.isoeng
dc.publisherNATURE PORTFOLIO
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectHumans
dc.subjectLung Neoplasms
dc.subjectPyridones
dc.subjectPyrimidinones
dc.subjectAntineoplastic Agents
dc.subjectStochastic Processes
dc.subjectComputational Biology
dc.subjectEvolution, Molecular
dc.subjectDrug Resistance, Neoplasm
dc.subjectGenotype
dc.subjectModels, Theoretical
dc.subjectComputer Simulation
dc.subjectClonal Evolution
dc.subjectMolecular Medicine
dc.subjectGefitinib
dc.titleExploiting evolutionary steering to induce collateral drug sensitivity in cancer.
dc.typeJournal Article
dcterms.dateAccepted2020-03-18
rioxxterms.versionofrecord10.1038/s41467-020-15596-z
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0
rioxxterms.licenseref.startdate2020-04-21
rioxxterms.typeJournal Article/Review
dc.relation.isPartOfNature communications
pubs.issue1
pubs.notesNot known
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics/Hit Discovery & Structural Design
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Clinical Studies
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Clinical Studies/Clinical Pharmacology – Adaptive Therapy
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Molecular Pathology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Molecular Pathology/Evolutionary Genomics & Modelling
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Molecular Pathology/Gastrointestinal Cancer Biology and Genomics
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Structural Biology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Structural Biology/Hit Discovery & Structural Design
pubs.organisational-group/ICR
pubs.organisational-group/ICR/Primary Group
pubs.organisational-group/ICR/Primary Group/ICR Divisions
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Cancer Therapeutics/Hit Discovery & Structural Design
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Clinical Studies
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Clinical Studies/Clinical Pharmacology – Adaptive Therapy
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Molecular Pathology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Molecular Pathology/Evolutionary Genomics & Modelling
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Molecular Pathology/Gastrointestinal Cancer Biology and Genomics
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Structural Biology
pubs.organisational-group/ICR/Primary Group/ICR Divisions/Structural Biology/Hit Discovery & Structural Design
pubs.publication-statusPublished
pubs.volume11
pubs.embargo.termsNot known
icr.researchteamClinical Pharmacology – Adaptive Therapy
icr.researchteamEvolutionary Genomics & Modelling
icr.researchteamGastrointestinal Cancer Biology and Genomics
icr.researchteamHit Discovery & Structural Design
dc.contributor.icrauthorCresswell, George
dc.contributor.icrauthorSpiteri Sagastume, Maria
dc.contributor.icrauthorBurke, Rosemary
dc.contributor.icrauthorMagnani, Luca
dc.contributor.icrauthorValeri, Nicola
dc.contributor.icrauthorBanerji, Udai
dc.contributor.icrauthorSottoriva, Andrea


Files in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0