Preliminary Metabolomics Study Suggests Favorable Metabolic Changes in the Plasma of Breast Cancer Patients after Surgery and Adjuvant Treatment.
Embargo End Date
ICR Authors
Authors
Jiménez-Franco, A
Jiménez-Aguilar, JM
Canela-Capdevila, M
García-Pablo, R
Castañé, H
Martínez-Navidad, C
Araguas, P
Malavé, B
Benavides-Villarreal, R
Acosta, JC
Onoiu, AI
Somaiah, N
Camps, J
Joven, J
Arenas, M
Jiménez-Aguilar, JM
Canela-Capdevila, M
García-Pablo, R
Castañé, H
Martínez-Navidad, C
Araguas, P
Malavé, B
Benavides-Villarreal, R
Acosta, JC
Onoiu, AI
Somaiah, N
Camps, J
Joven, J
Arenas, M
Document Type
Journal Article
Date
2024-09-26
Date Accepted
2024-09-25
Abstract
Background/Objectives: The management of early breast cancer (BC) includes surgery, followed by adjuvant radiotherapy, chemotherapy, hormone therapy, or immunotherapy. However, the influence of these interventions in metabolic reprogramming remains unknown. This study explored alterations in the plasma metabolome of BC patients following distinct treatments to deepen our understanding of BC pathophysiology, outcomes, and the identification of potential biomarkers. Methods: We included 52 women diagnosed with BC and candidates for surgery as primary oncological treatment. Blood samples were collected at diagnosis, two weeks post-surgery, and one month post-radiotherapy. Plasma samples from 49 healthy women served as controls. Targeted metabolomics assessed 74 metabolites spanning carbohydrates, amino acids, lipids, nucleotide pathways, energy metabolism, and xenobiotic biodegradation. Results: Before treatment, the BC patients exhibited notable changes in carbohydrate, nucleotide, lipid, and amino acid metabolism. We noticed a gradual restoration of specific metabolite levels (hypoxanthine, 3-phosphoglyceric acid, xylonic acid, and maltose) throughout different treatments, suggesting a normalization of the nucleotide and carbohydrate metabolic pathways. Moreover, we observed increased dodecanoic acid concentrations, a metabolite associated with cancer protection. These variations distinguished patients from controls with high specificity and sensitivity. Conclusions: Our preliminary study suggests that oncological treatments modify the metabolism of patients towards a favorable profile with a decrease in the pathways that favor cell proliferation and an increase in the levels of anticancer molecules. These findings emphasize the pivotal role of metabolomics in recognizing the biological pathways influenced by each cancer treatment and the resulting metabolic consequences. Furthermore, it aids in identifying potential biomarkers for disease onset and progression.
Citation
Biomedicines, 2024, 12 (10), pp. 2196 -
Source Title
Biomedicines
Publisher
MDPI
ISSN
2227-9059
eISSN
2227-9059
Collections
Research Team
Trans Breast Radiobiol