Advances in mass spectrometry based strategies to study receptor tyrosine kinases.

Loading...
Thumbnail Image

Embargo End Date

ICR Authors

Authors

Vyse, S
Desmond, H
Huang, PH

Document Type

Journal Article

Date

2017-02-23

Date Accepted

2016-12-27

Abstract

Receptor tyrosine kinases (RTKs) are key transmembrane environmental sensors that are capable of transmitting extracellular information into phenotypic responses, including cell proliferation, survival and metabolism. Advances in mass spectrometry (MS)-based phosphoproteomics have been instrumental in providing the foundations of much of our current understanding of RTK signalling networks and activation dynamics. Furthermore, new insights relating to the deregulation of RTKs in disease, for instance receptor co-activation and kinome reprogramming, have largely been identified using phosphoproteomic-based strategies. This review outlines the current approaches employed in phosphoproteomic workflows, including phosphopeptide enrichment and MS data-acquisition methods. Here, recent advances in the application of MS-based phosphoproteomics to bridge critical gaps in our knowledge of RTK signalling are focused on. The current limitations of the technology are discussed and emerging areas such as computational modelling, high-throughput phospho-proteomic workflows and next-generation single-cell approaches to further our understanding in new areas of RTK biology are highlighted.

Citation

IUCrJ, 2017, 4 (Pt 2), pp. 119 - 130

Source Title

Publisher

INT UNION CRYSTALLOGRAPHY

ISSN

2052-2525

eISSN

2052-2525

Research Team

Protein Networks
Molecular and Systems Oncology

Notes